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Congruence modularity is permutability composed
with distributivity

By

H. PeTER GUMM

0. The main result of this paper is a Mal’cev type characterization of congruence
modular varieties, using ternary polynomials only.

The polynomials we produce are especially nice, since they are just Jénsson’s
polynomials for congruence distributivity and Mal’cev’s polynomial for permutability
glued together.

Moreover, the fact that modularity can be described by ternary terms at all is
somewhat surprising as there are nonmodular varieties all of whose 3-generated
algebras are congruence modular.

A. Day [1] was the first one to give a Mal’cev type characterization for congruence
modularity. His results will be used in this paper, however, we do not compose our
polynomials from Day’s quaternary polynomials.

Since it fits in nicely, we also present some new results about permutability of
congruences in a modular variety, which generalize those given in Gumm [2], Herr-
mann [5] and Gumm, Herrmann [4].

These results were obtained while the author was a guest of the Math. Depart-
ments of Lakehead University and of McMaster University. This is the opportunity
to thank A. Day and G. Bruns for making this stay pleasant and fruitful.

1. To produce our polynomials we make use of the concept of the commutator
[«, B] of two congruences « and 8. This concept was developed for modular varieties
by Hagemann and Herrmann in [6], (c.f. Gumm [3]). Actually, apart from Lemma 1,
we will only need the following facts: [ , ]is a binary operation on every congruence
lattice of an algebra in a modular variety, satisfying:

1. [, ]is monotonic in both arguments.
2. [«, B]1 < anrpB for any two congruences a, 3.

3. [o,fvyl=1I[ap1VI[xy]

For the special case [&, o] = 0 the following result is in Ch. Herrmann [5]. For
a proof again, we recommend [3] or Taylor [9].
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1.1. Lemma. In a modular variety there exists a ternary polynomial p such that

p(x,y,y) =2z s an equation true in ¥~
and
P(x,x,?/)[d,a]?/ fOT all (x,y)Ea,

where o 18 @ congruence on Z € ¥,

The following quite obvious corollary has been overlooked for some time. After
I first noticed, it, I learned that W. Taylor [9] had found it independently.

1.2. Corollary. Let 0 and y be congruences on an algebra &/ in a modular variety V.
Then
GoypC[0,0lopol and

GoyClyolboly,y].

Proof. x0yypz implies
x[0,0]p(y,y, %) yp(2,94,2)0p(z,y,y) =2 and
z=p(@yy)ypEy,2) 00y y 2) [y plz.

We also recall from [2] the

1.3. Shifting Lemma. Let </ have a modular congruence lattice, o, B, v congruences
on o with anff <y and z,y, 2, w elements of /. Then

X z

a \
p Bl
a / implies xyy.

Yy u

This is a special instance of applying the modular law, namely notice that
(@y)efrlavBay)=@rp)vBry)=y

by modularity.

A. Day shows implicitly in [1] that a (quasi) variety is congruence modular if
and only if fr(xo(Brd)oa)C (xrB)v(BAd) for some congruences «, f and o
in the free algebra on four generators.

But if (z,y) e B (2o (B1rd)oa) then there exist z and » with

o / with 3 := (¢ A B) v (B A 9).

Applying the Shifting Lemma gives us (z, y) € y, hence for a (quasi) variety the
Shifting Lemma is equivalent to modularity.
We have all tools at hand now to prove our main theorem:



Vol. 36, 1981 Congruence modularity 571

1.4. Theorem. Let ¥~ be a (Quasi-yvariety of universal algebras. Then the following
are equivalent:

(i) ¥ is congruence modular.
(ii) For congruences «, B, y € Con(Z) with </ € ¥~ we have
a=fvy=aofCl[(arB)Vv(xry)]ofox.

(i) There exists a natural number n and ternary polynomials qq, ..., qn, p, such
that the following identities are true in ¥

1. qo(x,y,2) ==
2. qi(x,y,x) =2 foro<i<n e

. Distributive part),
3. G 9,y) = G1(@yy) for i even | parl)
4. q: (x: z, ?/) = qi+1 (2’;‘, X, ?/) fOT v odd
5. qu(@,y,y)=p@v,y)
6. p(x,z,y) =y } (Permutable part).

