
Pattern Trees for Regression and
Fuzzy Systems Modeling

Robin Senge and Eyke Hüllermeier
Department of Mathematics and Computer Sciences

Marburg University, Germany

Draft of a paper published in Proc. WCCI–2010, World Congress on
Computational Intelligence, Barcelona, 2010.

Abstract
Fuzzy pattern tree induction has recently been introduced as a novel classifica-

tion method in the context of machine learning. Roughly speaking, a pattern tree is
a hierarchical, tree-like structure, whose inner nodes are marked with generalized
(fuzzy) logical operators and whose leaf nodes are associated with fuzzy predicates
on input attributes. In this paper, we adapt the method of pattern tree induction so
as to make it applicable to another learning task, namely regression. Thus, instead
of predicting one among a finite number of discrete class labels, we address the
problem of predicting a real-valued target output. Apart from showing that fuzzy
pattern trees are able to approximate real-valued functions in an accurate manner,
we argue that such trees are also interesting from a modeling point of view. In
fact, by describing a functional relationship between several input attributes and
an output variable in an interpretable way, pattern trees constitute a viable alterna-
tive to classical fuzzy rule models. Compared to flat rule models, the hierarchical
structure of patterns trees further allows for a more compact representation and for
trading off accuracy against model simplicity in a seamless manner.

1 Introduction
Fuzzy pattern tree induction was recently introduced as a novel machine learning
method for classification by Huang, Gedeon and Nikravesh [4]. Independently, the
same type of model was proposed in [16] under the name “fuzzy operator tree”. Roughly
speaking, a fuzzy pattern tree is a hierarchical, tree-like structure, whose inner nodes
are marked with generalized (fuzzy) logical and arithmetic operators, and whose leaf
nodes are associated with fuzzy predicates on input attributes. A pattern tree propagates
information from the bottom to the top: A node takes the values of its descendants as
input, combines them using the respective operator, and submits the output to its pre-
decessor. Thus, a pattern tree implements a recursive mapping producing outputs in
the unit interval.

1



In this paper, we adapt the method of pattern tree induction so as to make it applica-
ble to another learning task, namely regression. Thus, instead of predicting one among
a finite number of discrete class labels, the problem is to predict a real-valued target
output. Apart from showing that fuzzy pattern trees are able to approximate real-valued
functions in an accurate manner, we argue that such trees are also interesting from a
modeling point of view. In fact, by describing a functional relationship between several
input attributes and an output variable in an interpretable way, pattern trees constitute
a viable alternative to classical fuzzy rule models. Compared to flat rule models, the
hierarchical structure of patterns trees further allows for a more compact representation
and for trading off accuracy against model simplicity in a seamless manner.

The remainder of the paper is structured as follows. Section II gives a brief intro-
duction to the model class of pattern trees and shows how it can be used for representing
regression functions. The learning of such trees in a data-driven way is addressed in
Section III, where an algorithm for constructing pattern trees in a top-down manner is
proposed. In Section IV, we explain how pattern trees can be used in a more general
way for fuzzy systems modeling. Section 5 is devoted to an experimental study evalu-
ating our method in terms of predictive accuracy. The paper ends with some concluding
remarks in Section 6.

2 Pattern Tree Models
As will be explained in more detail in this section, a pattern tree implements a mapping
from n input variables to one output variable:

f : X1 × X2 × . . .× Xn → [0, 1]

(x1, x2, . . . , xn) 7→ y

Here, Xi is the domain of the i-th input variable Xi (1 ≤ i ≤ n).
Note that the range of the function is the unit interval, i.e., the output variable

assumes values in [0, 1]. One can think of the output value as the degree of membership
of a fuzzy subset G of an underlying domain Y. For example, if Y is an interval [a, b],
i.e., if the original output variable is lower-bounded by a and upper-bounded by b, then
the membership function could be given by a simple linear scaling

G : y 7→
y − a

b− a
. (1)

Thus, the corresponding fuzzy set could be interpreted as a model of the linguistic term
“large”. Likewise, if the original output is unbounded, a possible re-scaling is

G : y 7→
1

1 + exp(−αy)
. (2)

More generally, G can be any fuzzy subset of Y. In principle, the domain Y could
also be partitioned into several fuzzy subsets, like “small”, “medium” and “large”.
In this case, a single pattern tree will be needed for each of these fuzzy sets, and a

2



defuzzification step is needed to produce the final output; we shall elaborate on this
idea in more detail in Section V.

