Covarieties and Complete Covarieties

H. Peter Gumm, Tobias Schroder

Fachbereich Mathematik und Informatik
Philipps-Universitat Marburg
Marburg, Germany
{gumm,tschroed} @mathematik.uni-marburg.de

Abstract

We present two ways to define covarieties and complete covarieties, i.e. covarieties
that are closed under total bisimulation: by closure operators and by subcoalgebras
of coalgebras.
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1 Introduction

Let F' : Set — Set be a functor. An F'-coalgebra is a set A together with a
map ay : A — F(A). ay is often referred to as the “transition structure” on

A.

An F-homomorphism between two F-coalgebras (A, a4), (B,ag) is a map
f:+A— Bwith F(f)oas = ago f. The class of all F-coalgebras together
with F-homomorphisms forms a category which is denoted by Setg.

In [6] J.J.M.M. Rutten has shown how coalgebras can be used to model var-
ious kinds of transition systems. He develops the basic theory of coalgebras,
analogous to the fundamental theory of universal algebra. We shall assume
familiarity with this article. Further examples and applications of coalgebras
can be found in [4] and [3].

Here we are trying to extend the basic theory by investigating and character-
izing covarieties, i.e. classes of coalgebras that are closed under homomorphic
images, sums, and subcoalgebras.

In particular, we are interested in the following question: Given two coalgebras
A and B, how can we determine whether they generate the same covariety ?
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It turns out that it is enough to consider only homomorphic images of one-
generated subcoalgebras of A and B (Corollary 2.9).

A pair consisting of a coalgebra A and a subcoalgebra B is shown to determine
a class Q(A, B), which is a quasi-covariety, that is a class of coalgebras closed
under homomorphic images and under sums. If A has the “extension prop-
erty”, then Q(A, B) is closed under subcoalgebras, i.e. a covariety. Assuming
that cofree coalgebras exist, we show that A has the extension property iff it is
a retract of a cofree coalgebra, hence every covariety arises in the above way.

Finally we propose the notion of complete covarieties, i.e. covarieties that are
closed under bisimulation. For these classes we are able to get results like this:
If A and B are coalgebras, then A and B generate the same complete covariety
iff they fulfil the same formulae of an appropiate language.

The category Sety of all F-coalgebras has a number of useful properties.
In particular, epimorphisms are surjective and, more general, the forgetful
functor from Sety to Set creates every colimit and it creates every limit
which is preserved by F (see [1]).

An important observation of [6] is that in most applications the functor F' pre-
serves “weak pullbacks”. With this assumption a number of further properties
can be utilized in Setg. For instance, monos are injective, images and preim-
ages of subcoalgebras are subcoalgebras, and the intersection of finitely many
subcoalgebras is a subcoalgebra. In order that the intersection of arbitrarily
many subcoalgebras is a subcoalgebra, we need to assume that F' preserves
“weak generalized pullbacks” (see [2]), that is weak limits of arbitrary families
(pi : Ai = C)ier of maps with common codomain. !

We therefore will assume in the rest of the paper that F' : Set — Set is
a functor that preserves weak generalized pullbacks. As a consequence, for
any coalgebra A and any subset X C A, the coalgebra generated by X in A
exists. It is the intersection of all subcoalgebras of A containing X and will
be denoted by (X). 2

LA considerable amount of confusion has been created in much of the previous
literature where authors have assumed preservation of weak pullbacks when in fact
their arguments required preservation of weak generalized pullbacks. In [2] it is
shown that the former requirement is not enough to even guarantee existence of
1-generated subcoalgebras

21n fact it would be enough for this paper to require that the functor F : Set —
Set preserves weak pullbacks and that (X) always exists for any F-coalgebra (A4, a4)
and any X C A However, we do not know of any instance where such an F would
not automatically preserve weak generalized pullbacks.



2 Covarieties
2.1 Conjunct representations of coalgebras

Conjunct representations of coalgebras are dual to subdirect representations
of algebras. Conjunctly irreducible coalgebras will be the building blocks of
which all coalgebras can be constructed by way of a conjunct repr esentation.

Definition 2.1 A conjunct representation of a coalgebra A € Setg is a family
(¢i + A; = A)icreset of homomorphisms where

(i) all ¢; are injective and

(i) User ¢i(A;) = A.

