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Products of coalgebras

H. PETER GUMM AND TOBIAS SCHRODER

Dedicated to Viktor Aleksandrovich Gorbunov

Abstract. We prove that the category éf-coalgebras is complete, that is products and equalizers exist, provided
that the type functo¥F is bounded or preserves mono sources. This generalizes and simplifies a result of Worrell
([Wor98]). We also describe the relationship between the produst B and the largest bisimulatior 4 5
betweenA andB and find an example of two finite coalgebras whose product is infinite.

1. Introduction

Only recently has it been discovered that many structures in theoretical computer science,
including automata, transition systems, object oriented systems, and lazy data types can be
put into a common framework, that of universal coalgebra. Many phenomena that had
previously been studied individually in each of those theories are seen to be instances of
some general structure theory as provided by the new field of universal coalgebra.

There are many parallels to the situation in universal algebra, when it was found that the
basic structure theory of groups, rings, lattices and several related structures can be dealt
with uniformly on the level of universal algebras. The advantage is not only an “economy
of thought”, replacing many individual proofs by the proof of one general theorem, of even
greater benefit seems to be the fact that a framework is provided for each new theory —there
is no doubt as to which notion of homomorphism, substructure, factor, etc. to settle for.

Coalgebras are not simply obtained by dualizing the established concept of universal
algebra. This way one would obtain a coalgebra of {ypg <; asafamilywy; : A — (n;-A)
of maps fromA to then;-fold sum ofA. Eventhough such structures have been studied some
30 years ago, they failed to attract much attention, probably due to the lack of interesting
applications, let alone interesting mathematical questions.

The most important observation is that a type);c; can simply be understood as an
encoding of the functoF : Set — Set on the category of sets, which associates with a set
X the disjoint sum of its;-fold powers ofX:

F(X) =%/ X™M.
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A universal algebrad = (A, (f;)icr) Of type (n;);c; can be now coded by a single map
fiFA) —> A

and a homomorphisi : A — B betweenalgebrad = (A, (f;)ic;) andB = (B, (gi)icr)
is justa magpy : A — B making the following diagram commute:

F (A) l F (B)

f[ [g

A———> B
¢

This is the more general setting that must be dualized to obtain the proper notion of
universal coalgebra. Itis surprising thatin spite of the high level of generality arich structure
theory of coalgebras can be developed which in many ways parallels the theory of universal
algebra up to and including coalgebraic versions of Birkhoff’s theorems ([Gum99b]).

The first general introduction into the field is by Jan Rutten ([Rut96]). This work sys-
tematically develops the structure theory of coalgebras and at the same time explains a
large number of relevant applications. A major insight underlying much of this work was
the observation that in most of the relevant examples the type fuRctegakly preserves
generalized pullbacksTaking this into account, one is led to a richer structure theory, and
as a consequence much of the subsequent literature uses this assumygtion on

Nonetheless, there are still functors which do not obey the mentioned assumption of
weakly preserving generalized pullbacks. One of those idiltiee functor 7 studied in
[Gum98] whose coalgebras include all topological spaces. An introduction to the general
theory of coalgebras, without any assumption on the type fun¢tdras therefore been
given in [Gum99a]. It turned out that, in fact, the structure theory can be developed in
the very general case, again yielding a dual of Birkhoff's theorem. The structure theo-
retic results equivalent to various preservation properties of the fuiictoe analyzed in
[GSO00].

It is well known (see [Bar93]) that the categafysr of all coalgebras of typé” has
coequalizers and sums, hence arbitrary colimits. In fact it is known (see [Bar93]) and easy
to check, that every colimit ier7 exists and is constructed exactly as in the underlying
category of sets. In category theoretic parlance, the forgetful functor &amto Ser
creates and preserves colimits.

The case is different for limits. Products of coalgebras need not exist, but when they do,
their base set will often have to be different from the cartesian product of the base sets. One
may be lucky, in that the functar preserves a certain type of limit. In that case, this very
type of limit exists forF-coalgebras and it is constructed asSur ([Bar93]). In general



\ol. 46, 2001 Products of coalgebras 165

though, the functors needed to model most applications of interest fail to preserve arbitrary
limits.

Still, J. Worrell was able to show in [Wor98] th&err is complete, that is products and
equalizers exist, provided the type functoweakly preserves pullbacks afds bounded
aterm that we shall define later. Worrell’s proof uses the theory of monads and some further
category theoretic machinery which, when translated into more elementary notions, makes
the proof rather long and hard to follow. One purpose of this article is therefore, to give
a short and elementary proof of this result and at the same time extend it by removing the
assumption that the type functérshould weakly preserve generalized pullbacks.

Doing so, we shall have to redefine the notion bbanded functorThe usual definition
requires a cardinal bound on the size of one-generated subcoalgebras.F\Vdoes not
preserve weak generalized pullbacks, the notion of one-generated subcoalgebra makes no
sense, since subcoalgebras need not be closed under intersection. We give a proper definition
of a bounded functoiin section 7 and show that termihatoalgebras, more generally,
arbitrarily large cofree coalgebras existSerr wheneverF is bounded.

There is a strong connection between the produet of two coalgebras and the largest
bisimulation~ 4 3. We characterize precisely, whehix B = ~ 4 3. Some examples
demonstrate the possibilities for products of two coalgebras. In particular, the prbdust
of two nontrivial finite coalgebragd andB may be empty, isomorphic td or even infinite.

