
Copower functors

H. Peter Gumm

Philipps-Universität Marburg

Abstract

We give a common generalization of two earlier constructions in [2], that yielded
coalgebraic type functors for weighted, resp. fuzzy transition systems. Transition
labels for these systems were drawn from a commutative monoid M or a complete
semilattice L, with the transition structure interacting with the algebraic structure
on the labels. Here, we show that those earlier signature functors are in fact instances
of a more general construction, provided by the so-called copower functor.

Exemplarily, we instantiate this functor in categories given by varieties V of
algebras. In particular, for the variety S of all semigroups, or the variety M of all
(not necessarily commutative) monoids, and with M any monoid, we find that the
resulting copower functors MS[−] (resp MM[−]) weakly preserve pullbacks if and
only if M is equidivisible (resp. conical and equidivisible).

Finally, we show that copower functors are universal in the sense that every Set-
functor can be seen as an instance of an appropreiate copower functor.

1 Introduction

Labeled transition systems and their many variations constitute fundamen-
tal examples of Set-coalgebras and most notions and intuitions in abstract
coalgebra are based on such examples. When the elements in the label set K
are just considered to be names (of processes, actions, inputs), then the pres-
ence or absence of labels does not have much of an impact on the coalgebraic
theory. A K-labeled transition system on a set A is just a family of Kripke
structures Ak = (A, Rk), i.e. unlabeled transition systems with transition re-

lations Rk = {(a, a′) ∈ A2 | a
k
_ a′}, one for each k ∈ K. Definitions and

theorems for Kripke structures will just have to be quantified over all labels.

Email address: gumm@mathematik.uni-marburg.de (H. Peter Gumm).

Preprint submitted to Elsevier Science April 7, 2006



As an example, a map between K-labeled transition systems A and B is a ho-
momorphism if and only if the following two conditions are satisfied for each
k ∈ K and a, a′ ∈ A, b, b′ ∈ B:

a
k
_ a′ =⇒ ϕ(a)

k
_ ϕ(a′) (1)

ϕ(a)
k
_ b′ =⇒ ∃a′ ∈ A.a

k
_ a′ ∧ ϕ(a′) = b′. (2)

When K carries some algebraic structure, more interesting behaviour can be
modelled. If, for instance, M = (M, +, 0) is a commutative monoid, one can
define a signature functor M(−)

ω , so that coalgebras are image-finite transi-
tion structures with labels from M, where homomorphisms obey the addition
structure of M, in the sense that a map ϕ between Mω-coalgebras A and B
is a coalgebra homomorphism if and only if

ϕ(a)
m
_ b ⇐⇒ m =

∑
{m′ | a m′

_ b′ ∈ ϕ−1[b]} (3)

where
∑

denotes summation in M, and a ∈ A, b ∈ B, see [2]. When the
elements of M are interpreted as weights or strengths, then this means that
the strength of a transition in the image is obtained by adding the strengths
of corresponding transitions in the preimage. Observe that for the above for-
mula to make sense, we need not only that the summation involves at most
finitely many nonzero summands, but also that M is associative as well as
commutative.

Choosing for M the additive monoid R+, the finite distribution functor Dω

becomes a subfunctor ofMω and the above formula describes homomorphisms
between Markov-chains, which are just coalgebras of signature Dω, see, e.g.
[7].

A different construction starts with the label set forming a complete semilat-
tice L = (L,

∨
). In that case we can define a signature functor L(−) whose

coalgebras are (not necessarily image-finite) L-labeled systems where the ho-
momorphisms condition turns out to be

ϕ(a)
l

_ b ⇐⇒ l =
∨
{l′ | a l′

_ b′ ∈ ϕ−1[b]}. (4)

Despite its formal similarity with 3, observe, that the absence of image-finiteness
now requires

∨
to be associative, commutative, and idempotent as well. Choos-

ing L = 2 = {0, 1} with the natural order, we can interpret L-coalgebras as
standard Kripke structures where the successors of a state s are all those s′

with s_s′. On the other hand, choosing for L the closed interval [0, 1] ⊆ R
with its induced order, L-coalgebras are just fuzzy transition systems.

Despite the obvious formal similarities in the above homomorphism formulae,

2



it has not been clear, how to unify these different notions of labelled transition
systems, in particular, since for monoid labelled transition systems image-
finiteness seems to be an essential restriction, whereas semilattice-labelled
transition systems seem to rely on idempotency in an essential manner. These
observations seemed to stand in the way of a common generalization which
at the same time ought to cover standard labelled transition systems, where
no algebraic structure is available on the label set, even though we are able
to equivalently rewrite the homomorphism conditions (1) and (2) in a manner
reminiscent of the previous two formulas as

ϕ(a)
k
_ b ⇐⇒ k ∈ {k′ | a k′

_ b′ ∈ ϕ−1[b]}. (5)

In this note we shall show that indeed all mentioned types of labelled transi-
tion systems can be seen as instances of a single construction which yields a
signature functor AV[−] for an arbitrary variety of universal algebras V and
an arbitrary algebra A ∈ V. Choosing for V the class of all commutative
monoids or the class of all complete semilattices, we obtain the above men-
tioned monoid-labeled, resp. semilattice-labeled systems. Specializing V to the
class of all algebras with empty signature (i.e. sets), we obtain the standard
notion of labeled transition systems.

