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Functors for Coalgebras

H. PETER GUMM

Abstract. Functors preserving weak pullbacks provide the basis for a rich structure theory of coalgebras. We give
an easy to use criterion to check whether a functor preserves weak pullbacks. We apply the characterization to the
functor 7 which associates a s&t with the setF(X) of all filters onX. It turns out that this functor preserves

weak pullbacks, yet does not preserve weak generalized pullbacks. Since topological spaces can be considered
asF-coalgebras, in fact they constitute a covariety, we find that the intersection of subcoalgebras need not be a
coalgebra, and 1-generatédcoalgebras need not exist.

1. Introduction

Coalgebras have been introduced by Aczel and Mendler [AM89] to model various types
of transition systems. Reichel [Rei95], and Jacobs [Jac96] show that coalgebras are well
suited for modeling object oriented programming and for program verification. In [Rut96],
J. J. M. M. Rutten develops the a fundamental theory of “universal coalgebra” along the
lines of universal algebra ([Gra79, Coh81, 1hr93]). Various other authors have contributed
further details to the theory, (e.g. [Bar93, GS98, RT94)).

The theory of coalgebras starts with a funciofrom Set, the category of sets to itself.

T provides thetypefor the coalgebras to be considered.cdalgebra of typel is then
simply any mapy : X — T(X).

Of particularimportance amongst all possible type functors are the identity fundto
powerset functoP(—), the finite-powerset functd?sin(—) and functors of typet x (—)2
whereA and B are fixed sets. The coalgebras belonging to these functors model different
kinds of transition systems. They ateterministidn the first case, nondeterministic in the
secondjmage finiten the case of the functd?s,(—) and automata (with input alphabgt
and output alphabet) in the case of the functot x (—)%.

An important observation at the outset of the development of universal coalgebra is that
all functors which are of practical relevance as coalgebraic type functors preserve weak
pullbacks, and that this property in turn is necessary (and largely sufficient) to obtain a rich
structure theory along the lines of universal algebra.

In order to develop a satisfactory theory of cofree coalgebras, of covarieties and of
coequational or coimplicational classes ([Gum98]), one additionally require? gtatuld
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be bounded which amounts to saying that the cardinality of 1-generd&tetbalgebras
should not exceed a fixed cardinality. From the above functors, only the powerset functor
‘P(—) fails to satisfy this additional requirement.

In this paper, we shall give a criterion to determine whether a furfitfmeserves weak
pullbacks. We then apply the criterion to tfiker functor 7 which associates with a set
X the setF(X) of all filters on X. It turns out thatF preserves weak pullbacks of two
morphismsp : A — C andyr : B — C but does not preserweeak generalized pullbacks
(cf. [Rut96]).

Every topological space can be considered as-acpalgebra. Homomorphisms are
precisely the continuous open maps and subcoalgebras are the open sets. We give an
internal characterization of the class of #&llcoalgebras arising from some topological
space and we show that this class is a covariety.

This example demonstrates, that an arbitrary intersectigf-sfibcoalgebras need not
result in a subcoalgebra and that 1-generated subcoalgebras need not exist.

As aconsequence for the general theory, we conclude that preservation of weak pullbacks
must be interpreted as preservationvaefak generalized pullbacksa satisfactory structure
theory of universal coalgebra is to be achieved. We close with an appropriate criterion.

2. A criterion for preservation of weak pullbacks
2.1. Retracts

In any category’ we can define an order relation amongst objects which will help us
to describe the relations between pullbacks and weak pullbacks. If an object is a weak
pullback of given morphisms, then so will be any other object that is larger in this order.
The pullback of mapg andg, if it exists, will be the smallest element in this order of all
weak pullbacks off andg.

DEFINITION 2.1. LetA andB be objects, we say that is aretractof B, or, equiva-
lently, thatB is acoretractionof A, and we writed < B, if there are morphisms. A — B
andk : B — A suchthak ot = 14. « is also called &plit epi and we sometimes write
A =<, B toindicate the split epi withessing < B.

We readily observe that is a reflexive and transitive relation, i.e. a quasi-order, on the
class of objects of, and that every functdrf : C — C is order preserving.

2.2. Weak Pullbacks

Pullbacksare limits of two morphisms with a common codomaireak pullbacksre
weak limits of the same situation, specifically:
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DEFINITION 2.2. Letf : A — C andg : B — C be morphisms. An objedV
with morphismsny : W — A andnp : W — B is called aweak pullbackof f and
g, if f om = gom and for any other objed®’ with morphismsrz; : W — A and
7y, - W — B satisfying f o 7; = g o 7} there is a morphisra : W' — W such that
n] =moefori =1,2. If such are is always unique, theW is called apullback of f
andg and denoted byb(f, g).

