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Abstract. We show that for an arbitrary Set-endofunctor T the generalized

membership function given by a sub-cartesian transformation µ from T to the
filter functor F can be alternatively defined by the collection of subcoalgebras

of constant T -coalgebras. Sub-natural transformations ε between any two
functors S and T are shown to be sub-cartesian if and only if they respect µ.

The class of T -coalgebras whose structure map factors through ε is shown to

be a covariety if ε is a natural and sub-cartesian mono-transformation.

1. Set-Functors

Our interest in Set-Functors arises from their use as signatures of algebras or
coalgebras. A Set-functor T associates with each set X a set T (X) and with each
map f : X → Y between sets a map Tf : T (X) → T (Y ) so that identities and
function compositions are preserved, i.e. TidX = idT (X) and T (g ◦ f) = Tg ◦ Tf
whenever f : X → Y and g : Y → Z.

In the context of universal algebra, the most important examples are given by
the so called polynomial functors. Starting with a sequence of natural numbers
∆ = (ni)i∈I (called a similarity type) define T∆(X) := ]i∈IX

ni for each set X and
put (Tf)(x1, . . . , xni) = (f(x1), . . . , f(xni)) for each (x1, . . . , xni) ∈ Xni . Then a
universal algebra of signature ∆ on a set A is just a map fA : T (A) → A, and a
homomorphism to another algebra fB : T (B) → B is just a map ϕ : A → B with
ϕ ◦ fA = Tϕ ◦ fB .

1.1. Coalgebraic type functors. In the dual context of coalgebras a wide range of
functors is of interest in order to model automata, transition systems, probabilistic
and nondeterministic systems, processes or even topological spaces. Much of the
(co)algebraic theory hinges on particular preservation properties of the Set-functors
defining their signature. Examples of functors, acting on a set X and an arbitrary
map f : X → Y are:

• the power set functor P, where P(X) is the power set of X and (Pf)(U) :=
f [U ] := {f(u) | u ∈ U} ,

• the filter functor F with F(X) the set of all filters on X and (Ff)(G) :=
{V ⊆ Y | f−1(V ) ∈ G},

• the distribution functor, where D(X) is the set of all probability distribu-
tions on X and (Df)(σ)(y) =

∑
f(x)=y σ(x) ,

• the automaton functor A(X) = D ×XE where E is a fixed input set, D a
fixed output set and XE the set of all maps from E to X,

• the stream functor (−)∞, where X∞ is the set of all infinite lists (streams)
of elements of X,

• the binary-tree-functor where BinTree(X) is the set of all binary trees with
leafs from X, or, more general
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• the free-algebra-functor for a variety V, where FV(X) is the free V-algebra
over X and FVf is the homomorphic extension of f .

Subfunctors of some of the above functors are of interest, too, such as e.g.
• the list functor (−)? where X? is the set of all finite lists (words) of elements

of X,
• the bounded powerset functors Pκ for any cardinal κ, yielding only the

subsets of cardinality below κ,
• the (−)32-functor, see [1], where (X)32 := {(x1, x2, x3) ∈ X3 | |x1, x2, x3| ≤

2} and maps are extended componentwise.
Regarding the coalgebraic theories in which these functors occur, certain preserva-
tion properties play a fundamental role. In particular, much of the early literature
in coalgebra assumed that the type functor T should preserve weak pullbacks, see
[9]. Here a weak pullback is a weak limit of two arrows with common target. It
was then shown in [7] that a Set-functor T weakly preserves pullbacks iff it weakly
preserves kernels and preimages. (Recall that a kernel is the pullback of an arrow
with itself and a preimage, also known as inverse image, is a pullback along a mono,
see [2].)

1.2. Container functors and their membership. In computer science, typical
functors arise as container datatypes (arrays, lists, trees, streams), where T (X) can
be interpreted as the set of all containers of a certain type with elements from X.
Given an item u in T (X), it is legitimate to ask for the set of all elements that are
present in the container represented by u ∈ T (X). A natural way to formalize this
would be to ask for the smallest U ⊆ X such that u ∈ T (U). But one encounters
two difficulties:

• Firstly, T (U) need not be a subset of T (X) even when U ⊆ X, unless the
functor is standard. However, we can replace T (U) by (T ⊆X

U )[T (U)] which
is the image of T (U) under the T -image of the inclusion map ⊆X

U . Now
(T ⊆X

U )[T (U)] is a subset of T (X) and it is equal to T (U), whenever T is
standard. The filter functor F provides an example of a functor, which is
not standard, and preserves weak pullbacks, but not infinite intersections,
see [4].