In order to demonstrate a novel application, we apply our construction to the
case where the label set carries a semigroup or a not necessarily abelian monoid
structure. We show that in both cases the signature functor preserves kernel
pairs if and only if the semigroup (the monoid) is equidivisible. In the semi-
group case, this is also equivalent to the functor preserving weak pullbacks. In
the monoid case, it preserves weak pullbacks iff the monoid is equidivisible and
conical, two important notions from semigroup theory, that will be discussed
below.

2 Definitions and background

By a signature, we understand any endofunctor T on the category of sets. An
algebra of signature (or type) T is simply any map f : T (A) → A. Following
tradition, we write an algebra as a pair A = (A, fA), where A is a set, called
the base set, and fA : T (A) → A is the so called operation of A. An algebra
homomorphism between algebras A = (A, fA) and B = (B, fB) is a map
ϕ : A → B satisfying ϕ◦fA = fB ◦F (ϕ). Classical universal algebra is mostly
concerned with the case where T is a polynomial functor T (X) =

∑
i∈I Xni . In

this case f : T (A) → A is just a family of ni-ary operations (fi : Ani → A)i∈I .

Dually, a coalgebra of signature T is a map α : A → T (A) and we also write
it as a pair A = (A, αA) where A is called the state set and αA : A → F (A)

3



the structure map. A map between between coalgebras A = (A, αA) and B =
(B, αB) is called a homomorphism from A to B if

Tϕ ◦ αA = αB ◦ ϕ. (6)

A subset U ⊆ A is called a subcoalgebra, if there esists a (necessarily unique)
structure map αU : U → T (U) so that the inclusion map ⊆A

U is a homomor-
phism.

2.1 Deterministic systems

Fixing an arbitrary set K, deterministic labelled transition systems with labels
from K are coalgebras for the functor sending a set X to the set X × K. A

coalgebra A = (A, αA) is given by a map αA : A → A×K. We write a
k
_ a′

iff α(a) = (a′, k). The homomorphism condition translates immediately into

a
k
_ a′ =⇒ ϕ(a)

k
_ ϕ(a′) for each k ∈ K.

2.2 Nondeterministic systems

Consider, for instance, the powerset functor P, then a coalgebra of signature P
is just a map α : A → P(A). Such a map is equivalently described by a binary
relation _A setting a_a′ : ⇐⇒ a′ ∈ α(a). (We shall drop superscripts to _
and to α when they are clear from the context.) Let Pω(X) denote the set of
all finite subsets of X, then Pω is a subfunctor of P and its coalgebras are just
image-finite transition systems.

2.3 Nondeterministic labeled transition systems (LTS)

For a P(K × −)-coalgebra A = (A, αA) and a, a′ ∈ A, we write a
k
_ a′ iff

(k, a′) ∈ α(a). The homomorphism equation (6) translates into the previously
mentioned conditions (1) and (2), which are together equivalent to (5). The
subclass of image-finite systems is made up of the coalgebras for the subfunctor
Pω(K ×−).

4



2.4 Commutative monoid labeled system

Given a commutative monoid M = (M, +, 0) and a set X, we let M(X)
ω be the

monoid of all maps σ : X → M with finite support, i.e. for which σ(x) = 0 for
all but finitely many x ∈ X. Then M(−)

ω becomes a functor, when we define
it on maps f : X → Y as

Mf
ω(σ)(y) :=

∑
{σ(x) | x ∈ X, f(x) = y},

see [2]. An M(−)
ω -coalgebra A = (A, αA) can be considered an M-labeled

transition systems by writing

a
m
_ a′ ⇐⇒ α(a)(a′) = m.

In [2] coalgebra homomorphisms between M(−)
ω -coalgebras A = (A, αA)and

B = (B, αB) were characterized as maps ϕ : A → B satisfying condition
(3). Thus an M-labeled system A = (A, αA) is not just a labeled transition
system whose label set happens to carry a monoid structure. For one, we have
a different notion of homomorphism, but we also observe that there is always
exactly one transition between a and a′ from A and its weight is given as
α(a)(a′). Nevertheless, we may choose to interpret a transition of weight 0 as
nonexistent, so we do have a natural interpretation of single systems as image
finite LTS.

2.5 Semilattice labeled systems

In order to get rid of the image-finiteness inherent in the previous example, we
now assume that L is a complete semilattice L = (L,

∨
). The corresponding

covariant signature functor L(−) associates a set X with the set LX of all maps
σ : X → L and a map f : X → Y with a map Lf : LX → LY defined as

Lf (σ)(y) =
∨
{σ(x) | f(x) = y}.

In [2] it was shown that this defines a functor and that a map ϕ : A → B is a
homomorphism between L(−)-coalgebras A = (A, αA) and B = (B, αB) if and
only if the following two conditions are satisfied for all a, a′ ∈ A, all b ∈ B and
all l ∈ L:

a
l

_ a′ =⇒ ϕ(a)
l′

_ ϕ(a′) for some l′ ≥ l (7)

ϕ(a)
l

_ b′ =⇒ l ≤
∨
{l′ | ∃a′ ∈ A.a

l′

_ a′, ϕ(a′) = b′}, (8)

5



where again we use the notation a
l

_ a′ := α(a)(a′) = l. Observing that

a
l

_ a′ ∧ a
l′

_a′ =⇒ l = l′, we check that:

Lemma 1 Conditions (7) and (8) are together equivalent to condition (4).

PROOF. Given the above two conditions, and assuming ϕ(a)
l

_ b′ we need

to show l =
∨{l′ | a l′

_ a′ ∈ ϕ−1[b′]}. Condition (8) takes care of one inequality.