Considering the fuzzy set G as a fuzzy predicate or, say, property of the output
variable (e.g., being large), a fuzzy pattern tree can be seen as a model that specifies
criteria on the input attributes which imply this property to hold. From a modeling
point of view, the pattern tree approach is based on three important conceptions:

• fuzzification of input attributes;

• hierarchical structuring of a functional dependency through recursive partition-
ing of criteria into sub-criteria;

• flexible aggregation of sub-criteria by means of parameterized fuzzy operators.

2.1 Fuzzification of Input Attributes
On the lowest level, the original input attributes (e.g., measurements) are modulated
in terms of associated fuzzy sets. Consequently, the actual input of the pattern tree is
not a feature itself, but the degree to which is satisfies a certain fuzzy property. More
specifically, each domain Xi is discretized by means of a fuzzy partition, that is, a set
of fuzzy subsets

Fi,j : Xi → [0, 1] (j = 1, . . . , ni)

such that
∑n

j=1 Fi,j(x) > 0 for all x ∈ Xi. The Fi,j are often associated with linguistic
labels such as “small” or “large”, in which case they are also referred to as fuzzy terms.

2.2 Hierarchical Structure of the Model
A pattern tree is a hierarchical, tree-like structure in which information is processed
from the bottom (leaf nodes) to the top (root node).1 The input of a pattern tree is
entered at the leaf nodes. More specifically, a leaf node is labeled by an attribute
Ai and a fuzzy subset Fi,j of the corresponding domain Xi. Given an instance x =
(x1, . . . , xm) ∈ X as an input, the node produces Fi,j(xi) as an output, that is, the
degree of membership of xi in Fi,j .

The results of the evaluations of internal nodes are propagated to the parents of
these nodes in a recursive way. The output eventually produced by a pattern tree is
given by the output of its root node. Fig. 1 shows some exemplary pattern trees.

Recalling the interpretation of the output produced by a pattern tree as a fuzzy de-
gree to which a specific property is satisfied, it can be seen that the model simplifies the
overall evaluation of this property by evaluating different sub-criteria first and aggre-
gating these evaluations afterward. In other words, each subtree of a pattern tree can
be seen as a criterion or, say, a high-level feature constructed from a number of low-
level features (namely the original input attributes), and these criteria are combined by
means of fuzzy logical operators in a recursive way. This kind of hierarchical model-
ing is intuitively appealing and commonly used in many fields, for example in decision
making [10].

1This distinguishes them from classification and regression trees [9, 3, 6], which process information in
the reverse direction: they assume an input at the root node and output a prediction at each leaf.

3



PT1

A

PT2

�

�

�

�MIN

A B

PT3

�

�

�

�
OWA(0.9,0.1)

A
�

�

�

�MAX

B C

Figure 1: Examples of simple pattern trees.

Table 1: Fuzzy operators: T-norms
name definition code
Minimum min{a, b} MIN
Algebraic ab ALG
Lukasiewicz max{a+ b− 1, 0} LUK
Einstein ab

2−(a+b−ab) EIN

2.3 Logic and Arithmetic Operators
As mentioned above, internal nodes of a pattern tree are labeled by generalized logical
or arithmetic operators, including

• t-norms and t-conorms [7],

• weighted and ordered weighted average [11, 15].

The t-norms and t-conorms allowed as operators in our implementation of pattern tree
induction are shown in Table 1 and Table 2, respectively.