Comment. It may be interesting to notice that p could be trivial (i.e. a projection).
In that case p would be the third projection and qn(x, ¥, y) would be equal to y.
We may suppose ¢ is even, since otherwise we have qn-1(2, ¥, ¥) = y as well. Thus
define ¢p41(z, ¥, 2) = 2.

Now the equations we are left with are precisely B. Jénsson’s equations showing
the ¥” is congruence-distributive [7].

On the other hand, if all the ¢;’s are projections, this would imply ¢;(z, y,2) =«
for every i. Hence, what we are left with are the equations

T=p@y,y) and p(zzy) =y,
which are precisely 4. I. Mal’cev’s equations for permutability of congruences [8].

Proof of 1.4. For (i) — (ii) we use Corollary 2 and the properties of the com-
mutator yielding

[ty o] < for, BV ] =[ox, 1V [ot, pI < (A B) v (@ A ).
Thus a0 B < ((xrAB)V(xrp))oBoa.

(ii) — (iii): Let F,-(3) be the free algebra in ¥~ generated by X = {z, y, z}. Con-
sider the congruences 0(z,4), 0y, 2 and 04, ,) which are generated by the nontrivial
partitions of X.

Clearly 0(y,)V 0(z,2) = (s, . Hence (ii) tells us:

Oz, 00w, = (0,0 7 0w,2) V (0,9 A 0(2,2)) 0 by, 2) 0 Oz, y) -

(7, ) is in the left hand side, hence in the right hand side, which implies that there
exist elements ty, ..., t,, r in F,-(3) such that
0) x=t,.
(2" tie(x,y) A 0@, 2 ti+1 for 7 even.
(3" tiﬁ(x,y) A Oz, 2)ti+1 for 7 odd.
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(4) thlw,nr and
(5) 710,y 2
We rewrite (2') and (3’) by
(1) 0,z  forall 4.
(2) 0y, ztiy1 for ¢ even
(3)  t:0¢z,2ti+1 for ¢ odd.
By the usual arguments then the ¢; and r do correspond to ternary polynomials g;

and p such that (in accordance with (0), ..., (5)) the following equations are satisfied
in?":

(O) z = qo(x, Y, 2)-

(1) Gi(x,z,y) =« forall 0 <¢ < n.

(2) >y, y) = dir1(x,y,y) for © even.
3) Gilx,y,x) = qi+1(%, ¥y, x) for ¢ odd.
4) @n(®y,9) =Py, 9)

6) pl.zy =y.

By simply redefining ¢;(z, v, z) := §i(, 2, y) we get the desired polynomials.
For (iii) — (i) we prove the Shifting Lemma, i.e. we start with congruences «, 3, ¥
with o A # <9 and elements z,y, 2, u such that

We might as well assume o A 8 = 0, otherwise we would have to replace equality
signs by = (mod « A f).
Consider the following points (elements):
ﬁ:=p(Z,u,y), Qi:ZQi(x, u, y)’ in:Z qi(x,z,y) and
In:=qu(z,y,u).
We obtain the following relations:
I xBq; for all s,
IT zp¢; for all ¢+ by using equation 2.
Equation 6 yields:
IIL y(Bry) P

Thus the §;, ¢; and § lie on the f-line connecting x and y, in particular they are
mutually -congruent. Equations 3 and 4 now yield:

IV §;gi+1 for ¢ even and
V {¢iagi1 for ¢ odd.
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Hence with I and II and our convention that a A f = 0 we have:
VI @ = gs+1 for ¢ even and
VII §; = ¢i+1 for ¢ odd.
But notice that by definition we have
VIIL g;y§; for every 1.
This, together with VI and VII gives us:
r=qo=qyh=4yfe=3qsyds...qn, I.e.
IX =zy§dn. (No matter whether » is odd or even!)

Hence in view of III, all we have to do is to show that §, = 5. For this reason
notice that

In = qn (x: U, y)aqn (2, Y, u) = qa and

P=p(uy)ap( 9 y)=qu(z YY) 2gn (2 Y, u) = §u.
Hence gpap and §, 85 by I and III. Thus §, = § and we are finished.

