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Products of coalgebras

H. Peter Gumm and Tobias Schröder

Dedicated to Viktor Aleksandrovich Gorbunov

Abstract. We prove that the category ofF -coalgebras is complete, that is products and equalizers exist, provided
that the type functorF is bounded or preserves mono sources. This generalizes and simplifies a result of Worrell
([Wor98]). We also describe the relationship between the productA × B and the largest bisimulation∼A,B
betweenA andB and find an example of two finite coalgebras whose product is infinite.

1. Introduction

Only recently has it been discovered that many structures in theoretical computer science,
including automata, transition systems, object oriented systems, and lazy data types can be
put into a common framework, that of universal coalgebra. Many phenomena that had
previously been studied individually in each of those theories are seen to be instances of
some general structure theory as provided by the new field of universal coalgebra.

There are many parallels to the situation in universal algebra, when it was found that the
basic structure theory of groups, rings, lattices and several related structures can be dealt
with uniformly on the level of universal algebras. The advantage is not only an “economy
of thought”, replacing many individual proofs by the proof of one general theorem, of even
greater benefit seems to be the fact that a framework is provided for each new theory – there
is no doubt as to which notion of homomorphism, substructure, factor, etc. to settle for.

Coalgebras are not simply obtained by dualizing the established concept of universal
algebra. This way one would obtain a coalgebra of type(ni)i∈I as a familyαi : A→ (ni ·A)
of maps fromA to theni-fold sum ofA. Even though such structures have been studied some
30 years ago, they failed to attract much attention, probably due to the lack of interesting
applications, let alone interesting mathematical questions.

The most important observation is that a type(ni)i∈I can simply be understood as an
encoding of the functorF : Set → Set on the category of sets, which associates with a set
X the disjoint sum of itsni-fold powers ofX:

F(X) = 6i∈IXni .
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A universal algebraA = (A, (fi)i∈I ) of type(ni)i∈I can be now coded by a single map

f : F(A)→ A

and a homomorphismϕ : A→ B between algebrasA = (A, (fi)i∈I )andB = (B, (gi)i∈I )
is just a mapϕ : A→ B making the following diagram commute:

F (A) F (B)

gf

A B

F(ϕ)

ϕ

This is the more general setting that must be dualized to obtain the proper notion of
universal coalgebra. It is surprising that in spite of the high level of generality a rich structure
theory of coalgebras can be developed which in many ways parallels the theory of universal
algebra up to and including coalgebraic versions of Birkhoff’s theorems ([Gum99b]).

The first general introduction into the field is by Jan Rutten ([Rut96]). This work sys-
tematically develops the structure theory of coalgebras and at the same time explains a
large number of relevant applications. A major insight underlying much of this work was
the observation that in most of the relevant examples the type functorF weakly preserves
generalized pullbacks. Taking this into account, one is led to a richer structure theory, and
as a consequence much of the subsequent literature uses this assumption onF .

Nonetheless, there are still functors which do not obey the mentioned assumption of
weakly preserving generalized pullbacks. One of those is thefilter functor F studied in
[Gum98] whose coalgebras include all topological spaces. An introduction to the general
theory of coalgebras, without any assumption on the type functorF , has therefore been
given in [Gum99a]. It turned out that, in fact, the structure theory can be developed in
the very general case, again yielding a dual of Birkhoff’s theorem. The structure theo-
retic results equivalent to various preservation properties of the functorF are analyzed in
[GS00].

It is well known (see [Bar93]) that the categorySetF of all coalgebras of typeF has
coequalizers and sums, hence arbitrary colimits. In fact it is known (see [Bar93]) and easy
to check, that every colimit inSetF exists and is constructed exactly as in the underlying
category of sets. In category theoretic parlance, the forgetful functor fromSetF to Set
creates and preserves colimits.

The case is different for limits. Products of coalgebras need not exist, but when they do,
their base set will often have to be different from the cartesian product of the base sets. One
may be lucky, in that the functorF preserves a certain type of limit. In that case, this very
type of limit exists forF -coalgebras and it is constructed as inSet ([Bar93]). In general
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though, the functors needed to model most applications of interest fail to preserve arbitrary
limits.

Still, J. Worrell was able to show in [Wor98] thatSetF is complete, that is products and
equalizers exist, provided the type functorF weakly preserves pullbacks andF is bounded,
a term that we shall define later. Worrell’s proof uses the theory of monads and some further
category theoretic machinery which, when translated into more elementary notions, makes
the proof rather long and hard to follow. One purpose of this article is therefore, to give
a short and elementary proof of this result and at the same time extend it by removing the
assumption that the type functorF should weakly preserve generalized pullbacks.

Doing so, we shall have to redefine the notion of abounded functor. The usual definition
requires a cardinal bound on the size of one-generated subcoalgebras. WhenF does not
preserve weak generalized pullbacks, the notion of one-generated subcoalgebra makes no
sense, since subcoalgebras need not be closed under intersection. We give a proper definition
of a bounded functorin section 7 and show that terminal1 coalgebras, more generally,
arbitrarily large cofree coalgebras exist inSetF wheneverF is bounded.

There is a strong connection between the productA×B of two coalgebras and the largest
bisimulation∼A,B. We characterize precisely, whenA × B ∼= ∼A,B. Some examples
demonstrate the possibilities for products of two coalgebras. In particular, the productA×B
of two nontrivial finite coalgebrasA andB may be empty, isomorphic toA or even infinite.

During the writing of this article, A. Kurz [Kur99] has also given a direct proof for the
existence of products inSetF , our Theorem 6.3. His proof still uses more category theoretic
machinery than we shall require here.

2. Preliminaries

Let F : Set → Set be a functor. AnF -coalgebra, or coalgebra of typeF , is a pair
A = (A, α) whereα : A→ F(A) is an arbitrary map.A is called the base set andα the
co-operationor structure mapof A.