For each l′ with a
l′

_ a′ ∈ ϕ−1[b′] we obtain ϕ(a)
l′′

_ b′ for some l′′ ≥ l′using
(7). Therefore, l = l′′ ≥ l′, and the supremum of all these l′ is below l.

Given l =
∨{l′ | a

l′

_ a′ ∈ ϕ−1[b′]}, we also need to show ϕ(a)
l

_ b′. Now,

if ϕ−1[b′] = ∅ the assumption yields l = 0, which by (8) entails ϕ(a)
0
_ b′.

Otherwise, condition (7) implies that ϕ(a)
l′′

_ b′ for some l′′ ≥ l and condition
(8) guarantees that l′′ ≤ l.

For the converse, we need to derive conditions (7) and (8) from (4). Assuming

a
l

_ a′ and using a′ ∈ ϕ−1[ϕ(a′)], the right-to-left direction of (4) implies

ϕ(a)
l′

_ ϕ(a′) for some l′ ≥ l. Finally, (8) follows trivially from (4).

The functor L(−) generalizes the covariant powerset functor in that choosing
the two-element ordered set 2 = {0, 1} with 0 ≤ 1, we obtain 2(−) ∼= P(−).
It also generalizes the signature functor of nondeterministic labeled transition
systems, as (2K)(−) ∼= P(K ×−). More interestingly we can choose for L the
real unit-interval [0, 1] ⊆ R and interpret [0, 1]-coalgebras as fuzzy transition

systems, with a
r
_ a′ indicating a transition with certainty r. The homomor-

phism conditions have a very natural interpretion in this context.

3 Copower functors

We now show that the functors L(−) andM(−)
ω studied previously, are instances

of a more general construction. To this end, assume that C is a category with
fixed object M∈ C so that for every set X the coproduct

∐
X M exists in C.

To ease notation, we write M ·X for
∐

X M.

Let U : C → Set be any functor. We claim that MC[X] := U(M · X) is the
object map of a Set endofunctor.

For every x ∈ X, let ex : M → M · X be the canonical sum injection. For
a set map f : X → Y , the source (ef(x) : M → M · Y )x∈X is a competitor

6



to the sum (ex : M → M · X)x∈X . This provides a unique homomorphism
M · f : M ·X →M · Y with M · f ◦ ex = ef(x) for all x ∈ X.

M ·X M·f //_______ M · Y

M
ex

ddIIIIIIIII ef(x)

::vvvvvvvvv

(9)

Theorem 2 Given a category C with object M∈ C so that all copowers M·X
exist in C and a functor U : C → Set, then

MC[X] := U(M ·X) and

MC[f ] := U(M · f)

for any sets X and Y and any map f : X → Y , defines a Set-endofunctor.

PROOF. Obviously, MC[idX ] = idMC[X], so let f : X → Y and g : Y → Z
be maps. We claim that MC[g ◦ f ] = MC[g] ◦ MC[f ], i.e. U(M · (g ◦ f)) =
U(M · g) ◦ U(M · f). But for each x ∈ X we get by (9):

M · (g ◦ f) ◦ ex = e(g◦f)(x) = M · g ◦ ef(x) = M · g ◦M · f ◦ ex

whence M · (g ◦ f) = M · g ◦M · f .

In most cases, U will be an underlying-set functor, so we shall often suppress
it, since it will always be clear from the context, whether we are looking at
some A in C or at U(A) ∈ Set. We now show that both our functors M(−)

ω

and L(−) are instances of the above construction.

3.1 Commutative Monoids

Proposition 3 Let Mc be the category of commutative monoids and M ∈
Mc. Then MMc[−] = M(−)

ω

PROOF. It is well known that in the category of commutative monoids the
copower

∐
X M is given by {σ : X → M | σ(x) =a.e. 0}, i.e the set of all maps

σ : X → M that are almost everywhere zero, with addition defined pointwise,
so MMc[X] = M(X)

ω . The injections ex : M→MX
ω are defined by

ex(m)(x′) :=

m if x = x′

0 otherwise.

7



Each σ ∈MX
ω can be written as a sum σ =

∑
x∈X ex(σ(x)), so let f : X → Y

be any set map, then

MMc[f ](σ)(y) = (MMc[f ])(
∑
x∈X

ex(σ(x)))(y)

= (
∑
x∈X

MMc[f ](ex(σ(x))))(y)

= (
∑
x∈X

ef(x)(σ(x)))(y)

=
∑
x∈X

(ef(x)(σ(x))(y))

=
∑
x∈X

{σ(x) | f(x) = y}

=Mf
ω(σ)(y).

Hence MMc[f ] = Mf
ω.

3.2
∨
-Semilattices

Next. we show, that for a complete
∨

-semilattice L, the semilattice functor
L(−) is a copower-functor, as well.

Lemma 4 For a
∨
-semilattice L and a set X, the X-fold coproduct is LX

with injections ex : L → LX given by ex(l)(x) = l, and ex(l)(x
′) = 0 for

x 6= x′. In particular, products and coproducts are the same in the category of∨
-semilattices.

PROOF. Let (hx : L → S)x∈X be an X-indexed family of
∨

-homomorphisms.
We must show that there is a unique

∨
-homomorphism ϕ : LX → S with

ϕ ◦ ex = hx for all x ∈ X. Since every element σ ∈ LX can be written as∨
x∈X ex(σ(x)), such a ϕ must necessarily satisfy:

ϕ(σ) = ϕ(
∨

x∈X

ex(σ(x)))

=
∨

x∈X

ϕ(ex(σ(x)))

=
∨

x∈X

hx(σ(x)).