Usually,r1 andx, will be clear from the context. In that case we shall simply refer to
the objectW as a (weak) pullback of andg. The following observation can be easily
checked:

LEMMA 2.3. If (W, 1, m2) is a weak pullback off andg and W =<, W’, then
(W', w10k, m20 k) is also a weak pullback of andg.

LEMMA 2.4. If the pullback(P, 1, 7o) of f andg exists, therW, n1, 12) is a weak
pullback of f andg, ifand only if P <, W, andn; = ; o k.

Thus, in a category where pullbacks exist, weak pullbacks are precisely the coretractions
of pullbacks. Moreover, pullbacks are just the minimal elements, with respgcaimongst
all weak pullbacks.

DEFINITION 2.5. LetT : C — C be a functor. We say that preserves (weak)
pullbacks if T transforms every (weak) pullba¢l, 71, 72) of f : A - Cwithg : B —
C into a (weak) pullbackT (P), T (w1), T (;r2)) of T (f) with T (g).

We say that” weakly preserves pullbacksT transforms every pullback diagram into
a weak pullback diagram.

From the above observations and from the fact thas order preserving, one easily
obtains:

LEMMA 2.6. LetC be a category in which all pullbacks exist, and1et C — C be a
functor. Then the following are equivalent:
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(i) T preserves weak pullbacks,
(i) T weakly preserves pullbacks.

COROLLARY 2.7. ([Rut96]). If T preserves pullbacks, theh preserves weak pull-
backs.

2.3. Setendofunctors

We now turn to the categoi§et Here pullbacks of twomapg: A — Cwithg: B — C
always exist. They can be easily describedas f, g), 71, 72) where

pb(f.g) ={(a,b) | f(a) = g(D)},

andmy, w2 are just the natural projection to the components. Here we can formulate an
easy criterion for weak pullback preservation:

THEOREM 2.8. A functorT : Set — Set preserves weak pullbacks if and only if for
allmapsf: A — C,g: B — C we have:

For any pairu € T(A), v € T(B) with T(f)(u) = T(g)(v) there is an element
we T{(x,y) | f(x) =g} with T (r1)(w) = u and T (72) (w) = v.

Proof. Let P with morphismsr; andnp be the pullback off andg, and letQ with
morphisms;1 andnz be the pullback of" (f) andT (g). Clearly,T(f) o T (1) = T(g) o
T (r2), so from the definition of pullback there is a unique mapT (P) — Q satisfying
niok = T(m;) fori =1, 2. If T preserves weak pullbacks, th&igP) is a weak pullback,
whence we also getamap Q — T (P) with T'(7t;) ot = n;. Now

niokot = T(m)ot
=N
= nio idQ,
hencex o1 = idp, asQ with morphismsn, 2 is a pullback. In particular is onto,

so every elementu, v) € Q = pb(T(f), T(g)) must have ax-preimagew € T(P) =
T (pb(f, g)), which is the content of the criterion.

T(A)

T(C)

T(g)

T(B)
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Conversely, if the criterion is satisfied, then the mapT (P) — Q, defined by

Kk (w) == (T (1) (w), T (2)(w))
is surjective andy; o k = T (;) fori = 1, 2. In Setevery surjective map is a split epi, so

the result follows from Lemma 2.4. O

3. The filter functor

We apply the criterion to the functdf on Setwhich associates a s&twith the set of
all filters onX. For this we need a few definitions.

DEFINITION 3.1. LetA, C be setsangh : A — C a map. A collectiorG of subsets
of A is calleddownward directedif for U, V € G there always exists & € G with
W <€ UnV. Anonempty downward directed collectigh is called afilter on A, if
V 2 U € G always impliesV € G.

Given a honempty downward directed setC P(A), then
1G={UCA|IU €G.UDU"}

is the filter generated bg. With ¢(G) we denote the set of all-images of sets fronds,
ie.

9(G) ={pU) | U € G}.

LEMMA 3.2. LetG and H be collections of subsets af

(i) If G is downward directed, then sodgG).
(i) If G andH arefilters thenG C H iff forall U € G there exists & € H such that
Vcu.
(i) 1o(G) =19(1G).

All these properties are easy to check.
We now denote byF(X) the set of all filters onX. F can be made into a functor
F : Set— Setby defining iton mapg : A — B as

F(p)(G) =19(G)

whereG stands for an arbitrary filter oA.

LEMMA 3.3. F is a covariant functor.



