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Abstract. We prove that for any Set-endofunctor F the category SetF

of F -coalgebras is distributive if F preserves preimages, i.e. pullbacks
along an injective map, and that the converse is also true whenever SetF

has finite products.

1 Introduction

In the category Set of sets the equation

A× (B + C) = A×B +A× C

holds, i.e., products distribute over disjoint unions. In general, we call a category
C with finite sums distributive, if for all objects A,B,C ∈ C for which A×B and
A× C exist, also A× (B + C) exists, and the canonical morphism

A×B +A× C → A× (B + C)

is an isomorphism. Distributive categories were studied e.g. by Cockett [Coc93],
and by Carboni, Lack, and Walters [CLW93] - the latter even champions
distributive categories as the appropriate setting for discussing datatypes
([Wal89,Wal91,Wal92]).

Coalgebras of various types, as general mathematical models of state based
systems (see [Rut00b] for an introduction) have found applications in diverse
fields, including functional programming ([Gib99], [GH00]), automata theory
([Rut98]), semantics and verification of object oriented programs ([HHJT98]),
concurrency theory ([RT94]), final semantics ([TR98,Wor00]), hidden algebra
([Wor98]), analysis ([Rut00a]), and foundations of mathematics ([BM96]).

In this note we ask, under which conditions the category SetF of coalgebras
of a type functor F is distributive. Assuming the existence of finite products in
SetF , this turns out to be equivalent to the type functor F preserving preimages
with non-empty domains (theorem 1). It has been shown in [GS00a] that this
very condition is equivalent to the property that homomorphic preimages of
F -subcoalgebras are always F -subcoalgebras.

Even if finite products fail to exist in SetF , we will be able to conclude that
F preserving preimages with non-empty domain is equivalent to a categorical
property of SetF closely related to distributivity, extensiveness - indeed any
extensive and finitely complete category is distributive.

A key observation is that preservation of non-empty preimages by F is equi-
valent to the property that in SetF each homomorphism into a sum induces a
split of its domain (proposition 1).



2 Basic Notions

2.1 F -coalgebras and homomorphisms

Let F : Set→ Set be a Set-endofunctor. An F -coalgebra is a pair A = (A,αA),
consisting of a set A and a map αA : A→ F (A). A is called the carrier set and
αA is called the structure map of A.

If A = (A,αA) and B = (B,αB) are F -coalgebras, then a map ϕ : A→ B is
called a homomorphism, if αB ◦ϕ = F (ϕ) ◦αA, that is, if the following diagram
commutes:

A
ϕ //

αA

��

B

αB

��
F (A)

F (ϕ) // F (B)

F -coalgebras and their homomorphisms form a category SetF . It is well
known that all colimits in SetF exist, and they are formed just as in Set. In
particular, the sum Σi∈IAi of a family of F -coalgebras Ai = (Ai, αi) has as
carrier the disjoint union

⊎
i∈I Ai and the coalgebra structure is the unique map

α :
⊎
i∈I Ai → F (

⊎
i∈I Ai) with α ◦ ei = F (ei) ◦ αi for all i ∈ I, where each ei is

the canonical embedding of Ai into the disjoint union
⊎
i∈I Ai.

2.2 Subcoalgebras

A subset U ⊆ A is called a subcoalgebra of A = (A,αA), provided there exists a
coalgebra structure αU : U → F (U) so that the inclusion map ⊆AU : U → A is a
homomorphism from U = (U,αU ) to A. The structure map on any subcoalgebra
is uniquely determined, so we will use the term “subcoalgebra” interchangeably
for the coalgebra U and for its carrier set U .

The subcoalgebras of an F -coalgebra are easily seen to be closed under ar-
bitrary unions, which implies that they form a complete lattice, where the join
operation is given by the set-theoretical union, and for any set U ⊆ A there is a
largest subcoalgebra [U ] contained in U , the subcoalgebra cogenerated by U .

Less obviously, the subcoalgebras of a given coalgebra are also closed unter
finite intersection (see [GS]): The reason for this is that every Set-endofunctor
F preserves non-empty finite intersections (as has been proved by Trnková,
see [Trn69]). This means that F preserves the pullback of a finite family of
injective mappings (ji : Ui ↪→ U)i∈I provided that the domain of this pullback,
which is just

⋂
i∈I ji[Ui], is not empty. Trnková proved in addition that F can be

turned into a functor F r preserving non-empty and empty finite intersections just
by modifying F on the empty set and the empty mappings. This modification
does not change the F -coalgebras, since obviously SetF = SetF r , so we will
always assume in the following that F is a Set-functor which preserves all finite
intersections.