Remark 2.1 Let (¢; : A; — A)ier be a conjunct representation of A and
let e; : A; — YicrA; be the canonical injections. Then there is a surjective
homomorphism ¢ : XierA; — A, such that oll ¢ o e; are injective. Therefore,
A is called a conjunct sum of the A;.

Definition 2.2 A coalgebra A is called conjunctly irreducible if for each con-
junct representation (¢; : A; — A)ier at least one ¢; is an isomorphism.

Given a coalgebra A, then for every element a € A, we have a natural em-
bedding of (a), the coalgebra generated by the one-element set {a}, into A,
providing us with a trivial representation of A as a conjunct sum. Thus we
see immediately:

Proposition 2.1 A coalgebra A € Sety is conjunctly irreducible iff it is one-
generated, i.e. A = (a) for some a € A.

Corollary 2.2 FEach coalgebra is a conjunct sum of conjunctly irreducible sub-
coalgebras.

As an example, consider coalgebras under the identity functor I(S) = S.
These are the simplest cases of deterministic systems. Let A be the following
five-element coalgebra whose transition structure is indicated by arrows:

O —— O O<+—O0O=<+—-0

VN
w_

Then A is a conjunct sum of the following conjunctly irreducible summands:

VN VN
o——>o0 o and o O<~—o0 <o
w_ \ N



2.2 H,S, X, X, and covarieties

We define operators that are dual to H, S, P, and Pg in universal algebra.
Definition 2.3 Let K C Setg be a class of F'-coalgebras. We denote by

— H(K) the class of all homomorphic images,

— S(K) the class of all subcoalgebras,

— X(K) the class of all sums,

~ Yc(K) the class of all conjunct sums

of coalgebras in IC. By

- Si(K)

we denote the class of all one-generated subcoalgebras of coalgebras in K. We
write B < A, if B is a subcoalgebra of A.

One easily checks:
Lemma 2.3 H, S, ¥, and X¢ are closure operators.

Definition 2.4 A covariety is a class K C Setg that is closed under H, S
and 3.

In analogy to the situation in universal algebra one obtains:
Proposition 2.4 Let K C Setg a class. Then

(i) SH(K) C HS(K),

(1)) ES(K) C SE(K),
(111) SH(K) C HE(K).
In particular, for each class K C Setr,

HSY(K)

18 the least covariety that contains IKC.
In universal algebra the operators H, S, and P do not commute. In the coalge-
braic context, however, we get further commutations, as shown in the following

two propositions :

Proposition 2.5 S and ¥ commute.



Proof. Proposition 2.4 yields ¥S(K) C SX(K), so it remains to show that
SE(K) C BS(K).

Let ¢ be an embedding of A into ¥;B;, B; € K, and let e; be the canonical
injection from B; into ¥;B;. Then the following diagram

A 2 B;

€;

B;

can be completed commutatively. To see this, form for each ¢ the pullback of
¢ and e; in the category of sets. This results in the set

Ri = {(a, bl) | (]5(0,) = Gi(bi), a € A,bl € Bz}

with canonical projections mr} and 7?. They are injective because ¢ and e; are.

Now, according to [6], each R; is a bisimulation, so it can be equipped with a
transition structure, turning R; into a coalgebra in such a way that 7 and 7?2
are homomorphisms.

We now consider ¥; R; and claim that this coalgebra is isomorphic to A. Indeed,
let ¢ be the homomorphism defined by the m}, then the following diagram
commutes for each #:



For every a € A there exists an index ¢ and some b € B; with ¢(a) = e;(b).
Thus (a,b) € R;, so a = 7} (a,b) = £(f;(a,b)), hence ¢ is onto.

Next assume that there are z, 2’ € ¥; R; with ¢poe(z) = ¢poe(z’), then there are
indices j, k and elements r € R; and ' € Ry, with f;(r) =2 and fi(r') = '
2

Therefore ¢; o 73(r) = ¢, o m(r'). It follows that j = k, and r = 7/, since ¢;

and 7r]2. are injective. Therefore ¢ is injective.

Proposition 2.6 H and S commute.