Recall that an ordered weighted average (OWA) combination of k numbers v1, v2, . . . , vk

is defined by

OWAw(v1, v2, . . . , vk)
df
=

k
∑

i=1

wi · vτ(i), (3)

where τ is a permutation of {1, 2, . . . , k} such that vτ(1) ≤τ(2)≤ . . . ≤ vτ(k) and
w = (w1, w2, . . . , wk) is a weight vector satisfying wi ≥ 0 for i = 1, 2, . . . , k and
∑k

i=1 wi = 1. Thus, just like the normal weighted average (WA), an OWA operator
is parameterized by a set of weights. However, a weight does not directly refer to an

Table 2: Fuzzy operators: T-conorms
name definition code
Maximum max{a, b} MAX
Algebraic a+ b− ab COALG
Lukasiewicz min{a+ b, 1} COLUK
Einstein a+b

1+ab
COEIN

4



attribute, like in WA, but instead to a rank: wi is the weight of the i-th smallest value
among v1, v2, . . . , vk.

Note that for k = 2, (3) is simply a convex combination of the minimum and the
maximum. In fact, the minimum and the maximum operator are obtained, respectively,
as the two extreme cases of (3): w1 = 1 yields

OWAw(v1, . . . , vk) = vτ(1) = min(v1, . . . , vk)

and wk = 1 gives

OWAw(v1, . . . , vk) = vτ(k) = max(v1, . . . , vk).

Therefore, the class of OWA operators nicely “fills the gap” between the largest con-
junctive combination, namely the minimum t-norm, and the smallest disjunctive com-
bination, namely the maximum t-conorm.

3 Learning Pattern Trees for Regression
A method for learning pattern tree models in a data-driven way was originally intro-
duced in [4]. Moreover, an alternative to this method was recently proposed in [12].
This alternative modifies the original algorithm in several ways. Notably, pattern trees
are induced in a top-down instead of a bottom-up manner. As shown by the authors,
this strategy leads to improved performance.

The aforementioned algorithms both address the problem of classification. In this
section, we propose a variant of the top-down method proposed in [12] which is suitable
for solving regression problems, i.e., problems with a real-valued target variable.

3.1 Basic Algorithm
Our top-down algorithm for learning pattern trees for regression, PT-reg, is presented
in pseudo-code in Fig. 2. Roughly speaking, it implements a beam search in the space
of pattern trees, maintaining the B best models so far (B = 5 is used as a default
value). The basic steps of the approach are as follows:

1. initialize with primitive pattern trees

2. filter candidates by evaluation of their performance on the training data

3. check stopping criterion

4. generate new candidates through local search

5. loop at step 2

The algorithm starts by computing the set of all primitive pattern trees P, namely
pattern trees consisting of only a single root node, labeled by a fuzzy set Fi,j . Addi-
tionally, the first candidate set, C0, is initialized by the B best basic pattern trees, i.e.,
the trees with highest evaluation (see Section 3.2 below).

5



Pattern Tree Algorithm for Regression

1: {Initialization}
2: P = {Aij}, i = 1, ..., n; j = 1, ...,m
3: C

0 = argminBP∈P[L(P )]
4: ε = 0.0025
5: t = 0
6: {Induction}
7: {Loop on iterations}
8: stop = false
9: while not stop do

10: t = t+ 1
11: C

t = C
t−1

12: {Loop on each candidate}
13: for all Ct−1

i ∈ C
k−1 do

14: {Loop on each leaf of the chosen candidate}
15: for all lchosen ∈ leafs(Ct−1

i ) do
16: {Loop on each available operator ψ}
17: for all ψ ∈ Ψ do
18: {Loop on nearly each primitive pattern tree}
19: for all P ∈ P\lchosen do
20: C

t = C
t ∪ReplaceLeaf(Ct−1

i , lchosen, ψ, P )
21: end for
22: end for
23: end for
24: end for
25: C

t = argminBCt
i
∈Ct [L(Ct

i )]

26: if minCt
i
∈Ct(L(Ct

i )) < (1 + ε)minC
t−1
i

∈Ct−1(L(Ct−1
i )) then

27: stop = true
28: end if
29: end while
30: return argminCt

i
∈Ct [L(Ct

i )]

Figure 2: Pattern tree algorithm for regression.

