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Functors for Coalgebras

H. Peter Gumm

Abstract. Functors preserving weak pullbacks provide the basis for a rich structure theory of coalgebras. We give
an easy to use criterion to check whether a functor preserves weak pullbacks. We apply the characterization to the
functorF which associates a setX with the setF(X) of all filters onX. It turns out that this functor preserves
weak pullbacks, yet does not preserve weak generalized pullbacks. Since topological spaces can be considered
asF -coalgebras, in fact they constitute a covariety, we find that the intersection of subcoalgebras need not be a
coalgebra, and 1-generatedF -coalgebras need not exist.

1. Introduction

Coalgebras have been introduced by Aczel and Mendler [AM89] to model various types
of transition systems. Reichel [Rei95], and Jacobs [Jac96] show that coalgebras are well
suited for modeling object oriented programming and for program verification. In [Rut96],
J. J. M. M. Rutten develops the a fundamental theory of “universal coalgebra” along the
lines of universal algebra ([Gra79, Coh81, Ihr93]). Various other authors have contributed
further details to the theory, (e.g. [Bar93, GS98, RT94]).

The theory of coalgebras starts with a functorT from Set, the category of sets to itself.
T provides thetype for the coalgebras to be considered. Acoalgebra of typeT is then
simply any mapα : X → T (X).

Of particular importance amongst all possible type functors are the identity functorI, the
powerset functorP(−), the finite-powerset functorPfin(−) and functors of typeA× (−)B
whereA andB are fixed sets. The coalgebras belonging to these functors model different
kinds of transition systems. They aredeterministicin the first case, nondeterministic in the
second,image finitein the case of the functorPfin(−) and automata (with input alphabetB
and output alphabetA) in the case of the functorA× (−)B .

An important observation at the outset of the development of universal coalgebra is that
all functors which are of practical relevance as coalgebraic type functors preserve weak
pullbacks, and that this property in turn is necessary (and largely sufficient) to obtain a rich
structure theory along the lines of universal algebra.

In order to develop a satisfactory theory of cofree coalgebras, of covarieties and of
coequational or coimplicational classes ([Gum98]), one additionally requires thatT should
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be bounded, which amounts to saying that the cardinality of 1-generatedT -coalgebras
should not exceed a fixed cardinality. From the above functors, only the powerset functor
P(−) fails to satisfy this additional requirement.

In this paper, we shall give a criterion to determine whether a functorT preserves weak
pullbacks. We then apply the criterion to thefilter functorF which associates with a set
X the setF(X) of all filters onX. It turns out thatF preserves weak pullbacks of two
morphismsφ : A → C andψ : B → C but does not preserveweak generalized pullbacks
(cf. [Rut96]).

Every topological space can be considered as anF-coalgebra. Homomorphisms are
precisely the continuous open maps and subcoalgebras are the open sets. We give an
internal characterization of the class of allF-coalgebras arising from some topological
space and we show that this class is a covariety.

This example demonstrates, that an arbitrary intersection ofF-subcoalgebras need not
result in a subcoalgebra and that 1-generated subcoalgebras need not exist.

As a consequence for the general theory, we conclude that preservation of weak pullbacks
must be interpreted as preservation ofweak generalized pullbacksif a satisfactory structure
theory of universal coalgebra is to be achieved. We close with an appropriate criterion.

2. A criterion for preservation of weak pullbacks

2.1. Retracts

In any categoryC we can define an order relation amongst objects which will help us
to describe the relations between pullbacks and weak pullbacks. If an object is a weak
pullback of given morphisms, then so will be any other object that is larger in this order.
The pullback of mapsf andg, if it exists, will be the smallest element in this order of all
weak pullbacks off andg.

DEFINITION 2.1. LetA andB be objects, we say thatA is aretract of B, or, equiva-
lently, thatB is acoretractionofA, and we writeA � B, if there are morphismsι : A → B

andκ : B → A such thatκ ◦ ι = 1A. κ is also called asplit epi, and we sometimes write
A �κ B to indicate the split epi witnessingA � B.