During the writing of this article, A. Kurz [Kur99] has also given a direct proof for the
existence of products ifietr, our Theorem 6.3. His proof still uses more category theoretic
machinery than we shall require here.

2. Preliminaries

Let F : Set — Set be a functor. AnF-coalgebra or coalgebra of typeF, is a pair
A = (A, @) wherea : A — F(A) is an arbitrary mapA is called the base set andthe
co-operationor structure mapof A.

2.1. Homomorphisms

Given F-coalgebrasd = (A, @) andB = (B, ), a homomorphisnp : A — Bis a
mape : A — B which makes the following diagram commute:

¢
A——> B

[ [s

F(A) W F(B)

1Some authors prefer the notion “final”.
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We shall frequently use without mentioning the following diagram lemmata
from [Gum99a]:

LEMMA 2.1. (First Diagram Lemma)L.et A, 5, C be F-coalgebrasy : A — B and
¥ A — C homomorphisms. 1§ is surjective, then there is a (necessarily unique)
homomorphisny : B — C with x o ¢ = v iff ker(p) C ker(¥).

¢
A—» B

|
\IX
W
v
C

LEMMA 2.2. (Second Diagram Lemmal)et A, B, C be F-coalgebrasy : B - A
andy : C — A homomorphisms. I is injective, then there is a (necessarily unique)
homomorphisny : C — B withg o x = v iff ¢/ [C] € ¢[B].

2.2. The categorySetr

For afixed functo#, the class of alF-coalgebras forms a catega$yr. Epimorphisms
in Setg are just the surjective homomorphisms, however, monomorphis8#imeed not
be injective, see [GS00].

Itis not hard to prove (see [Bar93]), thSdzr is co-complete as a category, that is every
colimit (sum, coequalizer) exists ifiet, and it is formed just as iser, the category of
sets. In particular, the sum iflerz of a family of coalgebrasd; = (A;, «;) has as base
set the disjoint union of thel; and the injection of eacll; into the disjoint union is a
homomorphism.

The corresponding property is not true for limits. In fact, products need not exist in
Setp. However, if F preserves certain type of limit, then this type of limit exists and it is
again formed just like iber.

For instance, a functoF is said topreserve pullbacksf it transforms each pullback
diagram into a pullback diagram. Pullbacks in the category of sets have an easy description:
Givenmaps : A — Candg : B — C,theirpullbackinSer is given ag pb(f, g), 71, 72)
where

pb(f.g) :=1{(a.b) e Ax B| f(a) = gb)},
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andm1 : pb(f,g) — A andns : pb(f, g) — B are the canonical projections. Therefore,
F preserves pullbacks, iff there exists a unique nfappb(F (f), F(g)) — F(pb(f, g))
such thatF' (1) (¥ (1, v)) = u and F (7r2) (¥ (u, v)) = v. Thus we have:

LEMMA 2.3. F preserves the pullback of mags: A — Candg : B — C, iff
for every(u, v) with F(f)(u) = F(g)(v) there exists a unique € F(pb(f, g)) so that
F(m1)(q) = u and F (m2)(q) = v.

If we drop the uniqueness requirement, thers said toweakly preserveullbacks.
2.3. Subcoalgebras

If A= (A, «)isacoalgebra, and a subset o, thenU is calledclosed if a coalgebra
structureld = (U, §) can be defined oV so that the natural inclusioi: U — A is a
homomorphism. In this cadé is called a subcoalgebra of and we writel/ < A. A
structure map as above on a closed détis easily seen to be unique, therefore closed sets
are often called subcoalgebras.

If ¢ : A — Bisahomomorphism arid < A then

p[U] :={p) | u € U}

is a subcoalgebra @. In particulargp[A] < B.
On the other hand, i is a subcoalgebra &, then

¢ [Vli={acA|g) eV}

neednot be a subcoalgebra of, unlessF weakly preserves pullbacks!

The union of a family(U;);<; of subcoalgebras of a fixed coalgebdas again a sub-
coalgebra of4, hence for any subsét C A there is always a largest subcoalgebradof
contained inS, we denote it by §] and call it the coalgebraogenerated bys.

2.4. Bisimulations

Bisimulations are the structure preserving relations between coalgebras. A bisimulation
between coalgebrad andi5 is a binary relatiorR € A x B on which a coalgebra structure
8 : R — F(R) can be defined so that the projectiansz, : R — A are homomorphisms:

] 2

A R B

|
0(1[ |5 laz
v

F(A) «——— F(R) —— F(B)

F(ry) F(r2)
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Note that for a given bisimulatioR there may be different structure maps’, making
the diagram commute. Each of them will be calldoigimulation structure forR.

The diagonalA, = {(a,a) | a € A} is always a bisimulation o4, but A x A in
general is not. A union of bisimulations betwedrand is again a bisimulation between
A and, hence there is always a largest one, calleds. Moreover, ifQ is any coalgebra

and if g1, 2 : Q — A are homomorphisms, thep, ¢2) 0 = {(¢1(¢), 92(9)) | g € O}
is a bisimulation, see [Rut96].