Proof. SH(K) C HS(K) by proposition 2.4. For A € HS(K) there exists
C € K, a monomorphism e : B — (', and a surjective homomorphism ¢ :
B — A. Pushouts exist in Setg, so let D be the pushout of e and ¢.

e
B C
¢ D2
A D
b1

Pushouts of epis are always epi, so ps is epi. The forgetful functor U : Sety —
Set creates colimits [6] and in Set pushouts of injective maps are injective,
hence p; is injective. This shows that A is isomorphic to a subcoalgebra of a
homomorphic image of C' € K, i.e. A € SH(K).

2.3 The covariety generated by a coalgebra

In order to see whether two coalgebras A and B generate the same covariety,
we need only study their one-generated coalgebras. This is already suggested



by Proposition 2.1.

For the operator S; the following equalities are immediate:

- SIH(K) = HSi(K)
- S§1X(K) = S81(K)

Corollary 2.7 Every one-generated coalgebra in HSX(K) is already an ele-
ment of HS1(K).

This yields a useful description of the covariety generated by a class IC of
coalgebras.

Proposition 2.8 The least covariety that contains K is ScHS(K), more pre-
cisely XcHS (K).

Corollary 2.9 Let Ki,Ky C Setr be classes of covarieties. The covariety
generated by ICy is contained in the covariety generated by Ko if and only if

S1(Ky) CTHSL(ICy).

This criterion is easy to check. For instance, we see immediately that the
following two Kripke structures

D oD

cl) and 'q/ \ 1
av )

generate different covarieties.

3 The definition of covarieties by homomorphisms

From an arbitrary coalgebra A and any subcoalgebra B < A we are going to
define a quasi-covariety, that is a class of coalgebras closed under homomorphic
images and sums.



3.1 The class Q(A, B)

Definition 3.1 Let A, B € Sety be coalgebras, B < A. The class Q(A, B)
is defined as the class of all coalgebras C' € Sety with the property that each
homomorphism ¢ : C'— A factors through B, i.e. that

¢(C) C B.
Q(A, B) is not necessarily a covariety but we have:

Proposition 3.1 Q(A, B) is a quasi-covariety.

Proof. Let C € Q(A,B), ¢ : C —» (' a surjective homomorphism, ¢ :
C'" — A a homomorphism. Since C' € Q(A, B), there exists a homomorphism

¢ ot with o) =gorp o<,

We need a morphism ¢ “splitting” the following diagram:

' ¢ A
¥ ¢ <
C — B
5oy

Obviously, Ker C Ker ¢7@/}, so there is exactly one homomorphism ¢, mak-
ing the bottom left triangle commute. Since the outer rectangle commutes we
also have

potp =<opot) =<opor.
1 is epi, S0
¢ =<o9,
which means that the upper right triangle commutes. Thus C' € Q(A, B).

Let now A; € Q(A, B) for i € I. We need to show that 3,.;A; € Q(A, B). For
an arbitrary morphism ¢ : ¥;c;A; — A, let e;, for each ¢ € I, be the canonical
injection of A; into the sum. Since A; € Q(A, B), ¢ o e; factors through B via
some ¢Tei.



The universal property of the sum yields now exactly one homomorphism
¢ : X;A; — B so that for each 7 the bottom left triangle in the following
diagram commutes:

e; Q; S
A; B
d)f(;/ei

For each i € I we have
poe; =<ogoe; =<odoe,

SO

6 =<0

follows from the universal property of the sum.

3.2 Invariance and the Extension Property

Given a coalgebra A, there may be different subcoalgebras B, B, giving rise
to the same quasi-covariety. Amongst those we can always choose one which
is “invariant”, in a sense to be defined below. Next, we discuss a property of A
that guarantees that Q(A, B) is closed under subcoalgebras, i.e. a covariety. In
that case, different invariant subcoalgebras of A produce different covarieties.

Definition 3.2 Let A be a coalgebra, B < A. B is called invariant in A, if
for each homomorphism ¢ : A — A we have:

¢(B) C B.

Proposition 3.2 If B € Q(A, B) holds, then B is invariant in A.

Proof. Assume ¢ : A — A. Let ¢ : B — A be the restriction of ¢ to B. As
B € Q(A, B), ¢;p must factor through B, which is to say ¢(B) C B.