2.1. Homomorphisms

GivenF -coalgebrasA = (A, α) andB = (B, β), a homomorphismϕ : A → B is a
mapϕ : A→ B which makes the following diagram commute:

F (A) F (B)

βα

A B
ϕ

F(ϕ)

1Some authors prefer the notion “final”.
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We shall frequently use without mentioning the following diagram lemmata
from [Gum99a]:

LEMMA 2.1. (First Diagram Lemma)Let A, B, C beF -coalgebras,ϕ : A → B and
ψ : A → C homomorphisms. Ifϕ is surjective, then there is a (necessarily unique)
homomorphismχ : B→ C with χ ◦ ϕ = ψ iff ker(ϕ) ⊆ ker(ψ).
A B

C

ϕ

ψ

LEMMA 2.2. (Second Diagram Lemma)Let A, B, C beF -coalgebras,ϕ : B → A
andψ : C → A homomorphisms. Ifϕ is injective, then there is a (necessarily unique)
homomorphismχ : C → B with ϕ ◦ χ = ψ iff ψ [C] ⊆ ϕ[B].

A B

C

ϕ

ψ

2.2. The categorySetF

For a fixed functorF , the class of allF -coalgebras forms a categorySetF . Epimorphisms
in SetF are just the surjective homomorphisms, however, monomorphisms inSetF need not
be injective, see [GS00].

It is not hard to prove (see [Bar93]), thatSetF is co-complete as a category, that is every
colimit (sum, coequalizer) exists inSetF , and it is formed just as inSet , the category of
sets. In particular, the sum inSetF of a family of coalgebrasAi = (Ai, αi) has as base
set the disjoint union of theAi and the injection of eachAi into the disjoint union is a
homomorphism.

The corresponding property is not true for limits. In fact, products need not exist in
SetF . However, ifF preservesa certain type of limit, then this type of limit exists and it is
again formed just like inSet .

For instance, a functorF is said topreserve pullbacks, if it transforms each pullback
diagram into a pullback diagram. Pullbacks in the category of sets have an easy description:
Given mapsf : A→ C andg : B → C, their pullback inSet is given as(pb(f, g), π1, π2)

where

pb(f, g) := {(a, b) ∈ A× B | f (a) = g(b)},
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andπ1 : pb(f, g)→ A andπ2 : pb(f, g)→ B are the canonical projections. Therefore,
F preserves pullbacks, iff there exists a unique mapψ : pb(F (f ), F (g))→ F(pb(f, g))

such thatF(π1)(ψ(u, v)) = u andF(π2)(ψ(u, v)) = v. Thus we have:

LEMMA 2.3. F preserves the pullback of mapsf : A → C and g : B → C, iff
for every(u, v) with F(f )(u) = F(g)(v) there exists a uniqueq ∈ F(pb(f, g)) so that
F(π1)(q) = u andF(π2)(q) = v.

If we drop the uniqueness requirement, thenF is said toweakly preservepullbacks.

2.3. Subcoalgebras

If A = (A, α) is a coalgebra, andU a subset ofA, thenU is calledclosed, if a coalgebra
structureU = (U, δ) can be defined onU so that the natural inclusion⊆: U → A is a
homomorphism. In this caseU is called a subcoalgebra ofA and we writeU ≤ A. A
structure mapδ as above on a closed setU is easily seen to be unique, therefore closed sets
are often called subcoalgebras.

If ϕ : A→ B is a homomorphism andU ≤ A then

ϕ[U ] := {ϕ(u) | u ∈ U}
is a subcoalgebra ofB. In particular,ϕ[A] ≤ B.

On the other hand, ifV is a subcoalgebra ofB, then

ϕ−[V ] := {a ∈ A | ϕ(a) ∈ V }
neednot be a subcoalgebra ofA, unlessF weakly preserves pullbacks!

The union of a family(Ui)i∈I of subcoalgebras of a fixed coalgebraA is again a sub-
coalgebra ofA, hence for any subsetS ⊆ A there is always a largest subcoalgebra ofA
contained inS, we denote it by [S] and call it the coalgebracogenerated byS.

2.4. Bisimulations

Bisimulations are the structure preserving relations between coalgebras. A bisimulation
between coalgebrasA andB is a binary relationR ⊆ A×B on which a coalgebra structure
δ : R→ F(R) can be defined so that the projectionsπ1, π2 : R→ A are homomorphisms:



168 h. peter gumm and tobias schröder algebra univers.

Note that for a given bisimulationR there may be different structure mapsδ, δ′, making
the diagram commute. Each of them will be called abisimulation structure forR.

The diagonal1A := {(a, a) | a ∈ A} is always a bisimulation onA, butA × A in
general is not. A union of bisimulations betweenA andB is again a bisimulation between
A andB, hence there is always a largest one, called∼A,B. Moreover, ifQ is any coalgebra
and ifϕ1, ϕ2 : Q→ A are homomorphisms, then(ϕ1, ϕ2)Q := {(ϕ1(q), ϕ2(q)) | q ∈ Q}
is a bisimulation, see [Rut96].

2.5. An example

We shall illustrate the above notions with an example which we shall need in a later
section. Anondeterministic transition systemis commonly defined as a setS of states
together with a transition relationσ . If (a, b) ∈ σ , we say that there is a transition froma
to b and illustrate it graphically with an arrow:

a
σ−→ b.

Transition systems are commonly used to model nondeterministic systems and they often
are equipped with extra structure. Here we only consider the simplest possible case.