2.5. An example

We shall illustrate the above notions with an example which we shall need in a later
section. Anondeterministic transition systei® commonly defined as a sStof states
together with a transition relation. If (a, b) € o, we say that there is a transition fram
to b and illustrate it graphically with an arrow:

(e
a — b.

Transition systems are commonly used to model nondeterministic systems and they often
are equipped with extra structure. Here we only consider the simplest possible case.

A transition system will be modelled as a coalgebra for the powerset fufctanich
associates with a sef the set ofP(X) of all subsets ofX. Givena mapf : X — Y,
the functor returns the map(f) : P(X) — P(Y) which is defined on an arbitrary
U eP(X)as

PHW) = fIU]:=={fw) |ueU}.
We record, for later reference, several possible modifications of this functor, such as

e the nonempty powerset functoP, (X) := P(X) — {¢}
o the finite powerset functorP,,(X) :={U C X | |U| < w}.

In each case, the functor acts on maps just like the powerset functor.
Let now (S, o) be a transition system, we consider it a@-@oalgebraS = (S, a) by
defining

a(s):=1{s'eS|(@s,5) eo).

Then a ma between transition systengs= (S, ¢) and7 = (T, 7) is easily seen to be
a homomorphism iff for alk, s’ € S and allz € T we have

1.s 7 s’ = o(s) — ¢(s), and
2. ¢(s) =3 D ande(s’) =t.



\ol. 46, 2001 Products of coalgebras 169

Similarly, arelationR € S x T is easily found to be a bisimulation, if for agys” € S and
t,t' € T we have:
If (s,1) € R then

1.5 2 s = 3t e Tt — ' and(s,¢') € R,
2.t ¢ =135 € S.s —> s’ and(s’, ') € R.

3. Congruences

Congruences on coalgebras were originally introduced by Aczel and Mendler in [AM89].
They were later given up in favor dfisimulationsby Rutten in his treatment [Rut96].
Indeed, wheneveF weakly preserves pullbacks, each congruence is a bisimulation. In
general, though, this is not the case, and it turns out that we shall need congruences in order
to construct, in a later section, the terminal coalgebra.

A congruenc®n a coalgebral is defined as the kernel of a homomorphismA — B,

i.e. as

Ker(p) = {(x,y) | p(x) = p()}.

If 6 is a congruence oM, then there is a canonical coalgebra structurel gf, the set of
all 9-classes andy : A — A/0 is a surjective homomorphism witker(ry) = 6.

Given congruenceg8 and ¢, their intersection, in general, will not be a congruence.
Fortunately, however, the supremum of a famiy);c; of congruences exists. This is
shown in the following lemma:

LEMMA 3.1. Let(6;);c; be a nonempty family of congruences. Then the supremum of
theo; exists and it is given as the transitive closure of their union, i.e.

Proof. ® := (|J,; 6)* is the smallest equivalence relation containing alléheEvery
congruence is the kernel of some homomorphisem : A — A/6. Form the pushout
(Q, ¥;) of all homomorphismsy, : A — A/6;.

o Vi
) / \Q
N

Since pushouts ifetr are formed just as ifet, the kernel of the homomorphisth o 7,
is just®, the congruence generated byall O

A/b;
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The supremum over the empty family also exists, itisthe diaghnak= {(a, a) | a € A}.
For every reflexive relatio®, we can therefore define the congruerogeneratedy R
as the supremum of all congruences containel,ine.

ConR] := (U{é) | & congruencey C R})*.
We now have:

THEOREM 3.2. The set of all congruences on a coalgebfais a complete lattice.
Suprema and infima are given as

Ve

(ue)
iel iel

/\ ¢ = Con [ﬂ 911 :

iel iel

The smallest congruence ohis always the diagonah 4, but the largest congruence,
we shall call itV 4, will in general be a proper subset afx A.

The second diagram lemma 2.2 has as consequence that the congruedg@scon-
respond uniquely to the congruences.nvhich containg. In particular, the congruence
lattice of A/6 is isomorphic to the interval aboveof the congruence lattice of.

4. Simple and extensional coalgebras

Auniversal algebra s callesimple if it does not have any nontrivial congruence relation.
We suggest to use the same definition for coalgebras.

Unfortunately, Rutten ([Rut96]) calls a coalgebra simple, if it does not have any nontrivial
bisimulation, that is, if the largest bisimulation is the diagonal. We suggest to call such
coalgebragxtensional When the type functor weakly preserves pullbacks, both notions
agree, but in general they don't, see e.g. [GS00]. The situation of the largest bisimtHation
being the diagonal can be expressed as a proof rule:

X~y

x=y

Since bisimilarity represents indistinguishability by observations, we can understand this
proof rule as arinciple of extensionality

Two elements that can not be distinguished by observations are equal.

With this in mind, we shall call a coalgebextensionalf the largest bisimulation is the
diagonal.
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The largest congruence relation of a simple coalgebra is the diagonal, and conversely,
factoring any coalgebra by its largest congruence relation yields a simple factor. Moreover,
we have:

LEMMA 4.1. Every simple coalgebra is extensional.