We readily observe that� is a reflexive and transitive relation, i.e. a quasi-order, on the
class of objects ofC, and that every functorT : C → C is order preserving.

2.2. Weak Pullbacks

Pullbacksare limits of two morphisms with a common codomain,weak pullbacksare
weak limits of the same situation, specifically:
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DEFINITION 2.2. Letf : A → C andg : B → C be morphisms. An objectW
with morphismsπ1 : W → A andπ2 : W → B is called aweak pullbackof f and
g, if f ◦ π1 = g ◦ π2 and for any other objectW ′ with morphismsπ ′

1 : W ′ → A and
π ′

2 : W ′ → B satisfyingf ◦ π ′
1 = g ◦ π ′

2 there is a morphismε : W ′ → W such that
π ′
i = πi ◦ ε for i = 1,2. If such anε is always unique, thenW is called apullback off

andg and denoted bypb(f, g).

-
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Usually,π1 andπ2 will be clear from the context. In that case we shall simply refer to
the objectW as a (weak) pullback off andg. The following observation can be easily
checked:

LEMMA 2.3. If (W, π1, π2) is a weak pullback off and g andW �κ W
′, then

(W ′, π1 ◦ κ, π2 ◦ κ) is also a weak pullback off andg.

LEMMA 2.4. If the pullback(P, π1, π2) of f andg exists, then(W, η1, η2) is a weak
pullback off andg, if and only ifP �κ W , andηi = πi ◦ κ.

Thus, in a category where pullbacks exist, weak pullbacks are precisely the coretractions
of pullbacks. Moreover, pullbacks are just the minimal elements, with respect to�, amongst
all weak pullbacks.

DEFINITION 2.5. Let T : C → C be a functor. We say thatT preserves (weak)
pullbacks, if T transforms every (weak) pullback(P, π1, π2) of f : A → C with g : B →
C into a (weak) pullback(T (P ), T (π1), T (π2)) of T (f ) with T (g).

We say thatT weakly preserves pullbacksif T transforms every pullback diagram into
a weak pullback diagram.

From the above observations and from the fact thatT is order preserving, one easily
obtains:

LEMMA 2.6. LetC be a category in which all pullbacks exist, and letT : C → C be a
functor. Then the following are equivalent:
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(i) T preserves weak pullbacks,
(ii) T weakly preserves pullbacks.

COROLLARY 2.7. ([Rut96]). If T preserves pullbacks, thenT preserves weak pull-
backs.

2.3. Setendofunctors

We now turn to the categorySet. Here pullbacks of two mapsf : A → C with g : B → C

always exist. They can be easily described as(pb(f, g), π1, π2) where

pb(f, g) = {(a, b) | f (a) = g(b)},
andπ1, π2 are just the natural projection to the components. Here we can formulate an
easy criterion for weak pullback preservation:

THEOREM 2.8. A functorT : Set → Set preserves weak pullbacks if and only if for
all mapsf : A → C, g : B → C we have:

For any pair u ∈ T (A), v ∈ T (B) with T (f )(u) = T (g)(v) there is an element
w ∈ T ({(x, y) | f (x) = g(y)}) with T (π1)(w) = u andT (π2)(w) = v.

Proof. Let P with morphismsπ1 andπ2 be the pullback off andg, and letQ with
morphismsη1 andη2 be the pullback ofT (f ) andT (g). Clearly,T (f ) ◦ T (π1) = T (g) ◦
T (π2), so from the definition of pullback there is a unique mapκ : T (P ) → Q satisfying
ηi ◦ κ = T (πi) for i = 1,2. If T preserves weak pullbacks, thenT (P ) is a weak pullback,
whence we also get a mapι : Q → T (P ) with T (πi) ◦ ι = ηi . Now

ηi ◦ κ ◦ ι = T (πi) ◦ ι
= ηi

= ηi ◦ idQ,

henceκ ◦ ι = idQ, asQ with morphismsη1, η2 is a pullback. In particular,κ is onto,
so every element(u, v) ∈ Q = pb(T (f ), T (g)) must have aκ-preimagew ∈ T (P ) =
T (pb(f, g)), which is the content of the criterion.