After initialization, the algorithm iterates over all candidate trees. Starting from line
11, it tries to improve the currently selected candidate C t−1

i in terms of performance.
To this end, new candidates are created by tentatively replacing exactly one leaf node L
(labeled by a fuzzy term) of Ct−1

i by a new subtree. This new subtree is a basic pattern
tree, namely a tree that combines two fuzzy terms of two attributes (one of which is
given by L) by means of an operator (see Fig. 3 for an illustration). The new candidate
tree thus obtained is then evaluated by computing its performance on the training data.
Having tried all possible replacements of all leaf nodes of the trees in C

i, the B best

6



Ct−1
i

�

�

�

�ALG

L B

=⇒ C’t−1
i

�

�

�

�ALG
�

�

�

�
ψ

L P

B

Figure 3: Top-down induction: A leaf node is expanded through replacement by a basic
tree.

candidates are selected and passed to the next iteration, unless the termination criterion
is fulfilled.

3.2 Performance Evaluation
To evaluate the performance of a pattern tree, we compute the squared error loss that is
produces on the training data

T = {(x(i), y(i))}n
i=1 ⊂ X × [0, 1] .

Thus, with f(·) denoting the function implemented by the tree, we derive

L(f) =
1

n

n
∑

i=1

(

f
(

x
(i)

)

− y(i)
)2

. (4)

Note that a well-known disadvantage of the squared error loss, namely its sensitivity
toward outliers, is less problematic in our case. In fact, since the output values are
bounded by 0 and 1, the same holds true for the squared loss. In combination with
a transformation like (2), which is needed to handle output variables with unbounded
range, our approach can thus be seen as a kind of robust regression technique. Indeed,
the combination of (2) and (4) produces an effect quite comparable to Huber’s loss
function, which combines the absolute (L1) error for large differences with the squared
error (L2) for small ones [5].

3.3 Termination Criterion
The termination decision is based on the relative improvement of the best model in the
(t + 1)-st iteration (i.e., the model with the lowest loss (4)) as compared to the t-th
iteration. More specifically, our algorithm stops if

Lt+1
min > (1 − ε)Lt

min , (5)

i.e., if the relative improvement is smaller than ε, where ε ∈ (0, 1) is a user-defined
parameter. Based on empirical evidence, we propose ε = 0.001 as a suitable value for
this parameter.

7



3.4 Fuzzy Partitions
To make pattern tree learning amenable to numeric attributes, these attributes have to be
“fuzzified” and discretized beforehand. Fuzzification is needed because fuzzy logical
operators at the inner nodes of the tree expect values between 0 and 1 as input, while
discretization is needed to limit the number of candidate trees in each iteration of the
learning algorithm. Besides, fuzzification may also support the interpretability of the
model.

Fuzzy partitions can of course be defined in various ways. In our implementation,
we discretize a domain Xi in a generic way, using three fuzzy sets Fi,1, Fi,2, Fi,3 as-
sociated, respectively, with the terms “low”, “medium” and “high”. The first and the
third fuzzy set are defined as

Fi,1(x) =











1 x < min

0 x > max

1 − x−min
max−min

otherwise

,

Fi,3(x) =











1 x > max

0 x < min
x−min

max−min
otherwise

,

with min and max being the minimum and the maximum value of the attribute in the
training data. Noting that all operators appearing at inner nodes of a pattern tree are
monotone increasing in their arguments, it is clear that these fuzzy sets can capture
two types of influence of an attribute on the output variable, namely a positive and a
negative one.