Taking the last line as a definition, we check that ϕ is indeed a
∨

-homomorphism:

8



ϕ(
∨
i∈I

σi) =
∨

x∈X

hx(
∨
i∈I

σi(x))

=
∨

x∈X

∨
i∈I

hx(σi(x))

=
∨
i∈I

∨
x∈X

hx(σi(x))

=
∨
i∈I

ϕ(σi).

To check that ϕ ◦ ex = hx, we calculate for arbitrary l ∈ L:

(ϕ ◦ ex)(l) = ϕ(ex(l)) =
∨

x′∈L
hx′(ex(l)(x

′)) = hx(l),

where in the last step we have used the fact that ex(l)(x
′) = l for x = x′ and

0 otherwise.

Theorem 5 Let SL be the category of complete
∨
-semilattices and L ∈ SL,

then L(−) = LSL[−].

PROOF. By the previous lemma, we have LSL[X] = LX and LSL[f ](σ) =∨
x∈X ef(x)(σ(x)) for any function f : X → Y . We calculate:

LSL[f ](σ)(y) = (
∨

x∈X

ef(x)(σ(x)))(y)

=
∨

x∈X

(ef(x)(σ(x)))(y)

=
∨
{σ(x) | x ∈ X, y = f(x)}

=Lf (σ)(y).

3.3 Algebras in Varieties

It is well known that varieties of universal algebras are complete categories,
in which all coproducts exist. They are known as free products, see [6]. Let V

be a variety of universal algebras of signature T and let A be an algebra in
V. We are only interested in copowers, so given any set X, the X-fold sum of
A = (A, fA) is constructed in V as follows:

We start with the set A × X, and maps ex : A → A × X representing the
X−fold sum of A in Set . Then we form FV(A × X), the free algebra in
V with variables from A × X. If the signature of V is finitary, then this is
just the set of all V-terms with variables from A × X. These variables are
naturally embedded (assuming V is nontrivial) by ι : A×X → FV(A×X). In

9



general, this will not yet be the free product, simply, because the compositions
ι ◦ ex : A → FV(A×X) need not be algebra homomorphisms. Thus we let Θ
be the smallest congruence relation on F := FV(A×X) containing all pairs(

(ι ◦ ex ◦ fA)(u) , (fF ◦ T (ι ◦ ex))(u)
)

(10)

where u ∈ T (A) and fF is the T -operation on FV(A × X). If T is a finitary
polynomial functor, then this reads as(

(fA(a1, . . . , an), x), fF((a1, x), . . . , (an, x))
)

for each n-ary operation symbol f and elements a1, . . . , an ∈ A.

Let πΘ be the canonical projection πΘ : FV(A × X) → FV(A × X)/Θ, then
we claim:

Lemma 6 AV[X] := FV(A×X)/Θ with embeddings εx := πΘ ◦ ι ◦ ex : A →
AV[X] is the X-fold sum of A in V.

PROOF. The proof consists of verifying that

• πΘ ◦ ι ◦ ex : A → FV(A×X)/Θ is a homomorphism, and
• every homomorphism φ :FV(A×X) → B for which φ ◦ ι ◦ ex is a homomor-

phism, factors uniquely through πΘ.

FV(A×X)
πΘ // //

φ

""EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

E FV(A×X)/Θ

ϕ

���
�
�
�
�
�
�

A×X

ι

OO

f

))A

ex

OO

ϕx
//B

Given then a family (ϕx : A → B)x∈X of homomorphism, let f : A×X → B
be the sum map in Set and φ : FV(A × X) → B the unique homomorphic
extension of f . By the above, φ factors uniquely through πΘ, providing the
sum homomorphism ϕ : FV(A×X)/Θ → B.

Observe that it may well happen, that variables (a, x) and (a, y) with x 6= y
are being identified by Θ. In particular, this occurs whenever a is the result of
a constant operation in A. In classical universal algebras the signature functor
T is a polynomial functor T (X) =

∑
i∈I Di×Xni , so that each element d ∈ Di

represents an ni-ary operation symbol. When d ∈ Dj with nj = 0, the equality
(10) implies (dA, x) Θ dF for all x ∈ X hence (dA, x) = (dA, y) in FV(A×X)/Θ
for all x, y ∈ X.

10



The elements of FV(A×X) are V-terms, which we can represent as equivalence
classes of finite trees, where each node is an element of some Di, having ni

subtrees. The leaves of these trees are variables (a, x) ∈ A×X. By the above,
this includes 0-ary nodes. Two trees p and q are identified in FV(A ×X)/Θ,
iff there exist a sequence p0, p1, . . . , pn of trees with p = p0, pn = q, and for
each i < n either pi = pi+1 is a V-equation or pi = t((a1, x), . . . , (an, x)) and
pi+1 = (tA(a1, . . . , an), x), or conversely. It is customary to write ax instead of
(a, x) so that formally, AV[X] is the set of V-terms in the ax subject to the
requirement that “right multiplication” with x becomes a homomorphism.

4 Semigroups and monoids

Recall that a semigroup S = (S, ·) is just a set with a binary associative
operation. A monoid M = (M, ·, 1) is a semigroup with a two-sided unit.
Whe shall write M = (M, +, 0) when the operation is commutative. Let S,
(resp. M) be the variety of all semigroups (resp. monoids) and Sc (resp. Mc)
be the varieties of all commutative semigroups, (resp. commutative monoids).