A transition system will be modelled as a coalgebra for the powerset functorP which
associates with a setX the set ofP(X) of all subsets ofX. Given a mapf : X → Y ,
the functor returns the mapP(f ) : P(X) → P(Y ) which is defined on an arbitrary
U ∈ P(X) as

P(f )(U) := f [U ] := {f (u) | u ∈ U}.
We record, for later reference, several possible modifications of this functor, such as

• the nonempty powerset functor:P+(X) := P(X)− {∅}
• the finite powerset functor:Pω(X) := {U ⊆ X | |U | < ω}.

In each case, the functor acts on maps just like the powerset functor.
Let now (S, σ ) be a transition system, we consider it as aP-coalgebraS = (S, α) by

defining

α(s) := {s′ ∈ S | (s, s′) ∈ σ }.
Then a mapϕ between transition systemsS = (S, σ ) andT = (T , τ ) is easily seen to be
a homomorphism iff for alls, s′ ∈ S and allt ∈ T we have

1. s
σ−→ s′ H⇒ ϕ(s)

τ−→ ϕ(s′), and
2. ϕ(s)

τ−→ t H⇒ ∃s′.s σ−→ s′ andϕ(s′) = t.
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Similarly, a relationR ⊆ S×T is easily found to be a bisimulation, if for anys, s′ ∈ S and
t, t ′ ∈ T we have:

If (s, t) ∈ R then

1. s
σ−→ s′ H⇒ ∃t ′ ∈ T .t τ−→ t ′ and(s′, t ′) ∈ R,

2. t
τ−→ t ′ H⇒ ∃s′ ∈ S.s σ−→ s′ and(s′, t ′) ∈ R.

3. Congruences

Congruences on coalgebras were originally introduced by Aczel and Mendler in [AM89].
They were later given up in favor ofbisimulationsby Rutten in his treatment [Rut96].
Indeed, wheneverF weakly preserves pullbacks, each congruence is a bisimulation. In
general, though, this is not the case, and it turns out that we shall need congruences in order
to construct, in a later section, the terminal coalgebra.

A congruenceon a coalgebraA is defined as the kernel of a homomorphismϕ : A→ B,
i.e. as

Ker(ϕ) := {(x, y) | ϕ(x) = ϕ(y)}.
If θ is a congruence onA, then there is a canonical coalgebra structure onA/θ , the set of
all θ -classes andπθ : A→ A/θ is a surjective homomorphism withKer(πθ ) = θ .

Given congruencesθ andφ, their intersection, in general, will not be a congruence.
Fortunately, however, the supremum of a family(θi)i∈I of congruences exists. This is
shown in the following lemma:

LEMMA 3.1. Let (θi)i∈I be a nonempty family of congruences. Then the supremum of
theθi exists and it is given as the transitive closure of their union, i.e.

∨
i∈I
θi =

(⋃
i∈I
θi

)∗
.

Proof. 8 := (⋃i∈I θi)∗ is the smallest equivalence relation containing all theθi . Every
congruenceθ is the kernel of some homomorphismπθ : A → A/θ . Form the pushout
(Q,ψi) of all homomorphismsπθi : A→ A/θi .

Since pushouts inSetF are formed just as inSet , the kernel of the homomorphismψi ◦ πθi
is just8, the congruence generated by allθi . ¨
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The supremum over the empty family also exists, it is the diagonal1A := {(a, a) | a ∈ A}.
For every reflexive relationR, we can therefore define the congruencecogeneratedby R
as the supremum of all congruences contained inR, i.e.

Con[R] :=
(⋃
{θ | θ congruence,θ ⊆ R}

)∗
.

We now have:

THEOREM 3.2. The set of all congruences on a coalgebraA is a complete lattice.
Suprema and infima are given as

∨
i∈I
θi =

(⋃
i∈I
θi

)∗
∧
i∈I
θi = Con

[⋂
i∈I
θi

]
.

The smallest congruence onA is always the diagonal1A, but the largest congruence,
we shall call it∇A, will in general be a proper subset ofA× A.

The second diagram lemma 2.2 has as consequence that the congruences onA/θ cor-
respond uniquely to the congruences onA which containθ . In particular, the congruence
lattice ofA/θ is isomorphic to the interval aboveθ of the congruence lattice ofA.

4. Simple and extensional coalgebras

A universal algebra is calledsimple, if it does not have any nontrivial congruence relation.
We suggest to use the same definition for coalgebras.

Unfortunately, Rutten ([Rut96]) calls a coalgebra simple, if it does not have any nontrivial
bisimulation, that is, if the largest bisimulation is the diagonal. We suggest to call such
coalgebrasextensional. When the type functor weakly preserves pullbacks, both notions
agree, but in general they don’t, see e.g. [GS00]. The situation of the largest bisimulation∼
being the diagonal can be expressed as a proof rule:

x ∼ y
x = y .

Since bisimilarity represents indistinguishability by observations, we can understand this
proof rule as aprinciple of extensionality:

Two elements that can not be distinguished by observations are equal.

With this in mind, we shall call a coalgebraextensionalif the largest bisimulation is the
diagonal.
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The largest congruence relation of a simple coalgebra is the diagonal, and conversely,
factoring any coalgebra by its largest congruence relation yields a simple factor. Moreover,
we have:

LEMMA 4.1. Every simple coalgebra is extensional.

