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Abstract� Data Structures arising in programming are conveniently
modeled by universal algebras� State based and object oriented systems
may be described in the same way� but this requires that the state is
explicitly modeled as a sort� From the viewpoint of the programmer�
however� it is usually intended that the state should be �hidden� with
only certain features accessible through attributes and methods� States
should become equal� if no external observation may distinguish them�

It has recently been discovered that state based systems such as tran�
sition systems� automata� lazy data structures and objects give rise to
structures dual to universal algebra� which are called coalgebras� Equal�
ity is replaced by indistinguishability and co�induction replaces induc�
tion as proof principle� However� as it turns out� one has to look at
universal algebra from a more general perspective �using elementary
category theoretic notions� before the dual concept is able to capture
the relevant applications�

In this note we shall give an introduction to the fascinating theory of
coalgebras which is still in an early phase of development� In contrast
with the standard introduction by J�J�M�M� Rutten 	Rut
��� we try to
develop the theory as far as possible without requiring the type functor
to preserve weak pullbacks� It turns out that almost all relevant parts
of the theory can in fact be obtained without any assumptions on the
type functor� Even for the coalgebraic version of Birkho
�s theorem
�originally proven under such extra hypotheses in 	Gum
�a� Gum

���
all we need to require is that the functor is bounded�
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�� Preface

Universal Coalgebra as a unifying theory for describing state based and
object oriented systems has received increasing attention in the last few
years� To many people� including the author� who had previously worked
with various kinds of transition system� automata� object oriented speci��
cation and lazy functional programming languages� the abstract theory of
coalgebras came like a revelation� All of the basic notions and results that
had seemed to reappear in all mentioned �elds found a common and general
explanation� Moreover� well known theories from topology and even analysis
could be seen to �t the mold of universal coalgebra�

Coalgebras� as direct duals of universal algebras� had been considered
more than �� years ago� As sets A together with a family of mappings fi
from A to its ni�fold sum ni�A� they did not receive much attention � a major
reason being the lack of vital examples� Only when the right generalization
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was achieved� by de�ning a coalgebra of type F as a map � � A � F �A��
where F is an arbitrary endo�functor on the category of sets� the special
theories of interest could all be seen to �t the framework� Amongst those
theories are all the above mentioned and more� Even though many of them
had also been tackled in a universal algebraic spirit� many phenomena had
remained without universal algebraic explanation� The construction of the
minimal automaton� the treatment of in�nite data structures and proofs of
observational equivalence in state based systems are just a few examples of
phenomena that are now known to result from the general structure theory
of coalgebras� Even though many data structures can be modelled both alge�
braically and co�algebraically� when it comes to nondeterministic behaviour�
it is striking how easy and naturally this �ts the coalgebraic framework�

The basic introduction to universal coalgebra has been the text by J�
Rutten ��Rut�
��� After discussing a convincing collection of examples� he
develops the general theory� largely modeled after the development of uni�
versal algebra� An important observation is that most of the practically
relevant functors� even the ones modeling nondeterministic systems� satisfy
an extra condition� they preserve weak pullbacks� Assuming this property�
a number of convenient structure theoretic results can be obtained� In par�
ticular� the important concept of �behaviour� can be equated with one�
generated subcoalgebras� Therefore� in �Rut�
� the theory is developed with
this particular assumption on the functor F �

There are� however� reasons for not accepting any such condition on the
functor F � One being that there are viable examples of coalgebras �e�g�
topological spaces� whose type functors do not obey such a restriction� The
other is that the structure theory obtained seems to be too special when
compared to the universal algebraic dual� For instance� subcoalgebras are
closed under both unions and intersections� Universal algebras with the
corresponding property are extremely special� essentially their operations
are unary�

Therefore� when we set out to teach a course on the subject of coalgebras
in the spring of ����� we tried to develop the theory as far as possible without
assuming that the type functor preserves weak pullbacks� After some �rst
encouraging results we started developing the present course notes for the
South African Summer school LUATCS in Johannesburg� To our surprise�
it turned out that basically all of the relevant theory can be developed for
arbitrary functors� even including the Birkho� theorem which states that
covarieties are the same as behavioural classes� Here behaviours are elements
of cofree coalgebras� representing the coalgebraic counterpart to �equations�
on the universal algebra side�

In joint work with Tobias Schr�oder ��GS��a�� we have also identi�ed struc�
ture theoretic facts that do� in fact� require particular weak limit preserving
properties from the type functor F � see section �� Another result from this
cooperation is the short and elementary proof in subsection 
�� of complete�
ness of the category of all F �coalgebras ��GS��b���

Much of this material can be put into an even more general framework
by replacing the underlying category Set by some other category C� The
main tools we need from the category of sets are the diagram lemmas in
subsection ���� The category minded reader will observe that they express
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the fact that epis are coequalizers and monos are equalizers� Discussions
with Bart Jacobs and Wilfried Hodges during LUATCS also convinced me
that most invocations of the axiom of choice can be disregarded� so that
indeed Set could be replaced by any category with the mentioned condition
on monos and epis� In fact� the �nal version of these notes might even�
tually use this more general framework� at the moment� however� we are
leaning towards the view that the set theoretic development is more con�
ducive to most readers� The category minded reader will have no di�culty
translating the proofs into his language� All that is needed� therefore� from
category theory� is the basic language up to and including no more than the
elementary notions of functor� limit and colimit�

These notes are still preliminary� Many examples and exercises need to
be worked out and many references need to be added� We strongly welcome
criticism� remarks� suggestions and corrections�

�� Data Types� Systems and Models

In this introductory section we consider abstract data type speci�cations
from the algebraic and from the coalgebraic viewpoint� Some coalgebraic
phenomena are observed in the realm of functional programming and the
notion of universal coalgebra is introduced�

���� Modeling Data Types as Universal Algebras�

������ Examples� In a functional programming language� a data type BT

might have been introduced as follows�

BT �

e � � ��� BT

mkT � BT x BT ��� BT�

It was the intention of the programmer to introduce a data type representing
binary trees� Hence the choice of BT as a name for the new type and e

signifying empty tree� Names� however� are irrelevant� so all we can say is
that the notation introduces a universal algebra BT � �BT � e�mkT � of type
��� ��� The line

mkT � BT x BT ��� BT

says that mkT is a binary operation and the line

e � � ��� BT

which is short for e � BT � � BT � says that e is a constant operation�
yielding a tree� �We use ��� to denote a prototypical ��element set� e�g� �
�� f�g� Thus� what the code states is�

�A BT is a groupoid� with a distinguished element��

By accepting de�nitions as above� the language provides an implementation
of a type BT�

�A groupoid� in universal algebra terms� is just a set with a binary operation�
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������ Constructors� There are many groupoids� and many groupoids with
a distinguished element� Which one is meant � what is the �semantics� of
such a de�nition � Since there are only two operations resulting in a BT� the
�rst reasonable agreement should be�

Axiom ���� A data type should contain only elements that can be con�
structed using the operations used in its de�nition�

In a type de�nition� the operations whose result is an object of the newly
de�ned type are called constructors� Thus the axiom says that each element
of the new type must be the result of a constructor operation�

This axiom throws out groupoids such as e�g� �R� �� �� or �N� ����� but
not �N � f�g� ���� or �Z�k	� ���� and many more� In fact there is always
a trivial model for such a de�nition� i�e� the one�element universal algebra�
in this case �f�g� �� ��� There is nothing useful about this groupoid� so we
should rather search at the opposite end of the spectrum� Therefore� we
require�

Axiom ���� No two elements should be identi�ed unless they are identically
constructed�

These two rules determine uniquely the free ���generated� universal alge�
bra of the type given by the constructors� In the case of BT� its elements
are

fe� mkT�e� e�� mkT�e� mkT�e� e��� mkT�mkT�e� e�� e�� mkT�mkT�e� e�� mkT�e� e��� � � � g

and the operations are syntactical� i�e� applying mkT to the syntactical
objects e� and e� yields the syntactical object mkT�e��e�	

For speci�cations such as the one above� a freely generated universal al�
gebra always exists� and it is unique� so we postulate�

Axiom ���� A data type speci�cation de�nes the freely generated universal
algebra satisfying the speci�cation�

With this assumption� the following data type speci�es exactly the natural
numbers with the successor operation�

Nat �


 � � ��� Nat

succ � Nat ��� Nat�

More interesting are data types which can be used as containers for other
data � they lead to many�sorted types� such as e�g� stacks or trees�

NatStack �

empty � � ��� NatStack

push � Nat x NatStack ��� NatStack�

For trees containing other data� we have several possibilities � storing data
in leaves� in inner nodes� or in both� The latter could be done with the
following type de�nition for a many sorted universal algebra�

Tree �

emptyTree� � ��� Tree

mkLeaf � Nat ��� Tree

mkNode � Tree x Char x Tree ��� Tree�
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������ Predicates� Due to the axioms� for every data object there is precisely
one way to construct it� Therefore we can derive Boolean operations � called
predicates � to answer us for every data item whether it was constructed by
a speci�c constructor� For instance� for the above type Tree� there are three
predicates� corresponding to the three ways to construct a tree�

isEmpty � Tree ��� Boolean

isLeaf � Tree ��� Boolean

isNode � Tree ��� Boolean�

Similarly� for NatStack we get the predicates

isEmpty � NatStack ��� Boolean

isPush � NatStack ��� Boolean�

Naturally� in the case of just two di�erent constructors� one predicate will
su�ce� since the other one is the negation of the �rst� Thus� isPush � not

isEmpty and similarly� for Nat� the predicate

isZero � Nat ��� Boolean

is enough to determine whether a number is � or the result of constructor
succ�

������ Selectors� What are trees and stacks worth� if we cannot look inside
to see what has been stored or to take them apart again� Once we know
by means of which constructor a piece of data has been constructed� we can
determine the components out of which it has been made� They are unique�
due to axiom ���� For every argument of a constructor� we therefore have a
function yielding the corresponding component� E�g� for the constructor

mkNode � Tree x Char x Tree ��� Tree

we get three selectors�

left �� Tree ��� Tree

node �� Tree ��� Char

right �� Tree ��� Tree

Of course� these are only partial operations� as indicated by the double colon
����� They are de�ned on all data objects constructed with the constructor
mkNode� i�e��

dom�left� � dom�content� � dom�right� � ft � Tree j isNode�t�g�

There is also a selector associated with the constructor mkLeaf� i�e�

leaf �� Tree ��� Nat

but no selector corresponding to emptyTree� as this constructor has no ar�
gument� Similarly� for Nat we get a single selector�

pred �� Nat ��� Nat

with dom�pred� � fn � Nat j not isZero�n�g and for NatStack�

top � NatStack ��� Nat

pop � NatStack ��� NatStack

with dom�top� � dom�pop� � fs � NatStack j not isEmpty�s�g�
Notice that there is a simple syntactical criterion to distinguish construc�

tors and selectors� Constructors are arrows whose target is the newly con�
structed type� whereas selectors have the new type at their source� The
dichotomy can be resolved by combining all constructors into one map� For
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this� let us denote by ��� the disjoint set union� For the tree example� we
then have a single constructor

c � � � Nat � �Tree x Char x Tree	 ��� Tree�

and a single selector

s � Tree ��� � � Nat � �Tree x Char x Tree	�

which is precisely the inverse of the constructor� We observe that a con�
structor is a map

f � F �X� � X

where F ��� is some set theoretic construction whose argument is the type
to be built� In the above case� F �X� � f�g �Nat� �X � Char �X��

A selector is a map in the converse direction

� � X � F �X��

This will be seen to embody the coalgebraic approach to data�

����	� Recursive de�nitions� Due to the unique construction of data objects�
we can de�ne further functions� using a case analysis on how the data type
was constructed� A simple example is the function giving the length of a
stack

length�empty	 � 


length�push�n�s		 � � � length�s	

or the factorial function

fact�
	 � �

fact�succ�n		 � succ�n	 
 fact�n	�

Such de�nitions are complete� if the left side covers all possible constructors�
Using patterns of the constructed data with variables at the component
positions is a syntactical trick to avoid the explicit use of selectors� The
above de�nition using argument patterns is just a shorthand for�

if isEmpty�u	 then length�u	 � 


else length�u	 � � � length�pop�u		�

As an example of a function with several arguments� take

append�empty�s	 � s

append�push�n�s�	�s�	 � push�n�append�s��s�		

����
� Recursive functions as homomorphisms� It is well known that the
free ��generated universal algebra D is initial in the class of all algebras
of the same type� This means that for every algebra A of the same type
there is exactly one homomorphism � � D � A� This fact can be used
to de�ne recursive functions simply by providing a data type of the same
signature� This way� the function length� for instance� may be de�ned as
the unique homomorphism into the algebra A � �A�� A�� �� succ� with sorts
A� � f�g � � and A� � N and operations

� � � � f�g
succ � �� N � N�
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����
� Induction� An important property of the free �initial� algebra is that
it does not have any proper subalgebra� This is a consequence of axiom ����
A subalgebra is a subset closed under all operations� so the fact that D has
no subalgebra may be phrased�

�If P is a subset of D closed under all operations� then P � D��

For D � Nat� this is the familiar induction principle� i�e�

P ��� 	 
x � Nat��P �x� �� P �succ�x���


x � Nat�P �x�
�

For NatStack� the induction principle is

P �empty��
n � Nat�
s � NatStack��P �s� �� P �push�n� s���


s � NatStack�P �s�

������ Proofs by induction� A frequent use of the induction principle for a
data structure is for showing properties of de�ned functions� in particular�
equality of two de�ned functions� A simple example is showing that

length�append�s�� s��� � length�s�� � length�s���

where we assume the standard recursive de�nition of append�

append�empty�s	 � s

append�push�n�s�	�s�	 � push�n�append�s��s�		�

For �xed s consider the set

P � fx � NatStack j length�append�x� s�� � length�x� � length�s�g�

Then empty � P and �x � P �� push�n� x� � P �� Hence the induction rule
says that P � NatStack� i�e� the proposed rule is true for every NatStack�

In general� given two homomorphisms ��� � A � B� their equalizer� the
set fa � A j ��a� � ��a�g is a subalgebra� Thus� the induction principle
states the uniqueness of homomorphisms from the free algebra to any other
algebra B�

���� In�nite Data Objects and State Based Systems� Not all prac�
tically relevant data structures satisfy axiom ���� One example is the data
type of streams� Streams are used to model continuous input� in�nite �les
or sequences� They are useful in programming� for instance in combina�
tion with the UNIX pipe mechanism or as lazily evaluated data objects in
functional programming languages� As an example� consider the following
functional program� Here we use the symbol ��� as an in�x operation symbol
to denote inserting an element into a list� The program

ones � � � ones

de�nes ones as the in�nite list ��� �� �� � � � �� and

from n � n � from�n��	

int � from�
	

de�nes int as the in�nite list ��� �� �� �� � � � �� Such objects are very useful
data objects in programming and we can de�ne functions in the same way
as with �nitely constructed data objects� for instance�

twice h�l � ��
h	� twice l

and
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add �h��l�	 �h��l�	 � �h��h�	 � add l� l��

If we now try to prove by induction that add�l� l� � twice�l� for every in�nite
list l� we cannot use structural induction over ��� as we would do for �nite
lists� The reason is that axiom ��� is not present� that is� the induction does
not �bottom out��

������ Coalgebraic types� When trying to de�ne a type �in�nite stream�� we
have the problem that there is no nullary operation to get the construction
of streams started� However� a de�nition using the selectors head and tail

is possible�

S �

h � S ��� Nat

t � S ��� S�

or� if we combine the two selectors into one function� we get

�h�t	 � S ��� Nat x S�

This is an example of a so called system or co�datatype� It is de�ned by
selectors� which in this context will often be called observers� The intuition
is that the components of selectors return attributes or components of se�
lectors� In such a de�nition� it is often useful� to consider the de�ned type
as a set of states� The selectors are then used to either �nd some attributes
or to change the state�

This is exactly how in�nite streams may be represented in a ��nite� com�
puter� A stream is represented by a state� On demand� the function h yields
a number� which is considered the �rst element of the stream and the func�
tion t causes a transition to a new state� representing the tail of the stream�
Still� it is not clear� why the above co�datatype de�nition should de�ne N� �
the set of all natural number streams with selectors head and tail� since
there are other systems of the same functionality�

Example ���� Let S � fs�� s�� s�� s�� s�g and de�ne h�si� � i mod �� and
t�s�� � t�s�� � s�� t�s�� � t�s�� � s�� t�s�� � s��

s� �� s�
�� s�ii s�oo s�

��

The �gure shows the e�ect of the transition t on S�
Assume that the base set S is not directly observable� after all it is to be

introduced by the type de�nition� Think of a black box with only the result
of the selector h visible� The operation t may also be executed� it just leads
to another state without any directly observable output� Jacobs and Rutten
�JR�
� interpret this as a machine with two buttons h and t� One yields a
number and the other changes the internal state� The state is otherwise not
observable�

Can we distinguish between any two states in the example� Clearly� s�
and s� can be distinguished directly by the outcome of h� To distinguish s�
from s� we need to �rst execute t� then h� One �nds that s� and s� cannot
be distinguished by the outcome of h whatever sequence of operations may
have been performed�

As the states are not directly observable� we have no reason to distinguish
two states such as s� and s� which display the same external behavior on
identical sequences of tests� By identifying two states with the same external
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behavior� we get an extensional notion of equality� that can be captured by
the following axiom�

Axiom ���� Two states are considered equal if they cannot be distinguished
by �a combination of� observations�

Let us write u � v if the states u and v are indistinguishable� It is easy
to see that � ought to satisfy

u � v

h�u� � h�v� 	 t�u� � t�v�
�

In the above example� � is an equivalence relation and factoring yields a
minimal system�

s��
��
s��ii s��

��

that is a system with a minimal state set which still exhibits the same
external behavior�

������ Automata� As a second example consider a �nite automaton� Its use
is to decide� whether a given string satis�es a regular expression or not� An
automaton is usually given by two functions�

isTerminal � State ��� Boolean

delta � State x Char ��� State

As it stands� this is neither an algebraic type nor a system� However� the
second operation can be replaced by a function

� � State� StateChar

so that both operations are observers� Again� we can think of having two
buttons� The �rst answers true or false� depending whether we are in a
terminal state or not and the second one takes a character input and yields
a corresponding new state�

To a user� again� the state may remain hidden� it is irrelevant� as long
as the automaton implements the desired regular expression� Again� two
states may be identi�ed� if they behave the same way on the same input�
which is to say� if they cannot be distinguished by any observation� An
observation consists of entering a sequence of characters and then pressing
the isTerminal�button� The indistinguishability relation for this data type
is easily seen to be the same as the well known �Nerode congruence�� Fac�
toring by this congruence� we obtain the minimal automaton� Once more
we can give a rule for the relation of indistinguishability�

s � t

isTerminal�s� � isTerminal�t� 	 
c � Char���s� c� � ��t� c�

Any relation satisfying this proof rule� that is any relation 	 satisfying

s 	 t

isTerminal�s� � isTerminal�t� 	 
c � Char���s� c� 	 ��t� c�

will be called a bisimulation� and two states u� v related by some bisimulation
are called bisimilar� It is easy to see that the union of bisimulations is again
a bisimulation� so there is always a largest bisimulation� We denote it by ��
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������ Proofs by Co�Induction� The axioms for �may be used as proof rules�
If s� and s� are streams and if 	 is a relation on streams satisfying the proof
rule then s� 	 s� implies that s� and s� are indistinguishable�

For instance� to prove that with the above de�nitions of stream oper�
ations we have twice�s� � add�s� s�� all we need to show is that 	 �
f�twice�l�� add�l� l�� j l � Streamg is a bisimulation� This is easy to check�

hd�twice�l�� � � � hd�l� � hd�l� � hd�l� � hd�add�s� s��� and

tl�twice�l�� � twice�tl�s��	add�tl�s�� tl�s�� � tl�add�s� s���

Keep in mind that we have only proven that twice�l� and add�l� l� are indis�
tinguishable�

������ Final Semantics� Given a coalgebraic type de�nition� de�ned by its
selectors� say as

Str �

h � S ��� Nat

t � S ��� S

is there a universal system� playing a role similar to the initial algebra for
algebraic types� In standard cases� the answer is yes� although� in more
general circumstances the answer may be no � largely due to cardinality
problems� Nevertheless� we can say what the �nal coalgebra must be made
of� if it exists� It consists of the bisimilarity classes of all possible observa�
tions emanating from a certain state�

In the above case� the �nal coalgebra is given by the set of all in�nite
streams of natural numbers� This is because any possible behaviour of such
a system can be encoded as an in�nite stream and any two di�erent streams
can be distinguished� In the system of example ��� the behaviors of state s�
and s� are represented by the streams ����� � the behaviour of s� and s� by
����� and that of s� by ���� �

This relationship will be seen to determine the unique homomorphism
from the system in example ��� to the �nal system consisting of the in�nite
streams of natural numbers� N� with operations head and tail�

The viewpoint taken in the previous examples is opposite from the alge�
braic one� Instead of de�ning data objects by constructors and keeping them
apart whenever they are di�erently constructed� we now are only interested
in the observable behaviour of systems with some hidden state� We are given
some observers and we identify two states if they cannot be distinguished
by any observers� This might be called the co�algebraic view� Confronting
the algebraic with the co�algebraic view� we can sum up�

Algebraic Type Coalgebraic Type
Data objects constructions observations
Equality identical construction indistinguishability
Proofs induction coinduction
Semantic domain initial algebra �nal coalgebra

���� Algebras abstractly� Traditionally� a universal algebra A � �A� �fi�i�I�
is given by a set A and a collection of operations fAi � Ani � A� The op�
erations may be combined into a single map fA � �i�IA

ni � A� so that in
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general a universal algebra is given by a set A and a map

fA � F �A�� A

where the �set theoretic construction� F �X� � �i�IX
ni determines the

similarity type of A� Given two algebras A and B of this same type� a
map � � A � B� canonically induces a map F ��� � F �A� � F �B�� It is
easy to check that � is a homomorphism� just in case the following diagram
commutes�

F �A�

fA

��

F ��	 �� F �B�

fB

��
A

� �� B

���� The concept of coalgebra� A co�algebraic type de�nition is deter�
mined by a collection of selectors� which also may be combined into a single
map

�A � A� F �A�

for some �set theoretic construction� F � Hence we de�ne a coalgebra of
type F to be a pair A � �A��A� where �A � A � F �A� is a map� A
homomorphism between coalgebras A � �A��A� and B � �B��B� of type
F will be a map � � A� B for which the following diagram commutes�

A

�A
��

� �� B

�B
��

F �A�
F ��	 �� F �B�

F has been termed vaguely as �some set theoretic construction�� Firstly�
we see that this construction must also act on maps� In particular it must
transform a map f � A � B into a map F �f� � F �A� � F �B�� If we want
that idA is always a homomorphism then we shall need to require�

F �idA� � idF �A	�

Similarly� if the composition of homomorphisms is to be a homomorphism�
we need to require