The fuzzy set Fi,2 is meant to capture non-monotone dependencies. It is defined as
a triangular fuzzy set with center c:

Fi,2(x) =



















0 x ≤ min
x−min
c−min

min < x ≤ c

1 − x−c
max−c

c < x < max

0 x ≥ max

(6)

The parameter c is determined so as to maximize the absolute (Pearson) correlation
between the membership degrees of the attribute values in Fi,2 and the corresponding
output variable on the training data. In case the correlation is negative, Fi,2 is replaced
by its negation 1 − Fi,2.

Finally, nominal attributes are modeled as degenerate fuzzy sets: For each value v
of the attribute, a fuzzy set with membership function

Termv(x) =

{

1 x = v

0 otherwise

is introduced.

8



4 Fuzzy Systems Modeling
As already mentioned, fuzzy pattern trees can be considered as an interesting approach
to fuzzy systems modeling and, in this regard, as an alternative to conventional fuzzy
rule models. Although a detailed treatment of this topic is beyond the scope of this
paper, we would like to sketch the basic ideas.

Our approach outlined so far yields a single pattern tree implementing a mapping
of the form

f : (x1, x2, . . . , xn) 7→ G(y) ,

where G is a fuzzy subset of the domain Y of the output variable Y . In the case of
regression learning, it is indeed enough to consider a single fuzzy set like (1), since
from this fuzzy set, the original value can be recovered through

y = G−1(z) . (7)

Yet, one may think of the following generalization of this approach: Suppose that
the domain Y is discretized by means of a fuzzy partition consisting of fuzzy sets
G1, G2, . . . , Gk. Then, a single pattern tree model implementing a mapping

fi : (x1, x2, . . . , xn) 7→ Gi(y) ,

could be constructed for each of these fuzzy sets, either in a knowledge-driven way by
hand, or in a data-driven way using the learning method proposed in Section 3. Given
a vector x = (x1, x2, . . . , xn), a corresponding ensemble of pattern trees produces a
fuzzy description of the output in the form of a vector

f(x) = (f1(x), . . . , fk(x))

= (z1, . . . , zk) ∈ [0, 1]k .

The simple decoding (7) then has to be replaced by a defuzzification step, which could
be accomplished, for example, by

y∗ = arg min
y∈Y

‖(z1, . . . , zk) − (G1(y), . . . , Gk(y))‖ .

Recall that the i-the pattern tree can be considered as a model describing conditions (on
the input attributes) under which the output variable Y is in Gi, e.g., under which “Y
is medium” or “Y is large”. Interestingly, compared to rule-based fuzzy systems, the
“direction” of modeling is thus reversed. In fact, in rule-based systems, one typically
starts with the rule antecedents, i.e., one fixes conditions on the input attributes and
then assigns a suitable (fuzzy) value for the output variable. In pattern trees, it is just
the other way around: First, the (fuzzy) output values are fixed, and then conditions on
the input attributes are specified.

Finally, it is worth mentioning that pattern tree-based fuzzy systems of the above
kind are in a sense generalizations of (standard) rule-based systems, in which rule
antecedents are combined by means of a t-norm and the rules themselves by means of
a t-conorm. In fact, given a system of that kind, all rules with the same consequent

9



part “Y is Gi” can be collected and represented as a two-level pattern tree: The first
level consists of a node labeled with a t-conorm, while the second level consists of
nodes labeled with a t-norm, one for each rule, aggregating the corresponding rule
antecedents. Strictly speaking, a tree of that kind is not a proper pattern tree, since
it is not binary. However, noticing that both t-norms and t-conorms are associative
operators, it can easily be “binarized”.

5 Experiments
This section presents an experimental study that we conducted to get an idea of the
performance of our pattern tree learner for regression.