-
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Conversely, if the criterion is satisfied, then the mapκ : T (P ) → Q, defined by

κ(w) := (T (π1)(w), T (π2)(w))

is surjective andηi ◦ κ = T (πi) for i = 1,2. In Setevery surjective map is a split epi, so
the result follows from Lemma 2.4. ¨

3. The filter functor

We apply the criterion to the functorF on Setwhich associates a setX with the set of
all filters onX. For this we need a few definitions.

DEFINITION 3.1. LetA, C be sets andϕ : A → C a map. A collectionG of subsets
of A is calleddownward directed, if for U,V ∈ G there always exists aW ∈ G with
W ⊆ U ∩ V . A nonempty downward directed collectionG is called afilter on A, if
V ⊇ U ∈ G always impliesV ∈ G.

Given a nonempty downward directed setG ⊆ P(A), then

↑G = {U ⊆ A | ∃U ′ ∈ G. U ⊇ U ′}
is the filter generated byG. With ϕ(G) we denote the set of allϕ-images of sets fromG,
i.e.

ϕ(G) = {ϕ(U) | U ∈ G}.

LEMMA 3.2. LetG andH be collections of subsets ofA.

(i) If G is downward directed, then so isϕ(G).
(ii) If G andH are filters thenG ⊆ H iff for all U ∈ G there exists aV ∈ H such that

V ⊆ U .
(iii) ↑ϕ(G) = ↑ϕ(↑G).
All these properties are easy to check.
We now denote byF(X) the set of all filters onX. F can be made into a functor

F : Set→ Setby defining it on mapsϕ : A → B as

F(ϕ)(G) = ↑ϕ(G)
whereG stands for an arbitrary filter onA.

LEMMA 3.3. F is a covariant functor.
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Proof.

F(id)(G) = ↑ id(G)
= ↑G
= G.

F(ϕ ◦ ψ)(G) = ↑(ϕ ◦ ψ)(G)
= ↑ϕ(ψ(G))
= ↑ϕ(↑ψ(G))
= F(ϕ)(F(ψ)(G))
= (F(ϕ) ◦ F(ψ))(G).

¨

The next lemma will turn out to be crucial for the proof of the main theorem:

LEMMA 3.4. Letϕ : A → C andψ : B → C be maps,G a filter onA andH a filter
on B. If F(ϕ)(G) = F(ψ)(H) then for anyU ∈ G andV ∈ H we can findÛ ∈ G,
V̂ ∈ H with Û ⊆ U , V̂ ⊆ V andϕ(Û) = ψ(V̂ ).

Proof. SinceU ∈ G andF(ϕ)(G) ⊆ F(ψ)(H) there existsV ′ ∈ H with ψ(V ′) ⊆
ϕ(U), hence forV ′′ = V ∩V ′ we also haveψ(V ′′) ⊆ ϕ(U)∩ψ(V ), soV ′′ ⊆ ψ−1(ϕ(U)∩
ψ(V )). Put

V̂ = V ∩ ψ−1(ϕ(U) ∩ ψ(V )),
then V ′′ ⊆ V̂ ⊆ V and V̂ ∈ H . Clearly, ψ(V̂ ) ⊆ ϕ(U) ∩ ψ(V ), but the reverse
inclusion holds too, since anyc ∈ ϕ(U) ∩ ψ(V ) can be written asψ(y) for somey ∈
V ∩ ψ−1(ϕ(U) ∩ ψ(V )), yielding c ∈ ψ(V̂ ). Thusψ(V̂ ) = ϕ(U) ∩ ψ(V ) which, by
symmetry, is equal toϕ(Û). ¨

Now we have everything in place to state and prove the main result of this section:

THEOREM 3.5. F preserves weak pullbacks.