F �f 
 g� � F �f� 
 F �g��

Such a �construction� will later be called a �functor�� While in traditional
universal algebra F �X� is always of the form �i�IX

ni where these require�
ments are obviously satis�ed� we shall need more general constructions in
the case of coalgebras� as we have already seen with the type of automata�
For automata we needed

F �X� � Boolean�XChar�

and for nondeterministic automata we shall require

F �X� � Boolean�P�X�Char

where P�X� denotes the power set fU j U � Xg of X� The right language
to formulate the mentioned requirements on such a �construction� F and to
study its properties is provided by category theory� so we shall have a brief
look at the most fundamental notions of this mathematical discipline�
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��	� Exercises�

Exercise ���� Let F be �some set theoretical construction	 transforming
any set X into another set F �X� and any map f � X � Y into a map
F �f� � F �X�� F �Y �� Show that the following are equivalent


�� For any coalgebras A� B� and C of type F we have
�a� idA is a homomorphism� and
�b� if � � A � B and � � B � C are homomorphisms� then � 
 � �

A � B is a homomorphism
�� F is a �functor	� that is it satis�es for all sets X� Y � and Z and all

mappings f � X � Y � g � Y � Z

�a� F �idX� � idF �X	 and
�b� F �g 
 f� � F �g� 
 F �f�

Exercise ��� �Universal Algebra� abstractly��

�� Show that universal algebras A � �A� ����� � ��� of type ��� �� �� corre�
spond uniquely to maps

fA � �A�A� �A� �� A�

where � denotes cartesian product� � disjoint union and � � f�g a
��element set�

�� Show that F � de�ned on sets X as

F �X� � �X �X� �X � �

and on maps g � X � Y as

F �g��w� �

���
��

�g�x��� g�x���� if w � �x�� x�� from the �rst component

g�x�� if w � x from the second component

�� if w�
� from the third component

is a �functor	 in the sense of exercise ����
�� Show that a map � � A � B is a homomorphism between universal

algebras A � �A� ����� � ��� and B � �B� ����� � ���� if and only if the
following diagram� where fA and fB are de�ned as above� commutes


F �A�

fA

��

F ��	 �� F �B�

fB

��
A �

�� B

�� Formulate and prove the general theorem for arbitrary algebras A �
�A� �fi�i�I� of type �ni�i�I �

�� Basic Notions of Category Theory

���� Categories� A category axiomatizes the abstract structural properties
of sets and mappings between sets� Sets are considered as the objects and
mappings are called themorphisms or arrows of the abstract category of sets�
The language of category theory allows us to talk about arrows� their sources
and targets and about their composition �
�� of arrows� but not about the
internal construction of sets and the nature of their elements� In particular�
we cannot talk about the application �f�x�� of a map to an element of a set
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nor about the way f�x� is evaluated� One might say that sets and arrows
are considered atomic particles of category theory and everything that is to
be said about sets and mappings must be expressed solely in terms of the
notion of composition� source and target�

To every object A� the existence of a particular identity arrow idA �some�
times written as �A� is postulated� Categorical language is too weak to ax�
iomatize it using an equation such as e�g� �idA�x� � x�� for this refers to
elements x inside the object A and to the application f�x� of f to x� In cat�
egorical language rather� idA must be characterized as an arrow satisfying�

� source�idA� � target�idA� � A
� for all morphisms f with source�f� � A we have f 
 idA � f � and
� for all morphisms g with target�g� � A we have idA 
 g � g�

Note that composition is to be read from right to left � in accordance with
traditional mathematical habit�

De�nition ���� A category C consists of a class Co of objects A�B�C� � � �
and a class Cm of morphisms or arrows f� g� h� � � � between these objects
together with the following operations


� dom � Cm � Co�
� codom � Cm � Co� and
� id � Co � Cm�

associating with each arrow its source �domain�� resp� its target � codomain��
and with every object A its identity arrow idA� Moreover there is a partial
operation �
� of composition of arrows� Composition of f and g is de�
�ned whenever codom�f� � dom�g�� The result is a morphism g 
 f with
dom�g 
 f� � dom�f� and codom�g 
 f� � codom�g�� The following laws
have to be satis�ed whenever the composition is de�ned


� �h 
 g� 
 f � h 
 �g 
 f�
� idA 
 f � f and g � g 
 idA�

������ Commutative Diagrams� Many notions have their origin in the stan�
dard example� the category of sets and mappings� so we borrow notions�
symbols and graphical visualizations from there� For instance� we write
f � A � B� if f is a morphism with dom�f� � A and codom�f� � B� We
use uppercase letters for objects and lower case letters for arrows�

It is convenient to draw objects as points and morphisms as arrows be�
tween these points� Such a representation is called a diagram� Often� compo�
sitions of arrows are not drawn � their presence is implied� A path of arrows
represents the composition of the arrows involved� Whenever there are two
di�erent paths from an object A to an object B that enclose an area� it is
often implied that their compositions are equal� One says that the diagram
�or parts of it � commutes� To emphasize this� a circle is sometimes drawn
inside the area whose bounding paths are assumed to commute�

Thus� associativity of composition and the property of the identity arrow
can be expressed as commutativity of the following diagrams�
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A
f ��

g�f ���
��

��
��

B

g

��

h�g

���
��

��
��

� A
f ��

f ���
��

��
��

B

�b
��

g

���
��

��
��

C
h

�� d B g
�� C

������ Examples� The category Set whose objects are all sets and whose
morphisms are all mappings between sets� forms the standard example of
a category� However� there are other� less familiar examples that ful�ll the
de�nition of a category�

Example ���� The category Rg of rings� whose objects are all rings� and
whose morphisms are all ring homomorphisms� Composition and identity
are de�ned as in Set�

Example ���� The category Rel whose objects are sets and whose mor�
phisms are binary relations between sets� Composition is relational product�
i�e� if A�B�C are sets and 	 � A � B and 
 � B � C morphisms� that is
	 � A�B� 
 � B � C then 	 
 
 � f�a� c� j �b��a� b� � 	� �b� c� � 
g�

Example ���� A partially ordered set P � �P��� can be viewed as a cat�
egory CP � whose objects are the elements of P and whose morphisms are
the pairs �p� q� � P � P for which p � q� The composition is obtained from
transitivity
 �p� q� 
 �q� r� � �p� r� and the identity morphism for p � P is
�p� p��

���� Special morphisms�

De�nition ���� Let f � A� B and g � B � A be morphisms� If g
f � idA
then g is called a left inverse of f and f is said to be left�invertible� In the
same situation� g is called right�invertible with right inverse f �
f � A� B is called an isomorphism if f is both left and right invertible�

It follows that the left�inverse and the right inverse of f agree� it is written
f���

Two objects A and B in a category are called isomorphic �we write A �� B�
if there exists an isomorphism A� B�

Isomorphy introduces an equivalence relation on the objects of a category�
Isomorphic objects cannot be distinguished in the language of category the�
ory � thus they are considered the same�

De�nition ��	� Let g � A� B be a morphism� g is called monomorphism�
�mono for short�� if g is left cancellable� that is if for any other morphisms
f� and f� we have g 
 f� � g 
 f� �� f� � f�� g is called epimorphism �or
epi� if it is right cancellable� that is for any other morphisms h� and h� we
have h� 
 g � h� 
 g �� h� � h��

We shall sometimes write f � A � B if f is mono and g � A� B if g is
epi�

Lemma ��
� In every category we have


�� every right�invertible morphism is epi
�� every left�invertible morphism is mono
�� compositions of monos are mono� compositions of epis are epi�
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De�nition ���� A functor F between categories C and D consists of two
maps

� Fo � Co � Do between the objects� and
� Fm � Cm � Dm between the morphisms of a category�

where Fm maps a morphism f � A � B from Cm to a morphism F �f� �
F �A�� F �B� from Dm so that composition and identity are respected� that
is


� Fm�g 
 f� � Fm�g� 
 Fm�f�
� Fm�idA� � idFo�A	�

Usually� the indices m and o to F are dropped� For our purposes it will be
enough to consider functors between a category C and itself� such functors
are called endofunctors�

Example ���� The power set functor P � Set� Set is given on objects as
the power set construction

P�X� � �X � fU j U � Xg

and on morphisms f � X � Y as

P�f��U� � f �U � �� ff�u� j u � Ug�

Example ���
� �AM��� The functor ����� � Set � Set is given on objects
as

A�
� � f�a�� a�� a�� � A� j jfa�� a�� a�gj � �g�

and on maps f � A� B as

f�� �a�� a�� a�� � �f�a��� f�a��� f�a����

Example ���� �Hypersystems��  P��� is de�ned on objects just like ���	�
but a morphism f � A � B is assigned to  P�f� � �B � �A with  P�f��S� �
f���S�� Unfortunately�  P is not really a functor� for the images of the mor�
phisms point in the wrong direction� However� by iterating the construction�
we obtain a functor  P  P � Set� Set� An element of  P  P�X� is a collection

of subsets of X� A map f � A� B is assigned to  P  P�f� � ��
A
� ��

B
� This

maps a collection G � �A to

 P  P�f��G� � fV � B j f���V � � Gg�

Example ����� A �lter on a set X is a collection G of subsets of X satis�
fying


�� X � G
�� U�� U� � G �� U� � U� � G
�� U � G� U � V � X �� V � G�

The �lter functor F associates to every set X the set of all �lters on X�
For every map f � X � Y � we let F�f� � F�X� � F�Y � associate to every
�lter G on X the smallest �lter on Y which contains all f �U � with U � G�

���� The Category of Sets� The category Set of sets has as objects all
sets and as morphisms all mappings between sets� If U � V we have the
natural inclusion map �V

U � U � V with domain U and codomain V mapping
each element of U to itself� Whenever domain and codomain are clear from
the context we drop the indices and use �hooked arrows� U �� V to indicate
the natural inclusion map�
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������ Epis and monos in Set�

Lemma ����� In the category Set we have the following equivalences 


�� Monomorphisms are exactly the injective mappings�
�� Epimorphisms are exactly the surjective mappings�
�� Isomorphisms are exactly the bijective mappings�

If f � A � B is a map and U � A� we denote by f �U � the image of
U under f that is f �U � �� ff�x� j x � Ug� f may be decomposed into
a surjective �i�e� epi� map g � A�f �A� and an injective �i�e� mono� map
given by the natural inclusion �� f �A� �� B� We say that every morphism
f � A � B in Set is epi�mono�factorizable as f � h 
 g with g epi and h
mono�

A
f ��

g �� ��C
CC

CC
CC

C B

f �A�
�

� h

����������

If � is an equivalence relation on the set A and if a � A� then let

�a�� � fx � A j �x� a� � �g

be the ��class of a� By A
� we denote the ��factor of A� i�e� A
� � f�a�� j
a � Ag� �� � A � A
� is the canonical projection de�ned as ���a� � �a���
For any map f � A� B we de�ne the kernel of f as

ker�f� � f�x� y� j x� y � A� f�x� � f�y�g�

Lemma ����� If f � A � B is an arbitrary mapping� then ker�f� is an
equivalence relation on A and f �A� �� A
ker�f��

In the sequel we shall assume the axiom of choice� It can be formulated
in the following way�

Axiom ��� �Axiom of Choice�� Every epimorphism in Set is right�invertible�

Thus epis and monos in Set can be characterized as�

Lemma ����� For a morphism f � A� B in the category Set we have

�� f is epi �� f is right�invertible
�� f is mono �� f is left invertible or A � ��

Corollary ���	� A functor F � Set � Set preserves epis and all monos
with nonempty domain�

In many relevant cases� functors F � Set � Set preserve inclusions� that

is F ��V
U � � �F �V 	

F �U	
whenever U � V � Such functors are called standard �

Standard functors preserve all monos� An example of a functor G � Set �
Set that is not standard is obtained by mapping the empty set to � ��f���g�
and each nonempty set to � ��f�g�� G will not preserve the monomorphism
�A
� � � � A�
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������ Diagram Lemmas for Set�

Lemma ���
 �First Diagram Lemma�� Let f � A � B and g � A � C be
mappings and C �� �� There exists a map h � B � C with h 
 f � g if and
only if ker�f� � ker�g�� If f is epi then h is uniquely determined�

A
f ��

g ���
��

��
��

B

h
���
�
�

C

The map h is said to complete the diagram given by f and by g� Dually�
the completion of a diagram given by two arrows with identical target can
similarly be characterized�

Lemma ���� �Second Diagram Lemma�� Let f � B � A and g � C � A
be maps� There exists a map h � C � B with f 
 h � g if and only if
g�C� � f �B�� If f is mono then h is uniquely determined�

A B
foo

C

g

		�������
h

OO�
�
�

������ Limits and Colimits� Let C be a category and D a diagram in C� that
is D is a collection �Di�i�I of objects and a collection �fk�k�K of morphisms
between the objects of �Di�i�I �

De�nition ����� �Cone� Limit� Given a diagram D� a cone over D will be
a single object L together with morphisms �i � L � Di for each i � I� so
that for every arrow fk � Di � Dj we have fk 
 �i � �j�

A cone �L� ��i�i�I� is called a weak limit of D� if for every other cone
�L�� ���i�i�I� over D there is a morphism � � L� � L so that ��i � �i 
 � for
every i � I� � is sometimes called a mediating morphism�
L � �L� ��i�i�I� is called the limit of D� if L is a weak limit and the

mediating morphism � � L� � L is always unique� The �i are called the
canonical morphisms�

L�

��i 

�
��

��
��

�

��UUU
UUUU

UUUU
UUUU

UUUU
UUU

� ��������� L

����
��
��
�� �j

���
��

��
��

�

Di
fk

�� Dj

Colimits are de�ned dual to limits� that is the concept is the same when
all arrows are reversed� To be precise� a co�cone S � �S� ��i�i�I� has arrows
� � Di � S� S is a weak colimit if for every competitor co�cone S� there is a
mediating morphism 
 � S � S� with 
 
 �i � ��i� S is the colimit of D� if
for every competitor co�cone S� the mediating morphism 
 is unique�

Limits and colimits� if they exist� are unique up to isomorphism� In the
category Set all possible limits and colimits exist� Set is called complete
and cocomplete for this reason�

Limits over a speci�c type of diagram often play important roles� so they
are given particular names as listed in the following table� We shall consider
some special types of diagrams�



ELEMENTS OF THE GENERAL THEORY OF COALGEBRASPRELIMINARY VERSION�


diagram type limit colimit
empty �nal object initial object
no arrows product sum
source pushout
sink pullback
parallel arrows equalizer co�equalizer

A diagram consisting of a collection of arrows� all with the same domain�
is called a source� Its dual� a sink� is a collection of maps with common
codomain� A source may also be considered as a cone over a diagram without
arrows� a sink as a co�cone�

� �


NN

N
source � �

��ppp ��


NN

N � sink � �
� �

��ppp

Commonly� the name �pullback� is only used for the limit of a sink with
just two arrows� or of �nitely many arrows � a similar remark applies to
pushouts� We shall have reason to consider limits of arbitrary sinks� We are
going to introduce the name ��pullback for a pullback of � many arrows�
They are often referred to in the literature as �generalized pullbacks��

Lemma ���
� Arbitrary limits and colimits exist in the category Set� In
particular


� initial object� The empty set � �� � is initial in Set� For every object
A� the empty map � is the unique morphism from � to A�

� �nal�terminal object� Each one�element set� e�g� � � f�g� is ter�
minal� For each object A� the constant map f�a� �� j a � Ag is the
unique morphism from A to ��

� sums� �i�IAi �
S
i�I�Ai � fig� � f�a� i� j a � Ai� i � Ig�

The canonical morphisms are the inclusions ei � Ai � �i�IAi with
ei�ai� � �a� i�� If I is �nite� e�g� I � f�� � � � � n � �g� we shall write
�i�nAi � A� � � � ��An���

� products� !i�IAi � f�ai�i�I j ai � Aig�
The canonical morphisms are the projections �j � !i�IAi � Aj de�ned
as �j��ai�i�I� � aj for all j � I� Again� !i�nAi is written as A� �
� � ��An���

� pullbacks� kernels � The pullback of two morphisms f � A � C
and g � B � C is given by the object pb�f� g� � f�a� b� � A � B j
f�a� � g�b�g with the canonical morphisms �� � pb�f� g� � C and
�� � pb�f� g�� C de�ned as ����a� b�� � a� ����a� b�� � b�
The pullback of a morphism f � A � C with itself is an equivalence
relation which is also known as the kernel of f � i�e�
 ker�f� � f�x� y� j
x� y � A� f�x� � f�y�g�

� pushouts� The pushout of two morphisms f � A� B and g � A� C
is given by the factor �B � C�
�� where � is the smallest equivalence
relation containing all pairs �f�a�� g�a�� with a � A� The morphisms
are pB � B � �B � C�
� with pB�b� � �eB�b��
� and pC analogously�

� equalizer� The equalizer of two morphisms f� g � A� C is given by
eq�f� g� � fa � Ajf�a� � g�a�g together with the embedding map into
A�
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� coequalizer� The equalizer of two morphisms f� g � A � C is ob�
tained as the obvious map �� � A� A
� where � is the smallest equiv�
alence relation on C containing all pairs �f�a�� g�a���

���� F �Coalgebras�

De�nition ����� A type is an endofunctor on Set� i�e� a functor F �
Set� Set�

We shall keep F �xed for the sequel� F is going to provide the type of
the co�algebras we are about to discuss� Other names that have been used
for a type F in this context are type constructor or interface�

De�nition ����� Let F be a type� A coalgebra of type F � also called F �
coalgebra or F �system� is a pair A � �A��A�� consisting of a set A and a
map �A � A � F �A�� A is called the base set �or state set� and �A is the
co�operation �or structure map� on A�

A

�A
��

F �A�

De�nition ����� Let A � �A��A� and B � �B��B� be F �coalgebras� A
homomorphism from A to B is a map � � A � B� for which the following
diagram commutes


A
� ��

�A
��

B

�B
��

F �A�
F ��	 �� F �B�

The identity map is always a homomorphism and the composition of two
homomorphisms is again a homomorphism� This is an immediate conse�
quence of the conditions de�ning a functor� Thus� for a given type F � the
class of all F �coalgebras forms a category which we shall denote with SetF �
Before studying this category� we shall collect a number of examples of coal�
gebras�

Example ���� �Self maps�� Let F � Id be the identity functor on Set� An
Id�coalgebra is a set A together with a self map � � A � A� A homomor�
phism from A � �A��� to B � �B� �� is a map � with � 
 � � � 
 ��

Example ���� �Sets�� Let � � f�g be a one�element set and F � Set �
Set the constant functor� which maps every set X to the one�element set
� �� f�g� For each morphism f � X � Y put F �f� � id�� We shall denote
this functor with �� ��coalgebras are simply sets and ��homomorphisms are
arbitrary set maps�

Example ���	 �Colorings�� Let " be a �xed set and F the constant functor
with F �X� � " and F �f� � id� for arbitrary sets X�Y and maps f � X � Y �
Interpreting " as a set of colors� an F �coalgebra A is a "�coloring of A and
an F �homomorphism is a color preserving map�



ELEMENTS OF THE GENERAL THEORY OF COALGEBRASPRELIMINARY VERSION��

Example ���
 �Partial maps�� Let F � �� Id be the functor assigning to
a set X the set ��X and to every map f � X � Y the map F �f� � id��f �
��Id�coalgebras correspond precisely to the partial self maps #�A �� A� A�
A homomorphism is a map � � A� B with

�� x � dom�#�A� �� ��x� � dom�#�B� and
�� � 
 #�A � #�B 
 ��

One often writes x � if ��x� � �� that is x �� dom�#��� Otherwise the notion
x � is used� The �rst condition can now be written as

����� x � �� ��x� ��

Example ���� �In�nite ��lists�� For a �xed set � choose F � � � Id�
An F �coalgebra is a set A� together with a pair of maps �� � A � � and
�� � A � A� An important example of such a � � Id�coalgebra is given by
A � ��� the set of all in�nite ��sequences where the structure map is given
by �A�
� � �head�
�� tail�
���

Example ���� �Finite and in�nite ��lists�� Finite and in�nite ��lists are
modeled as a coalgebra of the functor F � f�g��� Id� Let �� be the set
of all �nite and in�nite sequences of elements from �� i�e� �� � �� � ���
The co�operation is de�ned as ���� � � for the empty sequence � and as
��
� � �head�
�� tail�
�� for a nonempty sequence 
�

Example ���
 �Trees�� All imaginable variants of trees may be modeled as
coalgebras


�� In�nite binary trees � Coalgebras of Id� Id�
�� Nonempty binary trees with leaves of type � � Coalgebras of the functor

�� Id� Id�
�� Binary trees whose leaves contain data of type � and whose nodes

contain data of type " � Coalgebras of the functor ����Id�"�Id�
�� Finitely branching trees � Coalgebras for Id�� This functor associates

to a set A the set A� of all �nite lists of elements from A� On maps
f � A� B the functor is de�ned as f� � A� � B� given by

�a� f���� � �
�b� f���a � rest�� � �f�a� � f��rest���

	� Finitely and in�nitely branching trees of �nite or in�nite depth with
leaves of type � � Coalgebras for the functor � � Id�� Here Id� is
the functor� associating to a set A the set A� of all �nite and in�nite
sequences�

Example ���� �Bank account�� Assume that the methods deposit�amount	
and showBalance are de�ned for a class bank account


deposit 
 X � R � X
showBalance 
 X � R�
A bank account with these methods is a coalgebra for the functor F �X� �

XR � R� The structure map is of the form � � X � XR � R with ��� 

���x��r� � deposit�x� r� and �� 
 � � showBalance�

Example ���� �Deterministic transition systems�� For a �xed set � let F �
���� be the functor associating with a set A the set F �A� � A� � f
 j 
 �
� � Ag� A map f � A � B is associated to f� � A� � B� where
f��
� � f 
 
� An F �Coalgebra is a map �A � A � A�� Such a map
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corresponds uniquely to a map �A � A � � � A� that is to a deterministic
transition system


�A�a� s� � �A�a��s��

An F �homomorphism � � A � B is then a map with ���A�a� s�� � �B���a�� s��

Example ���� �Deterministic automata�� An automaton A � �A��� �� T �
with state set A� Alphabet �� transition function � and terminal states
T can be viewed as F �Coalgebra for the functor F � ���� � B where
B � ftrue� falseg� An F �coalgebra consists of a set A� which at the same
time carries the structure of a �����coalgebra and of a B �coalgebra� A ho�
momorphism needs to preserve both these structures�

Example ���� �Automata with output�� An automaton with output is a
structure A � �A���"� �� �� T �� where �A��� �� �� T � as above is an automa�
ton and � � A � " is an output function� Automata with output may
therefore be modeled as coalgebras for the functor F � ���� � B � "�

Example ���� �Relations�� The power set functor ���	 associates with a
set X its power set �X � fS j S � Xg and with a map f � A � B the

map �f � �A � �B with �f �S� � f �S� for each S � A� A ���	�coalgebra
is just a map � � A � �A� A homomorphism � � A � B must satisfy