Proof. Any bisimulationR on A yields two homomorphismsπ1, π2 : R → A. Let
ϕ : A→ B be the coequalizer ofπ1 andπ2. If A is simple, thenKer(ϕ) is trivial, hence
π1 = π2, soR is the diagonal. ¨

Extensional coalgebras can be characterized in the following way:

LEMMA 4.2. For a coalgebraA the following are equivalent:

1. A is extensional.
2. For every coalgebraB there is at most one homomorphismϕ : B→ A.

Proof. If A has a proper bisimulationR, then there are two different homomorphisms
π1, π2 : R → A. Conversely, if there are two different homomorphismsϕ1, ϕ2 : B→ A,
then(ϕ1, ϕ2)B is a nontrivial bisimulation onA. ¨

Let us consider the example of automata with a fixed alphabet6. Conventionally, a
6-automaton is given as a triple(A, δ, T ) whereδ : A×6→ A is the transition function
andT ⊆ A is the set of terminal states. This information can conveniently be coded
coalgebraically into a single map:

α : A→ A6 × {true, false}
whereα(a) = (τa, b) with

τa(σ ) = δ(a, σ ), and

b = (a ∈ T ).
Thus automata are coalgebras of typeF , whereF is the functor associating with a set

X the set

F(X) := X6 × {true, false}.
A mapf : X→ Y is transformed into a mapF(f ) : F(X)→ F(Y ) given as

F(f )(γ, b) := (f ◦ γ, b).
It is not hard to see that a congruence relation on such a coalgebra is just an equivalence

relationθ satisfying for everyx, y ∈ A and everyσ ∈ 6:

xθy H⇒ (δ(x, σ )θδ(y, σ ), and(x ∈ T ⇐⇒ y ∈ T )).
The largest congruence on such a coalgebra is therefore just theNerode congruenceand

factoring by it yields the corresponding minimal automaton.
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5. Limits

We begin with equalizers, that is limits of two parallel arrows. They always exist without
any requirement on the functorF . The following theorem is stated in [Wor98] for the case
thatF weakly preserves pullbacks:

THEOREM 5.1. Given homomorphismsϕ1, ϕ2 : A→ B. Let

E := {a ∈ A | ϕ1(a) = ϕ2(a)},

then[E] ≤ A is the equalizer ofϕ1 andϕ2.

Proof. For the canonical embedding≤: [E] → Awe clearly have thatϕ1 ◦ ≤= ϕ2 ◦ ≤.
Let κ : Q → A be given withϕ1 ◦ κ = ϕ2 ◦ κ thenκ[Q] ≤ A, and consequently,
κ[Q] ≤ [E], henceκ uniquely factors through [E].

¨

It is well known that a category iscomplete, i.e. it has all possible limits, provided
equalizers and products exist. The next result shows that the product of a family(Ai )i∈I
exists, provided eachAi can be embedded into some largerBi for which the product of the
(Bi )i∈I exists:

THEOREM 5.2. Assume that the productB := 5i∈IBi exists with projections
ηi : B → Bi for eachi ∈ I . If Ai ≤i Bi is a subcoalgebra for eachi ∈ I then the
product5i∈IAi exists and it is isomorphic to a subcoalgebra ofB.

Proof. Let

D :=
⋃
{U | U ≤ B,∀i ∈ I. ηi [U ] ⊆ Ai},

thenD is a subcoalgebra ofB and for everyi ∈ I the homomorphismηi ◦ ≤: D → Bi
factors throughAi , that is there is a homomorphismνi : D → Ai with ηi ◦ ≤ = ≤i ◦ νi .
We claim that(D, (νi)i∈I ) is the product of the(Ai )i∈I . Let Q with homomorphisms
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µi : Q→ Ai be a competitor forD, thenQ with the morphisms(≤i ◦ µi) : Q→ Bi is a
competitor for the product of theBi . Hence there is a unique homomorphismψ : Q→ B
so thatηi ◦ ψ = ≤i ◦ µi for all i ∈ I . ψ [Q] is a subcoalgebra ofB andηi [ψ [Q]] ⊆ Ai ,
henceψ factors throughD asψ = ≤ ◦ ψ̃ . It follows

≤i ◦ νi ◦ ψ̃ = ηi ◦ ≤ ◦ ψ̃
= ηi ◦ ψ
= ≤i ◦ µi.

Since≤i is mono, it follows thatνi ◦ ψ̃ = µi . ψ̃ is unique with this property, for assume
that there was another homomorphismsψ̂ with νi ◦ ψ̂ = µi , then it follows thatηi ◦ ≤
◦ ψ̃ = ηi ◦ ≤ ◦ ψ̂ for all i ∈ I , hence≤ ◦ ψ̃ = ≤ ◦ ψ̂ and thusψ̃ = ψ̂ , since≤ is left
cancellable.

¨

Until now, we have only considered products (and limits) with respect to the classSetF .
However, limits with respect to subclassesK of SetF are rather easily obtained from limits
with respect toSetF , provided thatK is closed under homomorphic images (K = H(K))
and sums (K = 6(K)). Such classes are called co-quasivarieties in [Gum99b]. The limit
of any diagramD in K is obtained by first forming the limitL ofD in SetF and then taking
the largest subcoalgebraU of L which is a member ofK. In particular:

PROPOSITION 5.3.If SetF is complete, then so is every subclassK of SetF , which is
closed under sums and homomorphic images.

6. Cofree Coalgebras

LetX be any set. A coalgebraSX with a mapεX : SX → X is calledcofree overX if
for anyF -coalgebraA and any mapg : A→ X there exists exactly one homomorphism
g̃ : A→ SX with εX ◦ g̃ = g.
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SX

∋

X

X

A
g

g

The setX is often thought of as a set of “colors” andg a coloring. Note that, in particular,
the cofree coalgebra over the one-element set is the same as the terminal objectP in SetF .
The structure mapαP : P → F(P ) on a terminal coalgebraP must be an isomorphism, in
particular,P andF(P )must have the same cardinality. This observation is due to Lambek,
see [Gum99a] for a proof. This is the reason that terminal coalgebras cannot exist, for
instance, forF = P, the powerset functor.

If there is no terminal coalgebra, then there can be no cofree coalgebraSX, unlessX = ∅.
This follows from the following lemma:

LEMMA 6.1. If SY exists, thenSX exists for anyX ⊆ Y , in factSX ≤ SY .