In addition, we may assume FA 6= ∅ for any nonempty set A, for otherwise
we would have FB = ∅ for any set B, making F the trivial functor.



2.3 Limits in SetF

While colimits in SetF are formed just like in Set, the situation is more compli-
cated for limits. If F preserves a certain type of limit, SetF has this same type
of limit, and it is formed as in Set. However, SetF can have a limit that is not
preserved by F . Indeed, under rather weak conditions on F the category SetF
is complete (see [GS00b]), but it should be noted that the base set of a limit in
SetF usually differs from the corresponding limit in Set. In short, the forget-
ful functor from SetF to Set preserves colimits, but not limits. As an example,
SetF has equalizer for any type functor F ([GS00b]): If ϕ,ψ : A → B are two
F -homomorphisms, their equalizer eq(ϕ,ψ) in SetF is given by the largest sub-
coalgebra contained in {a ∈ A | ϕa = ψa}, i.e. by the subcoalgebra cogenerated
by the equalizer of the maps ϕ and ψ in Set. In the next section we will see that
SetF also has preimages for any functor F .

3 Preimages in Set and SetF

If f : A → B is a map and V ⊆ B, the preimage f−(V ) := {a ∈ A | fa ∈ V }
of V under f is given by the pullback in Set of f along the inclusion map
⊆BV : V ↪→ B.

f−(V ) � � //

f̂

��

A

f

��
V

� � // B.

Here f̂ is the domain-codomain-restriction of f . If A,B are coalgebras and V is
a subcoalgebra of B, then f−(V ) need not be a subcoalgebra of A, however we
have:

Lemma 1. Let ϕ : A → B be an F -homomorphism, V ≤ B a subcoalgebra.
Then the pullback of the inclusion morphism ≤: V ↪→ B along ϕ in SetF , exists
and is given by [ϕ−(V )], the subcoalgebra of A cogenerated by the set ϕ−(V ).

[ϕ−(V )] �
� ≤ //

ϕ̂

��

A
ϕ

��
V � �

≤
// B

Proof. The diagram obviously commutes. Given a coalgebra C and two homo-
morphisms ψ1 : C → A, ψ2 : C → V with ϕ ◦ ψ1 =≤ ◦ψ2, then ψ1(C) ⊆ ϕ−(V ).
Since homomorphic images of subcoalgebras are subcoalgebras of the image, ψ1



factors through [ϕ−(V )] in SetF by means of a homomorphism θ : C → [ϕ−(V )].

C
ψ1

%%
ψ2

��

θ

##F
F

F
F

F

[ϕ−(V )] �
� ≤ //

ϕ̂

��

A
ϕ

��
V � �

≤
// B

It follows ≤ ◦ ϕ̂◦θ = ≤ ◦ψ2, therefore ϕ̂◦θ = ψ2, so θ is a mediating morphism,
and it is obviously unique.

This lemma raises the question, under which conditions ϕ−(V ) itself is a sub-
coalgebra of A, or, equivalently, ϕ−(V ) = [ϕ−(V )]. From [GS00a], we know that
this is equivalent to F preserving non-empty preimages, i.e., pullbacks along in-
jective maps with non-empty domain. Since we may assume that F preserves
finite intersections, it can be easily seen that F preserves all preimages as soon
as it preserves all non-empty preimages (for details see [Sch01]). We conclude:

Lemma 2. The following are equivalent:

(1) F preserves preimages.
(2) F preserves non-empty preimages.
(3) Given a map f : A → B and V ⊆ B with ∅ 6= f−(V ) 6= A, then for each

x ∈ FA, y ∈ FV with (Ff)x = F (⊆BV )y there is a (necessarily unique)
z ∈ F (f−(V )) with F (⊆Af−(V ))z = x.

(4) Homomorphic preimages of F -subcoalgebras are always F -subcoalgebras.
(5) [ϕ−(V )] = ϕ−(V ) for each F -homomorphism ϕ : A → B and each V ≤ B.

4 Domain Splitting

Consider a map f : A → B + C. We can investigate its properties by distin-
guishing the cases fa ∈ B, resp., fa ∈ C. In other terms, f induces a splitting
of its domain via A = AB + AC , where AB = {a ∈ A | fa ∈ B} = f−(B), and
AC = {a ∈ A | fa ∈ C} = f−(C). If ϕ : A → B + C is an F -homomorphism
and F preserves preimages, by lemma 2 we have the same domain splitting
A = ϕ−(B) + ϕ−(C) in SetF . It turns out that the existence of such splittings
is indeed equivalent to the preservation of preimages by F .