Proof. Any bisimulationR on A yields two homomorphisms, 72 : R — A. Let
¢ . A — B be the coequalizer of; andna. If A is simple, therKer(p) is trivial, hence
1 = 72, SOR is the diagonal. O

Extensional coalgebras can be characterized in the following way:

LEMMA 4.2. For a coalgebraA the following are equivalent:

1. Ais extensional.
2. For every coalgebrd there is at most one homomorphism B — A.

Proof. If A has a proper bisimulatioR, then there are two different homomorphisms
1, 2 - R — A. Conversely, if there are two different homomorphismsgs : B — A,
then(g1, ¢2) B is a nontrivial bisimulation o. O

Let us consider the example of automata with a fixed alphZbeConventionally, a
Y-automaton is given as a trip(d, §, T) wheres : A x ¥ — A is the transition function
andT C A is the set of terminal states. This information can conveniently be coded
coalgebraically into a single map:

a:A— AT x {true, false
wherea(a) = (1., b) with
7,(0) = 8(a,o0), and
b = (aeT).

Thus automata are coalgebras of typewhereF is the functor associating with a set
X the set

F(X) = X* x {true, false.
Amapf: X — Y istransformed into a map(f) : F(X) — F(Y) given as
F(f)(y,b) = (fovy,b).

Itis not hard to see that a congruence relation on such a coalgebra is just an equivalence
relationd satisfying for everyr, y € A and every € X:

x0y = (8(x,0)08(y,0), and(x € T < yeT)).

The largest congruence on such a coalgebra is therefore judetbde congruencand
factoring by it yields the corresponding minimal automaton.
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5. Limits

We begin with equalizers, that is limits of two parallel arrows. They always exist without
any requirement on the functér. The following theorem is stated in [Wor98] for the case
that F weakly preserves pullbacks:

THEOREM 5.1. Given homomorphismg, ¢2 : A — B. Let

E:={a e A|pi(a) =¢p2a)},

then[E] < A is the equalizer op1 andgs.

Proof. Forthe canonicalembeddirg [E] — Aweclearlyhavethat; o <= ¢ 0o <.
Letx : Q — A be given withps o ¥k = @2 o « thenk[Q] < A, and consequently,
k[ Q] < [E], hencex uniquely factors throughH].

< ¢1
[E]l —> A—3 B

A 2
|/
I
0
O

It is well known that a category isompletei.e. it has all possible limits, provided
equalizers and products exist. The next result shows that the product of a fatnily;
exists, provided eacH; can be embedded into some larggerfor which the product of the
(B;)icr exists:

THEOREM 5.2. Assume that the produds := II;¢;B; exists with projections
n; - B — B; foreachi € 1. If A; <; B; is a subcoalgebra for each € I then the
productIl; ;. A; exists and it is isomorphic to a subcoalgebraf

Proof. Let
D= JU U =BVielnlUl <A,
then D is a subcoalgebra df and for everyi € I the homomorphismy; o <: D — B;

factors through4;, that is there is a homomorphism: D — A; withn; o < = <; o ;.
We claim that(D, (v;);er) is the product of thg A4;);c;. Let @ with homomorphisms
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wi » Q@ — A; be a competitor foD, thenQ with the morphismg<; o u;) : 0 — B;isa
competitor for the product of thB;. Hence there is a unique homomorphigm Q — B
sothatn; oy = <; o u; foralli € 1. ¥[Q]is a subcoalgebra df andn;[v[Q]] C A;,
hencey factors througlD asy = < o . It follows

siovio& = 771'050&
=novy

= =io M.

Since<; is mono, it follows tha; o ¥ = ;. ¥ is unique with this property, for assume
that there was another homomorph|smsmth vi o ¥ = w;, then it follows thaty; o <
oy =njo <oy foralli € I, hence< o ¥y = < o v and thusy = v, since< is left
cancellable.

O

Until now, we have only considered products (and limits) with respect to the &tass
However, limits with respect to subclasgé®f Serr are rather easily obtained from limits
with respect taSetr, provided thatC is closed under homomorphic imagés £ H(K))
and sums/C = Z(K)). Such classes are called co-quasivarieties in [Gum99b]. The limit
of any diagramD in K is obtained by first forming the limif of D in Sety and then taking
the largest subcoalgehtaof £ which is a member of. In particular:

PROPOSITION 5.3.f Setr is complete, then so is every subcl&ssf Ser, which is
closed under sums and homomorphic images.

6. Cofree Coalgebras

Let X be any set. A coalgebsy with a mapey : Sx — X is calledcofree overX if
for any F-coalgebrad and any mag : A — X there exists exactly one homomorphism
g:A— Sywitheyog =g.
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2}

A—g——>3<

The setX is often thought of as a set of “colors” aga coloring. Note that, in particular,
the cofree coalgebra over the one-element set is the same as the terminaPdhjé&et .
The structure mapp : P — F(P) on aterminal coalgebrB must be an isomorphism, in
particular,P andF (P) must have the same cardinality. This observation is due to Lambek,
see [Gum99a] for a proof. This is the reason that terminal coalgebras cannot exist, for
instance, forF' = P, the powerset functor.

If there is no terminal coalgebra, then there can be no cofree coal§ghualessy = .
This follows from the following lemma:

LEMMA 6.1. If Sy exists, therSy exists for anyX C Y, in factSy < Sy.
Proof. Let: be the canonical embedding &finto Y and define
0= U{L?’g[A] lg: A—> X, A e Setr}.