Proof. Let ι be the canonical embedding ofX into Y and define

Q :=
⋃
{ι̃ ◦ g[A] | g : A→ X,A ∈ SetF }.

The embedding≤: Q→ SY composed withεY : SY → Y factors throughX, yielding the
required mapεX : Q→ X. It is easy to check that(Q, εX) is cofree overX.

Q SY

∋

Y

∋

X

X Y
ι

≤
A

g

g

¨

The following proposition is now immediate to check:

PROPOSITION 6.2.Let (Xi)i∈I be a family of sets andY any set larger than their
cartesian product. IfSY exists, then5i∈ISXi ∼= S5i∈IXi .

Thus we get the following criterion for the existence of limits inSetF :

THEOREM 6.3. If arbitrarily large cofree coalgebras of typeF exist, thenSetF is
complete.
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Proof. Due to theorem 5.1 it is enough to consider products of a family(Ai )i∈I . Each
Ai is isomorphic to a subcoalgebra of a cofree coalgebraSXi whenever|Xi | ≥ |Ai |. By
Theorem 5.2 then5i∈IAi exists and it is a subcoalgebra ofS5i∈IXi . ¨

This criterion is almost an equivalent characterization, for if products exist and if there
is at least one cofree coalgebraSX with |X| > 1, then by Lemma 6.1 and Proposition 6.2
cofree coalgebras exist over every color set. That is, we have:

COROLLARY 6.4. If the cofree coalgebraSX over some color setX with |X| > 1
exists, thenSetF is complete if and only if cofree coalgebras exist over arbitrarily large
color sets.

7. Bounded functors

Our criterion for completeness ofSetF as given in Theorem 6.3 is rather abstract. The
question remains, how to check whether arbitrary cofree coalgebras exist, without con-
structing them. In [Rut96] a criterion for the existence of cofree coalgebras is formulated
as a boundedness condition on the type functor:F is called bounded if there is a cardinality
bound on the size of all one-generatedF -coalgebras.

This definition was made with functors weakly preserving pullbacks in mind, for unless
F weakly preserves generalized pullbacks of injective maps, intersections of subcoalgebras
do not exist (see [GS00]), so the concept of “generated subcoalgebra” makes no sense. For
general functors, therefore, we shall need an appropriate substitute for boundedness:

DEFINITION 7.1. A functorF : Set → Set is calledbounded, if there is a cardinality
κ, so that for everyF -coalgebraA and anya ∈ A there exists a subcoalgebraUa ≤ A of
cardinality at mostκ with a ∈ Ua .

It is easy to see that this notion of boundedness is equivalent to saying that the category
SetF has a set of generators. Therefore, the following result could be obtained by invoking
the “Special Adjoint Functor Theorem”, see e.g. [Lan71], but in the present context a direct
proof is much simpler:

THEOREM 7.2. If F is bounded then the terminalF -coalgebra exists.

Proof. Let (Gi )i∈I be a family of coalgebras containing an isomorphic copy of each
coalgebraAof cardinality less than or equal toκ, whereκ is the bound ofF . LetG = 6i∈IGi
be the sum of allGi and let∇G be the largest congruence relation onG. We claim that
P := G/∇G is terminal.

Consider any coalgebraA ∈ SetF , we need to find a homomorphism fromA toP. From
the sum6a∈AUa we get a surjective homomorphismϕ to A. Since eachUa has an iso-
morphic copy amongst theGi , we also have a canonical homomorphismψ : 6a∈AUa → G.



176 h. peter gumm and tobias schröder algebra univers.

Form the pushout(Q, ϕ̂, ψ̂) of ϕ withψ . Since pushouts of epis are always epi,ϕ̂ is an epi-
morphism and its kernel must be contained in∇G . Thus we obtain a unique homomorphism
χ : Q→ P, andχ ◦ ψ̂ is a homomorphism, as required, fromA to P. By construction,P
is simple, hence also extensional by Lemma 4.1, consequently, by Lemma 4.2, the homo-
morphism fromA to P is unique.

¨

Now letX be a fixed set. We consider the functorX × F(−). AnX × F(−) coalgebra
is just a triple(A, α, ε) where(A, α) is anF -coalgebra andε : A→ X is any map.

If F is bounded, then obviously,X × F(−) is bounded too. Moreover,(A, α, ε) is
terminal asX × F(−)-coalgebra if and only if(A, α) with coloringε : A→ X is cofree
overX. Hence we obtain from 7.2:

THEOREM 7.3. If the functorF is bounded, then cofree coalgebras exist over every
color setX.

As a consequence of 6.3, we finally have a usable criterion for completeness ofSetF :

THEOREM 7.4. If the functorF is bounded, thenSetF is complete.

The converse does not hold. In fact, J. Adámek [Ad́a00] has shown us an example of an
unbounded functor for which all cofree coalgebras exist.

8. Products and Bisimulations

Constructing the productA1×A2 of two coalgebras can, in practice, be rather cumber-
some, for one needs to construct a coalgebra which is cofree over a color set of size|A1|·|A2|.
One would hope to get by with a simpler construction. In general, this seems impossible,
but for many functors arising in practice the product allows for an easier description, indeed.

First of all, we note some fundamental relationships between the productA1×A2, and
∼A1,A2, the largest bisimulation betweenA1 andA2, for we have:



Vol. 46, 2001 Products of coalgebras 177

LEMMA 8.1. Let A1 × A2 with projectionsη1 and η2 be the product inSetF of A1

and A2, and let∼A1,A2 be the largest bisimulation betweenA1 and A2. Then(η1, η2)

(A1×A2) = ∼A1,A2.