Proposition 3.3 For each B < A there exists an invariant subcoalgebra B°® <
B with

Q(A,B) = Q(A4, BY).

Proof. We can choose
= J{f(0)|C € Q(A, B), f € Hom(C, A)}.
Evidently,
Q(A, B) = Q(A, B).

Let ¢ : A — A be an endomorphism, b € B°. Then there is a C' € Q(A, B)
and a homomorphism f : C'— A with b € f(C). Since also C' € Q(A, B°) the
map ¢ o f factors through B, i.e. ¢(f(C)) C B°. Hence ¢(b) € B°.

Definition 3.3 A coalgebra A has the extension property, if for all coalgebras
C we have: If C SAC’ then any homomorphism f : C — A can be extended to
a homomorphism [ : C' — A.

Example 3.1 FEvery final and every cofree coalgebra (see definition 3.5) has
the extension property.

Proposition 3.4 Let A have the extension property, B < A. Then Q(A, B)
1S a covariety.

Proof. According to proposition 3.1 it remains to prove that Q(A, B) is closed
under subcoalgebras: Let C' € Q(A,B), D < C, and ¢ : D — A a homomor-
phism. Then there is an ng C' — A extending ¢ to C. d) factors through B via
a homomorphism 1 since C' € Q(A, B). Now we can set ¢ := 1 o <. Then

¢ = go<=<ogpo<=<0¢p

The following diagram illustrates the situation:

C ¢ A
< Y <
D & B

10



Proposition 3.5 Let A be a coalgebra with extension property and B < A. If
B is invariant in A then B € Q(A, B).

Proof. Let ¢ : B — A be a homomorphism. The extension property for A
allows us to extend ¢ to a homomorphism ¢ : A — A. B being invariant in A
yields 6(B) = oys(B) C B.

Proposition 3.6 Let A have the extension property. If B C B' and B’ is
invariant in A then

Q(A,B) C Q(A, B').

Proof. C is obvious. Clearly, if B" were in Q(A, B), then the inclusion mor-
phism <: B’ — A would factor through B, yielding B’ = B. Thus B’ ¢
Q(A, B), yet B' € Q(A, B') according to proposition 3.5.

Summarizing, we have:

Theorem 3.7 Let A be a coalgebra, B < A. The class Q(A, B) is closed
under homomorphic images and sums. If A has the extension property then
Q(A, B) is a covariety. For fized A the covarieties Q(A, B) correspond exactly
to the invariant subcoalgebras of A.

3.3  Cofree coalgebras and bounded functors

In this section we will see that each covariety has the form Q(A, B) if the
functor F' has an additional property. This is a restatement of a result of
Rutten ([6]).

Definition 3.4 The functor F is called bounded, if there is set C' such that
the cardinality of each one-generated subcoalgebra in Sety is bounded by the
cardinality of C'. In this case we call F' bounded by C.

Definition 3.5 Let C' be a set. An F-Coalgebra (A,ay) € Sety is called
cofree over C' if there is a map ec : A — C such that for every F-Coalgebra
(B,ap) € Setg and every map ¢ : B — C there is exactly one homomorphism
¢:B— Awithecod=¢. e is often called the “color map”.

This means that (A, (aa,£¢)) is a final F' x C-coalgebra. If F' is bounded then
for each set C there exists a cofree coalgebra over C'.

We now restate in our language Rutten’s theorem:

11



Proposition 3.8 ([6]) Let F' be bounded by a set C. Then every F-covariety
has the form Q(S¢, B) where Sc is a cofree coalgebra over C' and B a sub-
coalgebra of Sc.

Definition 3.6 A pair of morphisms + : A — B and 7 : B — A is called a
retraction if m o1 =1idy. In this case A is called a retract of B.

We can now characterize coalgebras with the extension property:

Proposition 3.9 Let F be a bounded functor and A a coalgebra in Setg.
Then A has the extension property if and only if it is a retract of some cofree
coalgebra.