Proposition 1. The following are equivalent:

(1) F preserves preimages.
(2) Every F -homomorphism ϕ : A → B + C induces a splitting of its domain,

that is A = AB +AC for some subcoalgebras AB ,AC ≤ A with ϕ(AB) ⊆ B,
ϕ(AC) ⊆ C. In this case necessarily AB = ϕ−(B) and AC = ϕ−(C).



Proof. (1)⇒(2) has been discussed above, so we prove (2)⇒(1) by checking the
third condition of Lemma 2.

Given f : A → B and V ⊆ B with ∅ 6= f−(V ) 6= A and elements x ∈ FA,
y ∈ FV with (Ff)x = F (⊆BV )y, we set A0 := f−(V ) and A1 := A \A0.

A0
� � //

f
|V
|A0

��

A

f

��

A1_?
oo

f
|W
|A1

��
V

� � // B = V +W W,_?
oo

Here, W is the complement of V in B and f |V|A0
, resp. f |W|A1

, are domain-codomain-
restrictions of f , and f−(W ) = A1, since preimages commute with complements.

Fix an element k ∈ F (A1) and introduce coalgebra structures αA on A and
αB on B by defining, for arbitrary a ∈ A and b ∈ B:

αAa :=

{
x , if a ∈ A0

F (⊆AA1
)k , if a ∈ A1,

and αBb :=

{
(Ff)x , if b ∈ V
F (f|A1)k , if b ∈W.

These structure maps turn f into an F -homomorphism (A,αA) → (B,αB), since

(Ff)(αAa) =

{
(Ff)x = αB(fa) , if a ∈ A0

(Ff)(F (⊆AA1
)k) = F (f|A1)k = αB(fa) , if a ∈ A1.

V , resp. W , with the constant structure maps with result y, resp. F (f |W|A1
)k, are

easily checked to be subcoalgebras of (B,αB), so B = V + W in SetF . This
allows us to conclude that A0 is a subcoalgebra of A, so there is a coalgebra
structure ρ : A0 → F (A0) turning ⊆AA0

into a homomorphism. Now, z := ρ(u)
for an arbitrary u ∈ A0 is the required element, since

F (⊆AA0
)z = F (⊆AA0

)(ρu) = αA(⊆AA0
u) = x.

The proof generalizes to show that preservation of preimages by F is equivalent
to the fact that every F -homomorphism ϕ : A →

∑
i∈I Bi into a (possibly

infinite) sum induces a corresponding splitting of its domain.

5 Preimage preservation implies distributivity

In this section we will show that SetF is distributive provided that F preserves
preimages. In the next section we shall then formulate a converse to this result.

Definition 1. A category C with finite sums is distributive, if binary products
distribute over sums, i.e., for all A,B,C ∈ C we have: If the products A×B and
A× C exist, then the product A× (B + C) exists and the canonical morphism

A×B +A× C → A× (B + C)

is an isomorphism.



Of course, one can generalize this definition to infinite sums and infinite products,
and all our proofs extend to this more general case.

Proposition 2. If F preserves preimages, then the category SetF is distributive.

Proof. Let F preserve preimages. Let A ∈ SetF and a family (Bi)i∈I of F -
coalgebras be given, so that A × Bi exists for each i ∈ I. Let pi : A × Bi → A
and qi : A×Bi → Bi be the canonical projections of the products and ei : Bi →∑
j∈I Bj the canonical injections. We claim that

∑
i∈I(A×Bi) together with the

projections

[pi]i∈I :
∑
i∈I

(A× Bi) → A and
∑
i∈I

qi :
∑
i∈I

(A× Bi) →
∑
i∈I

Bi

is the product of A with
∑
i∈I Bi in SetF .

Let (Q, ϕ : Q → A, ψ : Q →
∑
i∈I Bi) be a competitor. By proposition 1 we

obtain a decomposition Q =
∑
i∈I Qi with Qi = ψ−(Bi). Therefore, we have for

each i ∈ I pairs of homomorphisms

ϕ|Qi
: Qi → A, ψ|Qi

: Qi → Bi,

inducing unique mediating morphisms (ϕ|Qi
, ψ|Qi

) : Qi → A×Bi, so that∑
i∈I

(ϕ|Qi
, ψ|Qi

) : Q →
∑
i∈I

(A× Bi)

is a mediating morphism for (Q, ϕ, ψ).