5.1 Methods
We implemented our algorithms under the WEKA Machine Learning Framework [14].
For the experiments, we used the standard pattern tree learner for regression (PT-reg) as
introduced in Section III. Moreover, we also included the “fuzzy systems” variant (PT-
sys) outlined in Section IV, partitioning the domain of the output variable in a uniform
way by means of three triangular fuzzy sets (the first with core {a} and support (a, b),
the second with core {b} and support (a, c), and the third with core {c} and support
(b, c), where [a, c] is the (observed) domain of the output and b = (a+ c)/2).

For comparison, we included several other regression methods implemented in
WEKA: Standard linear regression (LR), multilayer perceptrons (MLP), support vec-
tor machines with linear (SVM-lin) and RBF kernel (SVM-rbf), and regression trees
(REPtree); all these algorithms are used with their default parameterization. Finally,
we also included the fuzzy rule learner (FR) proposed in [13], which is implemented
in the KEEL software [1].

5.2 Data Sets
The data sets used in the experiments are shown in Table 3. The table provides the
number of instances (#instances), the number of numeric attributes (#num) and the
number of nominal attributes (#nom) per data set, as well as the mean and standard
deviation of the target attribute. The 12 data sets have been collected from the UCI [2]
and the STATLIB [8] repositories.

5.3 Results
Table 4 provides a summary of the results in terms of the RMSE (root mean squared
error), which has been obtained by averaging over 5 repetitions of a ten-fold cross
validation. As can be seen, the pattern tree learners are quite competitive. In terms of
average ranks, PT-reg is even the best method.

To test for statistical significance of the differences, we compared the methods in a
pairwise way by means of a Wilcoxon-signed-rank test. It turns out, however, that the
test fails to reject the null-hypothesis of equal performance most of the time, maybe

10



due to the limited number of data sets included in this study. An exception is the fuzzy
rule learner, which is significantly worse than both PT-reg and PT-sys (at a significance
level of 5%). In any case, the results show that pattern tree learning is fully competitive
to state-of-the-art regression methods in terms of predictive accuracy.

Table 3: Datasets with number of instances (#instances), numeric attributes (#num),
nominal attributes (#nom) and mean (mean) and standard deviation (stddev) of target
attribute.

#instances #num #nom mean stddev

auto-mpg 390 8 0 23.42 7.81
concrete 1030 9 0 35.82 16.71
flare1M 323 8 3 0.14 0.48
flare2C 1066 8 3 0.3 0.84
forestfires 517 11 2 12.85 63.66
housing 506 14 0 22.53 9.2
imports-85 205 16 10 13207.13 7868.77
machine 209 7 2 105.62 160.83
servo 167 3 2 1.39 1.56
slump 103 11 0 36.04 7.84
winequality-red 1599 12 0 8.32 1.74
winequality-white 4898 12 0 5.88 0.89

Table 4: Experimental results in terms of RMSE. Additionally, for each data set, the
rank of each method is show in brackets.

LR MLP SMO-lin SMO-rbf PT-reg REPtree PT-sys FR
auto-mpg 3.35(5) 3.24(3) 3.43(6) 3.54(7) 2.94(1) 3.34(4) 2.95(2) 5.87(8)
concrete 10.47(5) 8.01(3) 10.91(7) 10.8(6) 7.97(2) 7.21(1) 9.08(4) 13.7(8)
flare1M 0.44(1) 0.68(7) 0.46(5) 0.44(3) 0.47(6) 0.44(2) 0.45(4) 0.83(8)
flare2C 0.77(1) 0.99(7) 0.83(5) 0.83(6) 0.83(4) 0.77(2) 0.79(3) 1.15(8)
forestfires 47.6(4) 82.89(8) 46.56(2) 46.51(1) 61.67(6) 46.86(3) 52.61(5) 75.67(7)
housing 4.87(5) 4.09(1) 4.95(6) 5.5(7) 4.28(2) 4.56(3) 4.66(4) 7.43(8)
imports-85 2665.71(3) 2660.27(2) 2566.86(1) 2921.9(6) 2876(5) 3560.71(7) 2825.72(4) 8198.64(8)
machine 145.43(6) 160.43(8) 62.72(1) 79.2(5) 69.6(2) 147.82(7) 72.08(3) 78.23(4)
servo 1.11(5) 0.56(1) 1.27(7) 1.44(8) 0.68(2) 0.74(3) 0.76(4) 1.17(6)
slump 2.7(2) 0.67(1) 2.77(4) 4.94(6) 2.73(3) 5.04(7) 3.45(5) 7.41(8)
winequality-red 0.65(2) 0.73(7) 0.66(3) 0.66(4) 0.65(1) 0.68(6) 0.67(5) 1.13(8)
winequality-white 0.75(2) 0.79(6) 0.76(3) 0.76(5) 0.76(4) 0.75(1) 0.79(7) 1.3(8)