Proof. Let ϕ : A → C andψ : B → C be maps. Let us abbreviate their pullback by

Kϕ,ψ = {(x, y) ∈ A× B | ϕ(x) = ψ(y)}.
GivenG ∈ F(A) andH ∈ F(B) with F(ϕ)(G) = F(ψ)(H), Theorem 2.8 requires us to
find a filterR onKϕ,ψ with F(π1)(R) = G andF(π2)(R) = H . Put

R = ↑{(U × V ) ∩Kϕ,ψ | U ∈ G, V ∈ H, ϕ(U) = ψ(V )}.
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Here Lemma 3.4 will be needed to verify that R is downward directed, hence a filter onKϕ,ψ .
Indeed, givenU1, U2 ∈ G andV1, V2 ∈ H with ϕ(Ui) = ψ(Vi), then Lemma 3.4 provides
us with Û ⊆ U1 ∩ U2 andV̂ ⊆ V1 ∩ V2, satisfyingÛ ∈ G, V̂ ∈ H , andϕ(Û) = ψ(V̂ ),
thus(Û × V̂ ) ∩Kϕ,ψ ⊆ ((U1 × V1) ∩Kϕ,ψ) ∩ ((U2 × V2) ∩Kϕ,ψ).

WheneverU ∈ G andV ∈ H with ϕ(U) = ψ(V ), we obtainπ1((U×V )∩Kϕ,ψ) = U ,
henceπ1(R) ⊆ G. It follows thatF(π1)(R) = ↑{π1(W) | W ∈ R} ⊆ G. Conversely, for
anyU ∈ G choose an arbitraryV ∈ H . Again Lemma 3.4 provideŝU, V̂ with Û ⊆ U

and (Û × V̂ ) ∩ Kϕ,ψ ∈ R. HenceU ∈ ↑ {π1(W) | W ∈ R} = F(π1)(R). Thus
G = F(π1)(R) and, symmetrically,H = F(π2)(R), as was required to be shown in the
application of Theorem 2.8. ¨

4. F-coalgebras

We now study coalgebras of the functorF . Let T : Set → Setbe any functor,A a set
andα : A → T (A) a mapping. The pair(A, α) is called aT -coalgebra. Whenα is clear
from the context, we shall simply callA aT -coalgebra.

In the case of the filter functorF , α(a) is a set, so borrowing notation from transition
systems, we sometimes writea

α−→ U instead ofU ∈ α(a). Again, if α is understood, we
simply writea −→ U . Thus the fact thatα(a) is a filter translates into the conditions

(i) a → U, a −→ V H⇒ a −→ U ∩ V , and
(ii) a −→ U, U ⊆ V H⇒ a −→ V .

4.1. Homomorphisms

Let (A, αA) and (B, αB) be twoT -coalgebras, then a mapϕ : A → B is called a
homomorphismif the following diagram commutes:

-

??
-

A B

T (B)T (A)

αA

ϕ

T (ϕ)

αB

In the case ofF-coalgebras we obtain the following conditions.
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PROPOSITION 4.1.A mapϕ betweenF-coalgebrasA andB is a homomorphism iff
the following two conditions are satisfied for anya ∈ A, U ⊆ A andV ⊆ B:

(i) a −→ U H⇒ ϕ(a) −→ ϕ(U)

(ii) ϕ(a) −→ V H⇒ a −→ ϕ−1(V ).

Proof. The homomorphism diagram requires thatF(ϕ)(αA(a)) = αB(ϕ(a)). The
inclusion “⊆” translates directly into the first condition, whereas the reverse inclusion
translates into

ϕ(a) −→ V H⇒ ∃U. a −→ U, ϕ(U) ⊆ V.