4.1 Conical, refinable and equidivisible semigroups

The following notions from semigroup theory will be needed in the sequel.

Definition 7 A monoid M is called conical, if no element m 6= 1 is invert-
ible, i.e. if m1 ·m2 = 1 implies m1 = 1 = m2.

A semigroup S can always be embedded into a monoid by adjoining a fresh
element 1 /∈ S. The resulting monoid S1 is clearly conical and conversely, every
conical monoid M arises this way from a semigroup.

Definition 8 [1] A semigroup S is called refinable, if a1 · a2 = b1 · b2 implies
the existence of s11, s12, s21, s22 so that si1 ·si2 = ai, and s1i ·s2i = bi for i = 1, 2.

In other words, given a1·a2 = b1·b2, there is a matrix, whose i-th row multiplies
to ai and whose i-th column to bi.

s11 s12 a1

s21 s22 a2

b1 b2

11



Refinability can be considered as a generalized distributive law. Indeed, as was
shown in [2], a lattice L considered as a semilattice is refinable if and only if
L is distributive.

By an easy induction, one checks that refinability implies a matrix decomposi-
tion of equal products of arbitrarily many factors, in other words, if a1, . . . , am ∈
S, and b1, . . . , bn ∈ S with a1 · . . . · am = b1 · . . . · bn then there exists an m×n-
matrix (si,j) of elements from S, whose i-th row multiplies to ai and whose
j-th colum to bj for each i ≤ m, and j ≤ n.

s11 · · · s1n a1

...
...

...

sm1 · · · smn am

b1 · · · bn

The final and related notion we need is equidivisibility:

Definition 9 [4] A semigroup S is called equidivisible, if a1 · a2 = b1 · b2

implies that there exists some h so that either a1 = b1 · h and h · a2 = b2 or
b1 = a1 · h and h · b2 = a2.

Equidivisible monoids are obviously refinable, but the converse does not hold,
as the following example demonstrates.

Example 10 A lattice, considered as ∨-semilattice (or as ∧-semilattice) is
refinable, iff it is distributive and it is equidivisible iff it is a chain.

To see that any equidivisible semigroup S = (S, ·) is refinable, too, let us
assume a1 · a2 = b1 · b2. Equidivisibility yields an element h such that w.l.o.g.
a1 · h = b1 and h · b2 = a2. Thus we can partially fill the required matrix as

a1 a1

h b2 a2

b1 b2

In a monoid, we may just fill the as yet empty space with the unit element,
but in a semigroup, such a unit need not be available. Fortunately, however,
equidivisibilty forces the existence, for any pair a, b ∈ S, of an element ea,b

which is at the same time a right unit for a and a left unit for b. To see this,
apply equidivisibility to the equality a · b = a · b. Now filling ea1,b2 into the
above matrix, we have shown:

Proposition 11 Every equidivisible semigroup is refinable.

12



It is equidivisibility, rather than refinability, which allows us to obtain a com-
mon refinement for equal products of elements. To see this, observe first that
we can visualize equidivisibility as follows:

a1 · a2 = b1 · b2 =⇒
b1︷ ︸︸ ︷

a1 · h · b2 or

a1︷ ︸︸ ︷
b1 · h · a2 .︸ ︷︷ ︸

a2

︸ ︷︷ ︸
b2

This idea can be extended to products with arbitrarily many factors. Given
a1 · . . . · am = b1 · . . . · bn, we can find a common refinement as a product of
smaller building blocks h1 · . . . · hm+n−1 so that all the factors ai and bj are
products of adjacent groups of the hr:

h1 · . . . ·
ai︷ ︸︸ ︷

hir−1+1 · . . . · hjs−1+1 · . . . · hir · . . . · hjs · . . . · hm+n−1 .︸ ︷︷ ︸
bj

A precise formulation is given in the following result, which will be needed
later:

Lemma 12 M is equidivisible iff given a1·. . .·am = b1·. . .·bn there exists some
k < m + n, elements h1, h2, . . . , hk and partitions 0 = i0 < i1 < . . . < im = k
as well as 0 = j0 < j1 < . . . < jm = k so that ar = hir−1+1 · . . . · hir for each
r ≤ m and likewise bs = hjs−1+1 · . . . · hjs for each s ≤ n.

PROOF. We use induction on m + n. For m = 1 or n = 1 the statement
is trivial, for m = n = 2 it is just the definition of equidivisibility. Thus,
assume a1 · . . . · am+1 = b1 · . . . · bn with m, n ≥ 2. Put a := a1 · . . . · am

and b := b1 · . . . · bn−1, then a · am+1 = b · bn. Equidivisibility yields h with
either a · h = b and h · bn = am+1 or b · h = a and h · am+1 = bn. In the first
case, the inductive hypothesis yields a common refinement h1 · . . . · hm+n−1 of
a1 · . . . · am · h and b1 · . . . · bn−1. With hm+n := bnwe extend it to a common
refinement of a1 · . . . ·am+1 and b1 · . . . ·bn. The second case is handled similarly.