Proof. We know that the set(η1, η2)(A1×A2) is a bisimulation betweenA1 andA2, so it
is contained in∼A1,A2. On the other hand,∼A1,A2 can be equipped with a coalgebra struc-
ture so that the projectionsπi :∼A1,A2→ Ai become homomorphisms. This way, we have
created a competitor for the product, so there is a (unique) homomorphismψ : ∼A1,A2→
A1×A2 with ηi ◦ψ = πi . Given(a, b) ∈ ∼A1,A2, we therefore findψ(a, b) ∈ A1×A2

with (η1, η2)(ψ(a, b)) = (a, b). ¨

Let us now fix a bisimulation structure for∼A1,A2, i.e. a structure mapδ : ∼A1,A2 →
F(∼A1,A2), for which the projections are homomorphisms. The map(η1, η2) : A1 ×
A2 → ∼A1,A2 is in general not a homomorphism, but if it is, then it will actually be an
isomorphism. To be precise:

LEMMA 8.2. If the productA1×A2 with projectionsηi : A1×A2→ Ai exists, then
the following are equivalent:

1. (η1, η2) : A1×A2 →∼A1,A2 is a homomorphism.
2. There is a homomorphismϕ : A1×A2→∼A1,A2 with πi ◦ ϕ = ηi .
3. ∼A1,A2 with the projectionsπi : ∼A1,A2 → Ai is the product ofA1 andA2.

Proof. The equivalence of(1.)and(2.)and the implication(3.)→ (2.)are obvious. Now
assuming(1.), we know by Lemma 8.1 that(η1, η2) is surjective. To see that it actually must
be an isomorphism, observe that there is a homomorphismψ : ∼A1,A2 → A1 ×A2 with
ηi ◦ψ = πi . It follows thatηi ◦ idA1×A2 = ηi ◦ψ ◦(η1, η2), henceidA1×A2 = ψ ◦(η1, η2),
so(η1, η2) is an isomorphism. ¨

The above lemma suggests to investigate how one might be able to define a coalgebra
structure on∼A1,A2 so that not only the projections, but also the canonical map(η1, η2)

become homomorphisms. We certainly need a condition on the functorF .

DEFINITION 8.3. A 2-source(X, f, g) is a pair of maps with common domainX.
(X, f, g) is called amono source, if for any two mapsh1, h2 : Y → X we have:

(f ◦ h1 = f ◦ h2) and(g ◦ h1 = g ◦ h2) impliesh1 = h2.

Typical mono sources arise from limits, in particular, the cartesian productX×Y of two
setsX andY together with the projectionsπ1 : X× Y → X andπ2 : X× Y → Y forms a
mono source(X × Y, π1, π2). A functor is said topreservea mono source(X, f, g), just
in case(F (X), F (f ), F (g)) is again a mono source.
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LEMMA 8.4. For a functorF : Set → Set the following are equivalent:

1. F preserves mono sources.
2. F preserves mono sources of the form(Y × Z,π1, π2).
3. For any setsY,Z and anyu, v ∈ F(Y × Z) we have

F(π1)(u) = F(π1)(v) andF(π2)(u) = F(π2)(v) H⇒ u = v.

Proof. (1.)→ (2.) and(2.)↔ (3.) are obvious. For the direction(2.)→ (1.) observe
that mapsf : X → Y andg : X → Z form a mono source if and only if the canonical
map(f, g) : X→ Y × Z is injective.

If X = ∅ then there is nothing to prove, since∅ = ∅ × ∅, otherwiseF(f, g) : F(X) →
F(Y ×Z) is injective. By assumption,(F (Y ×Z), F (π1), F (π2)) is a mono source, there-
fore, the same is true for(F (X), F (π1) ◦ F(f, g), F (π2) ◦ F(f, g)). But this is nothing
else but(F (X), F (f ), F (g)). ¨

Using the last criterion of Lemma 8.4, it is easy to check that the following functors
preserve mono sources:

• The identity functor,
• the power functor:X→ X6 for a fixed set6,
• constant functors:X→ C for a constant setC.
• If functorsF andG preserve mono sources then so do

– F ×G
– F +G.

• If G preserves mono sources andν : F → G is a natural transformation with allνA
injective, thenF preserves mono sources.

In particular, the type functor for deterministic automata with alphabet6, that is
F(X) := X6 × 2, preserves mono sources. Also, the functor(−)32 which was a rich
source of counterexamples in [GS00], preserves mono sources.2

2On a setX define(X)32 := {(x1, x2, x3) ∈ X3 | |{x1, x2, x3}| ≤ 2}. Maps are extended componentwise.

There is an obvious natural transformationν from (−)32 to (−)3 with all componentsνX being injective mappings.
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Every bisimulationR betweenA1 andA2 with its projection homomorphismsπi : R→
Ai provides a mono source(R, π1, π2). If F preserves mono sources, then(F (R), F (π1),

F (π2)) is also a mono source, so from the diagram defining a bisimulation (Section 2.4)
we read:

LEMMA 8.5. If F preserves mono sources then every bisimulationR has a unique
bisimulation structure.

We are now able to characterize when the product of two coalgebras is the largest
bisimulation:

THEOREM 8.6. For any functorF : Set → Set the following are equivalent:

1. A1 × A2 ∼= ∼A1,A2 for everyA1,A2 ∈ SetF and for an appropriate bisimulation
structure on∼A1,A2.

2. F preserves mono sources.
3. Every bisimulationR between coalgebras inSetF has a unique bisimulation

structure.
4. ∼A1,A2 has a unique bisimulation structure for anyA1,A2 ∈ SetF .

Proof. (2.) → (3.) is Lemma 8.5,(3.) → (4.) is a specialization and(1.) → (4.)
is straightforward. It is therefore enough to show the implications(4.) → (2.) and
(2.)→ (1.).