A× Bi
pi //

qi

��4
44

44
44

44
44

44
44

4 A

Qi �
� //

ccF
F

F
F

F

ψ|Qi

��

Q //____

ψ

��

ϕ

OO

∑
A× Bi

∑
qiyyttttttttt

[pi]i∈I

eeKKKKKKKKKKK

Bi �
�

ei

// ∑Bi

If ρ : Q →
∑
i∈I(A×Bi) is another mediating morphism, then for each i ∈ I we

have

(
∑
i∈I

qi) ◦ ρ|Qi
= ei ◦ ψ|Qi

,

and ρ|Qi
factors throughA×Bi. In fact ρ|Qi

is a mediating morphism for ϕ|Qi
and

ψ|Qi
. This implies ρ|Qi

= (ϕ|Qi
, ψ|Qi

) by uniqueness, so ρ =
∑
i∈I(ϕ|Qi

, ψ|Qi
).

With slightly more notational overhead we can check that in SetF infinite prod-
ucts distribute over infinite sums when F preserves preimages.

Notice that there are different notions of distributive category in the litera-
ture ([CLW93,Coc93]). The differences consist in “how many” limits the category
in question is supposed to have. The definition we have given is the one which
requires only those limits that are absolutely necessary to define the notion.



6 Distributivity + finite products implies preimage
preservation

This section is devoted to finding a converse to proposition 2. If SetF is dis-
tributive and has finite products, we shall show that F preserves preimages. For
this we first observe that equalizers commute with sums in SetF . In proposition
3 we will then see that the preservation of preimages by F is equivalent to the
fact that in SetF pullbacks commute with binary sums. By expressing a pullback
in the canonical way as the equalizer of a product we then come to the desired
conclusion (proposition 4).

6.1 Equalizers

It is easy to see that in SetF equalizers commute with sums, i.e., if (ϕi, ψi :
Ai → B)i∈I is a family of pairs of homomorphisms, the equalizer of

∑
i∈I ϕi :∑

i∈I Ai → B with
∑
i∈I ψi :

∑
i∈I Ai → B is given by the sum of the equalizers

of the ϕi with the ψi. To see this, compute

eq(
∑
i∈I

ϕi,
∑
i∈I

ψi) = [{a ∈
⊎
i∈I

Ai | (
∑
i∈I

ϕi)a = (
∑
i∈I

ψi)}]

= [
⊎
i∈I
{a ∈ Ai | ϕia = ψia}] =

∑
i∈I

[{a ∈ Ai | ϕia = ψia}] =
∑
i∈I

eq(ϕi, ψi).

6.2 Pullbacks and sums

Definition 2. In a category C with binary sums, we say that pullbacks commute
with binary sums, if for all morphisms f : A → C, g1 : B1 → C, g2 : B2 → C
we have: If the pullbacks pb(f, g1) and pb(f, g2) exist, the pullback pb(f, [g1, g2])
exists, too, and

pb(f, g1 + g2) = pb(f, g1) + pb(f, g2).

It is again obvious how to extend the definition to the infinite case.

Proposition 3. The following are equivalent:

1. F preserves preimages.
2. In SetF pullbacks commute with infinite sums.
3. In SetF pullbacks commute with binary sums.

Proof. (1)⇒(2) is proved similarly to proposition 2, and (2)⇒(3) is trivial.
(3)⇒(1): We check the condition of proposition 1. Let ϕ : A → B1 +B2 be a

homomorphism. For i = 1, 2 we form the pullback

[ϕ−(Bi)]
� � //

ϕ̂

��

A

ϕ

��
Bi �

� // B1 + B2



in SetF . Then by assumption the following diagram is a pullback:

[ϕ−(B1)] + [ϕ−(B2)]
� � //

ϕ̂

��

A

ϕ

��
B1 + B2

� �

idB1+B2

// B1 + B2

On the other hand the domain of the pullback of ϕ along idB1+B2 must be A
itself, hence [ϕ−(B1)] + [ϕ−(B2)] = A, which implies (1) by proposition 1.

Since the pullback of ϕ : A → C, ψ : B → C is nothing but the equalizer of
ϕ ◦ π1, ψ ◦ π2 : A×B → C, where π1, π2 are the projections of A×B, we obtain:

Proposition 4. If SetF has finite products and is distributive, F preserves
preimages.

Summarizing propositions 1, 2, 3, and 4, we conclude:

Theorem 1. The following are equivalent:

– F preserves preimages.
– Preimages of subcoalgebras under homomorphisms are subcoalgebras.
– In SetF any homomorphism into a sum induces a splitting of its domain.
– In SetF pullbacks commute with sums.

Each of these conditions implies that SetF is distributive. If SetF has finite
products, then the converse is also true.

7 Towards a generalization: Extensive Categories

In [CLW93]) the notion of an extensive category was introduced to capture cat-
egories in which sums exist and are well-behaved.