The conclusion of this condition impliesU ⊆ ϕ−1(V ), hencea −→ ϕ−1(V ). ¨

Note that using (i) we can infera −→ ϕ−1(V ) H⇒ ϕ(a) −→ ϕϕ−1(V ) ⊆ V H⇒
ϕ(a) −→ V , which is just the converse of (ii). Similarly, from the converse of (ii) we can
infer (i), so we get:

COROLLARY 4.2. ϕ : A → B is a homomorphism iff for alla ∈ A and allV ⊆ B

ϕ(a) −→ V ⇐⇒ a −→ ϕ−1(V ).

4.2. Subcoalgebras

If A ⊆ B and(A, αA), (B, αB) are coalgebras, thenA is called asubcoalgebraof B, if
the natural inclusion mapι : A → B is a homomorphism. The above corollary, withϕ = ι,
requires that for anya ∈ A andV ⊆ B:

a
αB−→ V ⇐⇒ a

αA−→ A ∩ V.
In particular, for anyU ⊆ A this means

a
αB−→ U ⇐⇒ a

αA−→ U.

The formula shows how the coalgebra structure on the subcoalgebraA is uniquely
determined by the coalgebra structure onB. Therefore, we can speak of a subsetA of B as
being a subcoalgebra and we writeA ≤ B in this case.

PROPOSITION 4.3.A subsetS ⊆ A is anF-subcoalgebra of(A, α) iff s
α−→ S for

eachs ∈ S.

Proof. If S is to be a coalgebra, then for eachs ∈ S we must haves
αS−→ S, hence

s
α−→ S. Conversely, we define a transition structure onS by

αS(s) = {S ∩ V | V ∈ α(s)}.
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The conditions
α−→ S, i.e. S ∈ α(s) guarantees thatαS(s) is a filter onS, so (S, αS)

becomes anF-coalgebra. For everyV ⊆ S, obviouslys
α−→ V ⇐⇒ s

αS−→ S ∩ V , so
(S, αS) is indeed a subcoalgebra of(A, α). ¨

From the general theory of coalgebras ([Rut96]) or directly from this proposition one
can infer that arbitrary unions and – as a consequence ofF preserving pullbacks – also
finite intersections of subcoalgebras are again subcoalgebras. Thus the collection of all
subcoalgebras of a givenF-coalgebra defines a topological space.

4.3. Sums

Sums of coalgebras always exist. Given a family(Ai, αi)i∈I then the disjoint union
A = (

⋃
i∈I Ai) may canonically be endowed with a coalgebra structureα so that each

(Ai, αi) is a subcoalgebra of(A, α). In the case of the functorF , we havea
α−→ U in

(A, α) if and only ifa
αi−→ Ai∩U in (Ai, αi)whereAi is the component ofA containinga.

5. Topological spaces, examples and counterexamples

5.1. Topological coalgebras

From topological spaces we can obtain concrete examples ofF-coalgebras. Given a topo-
logical space(A, τ), we turn it into anF-coalgebra using the co-operation that associates
with every pointa ∈ A the filterUτ (a) of all τ -neighbourhoods, i.e.:

V ∈ Uτ (a) ⇐⇒ ∃ O ∈ τ. a ∈ O ⊆ V.

DEFINITION 5.1. AnF-coalgebra(A, α) is calledtopologicalif there exists a topology
τ onA so that for alla ∈ A
α(a) = Uτ (a).

With our criteria forF-homomorphisms andF-subcoalgebras (Propositions 4.1 and
4.3), the following proposition is easy to check:

PROPOSITION 5.2.Let A and B be topological spaces. A mapϕ : A → B is a
coalgebra homomorphism iff it is continuous and open. A subsetS of a topological space
A is a subcoalgebra iff it is open.

Topological spaces - as coalgebras - may be characterized within the class of all
F-coalgebras. From the above we readily obtain an internal characterization of topological
F-coalgebras:
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PROPOSITION 5.3.An F-coalgebraA is topological if and only if for everya ∈ A

andU ⊆ A we have

a −→ U H⇒ ∃S ≤ A. a ∈ S ⊆ U.