We start with the latter,(2.)→ (1.). Let∼ be the largest bisimulation betweenA1 and
A2 andδ :∼→ F(∼) a structure map on∼with projection homomorphismsπi :∼→ Ai .
Consider any coalgebraP together with homomorphismsηi : P → Ai . We have to show
that there is a unique homomorphismψ : P →∼ with πi ◦ ψ = ηi . Uniqueness is clear,
for (∼, π1, π2) is a mono source. Settingψ := (η1, η2), we only need to establish that it is
a homomorphism.

The following diagram depicts the situation.
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We have

F(πi) ◦ δ ◦ (η1, η2) = αi ◦ ηi
= F(ηi) ◦ αP
= F(πi) ◦ F(η1, η2) ◦ αP .

SinceF preserves mono sources, we can cancelF(πi), which means that(η1, η2) is a
homomorphism.

Finally, we prove(4.) → (2.). Assume thatF does not preserve mono sources, we
need to find coalgebrasA1 andA2 with two different bisimulation structures on∼A1,A2.
Invoking Lemma 8.4, we find setsY , Z andu, v ∈ F(Y × Z) with u 6= v and

F(π1)(u) = F(π1)(v) andF(π2)(u) = F(π2)(v).

On Y we introduce a coalgebra structureαY : Y → F(Y ) by constantly mapping every
element ofY to F(π1)(u). Similarly, we defineαZ : Z → F(Z) as the constant function
with resultF(π2)(u). Now the constant mapsδu, δv : Y × Z → F(Y × Z) with resultu,
resp.v, yield two different bisimulation structures onY ×Z. Clearly,Y ×Z is the largest
bisimulation between the given coalgebras onY , resp.Z. ¨

Observe that in the proof of this theorem we did not need to assume that the product
A1×A2 exists. Hence, we have the following corollary:

COROLLARY 8.7. If F preserves mono sources then the productA1 × A2 exists for
all A1,A2 ∈ SetF .

Most of the literature on coalgebras assumes that the type functorF preserves weak
pullbacks. The reason is that almost all applications in Computer Science can be modeled
with a type functor having this property.

LEMMA 8.8. F preserves weak pullbacks and mono sources iffF preserves pullbacks.

Proof. The only-if -direction is immediately checked. Let nowF preserve pullbacks,
then it also preserves weak pullbacks according to [Rut96]. To check thatF preserves
mono sources, it is enough, by 8.4, to consider a mono source of the form(X× Y, π1, π2).
However, this is the same as the pullback of the constant maps fromX, resp.Y , into a one-
element set. The hypothesis now tells us, that(F (X×Y ), F (π1), F (π2)) is a pullback, i.e.
a limit. Clearly, every limit is a mono source. ¨

COROLLARY 8.9. Suppose thatF preserves weak pullbacks. Then the following are
equivalent:
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1. A1×A2 ∼= ∼A1,A2 for all coalgebrasA1 andA2.
2. F preserves pullbacks.
3. F preserves mono sources.

In this section we have only considered products of two coalgebrasA1 andA2. We
could as well generalize all results to arbitrary products(Ak)k∈κ for any cardinal number
κ > 0. We need to replace 2-sources byκ-sources andbisimulations byκ-simulations, see
[Gum99a]. A mono source, in general, will then be anyκ-source(X, (fk)k∈κ) so that for
anyY and all mapsg, h : Y → X we have

(∀k ∈ κ. fk ◦ g = fk ◦ h) H⇒ g = h.
In particular we get: IfF preserves arbitrary mono sources thenSetF has non-empty

products, and the product of any family(Ai)i∈κ ⊆ SetF is given by the greatestκ-simulation
between the(Ai)i∈κ . In fact, Trnkov́a has shown in [Trn71] that in this caseF is bounded.
In order to prove that all cofree coalgebras exist, a weaker condition suffices:

THEOREM 8.10. If F preservesω-mono-sources thenSetF has all cofree coalgebras.

Proof. For an arbitrary fixed setX one checks thatF preservesω-mono-sources if and
only if the functorX× F(−) preservesω-mono-sources. Since a coalgebra cofree overX

is nothing but a terminalX × F(−)-coalgebra, it suffices to show thatSetF has a terminal
F -coalgebra.

The problem can be further reduced to finding aweakly terminalcoalgebra, that is an
F -coalgebraL = (L, ρ) so that for eachF -coalgebraA there is a (not necessarily unique)
F -homomorphismA→ L; factorizing by the largest congruence∇L, we get thatL/∇L is
terminal.

We consider theterminal sequence ofF ([Bar93], [Wor99]; from the latter reference the
idea for the following proof is adapted):

1
!←−−− F(1) F(!)←−−− F 2(1)←−−− · · ·←−−−Fn(1) Fn(!)←−−− Fn+1(1)←−−− · · ·

Here 1 denotes a one-element set, and for any setX we let !X, or simply !, denote the
unique map fromX to 1.

Let (L, (σn : L → Fn(1))n∈ω) be the limit of the above terminal sequence.L is
nonempty, since eachFn(!) is surjective.3

Now (F (L), (τn)n∈ω) is a competitor for this limit, if we set

τ0 := !F(L), and τn+1 := F(σn).

3We may assumeF(1) 6= ∅, since otherwiseF(A) = ∅ for each setA andSetF = {∅}, for which the claim
of the theorem is trivial.
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Therefore, we get a (unique) mediating mapm : F(L)→ L with

∀n ∈ ω. σn+1 ◦m = F(σn).

The assumption onF implies that(F (L), (F (σn))n∈ω) is a mono source, hencem is
injective.

Choose a left inverse ofm, that is any mapρ : L → F(L) with ρ ◦ m = idF(L). We
claim that the coalgebraL := (L, ρ) is weakly terminal.