140 H. PETER GUMM ALGEBRA UNIVERS.

Proof.
Fid)(G) = 1id(G)
= G.

Flpod)(G) = 1 (poy)(G)

= To(G))

= te(t¥(G)

= F(@(FW)(G))

= (F(@) o FW)N(G).

The next lemma will turn out to be crucial for the proof of the main theorem:

LEMMA 3.4. Letp : A — C andy : B — C be maps( a filter onA and H a filter
on B. If F(¢)(G) = F(¥)(H) then foranyU € G andV € H we can findU € G,
VeHwthU CU,V CVandeU) =y (V).

Proof. SinceU € G and F(p)(G) € F(¥)(H) there existsV’ ¢ H with ¥ (V') C
@(U), henceforv” = VNV’ wealso havey (V") C o(U)Ny(V),soV” C ¥~ LeU)N
v (V)). Put

V=vny W) ny(v),

thenV” € V € V andV € H. Clearly, ¥ (V) C U) N ¥(V), but the reverse
inclusion holds too, since any € ¢(U) N ¥ (V) can be written ag/(y) for somey €
V Ny o) Ny ((V)), yieldingc € ¥ (V). Thusy (V) = o(U) N (V) which, by
symmetry, is equal tg (D). O

Now we have everything in place to state and prove the main result of this section:
THEOREM 3.5. F preserves weak pullbacks.

Proof. Letgp : A — C andy : B — C be maps. Let us abbreviate their pullback by

Koy ={(x,y) € AX B |ox)=vy»)}

GivenG € F(A) andH € F(B) with F(¢)(G) = F()(H), Theorem 2.8 requires us to
find a filter R on K, y with F(1)(R) = G andF(m2)(R) = H. Put

R=1{{UXxV)NKyy|U€eG,VeH, oU) =)
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Here Lemma 3.4 will be needed to verify that R is downward directed, hence afilkgy, pn
Indeed, giverU1, Uz € G andVy, Vo € H with ¢ (U;) = ¥ (V;), then Lemma 3.4 provides
uswithU € U1 N Uz andV C Vi N Vs, satisfyingU € G, V € H, andp(U) = ¢ (V),
thus(U x V)N Kyy S (U1 x V1) N Ky y) N (U2 x V2) N Ky y).

WhenevelU € G andV € H with o(U) = ¥ (V), we obtaint, (U x V)NK, ) = U,
hencer1(R) C G. Itfollows thatF (r1)(R) = 4+ {m1 (W) | W € R} € G. Conversely, for
anyU e G choose an arbitrary € H. Again Lemma 3.4 provide&, V with U € U
and (U x V)N K,y € R. HenceU € 1 {m(W) | W € R} = F(m1)(R). Thus
G = F(m1)(R) and, symmetricallyH = F(w2)(R), as was required to be shown in the
application of Theorem 2.8. O

4. F-coalgebras

We now study coalgebras of the functér Let T : Set— Setbe any functorA a set
anda : A — T(A) a mapping. The paifA, «) is called aT'-coalgebra Whenq is clear
from the context, we shall simply call a T-coalgebra.

In the case of the filter functaF, «(a) is a set, so borrowing notation from transition
systems, we sometimes write—"> U instead ofU € a(a). Again, if « is understood, we
simply writea — U. Thus the fact thak (@) is a filter translates into the conditions

i) a—-U,a—V—a—UNYV,and
(i) a— U, UCV=0a— V.

4.1. Homomorphisms

Let (A, a4) and (B, ap) be two T-coalgebras, then a map: A — B is called a
homomorphisnif the following diagram commutes:

¢
A B

T(p)
T(A) -~ T(B)

In the case ofF-coalgebras we obtain the following conditions.
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PROPOSITION 4.1 A mapg betweenF-coalgebrasA and B is a homomorphism iff
the following two conditions are satisfied for amy A, U € AandV C B:

(i) a — U= ¢(a) — @)
(i) pa) — V= a— ¢~ X(V).

Proof. The homomorphism diagram requires ttfaty) (a4 (a)) = ap(p(a)). The
inclusion “C” translates directly into the first condition, whereas the reverse inclusion
translates into

pa) —V=—3U.a— U,pU)CV.
The conclusion of this condition impligs € ¢~1(V), hencen — ¢~ 1(V). O

Note that using (i) we can infer — ¢ 1(V) = ¢(@) — ¢ L(V) C V =
o(a) —> V, which is just the converse of (ii). Similarly, from the converse of (ii) we can
infer (i), so we get:

COROLLARY 4.2. ¢ : A — B is a homomorphism iff forak € A and allV € B

pla) — V & a — ¢ V).