The embedding:: Q@ — Sy composed witlkey : Sy — Y factors through¥, yielding the
required magy : Q — X. Itis easy to check thaiD, ex) is cofree overX.

l
X —> Y

The following proposition is now immediate to check:

PROPOSITION 6.2.Let (X;);c; be a family of sets an@ any set larger than their
cartesian product. ISy exists, therl;¢;Sx, = S, x; -

Thus we get the following criterion for the existence of limitsSerg:

THEOREM 6.3. If arbitrarily large cofree coalgebras of typé& exist, thenSetr is
complete.



\ol. 46, 2001 Products of coalgebras 175

Proof. Due to theorem 5.1 it is enough to consider products of a fatlly;<;. Each
A; is isomorphic to a subcoalgebra of a cofree coalgelawheneven X;| > |A;|. By
Theorem 5.2 theil;c; A; exists and it is a subcoalgebra®;,, x; . O

This criterion is almost an equivalent characterization, for if products exist and if there
is at least one cofree coalgel#a with | X| > 1, then by Lemma 6.1 and Proposition 6.2
cofree coalgebras exist over every color set. That is, we have:

COROLLARY 6.4. If the cofree coalgebra&yx over some color seX with [X| > 1
exists, thenSety is complete if and only if cofree coalgebras exist over arbitrarily large
color sets.

7. Bounded functors

Our criterion for completeness 6ktr as given in Theorem 6.3 is rather abstract. The
guestion remains, how to check whether arbitrary cofree coalgebras exist, without con-
structing them. In [Rut96] a criterion for the existence of cofree coalgebras is formulated
as a boundedness condition on the type funckois called bounded if there is a cardinality
bound on the size of all one-generateetoalgebras.

This definition was made with functors weakly preserving pullbacks in mind, for unless
F weakly preserves generalized pullbacks of injective maps, intersections of subcoalgebras
do not exist (see [GS00]), so the concept of “generated subcoalgebra” makes no sense. For
general functors, therefore, we shall need an appropriate substitute for boundedness:

DEFINITION 7.1. AfunctorF : Set — Set is calledboundedif there is a cardinality
Kk, SO0 that for every-coalgebra4 and anye € A there exists a subcoalgeling < A of
cardinality at mosk with a € U,.

It is easy to see that this notion of boundedness is equivalent to saying that the category
Setp has a set of generators. Therefore, the following result could be obtained by invoking
the “Special Adjoint Functor Theorem”, see e.g. [Lan71], but in the present context a direct
proof is much simpler:

THEOREM 7.2.If F is bounded then the termin&l-coalgebra exists.

Proof. Let (G;);c; be a family of coalgebras containing an isomorphic copy of each
coalgebra of cardinality less than or equaltowherex isthe bound of". LetG = X;¢;G;
be the sum of alfj; and letVg be the largest congruence relation @n We claim that
P = G/Vg is terminal.

Consider any coalgebré € Serr, we need to find a homomorphism fraAto P. From
the sumXZ,caU, we get a surjective homomorphismto A. Since eacli/, has an iso-
morphic copy amongst thg, we also have a canonical homomorphigm X,c s, — G.
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Form the pushoutQ, ¢, /) of ¢ with v. Since pushouts of epis are always gpis an epi-
morphism and its kernel must be containe&i Thus we obtain a unique homomorphism

x 1 Q — P, andy o ¥ is a homomorphism, as required, frofrto P. By construction?

is simple, hence also extensional by Lemma 4.1, consequently, by Lemma 4.2, the homo-
morphism fromA to P is unique.

A

\\

Ua —_— zUa —) lg}Gz
w

O

Now let X be a fixed set. We consider the functorx F(—). An X x F(—) coalgebra
is just a triple(A, «, €) where(A, «) is anF-coalgebra and : A — X is any map.

If F is bounded, then obviously x F(—) is bounded too. MoreovefA, «, €) is
terminal asX x F(—)-coalgebra if and only ifA, @) with coloringe : A — X is cofree
over X. Hence we obtain from 7.2:

THEOREM 7.3. If the functor F is bounded, then cofree coalgebras exist over every
color setX.

As a consequence of 6.3, we finally have a usable criterion for completen8ag of

THEOREM 7.4. If the functorF is bounded, theSerr is complete.

The converse does not hold. In fact, J.ahtek [AcR00] has shown us an example of an
unbounded functor for which all cofree coalgebras exist.

8. Products and Bisimulations

Constructing the producd; x A, of two coalgebras can, in practice, be rather cumber-
some, for one needsto construct a coalgebrawhich is cofree over a color sefafsize |.
One would hope to get by with a simpler construction. In general, this seems impossible,
but for many functors arising in practice the product allows for an easier description, indeed.
First of all, we note some fundamental relationships between the praductA,, and
~ A, A, the largest bisimulation betweety and.A», for we have:
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LEMMA 8.1. Let A1 x A2 with projectionsn; and n2 be the product irSetr of A;
and Ay, and let~ 4, 4, be the largest bisimulation betweefy and.4>. Then(ny, n2)