average rank 3.42 4.50 4.17 5.33 3.17 3.83 4.17 7.42

As an important advantage of pattern trees, especially in comparison to “black box”
methods such as neural networks (MLP), we would like to highlight again their inter-
pretability. As an illustration, Fig. 4 shows a pattern tree learned for the wine quality
data set, where the problem consists of predicting the quality of wine on a scale from
zero to ten,2 given a number of properties such as concentration of alcohol, volatile
acidity, sulphates, pH-value and several others. The tree can be interpreted in a quite

2Strictly speaking, this is an ordinal regression problem. However, due to the large number of levels, it
seems legitimate (and perhaps even reasonable) to treat the ordinal scale as a numerical one.

11



wine quality

�

�

�

�
WA(0.57)

alcoholmed

�

�

�

�
WA(0.62)

�

�

�

�
OWA(0.15)

aciditymed alcohollow

�

�

�

�MIN

sulfatesmed sulfurnot med

Figure 4: Pattern tree for red wine quality data (PT-reg).

intuitive way: The wine quality is an average of two criteria, namely a medium level of
alcohol and a second criterion. This second criterion is in turn a complex one, namely
an average of two sub-criteria. One of these sub-criteria is the conjunctive condition
that the level of sulfates is medium and the level of sulfur not medium, and the second
sub-criterion can be interpreted correspondingly.

Please note that, to get a basic understanding of the model, it is not necessary to
look at the concrete operators and their parameterization. Instead, it is normally suf-
ficient to distinguish between the main types of aggregation, namely conjunctive, dis-
junctive, and averaging. Upon closer inspection, the parameter values may of course
provide useful extra information. For example, the weights in WA are in direct corre-
spondence with the importance of the two criteria. Likewise, a disjunction (t-conorm)
can be more or less compensating.

As a disadvantage of the pattern tree approach, we note that, at least in its current
implementation, it has a high computational complexity. In fact, the addition of each
single node of a pattern tree requires several passes over the training data, one for each
candidate subtree. In this regard, it is to some extent comparable with the MLP, that is
also trained in an iterative way. In terms of average runtime, however, we found that
PT-reg is still more complex than MLP by a factor of about 3. Finding ways to reduce
the runtime of pattern tree induction is therefore an important topic of future work.

Recall that, in the approach to fuzzy system modeling outlined in Section IV, one
pattern tree is learned for each fuzzy term describing the output attribute. An example
of such a model is given in Fig. 5, where we show the trees learned for the fuzzy outputs
“high”, “medium”, and “low”, respectively, again for the wine quality data. These trees
can be interpreted in a similar way as before: The first tree specifies properties under
which the quality is high, the second one properties under which the quality is medium,
and the third one properties under which the quality is low.

12



6 Concluding Remarks
In this paper, we have proposed a variant of pattern tree induction suitable for learning
real-valued functions. Our experimental results on a number of benchmark data sets
show that fuzzy pattern trees are able to approximate such functions in an accurate
manner and, in fact, are competitive to state-of-the-art methods for regression in terms
of predictive performance.