Essentially, this criterion tells us thatA is topological precisely when it is topological
with respect to the topology given by its collection of subcoalgebras. Note that the converse
of the above implication is true in anyF-coalgebra.

5.2. The covariety of topological coalgebras

In analogy to notions in universal algebra, a class of coalgebras is called acovarietyif
it is closed under the formation ofhomomorphic images, subcoalgebrasandsums. Using
the above internal characterization of topological coalgebras we get:

THEOREM 5.4. The class of all topological coalgebras is a covariety.

Proof. Consider first a surjective homomorphismϕ : A → B and assume thatA is
topological. For an arbitraryb ∈ B choose ana ∈ A with ϕ(a) = b. For anyV ⊆ B we
calculate

b −→ V H⇒ ϕ(a) −→ V

H⇒ a −→ ϕ−1(V )

H⇒ ∃S ≤ A. a ∈ S ⊆ ϕ−1(V )

H⇒ ∃S ≤ A. b ∈ ϕ(S) ⊆ ϕ(ϕ−1(V ))

H⇒ ∃T ≤ B. b ∈ T ⊆ V.

For the last implication we can useT = ϕ(S) and the fact that the homomorphic image of
a subcoalgebra is again a subcoalgebra of a homomorphic image.

Next, let(A, α) be a subcoalgebra of(B, β) and assume that the latter is topological,
then fora ∈ A andU ⊆ A we conclude

a
α−→ U H⇒ a

β−→ U

H⇒ ∃S ≤ B. a ∈ S ⊆ U

H⇒ ∃S ≤ A. a ∈ S ⊆ U,

sinceS ⊆ U ⊆ A.
Finally, let (A, α) be the sum of the(Ai, αi) anda ∈ A, then there exists ani with

a ∈ Ai , thus for anyU ⊆ A

a
α−→ U H⇒ ∃Ui ⊆ Ai. a

αi−→ Ui ⊆ U

H⇒ ∃S ≤ Ai. a ∈ S ⊆ Ui ⊆ U

H⇒ ∃S ≤ A. a ∈ S ⊆ U.

¨
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Note that another covariety, properly containing the covariety of all topological
F-coalgebras could be defined by

a −→ U H⇒ a ∈ U.

5.3. Examples and Counterexamples

Our initial motivation for studying the functorF was to investigate the usefulness of our
criterion for the preservation of weak pullbacks, but also to check whether for a satisfactory
theory of universal coalgebras it is enough to request that the type functor preserves such
weak pullbacks (of finitely many maps) or whether it is necessary to have preservation of
weak generalized pullbacks(cf. [Rut96]), that is weak limits of arbitrary collections of
arrows with a common codomain.

Since in most topological spaces the intersection of arbitrarily many open sets will not
be open, they readily provide us with examples ofF-coalgebras where the intersection of
arbitrarily many subcoalgebras is not a subcoalgebra. Even the intersection of all subco-
algebras containing a given pointx need not be a subcoalgebra, so the notion of “1-generated
subcoalgebra”, which is central in [GS98] and also in [Gum98] is not available, in spite of
the fact that the type functorF preserves weak pullbacks.

We do, of course, have that the intersection of finitely many subcoalgebras is a subco-
algebra. This is a consequence of the fact thatF preserves weak pullbacks. On the other
hand one might ask whether this is actually equivalent to the preservation of weak pullbacks.
The following proposition gives a negative answer:

PROPOSITION 5.5.There is a functorP̄P̄ : Set → Set which does not preserve
weak pullbacks, yet the intersection of finitely manyP̄P̄-subcoalgebras is again a
P̄P̄-subcoalgebra.