(A1 x A2) =~ 4, A,

Proof. We know that the set)1, 2) (A1 x A») is a bisimulation betweed1 andA,, so it
is contained in- 4, 4,. Onthe other handy 4, 4, can be equipped with a coalgebra struc-
ture so that the projections : ~ 4, 4, — A; become homomorphisms. This way, we have
created a competitor for the product, so there is a (unique) homomorghismy, 4,—
A1 x Ap with n; o = m;. Given(a, b) € ~ 4, 4,, we therefore findy (a, b) € A1 x Az
with (n1, n2)(¥ (a, b)) = (a, b). o

Let us now fix a bisimulation structure fer 4, 4,,i.€. a structure map: ~ 4, 4, —
F(~4,,4,), for which the projections are homomorphisms. The napn2) : A1 x
Az — ~ 4, 4, 1S in general not a homomorphism, but if it is, then it will actually be an
isomorphism. To be precise:

LEMMA 8.2. If the productA; x A, with projectionsy; : Ay x A2 — A; exists, then
the following are equivalent:

1. (n1,m2) 1 A1 x Ao — ~ 4, 4, IS @ homomorphism.
2. There is a homomorphism: A1 x Ay — ~ 4, 4, With7; 0 ¢ = ;.
3. ~4,.4, With the projectionsr; : ~ 4, 4, — A; is the product of4; and A;.

Proof. The equivalence @fl.) and(2.) and the implicatiori3.) — (2.) are obvious. Now
assumingl.), we know by Lemma 8.1 th&t1, n2) is surjective. To see that it actually must
be an isomorphism, observe that there is a homomorpffisn 4, 4, — A1 x Az with
nioy = m;. Itfollows thatn; oid 4,x 4, = ni 0¥ o (n1, n2), hencad 4,x 4, = ¥ o (11, n2),
s0(n1, n2) is an isomorphism. O

The above lemma suggests to investigate how one might be able to define a coalgebra
structure o~ 4, 4, so that not only the projections, but also the canonical mapn2)
become homomorphisms. We certainly need a condition on the fuRctor

DEFINITION 8.3. A 2-source(X, f, g) is a pair of maps with common domaix.
(X, f, g) is called anono sourcgif for any two mapsi1, h2 : ¥ — X we have:

(foh1= fohp) and(gohy1 = g o hp) implieshy = h».

Typical mono sources arise from limits, in particular, the cartesian praducyt of two
setsX andY together with the projectiong; : X x Y — X andno: X x Y — Y formsa
mono sourcé€X x Y, w1, m2). A functor is said tgpreservea mono sourceX, f, g), just
in case(F (X), F(f), F(g)) is again a mono source.
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LEMMA 8.4. For afunctorF : Set — Set the following are equivalent:

1. F preserves mono sources.
2. F preserves mono sources of the faifhx Z, 1, m2).
3. Forany sets’, Z and anyu, v € F(Y x Z) we have

F(r1)(u) = F (1) (v) and F(r2)(u) = F(m2)(v) = u = v.

Proof. (1) — (2.) and(2.) <> (3.) are ohvious. For the directioi2.) — (1.) observe
that mapsf : X — Y andg : X — Z form a mono source if and only if the canonical
map(f, g) : X — Y x Z isinjective.

(9
—> YXZ

[%F

Y z

If X = @ then there is nothing to prove, sinfe= @ x @, otherwiseF(f, g) : F(X) —
F(Y x Z) is injective. By assumption( ' (Y x Z), F(mr1), F(;r2)) is a mono source, there-
fore, the same is true fdiF (X), F (1) o F(f, g), F(m2) o F(f, g)). But this is nothing
else but(F (X), F(f), F(g)). O

Using the last criterion of Lemma 8.4, it is easy to check that the following functors
preserve mono sources:

The identity functor,

the power functorX — X for a fixed setz,

constant functorsX — C for a constant sef.

If functors F andG preserve mono sources then so do

- FxG
- F+G.

e If G preserves mono sources and F — G is a natural transformation with ally
injective, thenF preserves mono sources.

In particular, the type functor for deterministic automata with alphabetthat is
F(X) := X*¥ x 2, preserves mono sources. Also, the funa:'ee]g which was a rich
source of counterexamples in [GS00], preserves mono sofirces.

20n a setX define(X)3 := {(x1,x2,x3) € X3 | |{x1. x2.x3}| < 2}. Maps are extended componentwise.
There is an obvious natural transformatioftom (—)“;' to (—)3 with all componentsx being injective mappings.
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Every bisimulationR betweend 1 and A with its projection homomorphismg : R —
A; provides a mono sourd@e, 1, 2). If F preserves mono sources, thei(R), F (1),
F(r2)) is also a mono source, so from the diagram defining a bisimulation (Section 2.4)
we read:

LEMMA 8.5. If F preserves mono sources then every bisimulafohas a unique
bisimulation structure.

We are now able to characterize when the product of two coalgebras is the largest
bisimulation:

THEOREM 8.6. For any functorF : Set — Set the following are equivalent:

1. A1 x Ay =~y 4, forevery Ay, A> € Setr and for an appropriate bisimulation
structure on~ 4, 4,.

2. F preserves mono sources.

3. Every bisimulationR between coalgebras iferr has a unique bisimulation
structure.

4. ~ 4, A, has a unique bisimulation structure for am, A, € Setr.

Proof. (2) — (3.) is Lemma 8.5,3.) — (4.) is a specialization andl.) — (4.)
is straightforward. It is therefore enough to show the implicatichy — (2.) and
2) — ().