4.2 Copowers of nonabelian monoids

For the rest of this section, we are concerned mostly with the functor MM[−]
where M is the variety of all monoids and M = (M, ·, 1) ∈ M. Given a set
X, the elements of F := FM(M ×X) are the monoid terms in variables from
M ×X. We use ? as multiplikation symbol in F in order to avoid ambiguities.
Writing mx instead of (m, x), we can represent the elements of F as formal
polynomials

m1x1 ? . . . ? mnxn

13



where mi ∈ S and xi ∈ X. The elements of the X-fold copower MM[X] are
obtained by reducing with the equations corresponding to (10):

m1x ? m2x = (m1 ·m2)x (11)

1x = ε. (12)

Writing [m1x1 ? . . . ? mnxn]M for the Θ-class of m1x1 ? . . . ? mnxn, it follows
that

MM[X] = {[m1x1 ? . . . ? mnxn]M | n ∈ N, mi ∈ M, xi ∈ X}.

The rules (11) and (12) reduce a formal polynomial m1x1 ? . . . ? mnxn to a
normal form with respect to Θ, so that we may equivalently write

MM[X] = {m1x1 ? . . . ? mnxn | n ∈ N, mi ∈ M − {1}, xi ∈ X, xi 6= xi+1}

where the case n = 0 accounts for the empty product, representing the unit 1.
From now on, when we write m1x1 ? . . . ? mnxn by itself, we assume that it is
already in normal form, otherwise we write [m1x1?. . .?mnxn]M. Consequently,
[m1x1 ? . . . ? mnxn]M can be read as “the normal form of m1x1 ? . . . ? mnxn”.

4.3 Monoid labeled coalgebras

Coalgebras for the functor MM[−] are transition systems where each state has
a list of successor states with the transitions to these states labeled by elements
of M . States appearing twice at adjacent positions in the list are combined
and their labels multiplied according to S and transitions with label 1 are
dropped.

The coalgebraic theory of the class of coalgebras for a given functor F depends
on the properties of the functor F . A prominent concern is weak preservation
of certain limits. The early coalgebraic literature (see [5]) in fact, was pri-
marily concerned with functors that weakly preserved pullbacks. I was later
shown in [3], that weak preservation of pullbacks can be separated into (weak)
preservation of preimages and weak preservation of kernel pairs. Structure
theoretically, the first property is equivalent to homomorphic preimages of
subcoalgebras being subcoalgebras, and the latter preservation property guar-
antees that bisimilarity agrees with observational equivalence.

For these reasons we shall be concerned with the question, under which con-
ditions the functor MM[−] weakly preserves preimages, kernels, or both, i.e.
weak pullbacks. For the functor M(−)

ω which due to proposition 3 agrees with
MMc[−], the following result has been proved in [2] :

14



Theorem 13 Let Mc be the class of all commutative monoids and M∈ Mc,
then

• MMc[−] (weakly) preserves preimages iff M is conical,
• MMc[−] weakly preserves kernel pairs iff M is refinable.

As an immediate consequence one obtains:

Corollary 14 MMc[−] weakly preserves pullbacks iff M is conical and refin-
able.

We are now trying to obtain similar characterizations when we replace the
class Mc by the class of all monoids M or by the class of all semigroups S.
We begin with a characterization ofMM-coalgebras and some useful lemmata:

Lemma 15 Let A = (A, α) be an MM[−]-coalgebra, then U ⊆ A is a sub-
coalgebra iff for each u ∈ U with α(u) = m1a1 ? . . . ? mnan we have ai ∈ U for
all i ≤ n.

PROOF. Note that the functor MM[−] preserves inclusions. Hence U is a
subcoalgebra iff αA(u) ∈MM[U ] for each u ∈ U , so if α(u) = m1a1?. . .?mnan

is in normal form, we must have ai ∈ U for all i ≤ n.

Lemma 16 If M is conical, then U ⊆ A is a subcoalgebra iff for all u ∈ U
with α(u) = [m1a1 ? . . . ? mnan]M we have ai ∈ U for all i ≤ n with mi 6= 1.

PROOF. If M is conical, then reducing m1a1 ? . . . ? mnan to normal form,
can only make those ai disappear whose coefficients mi are equal to 1.

After these preparations, we first show:

Proposition 17 MM[−] (weakly) preserves preimages if and only if M is
conical.

PROOF. According to [3], a Set-functor T (weakly) preserves preimages if
and only if homomorphic preimages of T -subcoalgebras are subcoalgebras, to
be precise, if

V ≤ B =⇒ ϕ−[V ] ≤ A
for every homomorphism ϕ : A → B among T -coalgebras.

Assuming that M is conical, let A = (A, α) and B = (B, β) be arbitrary
MM[−]-coalgebras, V ≤ B and ϕ : A → B any homomorphism. Given u ∈

15



ϕ−[V ] and α(u) = m1a1 ?. . .?mnan, lemma 15 requires us to show ai ∈ ϕ−[V ],
that is ϕ(ai) ∈ V . Note that each mi 6= 1. Since ϕ is a homomorphism and V a
subcoalgebra, β(ϕ(u)) = (MM[ϕ]◦α)(u) = [m1ϕ(a1)?. . .?mnϕ(an)]M ∈ V . By
lemma 16, we conclude that each ϕ(ai) ∈ V , so each ai ∈ ϕ−[V ], as required.

For the converse, consider MM[−]-coalgebras A = ({x, x1, x2}, α) and B =
({y, y1}, β) where α(x) = m1x1 ? m2x2, β(y) = (m1 · m2)y1 and α(x1) =
α(x2) = β(y1) = ε. Clearly, the map ϕ, with ϕ(x) = y and ϕ(x1) = ϕ(x2) = y1

is a homomorphism. Assuming (m1 ·m2) = 1 makes {y} a subcoalgebra of B,
but ϕ−[{y}] = {x} is not a subcoalgebra of A, unless m1 = m2 = 1. Thus,
weak preservation of preimages forces M to be conical.