It may be instructive to see how the polynomials work by looking at the following
picture: (Notice, that g,y A fu by Equation 2.)

X=4qg = qy z
o
( a N
\] 4 A \
A9 = 92 \
{ \
= - \
d2=4qQ3
l/ 2 p \
an g
a !
p
— o~ /
p S \Sn//
\ )/
\ J
y a u

2. Permutability formulas. We will show how to use the formulas
GoypC[0,0lowoh and GoywClyololy,yl

to give us the following results:

2.1. Theorem. Let o/ be an algebra in a modular variety and 0 and vy congruences
on 7. Then the following conditions are equivalent :

(i) 6 permutes with .
(ii) 6™ permutes with w™ for all n, m e N.
(iil) 6™ permutes with w(™) for some n, m € N.
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Here we use the following Definition:
0) ;= @, H(n+1) :— [Hm), H(m)] .

0 is called solvable, in case (™) = 0 for some n € N.
Note that we have as a corollary the result from [4] that solvable congruences
permute with every congruence.

Proof of 2.1. Tterating the formula 6 o v C [0, 6] o w o 6 and its symmetric form
we obtain:

Goplypolmoym ol forany n,m.

Namely, by symmetry we are done if we show the induction step from » to n - 1.
Assuming the above formula we obtain

oyl ypolmoypim ol yolfw, Him]oypm ool
Cyolfnth opmof,

Now the above formula gives us (iii) — (i) since p(™ C  and 6 C 0. It remains
to prove (i) — (i1).

Again by induction we may assume we have already proven that 6(»—1) permutes
with (™) we have to show 6 permutes with p(). Changing notation, we have
to show that [0, 0] permutes with 9y in case 0 permutes with y. Suppose
(x,2) €0, 0] oy, i.e. for some y we have

z[0,0]yypz.
In particular (z, y) € 0 hence 0y y=z. Since § and yp permute we find a » with

y ) z

7/

/

(e, 8] l\ e 8

\\ v

X u

The shifting lemma gives us (u, z) € (6 A ) v [0, 0].

Now [0 ry, 0Ap] < [0, 0] hence (0 A p)@ permutes with [0, 0] which implies that
6 A permutes with [0, 6] by the direction (iii) — (i).

Hence there exists an element w with w0 A pw(0, 0]z, hence xyw[0, 6]z which
was to be shown.

As a corollary to the proof we get a stronger kind of Shifting Lemma, namely:

2.2, Shifting Theorem. Let o, 3, v be congruences on an algebra o/ in a modular
variety such that (o A B)™ permutes with y(™ for some n, m € N. Then

a / vmplies (a,b) e (a A f)oy.
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Clearly 2.2 implies the original Shifting Lemma.
The following theorem strengthens Satz 3 of [2]:

2.3. Theorem. In every modular variety there exists a ternary polynomial p(z, y, 2)

such that p(x,x,y) =y and for congruences a, B,y with anf <y and elements
z,Y,2,u, u we have

implies

with p = p(u, u', y).

Proof. Define §; and §; precisely as in the proof of 1.4. Hence zy v (A B)7n.
Finally you get:

pu, v, y)ypw,y)(«ApB)fa
and

pu, v, y)ay.

Hence zy v (« A B)pay. Consequently we have z ypoy.
With the help of 2.3 we can generalize the permutability result of Korollar 5 of [2]:

~ 24. Corollary. Let o, 8 and y be congruences on an algebra in a modular variety
such that y < aof = B oa and y™ permutes with (@A B)™ for some m, n. Then y
permutes with o (and with B).

Remark. The special case where o A B < y was first proven in [2]. Combining
this with the result of [4], that solvable congruences permute with every other
congruence, 4. Wolf gave a short argument to show that the condition ¢ A b=y
could be relaxed to (ax A B)™ < .

Corollary 2.4 in its present form subsumes all these versions as well as the result
that solvable congruences permute with every congruence; just set § = 1, the uni-
versal congruence, and m = 1.

Remark. The formulas 6 vy = (6 v ym) o g o yporfvy = 0o (H(0yym)oqy
are easy to prove and show how easily joins of congruences can sometimes be com-
puted in modular varieties.
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