Not less importantly, pattern trees provide an interpretable model class that appears
to very interesting from a modeling perspective. In fact, as argued in this paper, pattern
trees constitute a viable alternative to classical fuzzy rule models, especially since their
hierarchical structure allows for a more compact representation and for trading off
accuracy against model simplicity in a seamless manner. In future work, we plan to
elaborate on this aspect in more detail. Besides, as mentioned before, another important
issue to be addressed in future work concerns the reduction of the runtime complexity
of pattern tree induction.

A Java implementation of our PT-reg algorithm, running under the open-source
machine learning framework WEKA, can be downloaded from the Internet.3

Acknowledgments
This research was supported by the German Research Foundation (DFG). The fuzzy
rule learner used in the experiments was made available to us by the developers of the
KEEL software (Alberto Fernández). We gratefully acknowledge this support.

References
[1] J. Alcalá-Fdez, L. Sánchez, S. Garcia, M.J. del Jesus, S. Ventura, J.M. Garrell,

J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, and F. Herrera.
KEEL: A software tool to assess evolutionary algorithms to data mining prob-
lems. Soft Computing, 13(3):307–318, 2009.

[2] A. Asuncion and D. Newman. Uci machine learning repository, 2009. Accessed
13 Nov 2009.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth International Group, Belmont, CA, 1984.

[4] Zhiheng Huang, Tams D. Gedeon, and Masoud Nikravesh. Pattern trees induc-
tion: A new machine learning method. IEEE Transactions on Fuzzy Systems,
16(4):958–970, 2008.

[5] PJ. Huber. Robust Statistics. Wiley, 1981.

[6] J.S.R. Jang. Structure determination in fuzzy modeling: A fuzzy CART approach.
In Proceedings FUZZ-IEEE–94, Orlando, 1994.

3http://www.uni-marburg.de/fb12/kebi/research/

13



[7] Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular Norms. Kluwer
Academic Publishers, 2002.

[8] M. Meyer and P. Vlachos. Statlib data, software and news from the statistics
community, 2009. Accessed 13 Nov 2009.

[9] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers, 1993.

[10] T.L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1980.

[11] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. New York, 1983.

[12] R. Senge and E. Hüllermeier. Learning pattern tree classifiers using a co-
evolutionary algorithm. In F. Hoffmann and E. Hüllermeier, editors, Proceedings
19. Workshop Computational Intelligence, pages 22–33, Dortmund, Germany,
2009. KIT Scientific Publishing.

[13] L.X. Wang and J.M. Mendel. Generating fuzzy rules by learning from examples.
IEEE Transactions on Systems, Man, and Cybernetics–Part C, 22(6):1414–1427,
1992.

[14] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, 2 edition, 2005.

[15] R.R. Yager. On ordered weighted averaging aggregation operators in multi cri-
teria decision making. IEEE Transactions on Systems, Man and Cybernetics,
18(1):183–190, 1988.

[16] Y. Yi, T. Fober, and E. Hüllermeier. Fuzzy operator trees for modeling rating
functions. International Journal of Computational Intelligence and Applications,
8(4):413–428, 2009.

14



wine qualityhigh

�

�

�

�
WA(0.62)

alcoholhigh

�

�

�

�
WA(0.61)

�

�

�

�CO EIN

acidityhigh sulfatesmed

aciditynot med

wine qualitymed

�

�

�

�
OWA(0.52)

�

�

�

�CO MAX

alcohollow fix acidityhigh

�

�

�

�
WA(0.61)

sulfatesnot med fix aciditylow

wine qualitylow

�

�

�

�
WA(0.57)

�

�

�

�
WA(0.73)

�

�

�

�ALG

phhigh sulfateslow

acidityhigh

�

�

�

�MIN

�

�

�

�CO LUK

�

�

�

�CO ALG

phlow acidityhigh

chlorideshigh

alcohollow

Figure 5: Pattern trees for the red wine quality data (PT-sys).

15