4.2. Subcoalgebras

If A C Band(A, ay), (B, ap) are coalgebras, thetis called asubcoalgebraf B, if
the natural inclusion map: A — B is a homomorphism. The above corollary, with= ¢,
requires that for anyg € A andV C B:

a5V e a3 ANV.
In particular, for anyU C A this means
a5 U = a5 U

The formula shows how the coalgebra structure on the subcoalgelsauniquely
determined by the coalgebra structureRnTherefore, we can speak of a subseif B as
being a subcoalgebra and we write< B in this case.

PROPOSITION 4.3 A subsetS C A is an F-subcoalgebra ofA, «) iff s — S for
eachs € S.

Proof. If S is to be a coalgebra, then for eacke § we must have 25,8, hence
s —> . Conversely, we define a transition structuresooy

as(s) ={SNV |V eals)}.
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The conditions — S, i.e. S € a(s) guarantees thats(s) is a filter ons$, so (S, as)
becomes atF-coalgebra. For every < S, obviouslys LV = s 3850V, s0
(S, ag) is indeed a subcoalgebra ©f, «). O

From the general theory of coalgebras ([Rut96]) or directly from this proposition one
can infer that arbitrary unions and — as a consequencg pfeserving pullbacks — also
finite intersections of subcoalgebras are again subcoalgebras. Thus the collection of all
subcoalgebras of a giveR-coalgebra defines a topological space.

4.3. Sums

Sums of coalgebras always exist. Given a fanily, «;);c; then the disjoint union
A = (U,;¢; Ai) may canonically be endowed with a coalgebra structuss that each

(A;, ;) is a subcoalgebra afd, ). In the case of the functaF, we havea — U in
(A, o) ifand onlyifa —> A; NU in (A;, a;) where4; is the component of containinga.

5. Topological spaces, examples and counterexamples
5.1. Topological coalgebras

From topological spaces we can obtain concrete examplesoflgebras. Given atopo-
logical spacg A, t), we turn it into anF-coalgebra using the co-operation that associates
with every pointa € A the filteri/; (a) of all t-neighbourhoods, i.e.:

Vel (a +— 30e€1t.acOCV.

DEFINITION 5.1. AnF-coalgebrdA, «) is calledtopologicalif there exists atopology
tonAsothatforall € A

a(a) = U (a).

With our criteria for 7-homomorphisms and-subcoalgebras (Propositions 4.1 and
4.3), the following proposition is easy to check:

PROPOSITION 5.2Let A and B be topological spaces. Amap: A — Bisa
coalgebra homomorphism iff it is continuous and open. A subséta topological space
A is a subcoalgebra iff it is open.

Topological spaces - as coalgebras - may be characterized within the class of all
F-coalgebras. From the above we readily obtain an internal characterization of topological
F-coalgebras:
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PROPOSITION 5.3 An F-coalgebraA is topological if and only if for every € A
andU < A we have

a—>U=—35<A.aeSCU.

Essentially, this criterion tells us thdt is topological precisely when it is topological
with respect to the topology given by its collection of subcoalgebras. Note that the converse
of the above implication is true in arf§-coalgebra.

5.2. The covariety of topological coalgebras

In analogy to notions in universal algebra, a class of coalgebras is catlechaetyif
it is closed under the formation dbmomorphic imagesubcoalgebraandsums Using
the above internal characterization of topological coalgebras we get:

THEOREM 5.4. The class of all topological coalgebras is a covariety.

Proof. Consider first a surjective homomorphigm: A — B and assume that is
topological. For an arbitrary € B choose am € A with ¢(a) = b. For anyV € B we
calculate

b—V = ¢ —V

= a— ¢ H(V)

= IS <A.aecSCo XV

— IS < A.begS) S ol (V)

= AT <B.beT CV.
For the last implication we can uge= ¢(S) and the fact that the homomorphic image of
a subcoalgebra is again a subcoalgebra of a homomorphic image.

Next, let(A, a) be a subcoalgebra @B, 8) and assume that the latter is topological,
then fora € A andU C A we conclude

a5 U o ai>U
= IS <B.aeSCU
— A <A.aeSCU,
sinceS C U C A.
Finally, let (A, @) be the sum of th€A;, «;) anda € A, then there exists anwith
a € A;, thusforanyU C A
a5 U = U, CAj.a—>U CU
— IS <A;.aeSCU CU
=— A <A.ae SCU.
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Note that another covariety, properly containing the covariety of all topological
JF-coalgebras could be defined by

a— U=—=ael.