For the proof of the main theorem of this section, we need a further technical
lemma which is easily proved by induction:

Lemma 18 Suppose [m1u1 ? . . . ? mnun]M = c1x1 ? c2x2 ∈MM[{x1, x2}] with
x1 6= x2, then m1 · . . . ·mk = c1 and mk+1 · . . . ·mn = c2 for some k < n. If all
mi are different from 1 and M is conical then additionally u1 = . . . uk = x1

and uk+1 = . . . un = x2.

PROOF. The proof is by induction on n. For the premise to hold, n must
be at least 2, so the base step is trivial. Assume, the claim holds for some n,
then for n + 1 we start with [m1u1 ? . . . ? mnxn ? mn+1xn+1]M = c1x1 ? c2x2.
The left hand side of this equation must be reducible to c1x1 ? c2x2 with the
above rules (11) or (12). After the first reduction step, the formal polynomial
becomes shorter and the induction hypothesis can be applied. If, for instance,
rule (i) was used, then we get w.l.o.g. c1 = m1 · . . . (mi · mi+1) . . . mk and
c2 = mk+1 · . . . ·mn. The decomposition of the original formal polynomial is
obvious. The same holds, if rule (ii) was applied. The second statement of the
lemma is obvious, since under the stated hypothesis the second rule (12) can
never be applied.

The main result of this section is then:

Theorem 19 MM[−] weakly preserves pullbacks if and only if M is conical
and equidivisible.

PROOF. If MM[−] weakly preserves pullbacks, it weakly preserves preim-
ages and kernel pairs. By proposition 17, M is conical. Also, MM[−] weakly
preserves kernel pairs, so let c1, c2, d1, d2 ∈M be given with c1·c2 = m = d1·d2.
Consider sets X := {x1, x2} and Z := {z} and the unique map f : X → Z.
Then the elements c1x1?c2x2 and d1x1?d2x2 are in the kernel of MM[f ]. With

16



X × X being the kernel of this particular f in the base category Set, weak
kernel preservation guarantees the existence of some element w ∈MM[X×X]
with M[π1](w) = c1x1?c2x2 and M[π2](w) = d1x1?d2x2, where the πi : X2 →
X are the canonical projections.

Any such w can be written as m1(u1, v1) ? . . . ? mn(un, vn) where n ∈ N,
ui, vi ∈ X and all mi 6= 1, hence

[m1u1 ? . . . ? mnun]M = c1x1 ? c2x2

and

[m1v1 ? . . . ? mnvn]M = d1x1 ? d2x2.

Now lemma 18 yields c1 = m1 · . . . ·mk and c2 = mk+1 · . . . ·mn and likewise
d1 = m1 · . . . ml and d2 = ml+1 · . . . ·mn. If k = l, we choose h = 1, otherwise
w.l.o.g k < l and with h = mk+1 · . . . ·ml we have c1 · h = d1 and h · d2 = c2,
so M is equidivisible.

Conversely, assuming that M is equidivisible, let f : X → Z be any set
map and let Ker f := {(x, y) ∈ X2 | f(x) = f(y)} be its kernel with π1and
π2 its projection maps. Given u, v ∈ MM[X] with MM[f ](u) = MM[f ](v)
we must find an element w ∈ MM[Ker f ] such that MM[π1](w) = u and
MM[π2](w) = v.

Now, we have u = a1x1 ? . . . ? amxm and v = b1y1 ? . . . ? bnyn for appropriate
m, n ∈ N and ai,bj ∈ M and xi,yj ∈ X. Note that this notation implies that
all ai and all bj are 6=1, which we can safely assume, so

MM[f ](u) = [a1f(x1)?. . .?amf(xa)]M = [b1f(y1)?. . .?bnf(yn)]M = MM[f ](v) .

It follows that both terms have a common normal form NF = t1z1 ? . . . ? trzr.
To reduce to this normal form, only rule 11 is available, since none of the
coefficients ai, bj is equal to 1 and since 1 cannot be created in the reduction
process, due to the assumption that M is conical.

Let us first consider the special case r = 1. Then f(x1) = . . . = f(xm) = z1 =
f(y1) = . . . = f(yn) and a1 · . . . · am = t1 = b1 · . . . · bn. Using the notation of
lemma 12, we find h1, h2, . . . , hk refininig the products so that each hi is part
of the product decomposition of a unique al(i) and of a unique br(i). We now
consider the formal polynomial

w = h1(xl(1), yl(1)) ? . . . ? hk(xl(k), yr(k))

then w ∈MM[Ker f ] and

MM[π1](w) = h1xl(1) ? . . . ? hkxl(k) = a1x1 ? . . . ? amxm = u

17



likewise

MM[π2](w) = h1yr(1) ? . . . ? hkyr(k) = b1y1 ? . . . ? bnyn = v

as requested.

In the general case where the normal form NF = t1z1 ? . . . ? trzr has r > 1,
we will find partitions of the indices 0 = i0 < i1 < . . . < ir = p and 0 = j0 <
j1 < . . . < jr = q so that for each k the products agree:

mik+1 · . . . ·mik+1
= sjk+1 · . . . · sjk+1

and also

f(xik+1) = . . . = f(xik+1
) = zk+1 = f(yjk+1) = . . . = f(yjk+1

).