Proof. Suppose that A has the extension property. Denote by |A| the base
set of A and consider the cofree coalgebra S over the set |A| with color map
la) + S — |A]l. The map idy : A — |A| yields a unique homomorphism
t: A — S with ej4j00 =1id 4, so ¢ is injective. Thus the subcoalgebra C' = ¢(A)
of F' is isomorphic to A and we can write 1+ = < o ¢ where ¢ : A — C
agrees with ¢ on all elements of A. Since A has the extension property, the
inverse ¢! : C — A can be extended to a homomorphism 7 : S — A with
o< =¢ ' henceror=mo<o0o¢p=0¢ logp=1idy.

7T

>C¢_,A

SN AA

Assume now that S is cofree over the color set C' and that A is a retract of
S with retraction pair ¢t : A — S and 7 : § — A, satisfying 7 o+ = id4.
Let ¢ : D — A be any homomorphism and D < D'. We must extend ¢ to a
homomorphism ¢’ : D" — A. Define amap 0 : D — C as egoro¢, and extend
it to a map &' : D' — C so that § = 6’0o <. Let ¢ : D' — S be the unique
homomorphism with ¢ o ¢ = ¢’. Then we calculate

ccotpo< =0o< =§=ccoLoq.

It is easy to see that ¢ can always be left-cancelled, hence
Yo< =100,

so we finally set ¢’ = 7 o 1), and calculate

Po< =mopo<=morop=idyo ¢ = ¢.

12



4 Complete Covarieties
4.1 Total Bistmulations

When dealing with transition systems one usually does not distinguish between
systems that are bisimilar. A bisimulation R between coalgebras A and B is
defined as a relation R C A x B on which a coalgebra structure can be defined
so that the projections m; : R — A and m : R — B are homomorphisms. If
additionally m; and 7, are surjective then we shall call R a total bisimulation.

Notice that a homomorphism ¢ : A — B, viewed as a subset of A x B is a
bisimulation; this is total iff ¢ is surjective. We sometimes write (Gr ¢), resp.
(Gr¢) ! for the relation given by ¢ resp. for the inverse of this relation.

We shall now consider classes of F-coalgebras which are not only closed under
H, S, and ¥ but beyond this under total bisimulations. Such a class is called
a complete covariety.

Each complete covariety is of course a covariety. The reversal is not true as
can be seen in the following example of P-coalgebras:

A= and B ::/ \

By corollary 2.9, B ¢ HSY({A}), even though there is a total bisimulation
between A and B.

Definition 4.1 For a class K C Setg of coalgebras we define B(K) as the
class of all coalgebras for which there is a total bisimulation with some coal-
gebra in K.

We have already mentioned, that a surjective homomorphism between coalge-
bras A and B is a total bisimulation. Conversely, if R is a total bisimulation
between A and B, then R is a coalgebra together with surjective homomor-
phisms onto both A and B. It follows that B is a homomorphic image of a
homomorphic preimage of A. This proves the following reduction:

Proposition 4.1 A class K is closed under total bisimulations if and only if
it 1s closed under homomorphic images and under homomorphic preimages.

Basic properties of the operator B are summed up in the following proposition
whose proof is straightforward:

13



Proposition 4.2 Let K C Sety be a class, then
(i) B is a closure operator,

(it) H(K) € B(K),

(iii) SB(K) C BS(K),

(iv) LB(K) C BX(K).

Corollary 4.3 Let K C Setg be a class. The smallest complete covariety
containing K s

BSY(K).
This description can be refined as in the case of covarieties:
Proposition 4.4 For all classes K C Setg we have
S1B(K) C BS;(K).

Thus we obtain a description of the complete covarieties analogous to propo-
sition 2.8:

Proposition 4.5 Let K C Setr be a class. The complete covariety generated
by K is

$eBS; (K).

Proof. By corollary 4.3, BSY(K) is the smallest complete covariety contain-
ing /. According to corollary 2.8 this is contained in

YoHS (BSE(K)).
On the other hand:

LcHS (BSE(K)) € ZcHBS,SE(K)
=Y HBS % (K)
=YcBS%(K)
=YcBS,(K).

Like any variety, complete covarieties can also be written in the form Q(A, B),
provided that F'is bounded. We shall now study for which choices of A and
B we have that Q(A, B) is a complete covariety.

Let F be the final F-coalgebra. For each F-coalgebra A let s, be the unique
homomorphism A — F.