5.3. Examples and Counterexamples

Our initial motivation for studying the functdfF was to investigate the usefulness of our
criterion for the preservation of weak pullbacks, but also to check whether for a satisfactory
theory of universal coalgebras it is enough to request that the type functor preserves such
weak pullbacks (of finitely many maps) or whether it is necessary to have preservation of
weak generalized pullbacksf. [Rut96]), that is weak limits of arbitrary collections of
arrows with a common codomain.

Since in most topological spaces the intersection of arbitrarily many open sets will not
be open, they readily provide us with examplesfotoalgebras where the intersection of
arbitrarily many subcoalgebras is not a subcoalgebra. Even the intersection of all subco-
algebras containing a given poinbheed not be a subcoalgebra, so the notion of “1-generated
subcoalgebra”, which is central in [GS98] and also in [Gum98] is not available, in spite of
the fact that the type functofF preserves weak pullbacks.

We do, of course, have that the intersection of finitely many subcoalgebras is a subco-
algebra. This is a consequence of the fact thatreserves weak pullbacks. On the other
hand one might ask whether this is actually equivalent to the preservation of weak pullbacks.
The following proposition gives a negative answer:

PROPOSITION 5.5There is a functorPP : Set — Set which does not preserve
weak pullbacks, yet the intersection of finitely maRf-subcoalgebras is again a
PP-subcoalgebra.

Proof. Let PP be the compositiofP o P of the contravariant powerset functBrwith
itself. On objects¥ e Setwe havePP(X) = P(P(X)), that is the set of all collections of
subsets of. Given amap : X — Y, we obtainPP(¢)(G) = {V C Y | fX(V) € G}
for any collectionG € P(X). In [Rut96] it is shown that this functor does not preserve
weak pullbacks.

A PP-coalgebra(A, o) associates with every € A a collectiona(a) € P(X) so we
use the same convention as introduced in Section 4, wzitin%» U orsimplya — U for
U € a(a). Interestingly, the homomorphism condition is identical to the one already seen
for F-coalgebras (Corollary 4.2), thatis a map A — B is a homomorphism between
PP-coalgebrast andB iffforall « € AandV C B

a —> (p_l(V) — ¢a) — V.
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Now (A, @) is a subcoalgebra a3, g) iff C is a homomorphism, that is iff for afl € A
andV C B

ai>AﬁV<:>ai>V. ™)
This formula again shows how the structure map on the subcoalgelbifaB is deter-
mined by the structure map @h The following lemma characterizes those subSeat§a
PP-coalgebrad which are carriers of subcoalgebrasAfin which case we again write
S < A:

LEMMA 5.6. A subsetS C A is a subcoalgebra ofA, «) iff for all s € S and all
VCA

SL>V<:>SL>SOV.

Proof. If this condition is satisfied, we can define a structure mgpn S by ag(s) =
a(s) NP(S). Fors € SandV < A we check condition (*):

sgSﬂV S s 285NV
— 5 V.

Conversely, ifS is a subcoalgebra, then we apply condition (*) twice to obtainsfer S
andV C A:

S5V &= s8NV
— s-55nV.

Continuing with the proof of Proposition 5.5, we need to show that the intersection of
two subcoalgebras is a subcoalgebra. However, the criterion of the lemma just proven
obviously holds forS; N S, provided it holds forS; and for Ss. O

6. Conclusion

We have given a criterion for checking whether an endofurittpreserves weak pull-
backs. Applying this criterion on the filter functdf we have found tha¥ does preserve
weak pullbacks, yefF-coalgebras may have some undesirable properties. In particular,
intersections of subcoalgebras need not be subcoalgebras.

Thus it becomes apparent that we will need to require that a fuficfyeserves weak
generalized pullbacks ([Rut96]) in order to yield a well behaved theory of coalgebras. Here
a generalized pullback is the limit of a set of morphism with a common codomain.

All results from Subsections 2.1 and 2.2 can be formulated (and proved) in exactly
the same way with any other diagrafhin place of the one (consisting of two arrows
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with common target) defining pullbacks. We only have to replace “pullback” and “weak
pullback” by “D-limit and “weakD-limit”.

In particular, for the case of generalized pullbacks, i.e. limits of a family of maps with
common codomain, we get a result corresponding to Theorem 2.8:

PROPOSITION 6.1 A functorT : Set— Setpreserves weak generalized pullbacks iff
for any family(f; : A; — C);<; of maps with common codomaihwe have:

Given any family of elements;);c; whereT (f;)(u;) = T(f;)(u;) forall i, j € I,
there exists an elemente T ({(x;)ier |V} ker- fj(xj) = fi(xr)}) such thatl (7;)(w) = u;
foralli e I.
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