• Secondly, a smallest U with the required properties need not exist. Thus the
question for arbitrary elements u ∈ T (X) need not have a unique answer,
but rather a collection of possible answers. Fortunately, this collection is
closed under supersets and finite intersections, i.e. it is a filter.

To be precise, the following was defined in [5] for an arbitrary Set-functor T and
an arbitrary element u ∈ T (X) :

µT
X(u) := {U ⊆ X | u ∈ (T ⊆X

U )[T (U)] }

and it was shown that µT , for an arbitrary Set-functor T , is a transformation to
the filter functor. µT is not a natural transformation in general, but it is always
sub-natural, even sub-cartesian, terms which are defined below. In fact, it was
proved there :

Theorem 1.1. For any Set-endofunctor T

• µT is the largest sub-cartesian transformation from T to the filter functor,
• µT is natural if and only if T (weakly) preserves preimages.
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Here, a transformation σ between two functors F and G is just a collection of
maps σX : F (X) → G(X) for each set X. The transformation is natural, if for each
map f : X → Y the following diagram commutes:

F (X)
σX //

Ff

��

G(X)

Gf

��
F (Y )

σY // G(Y )

σ is called sub-natural, when this square is required to commute only for f
injective and is called sub-cartesian, if for each injective f the above diagram is a
preimage diagram, i.e. a pullback.

In the above sense then, µ provides a generalized membership relation for arbi-
trary functors T , assigning to each container u ∈ T (X) its filter of elements.

The straightforward definition σT
X(u) :=

⋂
µT

X(u) always yields the largest sub-
natural transformation from T to the powerset functor P. If there exists any sub-
cartesian transformation at all from T to P, then σ itself is sub-cartesian, and this
is the case if and only if T preserves intersections, see [5].

1.3. Sub-cartesian means preservation of membership. We shall provide a
criterion for determining, when a general sub-natural transformation ε between any
two functors is actually sub-cartesian. For its proof, we shall require the following
easy lemma, see e.g. [8]:

Lemma 1.2. In any category, suppose that the following digram commutes.
(1) If (A) and (B) are pullbacks, then so is the perimeter (A,B).
(2) If (A,B) is a pullback and f,g are jointly monic, then (A) is a pullback.

◦ //

��
(A)

◦ f //

g

��
(B)

◦

��
◦ // ◦ // ◦

With that we can prove the following characterization:

Theorem 1.3. Let S and T be Set-endofunctors. A sub-natural transformation ε :
S

·→ T is sub-cartesian, if and only if it commutes with the generalized membership
µ:

S ε

· //

µS
��?

??
??

??
T

µT
����

��
��

�

F

Proof. Let ε be sub-natural, then for any U ⊆ X the following diagram commutes.

S(U)� _

S⊆X
U

��

εU // T (U)� _

T⊆X
U

��

µT
U // F(U)� _

F⊆X
U

��
S(X)

εX

// T (X)
µT

X

// F(X)
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By assumption, µT
U ◦εU = µS

U and µT
X◦εX = µS

X , so by theorem 1.1, the perimeter
of the diagram is a pullback. Lemma 1.2, therefore guarantees that the left square
is a pullback, too, which means that ε is sub-cartesian.

For the converse assume that ε is sub-cartesian., we need to show µS = µT ◦ ε.
From the first assertion of lemma 1.2 one obtains that µT ◦ ε is a sub-cartesian
transformation from S to the filter functor F. Therefore, from the first item of
theorem 1.1, we obtain the inclusion µT

X(εX(u)) ⊆ µS
X(u).

For the reverse inclusion, let any U ∈ µS
X(u) be given, then by definition of µ

there exists v ∈ S(U) with (S ⊆X
U )(v) = u. It follows that εX(u) = εX ◦ (S ⊆X

U

)(v) = (T ⊆X
U ) ◦ εU (v) ∈ (T ⊆X

U )[T (U)], hence U ∈ µT
X(εX(u)). �

2. Coalgebras

An important property true in the category of sets is that every epi-mono-square
has a (necessarily unique) diagonal. That is, given a square m ◦ f = g ◦ e, where e
is epi and m mono, there is a unique d such that d ◦ e = f and m ◦ d = g.