So letA = (A, α) be an arbitraryF -coalgebra. We have to construct a homomorphism
ϕ : A → L. We begin by setting up a family(κn)n∈ω of maps fromA into the terminal
sequence:

κ0 := !A, and κn+1 := F(κn) ◦ α.
A straightforward induction shows thatFn(!) ◦ κn+1 = κn, i.e. (κn)n∈ω is a cone over the
terminal sequence. Hence there is a unique mediating mapϕ : A→ L so that for alln ∈ ω:

σn ◦ ϕ = κn.

For arbitraryn ∈ ω we calculate

σn+1 ◦ ϕ = κn+1

= F(κn) ◦ α
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= F(σn ◦ ϕ) ◦ α
= F(σn) ◦ F(ϕ) ◦ α
= σn+1 ◦m ◦ F(ϕ) ◦ α.

Obviously, we also have

σ0 ◦ ϕ = σ0 ◦m ◦ F(ϕ) ◦ α,
so we can cancel the mono source(L, (σn)n∈ω), yielding

ϕ = m ◦ F(ϕ) ◦ α
and therefore

ρ ◦ ϕ = ρ ◦m ◦ F(ϕ) ◦ α
= F(ϕ) ◦ α.

This equation says thatϕ : (A, α)→ (L, ρ) is anF -homomorphism. ¨

9. Examples and counterexamples

Not always are products as well behaved as one might hope. Even whenF weakly
preserves pullbacks, a hypothesis often used in the literature, we shall be able to find
examples of finite coalgebrasA andB with |A| ≥ 2 and|B| ≥ 2 where

• A× B is empty, or
• A× B is infinite, or
• A× B ∼= A.

In each case, we find an example withinSetPω , i.e. the class of all coalgebras ofPω, the
finite powerset functor.Pω is bounded (byω), hence products ofPω-coalgebras exist. A
Pω-coalgebraA = (A, α) consists of a setA and a mapα : A→ Pω(A). In other words,
a Pω-coalgebra is just animage finitetransition system, where from every state there are
only finitely many possible transitions into a next state. We shall depict these coalgebras
by drawing an arrow for every transition.

EXAMPLE 9.1. Let A = •−−−→• and B = •−−−→• . The greatest bisimulation
betweenA andB is empty, hence the product ofA andB must be the empty coalgebra.

EXAMPLE 9.2. In general, if∇A is the largest congruence relation onA, then it is
easy to check that(A, idA, π∇A) is the product ofA with A/∇A, thusA × A/∇A ∼= A.
In particular, forA = •−−−→•, one gets∇A = 1A, henceA ∼= A×A.
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EXAMPLE 9.3. The last example is a transition system whose transition relation is the
complete graph on two elements:

C2 =       0             1      .

The rest of this section will be devoted to proving:

PROPOSITION 9.4.The productC2× C2 in SetPω is infinite.

Proof. C2 is given as a transition system with transition relationσC = {0,1}2. As a
Pω-coalgebra we haveC2 = ({0,1}, αC) with αC(0) = αC(1) = {0,1}.

In general, we shall use the arrow notation as introduced in Section 2.5, that is for any
Pω-coalgebraA = (A, α) we write

a
A−→ a′ ⇐⇒ a′ ∈ αA(a).

We shall drop the labelA, if it is clear from the context.
C2 is special, in that for any mapϕ : A→ C2, the first homomorphism condition from

Section 2.5 is automatically satisfied, thusϕ is already a homomorphism if for anya ∈ A
andc′ ∈ C2 we have

ϕ(a)
C2−→ c′ H⇒ ∃a′ ∈ A. a A−→ a′, ϕ(a′) = c′.

In particular, the mapν(x) := 1− x is an automorphism ofC2.
On the setω = {0,1,2, . . .} we define a transition relation by

x
ω−→ y :⇐⇒ x > y or y ≤ 1,

that is, by the transitive hull of the following relation:

0          1           2            3            · · · .

Let A be the coalgebra given by the transition relation
ω−→. Note thatC2 is a subcoalgebra

of A, but, more importantly, we have homomorphismsψ1, ψ2 : A→ C2 given byψ1(x) :=
min{x,1} andψ2 := ν ◦ ψ1.

Thus, there must be a homomorphismψ : A→ C2× C2 with ψi = ηi ◦ψ , for i = 1,2.
We claim thatψ is injective.

Assuming the contrary, we have a smallest elementz ∈ ω for which there is somek > 0

with ψ(z) = ψ(z+ k). Letp := ψ(k), then from(z+ k) A−→ z, the first homomorphism

condition yieldsp
C2−→ p. As a result, the second homomorphism condition assures that
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there exists az′ with z
A−→ z′ andψ(z′) = p. The choice ofz only permitsz ≤ z′,

so it follows z ∈ {0,1}. But ψ1(0) 6= ψ1(k), andψ2(1) 6= ψ2(1+ k) for any k 6= 0,
contradictingψ(z) = ψ(z + k). Consequently,ψ is injective, hence the productC2 × C2

must have at least|ω| many elements. ¨

Clearly, the proof goes through with any ordinalκ in place ofω, hence the product of
C2 × C2 in the categorySetPκ has at least size|κ|. We conclude, that the product ofC2

with itself does not exist in the categorySetP .
Given any ordinal numberκ and definingx

κ−→ y :⇐⇒ x > y for anyx, y ∈ κ, one
obtains aPκ -coalgebra, which, by an argument similar to the proof of Proposition 9.4, does
not possess any proper homomorphic image. This provides a straightforward argument for
the fact that the terminalPκ coalgebra has size at least|κ|, and that a terminalP-coalgebra
cannot exist.
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