Proof. Let P̄P̄ be the composition̄P ◦ P̄ of the contravariant powerset functorP̄ with
itself. On objectsX ∈ Setwe haveP̄P̄(X) = P(P(X)), that is the set of all collections of
subsets ofX. Given a mapϕ : X → Y , we obtainP̄P̄(ϕ)(G) = {V ⊆ Y | f−1(V ) ∈ G}
for any collectionG ⊆ P(X). In [Rut96] it is shown that this functor does not preserve
weak pullbacks.

A P̄P̄-coalgebra(A, α) associates with everya ∈ A a collectionα(a) ⊆ P(X) so we
use the same convention as introduced in Section 4, writinga

α−→ U or simplya −→ U for
U ∈ α(a). Interestingly, the homomorphism condition is identical to the one already seen
for F-coalgebras (Corollary 4.2), that is a mapϕ : A → B is a homomorphism between
P̄P̄-coalgebrasA andB iff for all a ∈ A andV ⊆ B

a −→ ϕ−1(V ) ⇐⇒ ϕ(a) −→ V.
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Now (A, α) is a subcoalgebra of(B, β) iff ⊆ is a homomorphism, that is iff for alla ∈ A
andV ⊆ B

a
α−→ A ∩ V ⇐⇒ a

β−→ V. (∗)

This formula again shows how the structure map on the subcoalgebraA of B is deter-
mined by the structure map onB. The following lemma characterizes those subsetsS of a
P̄P̄-coalgebraA which are carriers of subcoalgebras ofA, in which case we again write
S ≤ A:

LEMMA 5.6. A subsetS ⊆ A is a subcoalgebra of(A, α) iff for all s ∈ S and all
V ⊆ A

s
α−→ V ⇐⇒ s

α−→ S ∩ V.
Proof. If this condition is satisfied, we can define a structure mapαS on S by αS(s) =

α(s) ∩ P(S). Fors ∈ S andV ⊆ A we check condition (*):

s
αS−→ S ∩ V ⇐⇒ s

α−→ S ∩ V
⇐⇒ s

α−→ V.

Conversely, ifS is a subcoalgebra, then we apply condition (*) twice to obtain fors ∈ S

andV ⊆ A:

s
α−→ V ⇐⇒ s

αS−→ S ∩ V
⇐⇒ s

α−→ S ∩ V.
Continuing with the proof of Proposition 5.5, we need to show that the intersection of

two subcoalgebras is a subcoalgebra. However, the criterion of the lemma just proven
obviously holds forS1 ∩ S2, provided it holds forS1 and forS2. ¨

6. Conclusion

We have given a criterion for checking whether an endofunctorT preserves weak pull-
backs. Applying this criterion on the filter functorF we have found thatF does preserve
weak pullbacks, yetF-coalgebras may have some undesirable properties. In particular,
intersections of subcoalgebras need not be subcoalgebras.

Thus it becomes apparent that we will need to require that a functorT preserves weak
generalized pullbacks ([Rut96]) in order to yield a well behaved theory of coalgebras. Here
a generalized pullback is the limit of a set of morphism with a common codomain.

All results from Subsections 2.1 and 2.2 can be formulated (and proved) in exactly
the same way with any other diagramD in place of the one (consisting of two arrows
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with common target) defining pullbacks. We only have to replace “pullback” and “weak
pullback” by “D-limit and “weakD-limit”.

In particular, for the case of generalized pullbacks, i.e. limits of a family of maps with
common codomain, we get a result corresponding to Theorem 2.8:

PROPOSITION 6.1.A functorT : Set→ Setpreserves weak generalized pullbacks iff
for any family(fi : Ai → C)i∈I of maps with common codomainC we have:

Given any family of elements(ui)i∈I whereT (fi)(ui) = T (fj )(uj ) for all i, j ∈ I ,
there exists an elementw ∈ T ({(xi)i∈I |∀j,k∈I .fj (xj ) = fk(xk)}) such thatT (πi)(w) = ui

for all i ∈ I .
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