◦ e // //

f

��

◦
g

��

d

~~~
~

~
~

◦ //
m

// ◦

Let T : Set → Set be any functor. By a T -coalgebra we understand a pair
A = (A,αA) consisting of a set A and a map αA : A → T (A). A homomorphism
ϕ to another T -coalgebra B = (B,αB) is just a map making the obvious diagram
commute:

A
ϕ //

αA

��

B

αB

��
T (A)

Fϕ // T (B)

The class of all T -coalgebras with homomorphisms as defined above forms a
category SetT , in which all colimits exist. In fact, the forgetful functor, associating
with a coalgebra A = (A,αA) its base set A, creates and reflects colimits. Since in
any category a morphism ϕ : A → B is epi if and only if the pushout with itself is
the identity idB , this implies that ϕ is epi in SetT if and only if it is epi in Set, i.e.
surjective, see [9]. Monos in SetT , however, need not be injective. Rather, they are
injective iff they are regular in SetT , see [7].

Given a homomorphism ϕ as above, the image factorization in Set of ϕ as ϕ =
⊆ ◦ϕ′ yields an image factorization of ϕ in SetT . This is because any Set-functor
T preserves (nonempty) monos, so the factorization of ϕ in Set becomes an epi-
mono-square. Now, the structure map on the image ϕ[A] of A under ϕ is provided
by the unique diagonal:

A

αA

��

ϕ′ // // ϕ[A] �
� //

���
�
� B

αB

��
T (A)

Tϕ′ // T (ϕ[A])
T⊆ // T (B)
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A coalgebra U = (U,αU ) is called subcoalgebra of A = (A,αA), provided that U ⊆ A
and the structure map αU is the restriction of αA in the sense that the embedding
⊆A

U is a homomorphism:

U
� � ⊆A

U //

αU

���
�
� A

αA

��
T (U) // T⊆

A
U // T (A)

Not every subset U of A supports a subcoalgebra structure, but if it does, the
structure map αU is uniquely determined. By abuse of notation, we therefore shall
call such a subset U a subcoalgebra of A.

Finally, the sum
∑

i∈I Ai of a family (Ai)i∈I of coalgebras has as carrier set the
sum (in Set) of the carriers of the Ai, which is the disjoint union ]i∈IAi and as
structure map the disjoint union of the αAi

.
Given a class K of coalgebras, we denote by S(K), H(K), resp. Σ(K) the classes

of all subcoalgebras, homomorphic images, resp. sums, of members from K. A class
of T -coalgebras closed under the operators S,H, and Σ is called a covariety, and it
is well known that for any class K of coalgebras, the smallest covariety containing K
is given by SHΣ(K) (see for instance[3], where a Birkhoff-Theorem for covarieties
is proved).

2.1. Membership through constant coalgebras. We now show that the mem-
bership transformation µ : T → F has an interpretation in coalgebras. For an
arbitrary set X and an arbitrary element c ∈ T (X), let κc : X → T (X) be the map
with constant value c and let Kc

X = (X, κc) be the constant coalgebra on X with
value c. Let Sub(Kc

X) be the collection of subcoalgebras of Kc
X , then we have:

Proposition 2.1. µX(c) = Sub(Kc
X).

Proof. For U ⊆ X we have:

U ≤ Kc
X ⇐⇒ ∃α : U → T (U).(U,α) ≤ Kc

X

⇐⇒ ∃α : U → T (U).(T ⊆X
U ) ◦ α = κc◦ ⊆X

U

⇐⇒ κc[U ] ⊆ (T ⊆X
U )[TU ]

⇐⇒ c ∈ (T ⊆X
U )[T (U)]

⇐⇒ U ∈ µX(c).

�

The collection of all subcoalgebras of a fixed coalgebra is known to be closed un-
der finite intersections, see [6]. In the case of constant coalgebras, it is immediately
checked that supersets of subcoalgebras are subcoalgebras, hence this proposition
immediately shows that µ is indeed a transformation to the filter functor.

2.2. ε-crisp coalgebras. In [10], Smith defines a Q-iterated function system (Q-
IFS) as a Q-indexed family of stochastic linear maps on a vector space R(X). Since
each linear map is determined by its restriction as Set-map α : X → R(X), a
stochastic linear map is given by any mapping from X to the set of probability
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distributions on X, that is as a coalgebra of type D(X). A Q-IFS is therefore a Q-