Definition 3 ([CLW93]). Let C be a category with finite sums and pullbacks
along injections into finite sums. C is extensive, if for all commutative diagrams

X

f

��

iX // Z

h

��

Y

g

��

iYoo

A
iA

// A+B B
iB

oo

in C, with the lower row being a sum, we have: Both squares are pullbacks iff
(Z, iX , iY ) is a sum.

Proposition 5. SetF is extensive iff F preserves preimages.



Proof. If SetF is extensive, proposition 1 shows that F preserves preimages.
To prove the converse, let F preserve preimages. Given a commutative dia-

gram as shown above in SetF with the lower row a sum and the squares pullbacks,
the upper row is a sum by proposition 1. Suppose now the two rows are sums. We
have to show that the left square is a pullback. It suffices to show that this square
is a preimage in Set since F preserves preimages. So let z ∈ Z and a ∈ A with
iAa = hz be given. Since Z = iX(X) + iY (Y ), either z ∈ iX(X) or z ∈ iY (Y ). If
we had z = iY (y) for some y ∈ Y , we could conclude hz = iB(gy) ∈ iB(B) which
is impossible since hz ∈ iA(A) by assumption and iA(A) is disjoint from iB(B).
So we have z ∈ iX(X), showing that the left square is a pullback. A symmetric
proof shows that also the right square is a pullback, thus SetF is extensive.

The heart of the second part of the proof is: Set itself is extensive, and since
F preserves preimages, sums and preimages are formed in SetF as in Set, so
extensiveness carries over from Set to SetF .

In general, we can define F -coalgebras of an endofunctor F : C → C for any
base category C, as pairs A = (A,αA), consisting of an object A ∈ C and an
arrow αA : A → FA in C. Homomorphisms are defined in the same way as for
C = Set. We ask now: Under which conditions does extensiveness of C imply
extensiveness of CF ? We make the following assumptions on C, resp. F :

– C is extensive and has infinite sums.
– C is finitely complete with terminal object 1.
– C has epi-(regular mono)-factorisations.
– F preserves regular monos and takes non-initial objects to non-initial objects.

Lemma 3. In C any canonical injection eA : A→ A+B of a sum is a regular
mono.

Proof. The following diagram is a pullback:

A
eA //

��

A+B

��
1 e1

// 1 + 1

Here e1 : 1 → 1+1 is the first canonical injection of the sum. Since regular monos
are stable under pullbacks, it suffices to prove that e1 is a regular mono. Observe
that e1 is the equalizer of id : 1 + 1 → 1 + 1 with e1◦!1+1 : 1 + 1 → 1 → 1 + 1,
where !1+1 : 1 + 1 → 1 denotes the unique morphism into the terminal object.

7.1 Subcoalgebras

We define a subcoalgebra in CF to be a regular subobject. One may check that
this agrees with the previous definition from section 2.2 when C = Set (s. [GS00a]
for a proof). It is easy to see (for details compare [Hug01]):



Lemma 4. The forgetful functor U : CF → C preserves regular monos and cre-
ates epis, regular monos, epi-(regular mono)-factorisations, and exact sequences
of the following form, where ↪→ denotes a regular mono:

• � � // • //// •

U creates every colimit and every limit that is preserved by F .

It turns out that the definition of a cogenerated subcoalgebra, [U ], is indeed
a categorical one. Let SubF (A) denote the partial order of subcoalgebras of
A ∈ CF , Sub(A) the partial order of regular subobjects of A in the category C.
The functor Uα : SubF (A) → Sub(A), mapping any subcoalgebra of A to its
base object, has a right adjoint [−]α : Sub(A) → SubF (A), which, in the case
of C = Set, coincides with [−].

7.2 Preimages

If f : A → B is a morphism in C, we can pull back subobjects of B along
f , obtaining a map f∗ : Sub(B) → Sub(A). f∗(V ) is called the preimage of V
along f . We say that F preserves preimages if it preserves pullbacks along regular
monos. This means that we have F (f∗V ) = (Ff)∗(FV ) for every f : A→ B and
any V ∈ Sub(B). F is said to preserve non-empty preimages if this equation
holds, except for V being the initial object.

With these notions it is easy to see that the implications (1)⇒ (2)⇒(4) ⇐⇒
(5) from lemma 2 and (1)⇒(2) from proposition 1 are still true for C in place of
Set. Our proofs of the reverse implications made essential use of the fact that
Set is a well-pointed topos; we do not know whether such a condition is indeed
needed. Examining our proofs, we obtain (for details see [Hug01]):

Proposition 6. Let F : C → C preserve regular monos and non-empty preim-
ages. If C is extensive, finitely complete, and has epi-regular mono factorizations,
CF is extensive and distributive.
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