We start with the latteri2.) — (1.). Let~ be the largest bisimulation betweegh and
Az ands$ : ~ — F(~) astructure map of¥ with projection homomorphisms : ~ — A;.
Consider any coalgebr® together with homomorphismg : P — A;. We have to show
that there is a unigue homomorphigm: P — ~ with 7; o ¥ = n;. Uniqueness is clear,
for (~, 1, m2) is a mono source. Setting := (11, n2), we only need to establish that it is
a homomorphism.

The following diagram depicts the situation.

i
m
P ~ Ai

(n1.1m2) T
oc],[ l ) Toz,-

F F(ri
F(P) (11.12) F(~) (i) F(A)

F(ni)
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We have

F(mi)odomi,m) = ajon;
= F(ni)oap
= F(m;) o F(n1,n2) oap.

Since F preserves mono sources, we can carfcet;), which means thatn, n2) is a
homomorphism.

Finally, we prove(4.) — (2.). Assume that' does not preserve mono sources, we
need to find coalgebrad; and.A; with two different bisimulation structures ony, 4,.
Invoking Lemma 8.4, we find sels, Z andu, v € F(Y x Z) with u # v and

F(1)(u) = F (1) (v) and F (m2) (u) = F(2)(v).

On Y we introduce a coalgebra structure : Y — F(Y) by constantly mapping every
element ofY to F(rr1)(u). Similarly, we definexz : Z — F(Z) as the constant function
with result F (;r2) (u). Now the constant magds, 8, : Y x Z — F(Y x Z) with resultu,
resp.v, yield two different bisimulation structures ahx Z. Clearly,Y x Z is the largest
bisimulation between the given coalgebrasiomesp.Z. O

Observe that in the proof of this theorem we did not need to assume that the product
A1 x Az exists. Hence, we have the following corollary:

COROLLARY 8.7. If F preserves mono sources then the proddg¢tx A, exists for
all A1, Az € Setp.

Most of the literature on coalgebras assumes that the type fuAcmeserves weak
pullbacks. The reason is that almost all applications in Computer Science can be modeled
with a type functor having this property.

LEMMA 8.8. F preserves weak pullbacks and mono sources fffeserves pullbacks.

Proof. The only-if-direction is immediately checked. Let nakv preserve pullbacks,
then it also preserves weak pullbacks according to [Rut96]. To checkrtipaeserves
mono sources, it is enough, by 8.4, to consider a mono source of thefosv, w1, 72).
However, this is the same as the pullback of the constant mapsXroesp.Y, into a one-
element set. The hypothesis now tells us, tHatX x Y), F (1), F(;r2)) is a pullback, i.e.
a limit. Clearly, every limit is a mono source. O

COROLLARY 8.9. Suppose thaf' preserves weak pullbacks. Then the following are
equivalent:
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1. A1 x Ao =~ 4, 4, for all coalgebrasA; and A,.
2. F preserves pullbacks.
3. F preserves mono sources.

In this section we have only considered products of two coalgelijaand 4,. We
could as well generalize all results to arbitrary prodyets)ic, for any cardinal number
x > 0. We need to replace 2-sourcesdygources andisimulations by -simulations, see
[Gum99a]. A mono source, in general, will then be angource(X, (fi)rer) SO that for
anyY and all mapg, 2 : Y — X we have

Vkek. frog= froh)=— g=h.

In particular we get: IfF preserves arbitrary mono sources tifen- has non-empty
products, and the product of any family;);c,. C Setr is given by the greatestsimulation

between théA;);c.. In fact, Trnkova has shown in [Trn71] that in this cageis bounded.
In order to prove that all cofree coalgebras exist, a weaker condition suffices:

THEOREM 8.10.If F preserves»-mono-sources theSerr has all cofree coalgebras.

Proof. For an arbitrary fixed seX one checks thak' preserveg-mono-sources if and
only if the functorX x F(—) preserves-mono-sources. Since a coalgebra cofree aver
is nothing but a terminaX x F(—)-coalgebra, it suffices to show th8&sr has a terminal
F-coalgebra.

The problem can be further reduced to finding/@akly terminakoalgebra, that is an
F-coalgebral = (L, p) so that for eacl¥-coalgebrad there is a (not necessarily unique)
F-homomorphismd — £; factorizing by the largest congruen®e, we get that /V, is
terminal.

We consider théerminal sequence df ([Bar93], [Wor99]; from the latter reference the
idea for the following proof is adapted):

F()

1 F(1) F?(1) F™(1) F'® Fi)«—0 ...

Here 1 denotes a one-element set, and for ansee let Iy, or simply !, denote the
unique map fronX to 1.

Let (L, (0o, : L — F"(1)),c0) be the limit of the above terminal sequendeis
nonempty, since each(!) is surjective’

Now (F (L), (th)new) iS @ competitor for this limit, if we set

0 = !F(L)v and Tptl = F(O'l’l)'

Swe may assumé'(1) # @, since otherwisé (A) = ¢ for each setd andSerr = {@#}, for which the claim
of the theorem is trivial.
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Therefore, we get a (unique) mediating map F(L) — L with
Vn € w.opp10m = F(oy,).

The assumption o implies that(F (L), (F(o,))new) iS @ Mono source, henae is
injective.