For each such class of the partition we proceed as in the special case above,
and find a formal polynomial wk ∈MM[Ker f ] and define w = w1 ∗ . . . ? wr.

4.4 The semilattice functor MS[−]

If S is the class of all semilattices, only rule (12) is to be used in computing
the congruence Θ. In this context, even if M should happen to be a monoid,
the label 1 does not play any special role. It is therefore easy to see that
for any semigroup M, the functor MS[−] preserves preimages. The case of
kernel preservation is dealt with as before, but it is not necessary to consider
any condition replacing “conical”. We therefore obtain:

Theorem 20 For any semigroup M, the functor MS[−] weakly preserves
preimages. MS[−] weakly preserves kernel pairs iff it weakly preserves pull-
backs iff the semigroup M is equidivisible.

5 Copower functors are universal

5.1 What is special about sum functors

Generalizing earlier constructions, we have studied set functors arising from
powers of a fixed object M in some category C as F (X) = U(

∐
x∈X M) =

U(M·X), where U is some (forgetful) functor to Set. We have instantiated this
construction in algebraic categories of semigroups, monoids and commutative
monoids. An obvious question arises: What is special about such functors ?
The somehow surprising answer is: Nothing. To be precise:

18



Theorem 21 For every Set-endofunctor T, there is a concrete category C

and an object M∈ C such that T (−) ∼= U ◦M · (−), where U is the forgetful
functor.

PROOF. Let C be the subcategory of Set consisting of all all sets T (X)
together with all maps Tf where X is a set and f a set map. Since each
set X is the sum in Set of |X| copies of 1, it is easy to check that T (X)
is indeed the sum in C of |X| copies of the C-object T (1). It follows that
T (X) = U(

∐
x∈X T (1)) where U : C → Set is the inclusion functor.

Thus copower functors represent not only an interesting but also a universal
construction principle for Set-functors.

5.2 Semigroups as categories

We have have considered monoids and classes of semigroups to construct Set-
functors with specially designed preservation properties. In a sense, we em-
ployed semigroup and monoid notions and methods to study category theo-
retic properties. One might ask, whether, conversely, category theoretic notions
might benefit the study of monoids. A monoid M, after all, is a category •M,
albeit a really simple looking one. It has just one single object • = {0}, and
it has an arrow a : • → • for each a ∈ M. Composition of arrows is defined
as monoid multiplication. A commutative square, in this category is a just
collection of elements a1, a2, b1, b2 ∈ M satisfying a1 · a2 = b1 · b2. Obviously,
then

M is equidivisible ⇐⇒ Each square in •M has a diagonal:

• a1 //

b1
��

•

��~
~

~
~

a2

��
or

• a1 //

b1
��

•
a2

��
either

•
b2

// • •
b2

//

??~
~

~
~ •

Squares having diagonals is a very important aspect in category theory. It is,
for instance, fundamental in the study of standard factorizations and factoriza-
tion systems for morphisms. Here, we shall show, how this category theoretic
view might be used to obtain a convincing graphical argument for the proof
of the refinement lemma 12.

The given equality a1 · . . . · am = b1 · . . . · bn, translates into two paths in
the category •M with common starting and ending point. The above diagonal
property allows us to insert arrows into this pair of paths. After the first arrow
is inserted a new pair of paths arises, and so on. We obtain a figure such as
e.g.:

19



• a2 //

���
�
�
�
�
� • a3 //

h2
�

�
�

���
�

�

•

���
�
�
�
�
�

a4 // •

���
�
�
�
�
�
�

· · · •
am

��@
@@

@@
@@

•

a1

??~~~~~~~

b1 ��@
@@

@@
@@

•

•
b2

//

??~
~

~
~

~
~

~
~

~ •
b3

//

h4�
�

�

GG�
�

�

•
b4

// • · · · •
bn

??~~~~~~~

It is required to find a path from the left to the right end that collects all ai

as well as all bj. Note that each node always has at most two outgoing arrows,
and that these are connected by another (necessarily dashed) arrow given
by the diagonal property. The algorithm commences at the common starting
point of the two paths and proceeds to its successor. In case where there
are two successors, it chooses the one from which the connecting diagonal
arrow arrow starts. It is easy to verify that this results in a path with the
required properties. In the above example, with the diagonals labelled h1,h2,
etc. from left to right, it would yield the path a1, a2, h2, b2, h4, a4, . . . providing
the common decomposition:

a3︷ ︸︸ ︷
a1 · a2 · h2︸ ︷︷ ︸

b1

· b2 · h4 · a4 · . . .︸ ︷︷ ︸
b3

· . . .

References

[1] H. Dobbertin. Refinement monoids, Vaught monoids, and Boolean alge-
bras. Mathematische Annalen, 265:475–487, 1983.

[2] H.P. Gumm and T. Schröder. Monoid-labeled transition systems. Elec-
tronic Notes in Theoretical Computer Science, 44(1):184–203, 2001.

[3] H.P. Gumm and T. Schröder. Types and coalgebraic structure. Algebra
Universalis, 53:229–252, 2005.

[4] J. D. McKnight and A. J. Storey. Equidivisible semigroups. Journal of
Algebra, 12:24–48, 1969.

[5] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, (249):3–80, 2000.

[6] R. Sikorski. Products of abstract algebras. Fund. Math., 39:211–228, 1952.
[7] A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis,

Technical University Eindhoven, 2005.

20