14



Proposition 4.6 Let K C Setr be a class. K is a complete covariety if and
only if there is a U < F with K = Q(F,U).

Proof. Let K = Q(F,U) for a U < F. U is invariant in F, since idz is the
only F-endomorphism.

K is a covariety since F has the extension property. We need to show B(K) C
IC: Let B € B(K), then there exists an A € K and a total bisimulation between
B and A. In particular, the largest bisimulation ~ between B and A is total.

Therefore, for every b € B there exists an a € A with a ~ b. But because F
is final this means

sp(b) = sala) € U,
therefore B € Q(F,U).

To prove the other direction we set

U:= | sa(4).

AeK

Clearly, U < F, so we claim
K= Q(F,U).

C is obvious. Let A € Q(F,U); then s4(A) < U holds. But we have U € K
since for each w € U there is a b € B € K with (u) ~ (b). This shows
U € BSX(K) = K and therefore also A € K.

5 Coalgebraic Logic

Definition 5.1 A class L (of formulae) is called an F-language if for each
A € Setg we have a satisfaction relation

):AQAX£.

For a =4 ¢ we say that ¢ holds in a. We write A = ¢ if a =4 ¢ for alla € A.
If K C Setg is a class, we write K |= ¢ if Al ¢ for all A € K.

We call = (or £) homomorphism-stable if for all A,B € Setg, all a € A,
and all homomorphisms f : A — B:

af=a ¢ < fla) Fa ¢

15



Proposition 5.1 Let = be homomorphism-stable, and let R be a bisimulation
between A and B from Setg. For alla € A, b € B we then have:

aRb= (a Ea ¢ <= b5 9).
In particular, if U < A then for all u € U:
Uy ¢ <= uka .

and for families (A;)ie; C Sety we have for all i € I and all a € A;:

a ):EielAi ¢ — a ):Ai ¢

Proof. Because R is a bisimulation the two projections m : R — A and
7o : R — B are homormorphisms. Thus, if (a,b) € R then

(aFa¢ = (a,b) Fr¢ < bFsp o)

Languages that are nothing but homomorphism-stable are not quite interest-
ing because we can obtain trivial examples such as |=4= () for all A € Setp.
We need a second property:

Definition 5.2 An F-language L is called characterizing if for each a € A €
Sety there is a formula ®(A,a) € L such that a =4 ®(A,a) holds and for
each b € B € Setp:

blEp ®(A,a) = b~ a.

If £ is homomorphism-stable, then in order to prove that L is characterizing it

suffices to prove that we can characterize the elements of the final F'-coalgebra
F:

Proposition 5.2 Let £ be homomorphism-stable. For each a € F let there
be a ®(F,a) € L with a =z ®(A,a) and

Vbe F.(blE ®(F,a) = b=a)

(F is simple, so b= a is equivalent to b ~ a.) Then L is characterizing, and
for A € Setg we can choose

D(A,a) = O(F,s4(a)).

Proof. Let b € B € Sety. From

bl (A a) = D(F,sa(a))

16



we infer
sp(b) = sa(a)

because L is homomorphism-stable, and it follows a ~ b by the bisimulation
(Grsy) o (Grsg)™'.

A simple — although not very interesting — example for a language that is
homomorphism-stable and characterizing can be achieved by

L:=F,
af=a Q<= sa(a) =¢

for all F-coalgebras (A, @4) and all a € A.

6 Characterization of complete covarieties

Let £ be an F-language. If £ is characterizing (by means of the formula
®(A,a)) and homomorphism-stable, we can construct a language £' O L as
follows: £’ contains all formulae

\/¢i, I €Set,p; € L

el

with the evident semantics. £’ is characterizing and homomorphism-stable
because L is. With this language £’ we can define characterizing formulae for
coalgebras A € Sety: We set

B(A) = \/ (4,q)

acA

Evidently A = ®(A) holds, and we have
Proposition 6.1 For each A, B € Sety we have:

Vopel :AE¢=BE¢) < B ®(A) < B e BSL(A).
More generally we have for a class K C Setg:

Vopel :(VAeK:AE¢)= BE ¢)) < BeBSX(K).

L. Moss has constructed in [5] characterizing and homomorphism-stable lan-
guages for a large class of functors.
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