F(Jl1)
F(L) —— Ft(1)

4
H On+l
ot m F'(1)

L —— F(1)
On

Choose a left inverse o, that is any map : L — F(L) with p om = idr). We
claim that the coalgebré := (L, p) is weakly terminal.

So letA = (A, «) be an arbitrary-coalgebra. We have to construct a homomorphism
¢ . A — L. We begin by setting up a familix;,),<., of maps fromA into the terminal
sequence:

ko ‘=14, and k41 1= F(k,) o .

A straightforward induction shows th&t* (!) o ;11 = ky, i.€. (kn)new IS @ CONe over the
terminal sequence. Hence there is a unique mediatinggmap — L so thatfor alk € w:

Op © Y = Kp.

Flp)

N

F(oy) F(kn)
F(L) —— F"(1) «—— F(A)

Opn+l Kn+l
P (lm lF”(!) Ta

L ——— F'(l) «—— A

@
For arbitraryn € w we calculate

Opn+10¢ = Kn+1
F(kp) oa
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= F(opo@)oa
= F(op)o F(p)oa

= opyr10omo F(p)oc.
Obviously, we also have
cpop = ocpomo F(p)oa,
S0 we can cancel the mono sourée (0,),c0), Yielding
¢ = moF(p)ou«
and therefore

pop = pomoF(p)oa
= F(p)oa.

This equation says that: (A, «) — (L, p) is an F-homomorphism. O

9. Examples and counterexamples

Not always are products as well behaved as one might hope. Even kvhezakly
preserves pullbacks, a hypothesis often used in the literature, we shall be able to find
examples of finite coalgebrags andB with |A| > 2 and|B| > 2 where

e A x Bis empty, or
o A x Bisinfinite, or
e Ax B= A

In each case, we find an example witlSlerp, , i.e. the class of all coalgebras®f, the
finite powerset functorP,, is bounded (byv), hence products dpP,-coalgebras exist. A
P,-coalgebrad = (A, @) consists of a sed and a mapx : A — P,(A). In other words,
aP,-coalgebra is just ammage finitetransition system, where from every state there are
only finitely many possible transitions into a next state. We shall depict these coalgebras
by drawing an arrow for every transition.

EXAMPLE 9.1. LetA = e——e andB = o—)Q. The greatest bisimulation
betweend andB is empty, hence the product gf and 8 must be the empty coalgebra.

EXAMPLE 9.2. In general, ifV 4 is the largest congruence relation gh then it is
easy to check thatA, id 4, wv ,) is the product of4 with A/V 4, thus A x A/V 4 = A.
In particular, forA = e———e, 0ONe getsv4 = Ay, henced = A x A.
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EXAMPLE 9.3. The last example is a transition system whose transition relation is the
complete graph on two elements:

C=C0. >1D.

The rest of this section will be devoted to proving:
PROPOSITION 9.4.The product; x Cz in Setp, is infinite.

Proof. C, is given as a transition system with transition relatign= {0, 1}2. As a
P,-coalgebra we havé, = ({0, 1}, a¢) with ¢ (0) = a¢ (1) = {0, 1}.

In general, we shall use the arrow notation as introduced in Section 2.5, that is for any
P,-coalgebrad = (A, o) we write

a i) ad < a eaula).

We shall drop the labed, if it is clear from the context.

Cy is special, in that for any map : A — Ca, the first homomorphism condition from
Section 2.5 is automatically satisfied, thuss already a homomorphism if for anye A
andc’ € C, we have

C:
pa) > ¢ =3d' € A.a A a, o) =¢c.

In particular, the map(x) := 1 — x is an automorphism afs.
On the setv = {0, 1, 2, ...} we define a transition relation by

w
X—y <= x>yory<1

that is, by the transitive hull of the following relation:

O/\A

2 2
— ~

1
Let A be the coalgebra given by the transition relatiér . Note thatC» is a subcoalgebra
of A, but, more importantly, we have homomorphisms v» : A — Cz given byyri(x) :=
min{x, 1} andyr» := v o Y1.

Thus, there must be a homomorphigm A — C2 x Co with ; = n; o, fori =1, 2.
We claim thaty is injective.

Assuming the contrary, we have a smallest elemento for which there is somé > 0

with ¥ (z) = ¥ (z + k). Let p := ¢ (k), then from(z + k) i> z, the first homomorphism
condition yieldsp & p. As a result, the second homomorphism condition assures that
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there exists &’ with z A 7 andy(z’) = p. The choice of; only permitsz < 7/,
so it follows z € {0, 1}. But ¢¥1(0) # ¥1(k), andy(l) # y2(l + k) for anyk # 0,
contradictingy (z) = ¥ (z + k). Consequentlyy is injective, hence the produ€g x C2
must have at leastv| many elements. O

Clearly, the proof goes through with any ordirain place ofw, hence the product of
C> x Cz in the categonSetp, has at least sizk|. We conclude, that the product 6§
with itself does not exist in the categafytp.

Given any ordinal number and definingx = y <= x >y foranyx, y € x, one

obtains &P, -coalgebra, which, by an argument similar to the proof of Proposition 9.4, does
not possess any proper homomorphic image. This provides a straightforward argument for

the fact that the termin&®, coalgebra has size at ledst, and that a termingP-coalgebra
cannot exist.
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