indexed family of probabilistic transition systems, that is any map ρ : Q → D(X)X .
Equivalently, ρ can be encoded in a map α : X → D(X)Q, that is a single coalgebra
of the Q-th power of the distribution functor.

Smith calls such an α crisp, if for each q ∈ Q there is some y ∈ X with α(x)(q) =
ŷ(x), where

ŷ(x) :=

{
1 if x = y

0 otherwise,

so ŷ is the trivial distribution giving y probability 1 and everything else probability
0. He then proves that homomorphic images of crisp coalgebras are crisp.

Here we show that the concept is meaningful for arbitrary functors T serving as
types of coalgebras, and that in a situation as above, crisp coalgebras even form a
covariety. The key is observing that y 7→ ŷ is a transformation between the (Q-th
powers of) the identity functor I and the functor D whose properties determine the
closure properties of the class of all crisp coalgebras. Thus, we shall define crispness
with respect to a fixed transformation ε from some functor S to T .

Definition 2.2. Let S and T be set-endofunctors and let ε : S → T be a trans-
formation, i.e. a collection of maps εX : S(X) → T (X), one for each set X. A
T -coalgebra A = (A,αA) will be called ε-crisp, provided its structure map factors
through εA. The structure of the class of all ε-crisp coalgebras then depends on the
properties of ε :

Theorem 2.3. Let ε : S → T be a natural and subcartesian mono-transformation.
Then the class of all ε-crisp coalgebras forms a covariety.

In fact, we shall give conditions on ε so that the class of ε-crisp coalgebras are
closed under sums, homomorphic images and subcoalgebras. The theorem therefore
follows from the following lemma:

Lemma 2.4. Let ε : S → T be a mono-transformation, and let Kε be the class of
all ε-crisp coalgebras.

(1) Kε is closed under sums, if ε is subnatural.
(2) Kε is closed under homomorphic images, if ε is natural and mono.
(3) Kε is closed under subcoalgebras, if ε is sub-cartesian.

Proof. Let A = (
∑

i∈I Ai, α) be the sum of the coalgebras Ai = (Ai, αi)i∈I with
the sum embeddings ei : Ai → A. If all Ai are ε-crisp, we have for each i ∈ I
the following diagram, where the perimeter commutes, since the ei are homomor-
phisms and the lower square commutes since the ei are injective and ε is assumed
subnatural. We need to construct the indicated map σ.

Ai
ei //

α′A
��

αi

��

∑
Ai

σ

���
�
�

α

��

S(Ai)
Sei //

εAi

��

S(
∑

Ai)

ε

��
T (Ai)

Tei // T (
∑

Ai)
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Since
∑

i∈I Ai with the embeddings ei is the sum of the sets Ai in the category
Set, we obtain σ as the unique map making the upper rectangle commute for each
i ∈ I. A diagram chase yields εΣ ◦ σ ◦ ei = α ◦ ei for each i, from which εΣ ◦ σ = α
follows, as the sum embeddings are jointly epi.

Given an ε-crisp T -coalgebra A = (A,αA) and an epimorphism ϕ onto a second
T -coalgebra B = (B,αB), we obtain the diagram.

A
ϕ // //

α′

��
αA

��

B

���
�
�

αB

��

S(A)
Sϕ //

εA

��

S(B)

εB

��
T (A)

Tϕ // T (B)

Again, the perimeter commutes, since ϕ is a homomorphism, and the lower
square does, since we now assume ε to be natural. Notice that αB ◦ϕ = εB ◦Sϕ◦α′

delineates an epi-mono-square, so σ can be obtained as its unique diagonal.
Finally, assume that A = (A,αA) is a subcoalgebra of the ε-crisp coalgebra

B = (B,αB). In the diagram below, the lower square is a preimage, and A with αA
and α′B◦ ⊆B

A presents a competitor to this limit, thus yielding the required structure
map σ : A → S(A).

A

���
�
�

αA

��

� � // B

α′B
��

αB

��

S(A)

εA

��

� � // S(B)

εB

��
T (A) � � // T (B)

�

Now the case of [10] is captured easily, as εX : IQ → DQ where εX(τ)(q) = τ̂(q),
which inherits from x 7→ x̂ the property of being mono, natural, and sub-cartesian.
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