�B���a�� � ���A�a���

The maps � � A � �A correspond uniquely to the maps � � A � A � ��
Those in turn correspond uniquely to the binary relations on A� Thus we
can view a ���	 coalgebra as a binary relation and vice versa


a� 	A a� �� a� � �A�a���

With this translation� we get the following conditions on homomorphisms
� � A� B


�� a� 	A a� �� ��a�� 	B ��a��� and
�� ��a� 	B b �� �x�A��a 	A x 	 ��x� � b�

It is customary to represent transitions by arrows� We write

a� �� a�

for a� 	A a�� We use the same type of arrow to represent 	A and 	B� It
is always clear from the context which of these relations the arrow is to
represent� In this notation the homomorphism conditions become


�� a� �� a� �� ��a�� �� ��a��� and
�� ��a� �� b �� �x�A��a �� x 	 ��x� � b��

Example ���	 �Nondeterministic transition systems�� These are sets with
a family of transitions� indexed by some set �� For each e � � the transition
	e is a binary relation� describing all permitted state transitions which the
system may perform on input e� A nondeterministic transition system is
therefore a system T � �S� �	e�e���� It may be viewed as a coalgebra of the
functor P����� Again� we indicate transitions by arrows� This time we label
them with e for each e � �� Here the homomorphism conditions are for each
e � �


�� a�
e
��a� �� ��a��

e
����a��� und

�� ��a�
e
��b �� �x�A��a

e
��x 	 ��x� � b��
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Example ���
 �Nondeterministic automata�� A nondeterministic automa�
ton with alphabet � is a coalgebra of the functor P���� � B � We de�ne the
abbreviation

a � ��� �����a�� � true�

then we must add to the homomorphism conditions for transition systems
the condition

�� a � �� ��a� ��

Example ���� �Hypersystems�� A hypersystem is a coalgebra of type  P  P�
With every element a � A is associated a collection ��a� of subsets of A�

Example ���� �Topological spaces�� Special examples of such hypersystems�
in fact coalgebras for the �lter functor� are obtained from topological spaces�
If X is a topological space then the map

x �� U�x��

which associates to every point x the system of all neighborhoods of X de�nes
an F coalgebra structure on X where F is the �lter functor �see example
������ Homomorphism between such structures are precisely the continuous
open maps� see �Gum��b��

��	� The category of F �coalgebras� In this subsection and in the rest of
this paper� A� B� and C will denote coalgebras on base sets A� B� and C� �
and � will denote homomorphisms and f � g ordinary maps�

Lemma ���
 ��Rut�
��� Let A� B and C coalgebras� � � A � C a homo�
morphism� f � A� B and g � B � C maps with � � g 
 f �

A
� ��

f ���
��

��
��

C

B

g

���������

�� If f is a surjective homomorphism� then g is a homomorphism�
�� If g is an injective homomorphism then f is a homomorphism�

Proof� In the diagram below� the back square commutes� for � is a homo�
morphism�

A
� ��

�A

��

f ��I
II

II
II

II
I C

�C

��

B

g

��uuuuuuuuuu

�B

���
�
�
�
�
�
�

F �A�
F ��	 ��

F �f	 ��G
GG

GG
GG

GG
F �C�

F �B�

F �g	

��wwwwwwwww
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Assume that f is a homomorphism� then the left front square commutes
too� A diagram chase yields�

�C 
 g 
 f � �C 
 �

� F ��� 
 �A

� F �g� 
 F �f� 
 �A

� F �g� 
 �B 
 f�

If f is surjective� we can cancel it on the right and we are done� For the
second statement� we �rst consider the case when B is empty� Otherwise�
corollary ���
 shows that F �g� is injective� hence also left cancellable� A
diagram chase yields

F �g� 
 �S 
 f � F �g� 
 F �f� 
 �A�

so we cancel F �g� to get the desired result�

If a homomorphism � is bijective� then it has an inverse map ��� with
id � ��� 
 �� so the lemma shows that ��� is in fact a homomorphism�

Corollary ����� A bijective homomorphism is an isomorphism�

Combining lemma ���� with the diagram lemmas in Set we get the cor�
responding diagram lemmas lifted to SetF �

Lemma ���� �First Diagram Lemma�� Let A� B� and C �� � be coalgebras�
� � A � B and � � A � C homomorphisms� There is a homomorphism
� � B � C with � 
 � � � i� ker��� � ker���� If � is epi then � is unique�

A
� �� ��

	 ���
��

��
��

B




���
�
�

C

Lemma ���� �Second Diagram Lemma�� Let A� B� C be coalgebras� � �
B � A and � � C � A homomorphisms� There is a unique homomorphism
� � C � B with � 
 � � � i� ��C� � ��B�� If � is mono then � is uniquely
determined�

A Boo�oo

C




OO�
�
�	

��AAAAAAAA

Given a coalgebra A and a set map f � A� S we shall use f to construct
a coalgebra on the set S� We emphasize that the construction will not turn
f into a homomorphism� Rather� whenever g is a map so that g 
 f is a
homomorphism� then g must be a homomorphism too�

Lemma ���� �Image Construction�� Let A be a coalgebra� S a set and f �
A�S an onto mapping� Then there exists a coalgebra structure �S on S� so
that for every coalgebra B and every map g � S � B we have
 If � � g 
 f
is a homomorphism� then so is g�
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A
� ��

�A

��

f
��I

II
II

II
II

I B

�B

��

S

g

��uuuuuuuuuu

�S

���
�
�
�
�
�
�

F �A�
F ��	 ��

F �f	 ��G
GGG

GG
GG

G
F �B�

F �S�

F �g	

��wwwwwwwww

Proof� f is onto� hence it has a right�inverse f� in Set with f 
 f� � idS �
De�ne �S � F �f� 
 �A 
 f

�� Since f is epi in Set� it is enough to show�
F �g� 
 �S 
 f � �B 
 g 
 f �

F �g� 
 �S 
 f � F �g� 
 F �f� 
 �A 
 f
� 
 f

� F ��� 
 �A 
 f
� 
 f

� �B 
 � 
 f
� 
 f

� �B 
 g 
 f 
 f
� 
 f

� �B 
 g 
 f�

The following lemma is dual to the above� After a separate consideration
of the case when S � �� the proof proceeds analogously�

Lemma ���� �Pre�image construction�� Let B be a coalgebra� S a set and
g � S�B an injective mapping� There is a coalgebra structure on S� so that
for every coalgebra A and for every map f � A � S we have 
 If � � g 
 f
is a homomorphism� then so is f �

Lemma ���	� Let � � A � B be a homomorphism of coalgebras� Let � �
g 
 f be an epi�mono factorization of � in Set with f � A�S and g � S�B�
Then there is a unique coalgebra structure � on S so that both f and g are
homomorphisms�

Proof� On S we �nd structures �� making f a homomorphism and a struc�
ture �� making g a homomorphism� It su�ces to show that necessarily
� � ���

A
f ��

�A
��

S
g ��

�

��
��

��

B

�B
��

F �A�
F �f	 �� F �S�

F �g	 �� F �B�

For S � � the claim is trivial� otherwise we calculate�

F �g� 
 � 
 f � F �g� 
 F �f� 
 �A

� F �g 
 f� 
 �A

� �A 
 g 
 f

� F �g� 
 �� 
 f
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We can cancel F �g� on the left and f on the right to obtain � � ���

The following lemma shows that di�erent epi�mono factorizations of the
same morphism will produce isomorphic coalgebras� so we may speak of the
epi�mono factorization of a given homomorphism�

Lemma ���
� Let A
�� �� �� S� �� 	� �� B and A

�� �� �� S� �� 	� �� B be epi�

mono factorizations in Set of the same homomorphism� Then the coalgebras
de�ned on S� and S� with respect to which all maps are homomorphisms are
isomorphic�

Proof� The First Diagram Lemma yields a homomorphism � � S� � S�
so that � 
 �� � ��� the Second Diagram Lemma yields a homomorphism
� � S� � S� with �� 
 � � ���

S�

�

��

�

��

	�



A
AA

A

A

�� ������

�� 

A
AA

A B

S�
	�

������

Clearly� � must be onto and � must be injective� A diagram chase yields

�� 
 � 
 �� � �� 
 ��

� �� 
 ��

� �� 
 � 
 ��

We can cancel �� on the right and �� on the left and get � � �� a bijective
homomorphism� i�e� an isomorphism�

Theorem ����� Every homomorphism � � A � B in SetF has a unique
epi�mono factorization in SetF as A � ��A� � B� The coalgebra ��A� is
called the image of ��

��
� Exercises�

Exercise ��� �Preimage construction�� Prove lemma �����

Exercise ��� �Sums in a category�� If in a category C the sum �i�I Ai of
a family of objects �Ai�i�I exists� then the injections ei � Ai � �i�I Ai are

jointly epi� that is to say
 If ��i�I Ai�
f ��
g

�� B and if for all i � I we have

f 
 ei � g 
 ei� then f � g�

Exercise ��� �Characterization of epis��

�� Show that in an arbitrary category C a morphism f � A � B is epi if
and only if the following diagram is a pushout


A
f ��

f
��

B

idB
��

B
idB

�� B
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�� Show that in every category C pushouts of epis are epi� i�e� if in the
following pushout�diagram f is epi� then so is p��

A
f ��

g

��

B

p�
��

C p�
�� P

�� Show that in the category of Sets pushouts of monos are mono� that is�
if in the above diagram f is mono� then so is p��

Exercise ���� Show that the arrows in a limit cone are jointly mono� that
is
 If L � �L� ��i�i�I� is a limit� and if f� g � A � L are morphisms with
�i 
 f � �i 
 g for all i � I� then f � g�

Exercise ���� Show that the �rst diagram lemma in Set is equivalent to
the statement
 �Every morphism in Set is a coequalizer	�

Exercise ��	 �Homomorphisms�� Let N be the set of natural numbers and
N� the set of all countable sequences of natural numbers� Consider FN de�
�ned on sets as

FN�X� � N �X�

and for every map f � X � Y as

FN�f��n� x� � �n� f�x�� for x � X�n � N�

�� Show that FN is a functor�
�� Show that N� � �N� � �h� t�� where �h� t���ai�i��� �� �a�� ��ai���i����

and N � �N� �� with ��n� � �n� n� �� are FN�coalgebras�
�� Given FN�coalgebras A � �A��A� and B � �B��B�� and a map � �

A� B� when is � a homomorphism�
�� Describe the unique homomorphism � � N � N� as a functional pro�

gram�
	� Show that for every FN�coalgebra A there is precisely one homomor�

phism � � A � N� �

�� Derived structures

���� Sums� We start constructing the sum of two coalgebras A and B�
Consider the following diagram� where A�B denotes the disjoint union of
A and B� eA and eB the canonical embeddings�

A

�A
��

e� �� A�B

�A�B
���
�
� B

�B
��

e�oo

F �A�
F �ei	 �� F �A�B� F �B�

F �e�	oo

The map �A�B is uniquely given by the universal property of the sum A�B
in Set� Thus there is a unique structure map �A�B on A � B turning e�
and e� into homomorphisms�

The same construction works for an arbitrary family of coalgebras and
the resulting coalgebra is in fact the sum in the category SetF ��Rut�
���
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Lemma ���� For every family �Ai� �i�i�I of coalgebras there exists the sum
�i�IAi� Its carrier set is the disjoint union �i�IAi �

S
i�If�a� i� j a � Aig

of the Ai� Its structure map � � �i�IAi � F ��i�IAi� is given by ��a� i� �
F �ei���i�a�� where the ei � Ai � �i�IAi are the canonical embeddings given
by ei�a� � �a� i�

Proof� First� � is constructed as before� It remains to show that the con�
structed coalgebra is indeed the sum of the �Ai� �i� in the category SetF �
Let B with morphisms �i � Ai � B be a �competitor� of the sum� then
there is exactly one mapping � � �i�IAi � B with � 
 ei � �i� It remains
to show that � is a homomorphism� In the following diagram all triangles
and all squares of solid arrows commute�

Ai
ei ��

�i

��

�i
��J

JJ
JJ

JJ
JJ

J �Ai

�

��

	
yys
s
s
s
s

B

�B

��

F �Ai�
F �ei	 ��

F ��i	 ��H
HH

HH
HH

HH
F ��Ai�

F �		zzt t
t
t
t

F �B�

If we consider the family of maps F ��i� 
 �i � Ai � F �B� there must exist
precisely one map h � �i�IAi � F �B� with F ��i� 
 �i � h 
 ei� With
�B 
 � and F ��� 
 � we have two candidates for h� so they must be equal�
Consequently� � is a homomorphism�

���� Colimits� Sums are special colimits� Other important colimits are
pushouts and coequalizers� All colimits in SetF have an easy representation�

Theorem ��� ��Bar����� Every colimit exists in SetF � Base set and mor�
phisms are identical with the corresponding colimit �in Set� of the underlying
sets�

Let D be a diagram in SetF � Let C with maps ��i�i�I � Di � C be
the colimit of D in Set� For every morphism � � Di � Dk in D we have
�k 
 � � �i� F �C� with maps F ��i� 
 �i is a competitor for the colimit C
in Set� thus there is a unique structure map �C � C � F �C� turning all �i
into homomorphisms�
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Di


i

zzuu
uu
uu
uu
uu �

��
�i

��

C

�C

���
�
�
�
�
�
� Dk
k

oo

�k

��

F �Di�
F �
i	

zzvvv
vv
vv
vv F ��	

��
F �C� F �Dk�

F �
k	
oo

The so constructed coalgebra C � �C��C� together with homomorphisms
�i is in fact the colimit of D in SetF � To see this� consider an object E
with homomorphisms �i � Di � E in SetF � The colimit property of C in
Set yields a unique map � � C � E with � 
 �i � �i� Since F �E� with
maps �E 
 �i is another co�cone over D and both �E 
 � and F ��� 
 �C are
universal arrows from C to F �E�� they must be identical� This means that
� is a homomorphism�

Di


i

zzuu
uu
uu
uu
uu �

��

�i

��

�i �� E

�E

��

C

�

��fffffffffffffffff

�C

���
�
�
�
�
�
� Dk

�k

��uuuuuuuuuu


k
oo

�k

��

F �Di�
F ��i	 ��

F �
i	

zzvvv
vv
vv
vv

��

F �E�

F �C�

F ��	

��fffffffffffffff
F �Dk�

F ��k	

��uuuuuuuuu

F �
k	
oo

������ Pushouts� One particular colimit will be of importance in the sequel�
Let �i � A � Bi be homomorphisms for i � �� �� The colimit of this diagram
is called the pushout of the �i� It can be constructed as follows� On the
disjoint union B��B� consider the smallest equivalence relation containing
all pairs ����a�� ���a�� with a � A� Now P �� �B� � B��
� together with
the maps ei � Bi � P de�ned by ei�a� � �a�� is the pushout of �� and ���

������ Coequalizers� Coequalizers of two parallel homomorphisms Let ��� �
A � B are constructed similar to their pushout� except that the equivalence
relation �� generated by f���a�� ��a�� j a � Ag is constructed directly on
B� rather than on B � B� The pushout is� as in Set� given by the map
�� � B � B
� with ���b� � �b���

���� Substructures�

De�nition ���� A coalgebra S � �S� �S� is called subcoalgebra �or sub�
structure� of A � �A��A�� if S � A and the canonical inclusion map S �� A
is a homomorphism� We write

S � A
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if S is a subcoalgebra of A�

If S is any subset of the carrier set of the coalgebra A� then a structure
map �S � S � F �S� making �S� �S� a subcoalgebra of A is required complete
the following diagram�

S

�S
���
�
�

� �� A

�A
��

F �S�
F ��	 �� F �A�

If S � � then �S is the empty map� Otherwise� F ��� is injective �Corollary
���
�� so it follows from the Second Diagram Lemma for Set ������� that
�S � if it exists� is uniquely determined� Therefore� the structure map on a
subcoalgebra is uniquely determined by its base set�

Still� not every subset of the carrier set of a coalgebra A quali�es as carrier
set of a subcoalgebra� We therefore call a subset S � A closed if there exists
a structure map �S so that �S� �S� � �A��A��

The empty set � is clearly closed� For S �� �� we read from the above
diagram� using the Second Diagram Lemma�

Lemma ���� A subset S of a coalgebra A � �A��A� is closed i� for every
s � S there is some u � F �S� with �A�s� � F ��A

S ��u��

In the case where the functor F is standard �see page �
�� the criterion
simpli�es to

S is closed �� �A�S� � F �S��

Theorem ���� yields immediately�

Lemma ���� A subset S � A of the coalgebra A is closed if and only if
there is a coalgebra P and a homomorphism � � P � A with S � ��P ��

Since a closed set uniquely speci�es a subcoalgebra� we shall often just use
the term �subcoalgebra� in place of �closed subset�� The following result is
originally proven in �Rut�
� for functors preserving weak pullbacks�see page
	��� Using the above lemmas� we can prove it for arbitrary functors�

Lemma ��	� Let � � A � B be a homomorphism and S � A a subcoalgebra
of A� Then ��S�� the image of S under � is a subcoalgebra of B�

Proof� The epi�mono factorization of the homomorphism � 
 � in Set as
� 
 ��S together with theorem ���� yields that ��S� is a subcoalgebra of B�

A
� �� B

S
��

	

OO

��S �� ��S�
��

	

OO

If � � A � B is an injective homomorphism� then A �� ��A�� thus A
is isomorphic to a subcoalgebra of B� Since we don�t distinguish between
isomorphic structures we shall simply say that A is a subcoalgebra of B� An
injective homomorphisms is therefore called an embedding� In particular� in
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a sum �i�IAi every summand Ai is a subcoalgebra of the sum� The fact
that sums in Set and in SetF agree is responsible for the following important
fact�

Theorem ��
� The union of a family of subcoalgebras is a subcoalgebra�

Proof� Let �Si�i�I be a family of subcoalgebras� From the sum �i�ISi there
is a unique homomorphism � to A so that � 
 ei � �i� But �i�ISi is at
the same time the sum of the Si in Set� so �� as a map� must agree with
the unique map in Set with the above equations� that is ���s� i�� � �i �s��
Hence ��S� � �i�ISi�

�Si
�

��E
EE

EE
EE

EE
�� �Si� �

��
Si

ei

OO

� �

	i
�� A

Corollary ���� Let A be a coalgebra and S a subset of A� Then there is a
largest subcoalgebra of A contained in S� It is denoted by �S� and called the
subcoalgebra of A co�generated by S�

Corollary ���� The substructures of a coalgebra A form a complete lattice
Sub�A�� For a family �Si�i�I of subcoalgebras of A their supremum

W
Si

and their in�mum
V
Si exist andW

Si �
S
SiV

Si � �
T
Si��

������ Glued sums� Let A and B be coalgebras with a common subcoalgebra
S� We form the pushout A �S B of the embeddings e� � S � A and
e� � S � B� It is easy to see that the pushout in Set can be formed
by �glueing� a copy of A and of B over the common subset S� that is
A �S B � �A � S� � S � �B � S�� Theorem ��� implies that the maps
p� � A� A�S B and p� � B � A�S B are embeddings� Thus A�S B is a
coalgebra with subcoalgebras A and B� whose union is A �S B and whose
intersection is S�

���� Homomorphic images� congruences� factors�

De�nition ���
� A coalgebra B is called a homomorphic image of a coal�
gebra A� if there is a surjective homomorphism � � A�B�

We have seen that the unique epi�mono factorization of an arbitrary ho�
momorphism � � A � B yields a unique homomorphic image ��A� which is
at the same time a subcoalgebra of B�

In the category Set� the homomorphic image f �S� of S can be obtained
by factoring S by the kernel of f � i�e� f �S� �� S
ker�f�� see lemma �����
Kernels of coalgebra homomorphisms are special equivalence relations� We
de�ne�

De�nition ����� An equivalence relation � on A is called a congruence
relation� if it is the kernel of a homomorphism � � A � B for some coalgebra
B�
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Lemma ����� For an equivalence relation � on a coalgebra A� the following
are equivalent


�� � is a congruence relation
�� There is a �unique� structure �� on A
� for which �� � A � A
�

de�ned as ���a� �� �a�� is a homomorphism�
�� � � ker�F ���� 
 �A�

Proof� Let � be the kernel of � � A � B� Factor � into #� � A � ��A� �
B� There is a bijection f � A
� � ��A�� With the image construction
�lemma ����� we equip A
� with a �unique� structure so that f becomes an
isomorphism� Hence �� � f�� 
 #� is an epimorphism�

Similarly� all other claims are direct consequences of the �rst diagram
lemma �����

Another direct consequence of the First Diagram Lemma is�

Lemma ����� If � and � are congruences� then � � � i� there exists a
homomorphism A
� � A
� with � 
 �� � ���

De�nition ����� Let � be a congruence relation on the coalgebra A� The
factor A
� together with the unique structure map �� is called the factor
coalgebra A
�� The surjective homomorphism �� � A � A
� is called the
canonical projection from A onto A
�� The �unique� homomorphism of the
previous lemma is usually denoted as �����

Theorem ���� �Isomorphism Theorem�� Every homomorphism � � A �
B can be decomposed in SetF as � � � 
 � 
 �� where � � ker��� and �
is an isomorphism� In particular� every homomorphic image is isomorphic
to a factor�

A
��

��II
III

III
II

�ker���





� �� B

f �A�

	

��uuuuuuuuuu

A
ker���


�

OO �

HH

Thus we can get an overview of all possible homomorphic images of a
coalgebra A by determining all congruences on A� using e�g� lemma �����

The set of all congruence relations on a coalgebra A is ordered by set
inclusion� In fact we get�

Lemma ���	� Let ��i�i�I be a nonempty family of congruences on A� Then
the supremum of the �i exists and it is given by�

i�I

�i �� �
�
i�I

�i�
��

the transitive closure of the union of all �i�

Proof� $ �� �
S
i�I �i�

� is the smallest equivalence relation containing all �i�
The canonical maps ��i�� � A
�i � A
$ constitute the pushout of the ��i
in Set� Since the ��i are homomorphisms� the pushout is the same in SetF �
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so % � ker���i�� 
 ��i� is a congruence too� It is easy to check that it is� in
fact� the supremum�

The supremum over the empty index set� i�e� the smallest congruence�
exists too� it is &A � ker�idA�� For any re'exive relation R � A�A we can
therefore form the supremum over all congruence relations �i contained in
R� It will be called the congruence co�generated by R and denoted Con�R��
We now have�

Theorem ���
� The set of all congruences on a coalgebra A is a complete
lattice� The supremum is given byW
i�I �i � �

S
i�I �i�

�� and the in�mum byV
i�I �i � Con�

T
i�I �i���

The smallest element of the lattice of all congruences on A is trivial� i�e�
&A� The largest element� however� will in general be a proper subset of
A�A� Its factor has the following uniqueness property�

Theorem ����� If � is the largest congruence on A then for every coalgebra
B there is at most one homomorphism � � B � A
��

Proof� Assume there were two di�erent homomorphisms ��� �� � B � A
��
Let � � A
� � C be their coequalizer� Then the kernel of �� 
 ��� � A� C
properly contains ��

��	� Exercises�

Exercise ���� Let � � A � B be a homomorphism that is not onto� Find
two homomorphisms �� and �� with �� 
 � � �� 
 � but �� �� ���

	� Bisimulations and ��simulations

Relations compatible with the coalgebra structure are called bisimula�
tions� The name goes back to the special case of transition systems� If a
state s� of a transition system S� can simulate a state s� in another tran�
sition system S� and vice versa� then the pair �s�� s�� is called bisimilar� A
bisimulation is de�ned as a particular collection of such bisimilar pairs�

De�nition ���� Let A and B be coalgebras� A relation R � A�B is called a
bisimulation between A and B� if there exists a structure map � � R� F �R�
so that the projections �� � R � A and �� � R � B are homomorphisms
with respect to the structure �R� ��� A bisimulation on A is a bisimulation
between A and A�

Thus� a bisimulation between A and B is a binary relation R � A � B�
for which there exists a map �� making the following diagram commutative�

A

�A
��

R
��oo

�

���
�
�

�� �� B

�B
��

F �A� F �R�
F ���	oo F ���	 �� F �B�
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	����� ��sources and ��simulations� A bisimulationR between A and B gives

rise to a coalgebra R and two homomorphisms A
��
�� R

��
�� B� Such a

diagram will be called a ��source� In general we de�ne for any ordinal ��

De�nition ���� A ��source is a coalgebra P together with a family ��k�k��
of homomorphisms �k � P � Ak� A ��simulation between coalgebras �Ak�k��
is a subset R � !k��Ak of the cartesian product of the Ak� on which a coal�
gebra structure can be de�ned so that all projections �k � R � Ak become
homomorphisms�

Clearly� ��simulations are just bisimulations� Slightly more interesting is
the observation that ��simulations are just closed subsets �i�e� subcoalge�
bras�� Therefore we might consider bisimulations as ��dimensional versions
of subcoalgebras� Indeed� the relevant properties found for subcoalgebras
carry through� in particular�

Theorem ���� Let �P� ��k�k��� be a ��source� then !�k�P � �� f��k�p��k�� j
p � Pg is a ��simulation�

The set !�k�P � from the above theorem will be called the canonical ��
simulation for the ��source �P� ��k�k����

Proof� In the category Set� the product of the sets Ak exist� it is the cartesian
product !k��Ak together with the canonical projections �k� The ��source is
a competitor of this product� and !�k � P � !Ak is the unique mediating
map into the product� !�k�P � is just the image of this map� By the image
construction �lemma ����� we �nd a coalgebra structure � on this image so
that all projections become homomorphisms� i�e� !�k�P � is a ��simulation�

P

�k ��F
FF

FF
FF

FF
��k�� !�k�P �

�k
���
�
�

� � � �� !kAk

zzttt
ttt

ttt
t

Ak

Theorem ���� A subset S � !Ak is a ��simulation if and only if there is
a ��source �P� ��k�k��� with S � �!�k��P ��

Corollary ��� ��Rut�
��� If R is a bisimulation between A and B then R�

is a bisimulation between B and A�

The above theorem is the ��dimensional analog of lemma ��	� The corre�
sponding analog of theorem ��
 is�

Theorem ��	� The union of a family of ��simulations is a ��simulation�

Proof� Let Ri � !k��Ak be a ��simulation for each i � I� Then each
Ri can be given a coalgebra structure so that �Ri� ��

i
k�k��� is a ��source�

Consider the sum of these coalgebras� �i�IRi� For every k � � there is a
unique homomorphism �k � �i�IRi � Ak with �k 
 ei � �ik for every i � I�
From the sum �i�IRi to the product �in Set� !k��Ak we have �rstly the
product map � �� !k���k� whose image is a ��simulation by theorem 	��
and secondly the sum map 
 � �i�I �i whose image is the union �i�IRi of
the Ri� All that is left to do is showing the equality of these two maps�
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�Ri

�k

��

	

��F
FF

FF
FF

F

� ��F
FF

FF
FF

F
�� �� �

�

��
Ri

� �

�i
��

ei

OO

�ik
��

!Ak

�k��xx
xx
xx
xx

Ak

For every i � I and every k � � we have�

�k 
 � 
 ei � �k 
 ei

� �ik
� �k
 �i

� �k 
 
 
 ei�

We are done now� since we can cancel the �k�s on the left �see exercise ����
and the ei�s on the right�

Corollary ��
� Let �Ai�i�� be a family of coalgebras and S � !i��Ai�
There is a largest ��simulation contained in S� We call it the ��simulation
cogenerated by S and denote it as �S��

Since the empty set is always a ��simulation� and the set of all ��simulations
is union�closed� we get�

Corollary ���� For a family �Ak�k�� of coalgebras the set of all ��simulations
between the �Ak�k�� forms a complete lattice withW
i�I Ri �

S
i�I Ri� andV

i�I Ri � �
T
i�I Ri��

	��� Bisimulations and homomorphisms� On the one hand� bisimula�
tions are ��dimensional versions of subcoalgebras� but at the same time� they
are also generalizations of homomorphisms as the following theorem states�

Theorem ��� ��Rut�
��� Let A and B be coalgebras and f � A� B a map�
f is a homomorphism if and only if the graph of f � i�e� G�f� � f�x� f�x�� j
x � Ag is a bisimulation�

Proof� Let � � A � B be a homomorphism� For the ��source A
idA�� A

�
��

B� the canonical bisimulation is �id � ���A� � f�a� ��a�� j a � Ag� which
is the graph of �� Conversely� if the graph G�f� of a map f � A � B is a
bisimulation� then �� � G�f� � A is bijective� hence an isomorphism and
f � �� 
 �

��
� must be a homomorphism�

Corollary ���
� For every coalgebra A� the diagonal &A � f�a� a� j a � Ag
is a bisimulation� S � A is closed i� &S is a bisimulation on A�

According to corollary 	�
� for every pair A�B of coalgebras there is a
largest bisimulation between A and B� We denote it by �A�B� or by �A� in
the case A � B� From the above lemmas it follows immediately� that �A is
re'exive and symmetric� We shall see that it is not necessarily transitive�

The following theorem is a useful characterization of the largest bisimu�
lation �A�B between two coalgebras A and B�
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Theorem ����� �x� y� ��A�B i� there is a coalgebra P and homomorphisms
�� � P � A and �� � P � B so that for some p � P we have
 x � ���p�
and y � ���p��

	��� Bisimulations and congruences� Sub�coalgebras are ��simulations�
homomorphisms are special bisimulations� Congruences� as subsets of the
cartesian product� should be related to bisimulations too�

De�nition ����� A bisimulation equivalence on a coalgebra A is a bisimu�
lation between A and A� which is at the same time an equivalence relation�

Theorem ����� Every bisimulation equivalence is a congruence relation�

Proof� Let � be an equivalence relation on A� The coequalizer �in Set � of the
projections ��� �� � � � A is just A
� with the map �� � A � A
� de�ned
by ���a� � �a��� If � is a bisimulation� then �� and �� are homomorphisms�
so by theorem ��� the same map �� � A� A
� is the coequalizer of �� and
�� in SetF � Its kernel is �� so � is a congruence relation�

The converse of this theorem is not true in general� that is� not every con�
gruence relation needs to be a bisimulation� We shall give a characterization
of functors F whose coalgebras satisfy this extra property in section �� For
now we produce a counterexample from the functor F � ������ see �����

Example ����� Consider the ������coalgebra on the set A � f�� �g with
���� � ��� �� �� and ���� � ��� �� ��� Apparently� A � A is a congruence
relation� but not a bisimulation� for the structure map � on A � A would
have to map ��� �� to a triple ��x�� y��� �x�� y��� �x�� y��� so that �x�� x�� x�� �
F ������x�� y��� �x�� y��� �x�� y��� � ���� � ��� �� �� and at the same time
�y�� y�� y�� � ��� �� ��� It follows immediately that ��x�� y��� �x�� y��� �x�� y��� �
���� ��� ��� ��� ��� ���� but this element is not in F �A�A��

We have seen that on every coalgebra A there is a largest bisimulation�A
and a largest congruence relation con�A � A�� What is their relationship�
The answer is given by the following lemma�

Lemma ����� For every bisimulation R there is a smallest congruence re�
lation hRi containing R�

Proof� Consider R as a coalgebra with projections ��� �� � R � A� Let �
be the coequalizer of �� and ��� Then ker��� contains R and it is obviously
the smallest congruence relation with this property�

	��� Epis and monos in SetF � A morphism which is epi �mono� in Set is
trivially also epi �mono� in SetF � For epis the converse also holds� In fact
this could be seen already from exercise ���� but we shall give the standard
proof� The story is di�erent for monos� and we shall see that monos in SetF
need not be injective�

Theorem ���	 ��Rut�
��� Let � � A � B be a homomorphism�

�� � is epi in SetF i� it is epi in Set� i�e� surjective�
�� If � is mono in Set� it is mono in SetF �

Proof� In each category it is the case that � � A� B is epi i� the following
diagram is a pushout� According to theorem ��� this is the case if and only
if it is a pushout in Set�
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A

�

��

� �� B

idB
��

B
idB �� B

Indeed� monos need not be injective� The following theorem points out
the di�erence �

Theorem ���
� �GS��a� A homomorphism � is mono if and only if �ker���� �
&A�

Proof� Assume that � � A � B is mono� Let ��� �� � ker��� � A be the
canonical projection maps� Let #��� #�� � �ker���� � A be their restrictions to
the coalgebra �ker����� Now #�� and #�� are homomorphisms and � 
 #�� �
� 
 #��� hence it follows #�� � #��� that is� �ker���� � &A�

Conversely� assume that �ker���� � &A and assume that there are homo�
morphisms ��� �� � P � A with � 
 �� � � 
 ��� For every element p � P
we have ���p� � ���p�� hence ����p�� ���p�� � �ker����� so �� � �� and � is
mono�

Corollary ����� A homomorphism � � A � B is an injective map i� � is
mono and ker��� is a bisimulation�

	��� Exercises�

Exercise ��� �Automata as coalgebras�� For �xed sets � and " consider
the functor

F�
� �X� � X� � "��

�� Explain how F�
� acts on maps f � X � Y and show that F�

� becomes
a functor�

�� What is the correspondence between F�
� �coalgebras and deterministic

automata with output�

�� We write a
e�g
�� b� if on input e the automaton moves from state a to

state b and outputs g� Express the conditions under which � � A � B
is a homomorphism and describe them in terms of ���

�� Characterize subcoalgebras and congruence relations of F�
� �coalgebras�

Exercise ��� �Nondeterministic Automata�� We consider nondeterminis�
tic automata �Example ������

�� Prove the homomorphism conditions as stated there�

�� Characterize bisimulations between coalgebras A and B in terms of
e
���

Exercise ���� For the functor F � ������ �nd two coalgebras A and B
and a homomorphism � � A � B which is both epi and mono� but not an
isomorphism�


� Existence of Limits

For limits the situation is not as easy as with colimits� Limits may exist�
but their carrier set and their morphisms in general will not come from the
corresponding limits in Set�
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��� Equalizers� We start with a positive result that essentially goes back
to Worrell��Wor�����

Theorem 	��� The equalizer of parallel morphisms A
� ��
	

�� B exists in

SetF � It is given as E��	 �� � fa � A j ��a� � ��a�g ��

Proof� Let D with morphism � � D � A be a competitor of E��	� Then
��D� � fa � A j ��a� � ��a�g and ��D� is a subcoalgebra of A� hence
��D� � E��	� The Second Diagram Lemma yields a mediating morphism
from D to E��	�

E��	
	 �� A

� ��

	
�� B

D

OO�
�
� �

�����������

Thus� in general the carrier set of the equalizers of � and � can be a proper
subset of fa � A j ��a� � ��a�g� which would be their equalizer in Set�


��� Products� Worrell shows in �Wor��� that the product of a family
�Ai�i�I of coalgebras exists� provided that the functor F is �bounded� and
�preserves weak pullbacks�� We shall de�ne and study these conditions in
the later sections� A careful analysis of his proof� which mainly rest on
a result in �Bor���� shows that �preservation of weak pullbacks� is not re�
ally required� Putting together all necessary ingredients from the proof in
�Bor��� becomes extremely complicated and involved� In �GS��b�� see also
page ��� we o�er an elementary proof of this result� of which the following
is the main observation�

Theorem 	�� ��GS��b��� Let the product A of a family �Ai�i�I of coalge�
bras exist� and let Bi � Ai for each i � I� Then the product of the Bi exists
and it is a subcoalgebra of A�

Proof� Let A with projections �i � A � Ai be the product in SetF of the
Ai� Put

B ��
�
fS j S � A�
i�I ��i�S� � Big�

It is straightforward to check that B with the restrictions of the �i to B�
that is #�i � �i 
 �B � is the product of the Bi�


��� Limits preserved by functors� The situation is even easier� if the
functor F preserves a particular type of limit� In that case the corresponding
limit exists and is formed as in Set�

For instance� the functor F � ���� is easily seen to preserve products�
for F �A� � A�� �� F �A�� � F �A�� and for �i � A� � A� � Ai we have
F ��Ai� � �F �Ai	� In this case� the product of the F � coalgebras� i�e� the
transition systems �A�� ��� and �A�� ��� has as base set A� �A�� From the
fact that �� and �� are homomorphisms it follows that the structure map is
given as �� in the �rst component and �� in the second�
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Theorem 	�� ��Rut�
��� SetF has all limits which are preserved by F � The
base set and the canonical morphisms agree with those obtained in Set by
forming the corresponding limit of the base sets�

Proof� Let D be a diagram in SetF � Let C with maps ��i�i�I be the limit
of D in Set� Since F preserves the limits of diagram D� we get that F �C�
with morphisms F ��i� � F �C� � F �Di� is the limit of F �D�� Now C with
morphisms �i 
 �i is a competitor for F �C�� This yields a unique structure
map �C � C � F �C�� with respect to which all �i become homomorphisms�

Di

�

��
�i

��

C


i

��uuuuuuuuuu

k

��

�C

���
�
�
�
�
�
� Dk

�k

��

F �Di�
F ��	

��
F �C�

F �
i	
��vvvvvvvvv

F �
k	
�� F �Dk�

The constructed coalgebra �C��C � with homomorphisms �i is in fact the
limit of D in SetF � To see this� consider an object E with homomorphisms
�i � E � Di in SetF � According to the limit property of C in Set there is
exactly one map � � E � C with �i 
 � � �i�

Since E with maps �i 
 �i is also a cone over F �D� and since both �C 
 �
and F ���
�E are universal arrows from E to F �C�� they must be identical�
This means that � is a homomorphism�

Di
�

��

�i

��

E

�E

��

�ioo

�kzzuu
uu
uu
uu
uu

�

ssf f f f f f f f f f f f f f f f f

C


i

��uuuuuuuuuu

k

��

�C

��

Dk

�k

��

F �Di�

��

F �E�
F ��i	oo

F ��k	zzuuu
uu
uu
uu

F ��	

ssf f f f f f f f f f f f f f f

F �C�

F �
i	
��vvvvvvvvv

F �
k	
�� F �Dk�


��� Final coalgebras� An object P in a category C is called �nal �or
terminal�� if for every object A in Co there is precisely one morphism �A �
A� P�

A �nal object� if it exists� is the limit of the empty diagram i�e� the
product over the empty index set� Analogously� an object I is called initial�
if for every object A there is precisely one morphism �A � I � A� An initial
object� if it exists� is the sum over the empty index set�
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In Set� the �nal object is the one�element set �� When F is the power set
functor� however� one can easily see that there is no way to de�ne a transition
structure on � turning this set into the �nal object in the category SetF �

This argument does not yet exclude SetF from having a �nal object� So
far we only know that it would need to have more than one element� In fact�
the same argument is true for P�� the functor� assigning to every set S the
set of all �nite subsets of S� On mappings� P� acts just like the power set
functor ��� The category SetP� does possess a �nal object� whereas Set����
does not�

A good intuition as to the nature of elements in the �nal coalgebra P is
given by the following theorem� It states that for every a � A � SetF there
is exactly one bisimilar element in P�

Theorem 	��� If the �nal coalgebra exists� then for every A � SetF and
every a � A there exists precisely one element ��a� in the �nal coalgebra
with a � ��a��

Proof� Given A� there is a �unique� homomorphism � � A � P� so a �
��a�� Let p � P be any other element with a � p� Then there exists
some Q � SetF � homomorphisms � � Q � A and � � Q � P� and an
element q � Q with ��q� � a and ��q� � p� Now both � 
 � and �
are homomorphisms from Q to P� so they must be identical� in particular�
��a� � �� 
 ���q� � ��q� � p�

Corollary 	��� No two di�erent elements x and y in the �nal coalgebra P
are bisimilar� that is �P� &P �

This can also be written as a proof principle which will be the basis for
the proof method known as co�induction�

�Whenever two elements are bisimilar� they must be equal��

x � y

x � y

We shall discuss this principle in connection with the notion of simple
coalgebras� First� we shall look at some examples of �nal coalgebras�


����� Examples of �nal coalgebras� In Set� the empty set � � � is initial
and the one�element set � � f�g is �nal� In SetF � the initial object always
exists� it is the empty coalgebra � � ��� ��� The �nal coalgebra need not
exist�

Example 	�	� For the identity�functor Id we have
 � � ��� id�� is �nal in
SetId�

Example 	�
� Let � be a �xed set� For the functor �� Id� the coalgebra
�� � ���� hd � tl� is �nal� Here �� is the set of all in�nite sequences of
elements of �� The structure map associates to every sequence 
 � �si�i��
the pair consisting of its head s� and its tail �si���i���

Example 	��� For the functor � � Id � �� the �nal coalgebra consists of
��� the set of all �nite and in�nite sequences� The structure is de�ned as
��
� � �hd�
�� tl�
��� if 
 �� �� and ��
� � � otherwise�
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Example 	��� For Id�Id� the �nal coalgebra is the one�element structure�
but for Id� � � Id� the �nal coalgebra consists of all in�nite binary trees
with nodes from ��

The following example goes back to Reichel ��Rei�	��� A thorough treat�
ment has recently been given by Rutten in �Rut����

Example 	��
� An automaton A � �A��� �� T � with terminal states T over

the alphabet � can be considered as a coalgebra for the functor Id�� B � As
�nal coalgebra one obtains the coalgebra of all languages over �� The base
set of this coalgebra is P����� the set of all languages over �� The structure
map is given as � � P���� � P����� � B with �� 
 ��L��e� � Le � fw �
�� j e � w � Lg and �� 
 ��L� � true i� � � L�

Example 	���� For the �nite power set functor P�� the �nal object con�
sists of the bisimilarity classes of all �nitely branching trees� The transition
structure assigns to every tree the set of its immediate subtrees �up to bisim�
ilarity��


�	� Simple coalgebras� For many purposes� it will be enough to consider
coalgebras which are not �nal� but satisfy the weaker condition of simplicity �

De�nition 	���� A coalgebra S is called simple� if &S is the largest bisim�
ulation on S�

A structure theoretic characterization of simple coalgebras is given by the
following theorem�

Theorem 	���� For a coalgebra S the following are equivalent


�� S is simple
�� Every homomorphism � with domain S is mono�
�� For every A � SetF there is at most one homomorphism � � A � S�

Proof� �� � ��� Let � � S � B be a homomorphism� then �ker���� is a
bisimulation� hence �ker���� � &S � As a consequence of 	��
� � is mono�
�� � ��� Given two homomorphisms ��� �� � A � S� we consider their
co�equalizer C with canonical morphism � � S � C� It must be mono�
whence �� � ��� �� � ��� Assuming there is a pair �x� y� ��S � we know
from theorem 	��� that there is a coalgebra A� an element a � A and
homomorphisms ��� �� � A � S with ���a� � x and ���a� � y� From the
hypothesis� �� � ��� so x � y�


�	��� Proofs by coinduction� The de�nition of simplicity is just a reformu�
lation of the coinduction principle�

x � y

x � y
�

This is a convenient proof principle� In order to show that two elements
x and y are equal it is enough to �nd a bisimulation R with �x� y� � R�
This principle makes simple coalgebras� in particular the �nal coalgebra P�
if it exists� into a useful semantical domain for programming� We shall
demonstrate this at an example�
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Example 	���� Consider once more �� Id�coalgebras� The �nal �� Id�
coalgebra is the set �� of all in�nite ��lists� Consider the following func�
tional program


sec�k	 � �k � sec�k��	�

average�s	 � ��hd�s	�hd�tl�s			�� � average�tl�s		��

We wish to show the following claim


average�sec�k�� � sec�k � ���

For this we consider the relation R � f�average�sec�k��� sec�k���� j k � Ng
and show that it is a bisimulation� So assume that �average�sec�k��� sec�k�
��� � R� then

hd�average�sec�k��� � �hd�sec�k�� � hd�tl�sec�k����
�

� �k � �k � ���
�

� k � �

� hd�sec�k � ���� and

tl�average�sec�k��� � average�tl�sec�k���

� average�sec�k � ���

R sec�k � ��

� tl�sec�k � ����

Hence R is a bisimulation� consequently R � id� which proves the claim�


�	��� Strong simplicity� The notion of �simple coalgebra� was coined after
the corresponding notion in universal algebra� A universal algebra is called
simple� if it does not have any nontrivial homomorphic image� This is the
same as saying that there is no nontrivial congruence relation� In the �eld
of coalgebras� the interest was initially focused on coalgebras for functors
F that �preserve weak pullbacks�� �We shall explain this concept later in
section ��� In that context� indeed� a coalgebra is simple if and only if it
does not have a nontrivial homomorphic image� In general� though� the two
notions do not agree� Therefore� we de�ne�

De�nition 	���� A coalgebra is called strongly simple if it does not possess
any nontrivial congruence relation�

By lemma 	��	� every bisimulation R generates a congruence hRi� con�
taining R� so a strongly simple coalgebra is also simple� If the �nal coalgebra
P exists� then strongly simple coalgebras have an easy description�

Lemma 	��	� If the �nal coalgebra P exists� then the strongly simple coal�
gebras are precisely the subcoalgebras of P�


�
� Existence of �nal coalgebras� Not for each functor F does there
exist a �nal coalgebra� An example is given by the power�set functor ���	�
To see this� we need the following observation� due to Lambek �see also
�Bor�����

Theorem 	��
� If P � �P� �� is a �nal coalgebra� then the structure map
� is an isomorphism�
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Proof� Let P � �P� �� be the �nal F �coalgebra� Since �F �P �� F ���� is an F �
coalgebra too� there exists precisely one homomorphism � � F �P � � P � The
composition � 
 � is now a homomorphism from P to P� hence � 
 � � idP �
Considering that � is a homomorphism one gets� � 
 � � F ��� 
 F ��� �
F �� 
 �� � F �idP � � idF �P 	� Hence � is inverse to ��

P
� ��

�

��

F �P �
� ��

F ��	
��

P

�

��
F �P �

F ��	
�� F �F �P ��

F ��	
�� F �P �

This theorem implies that there cannot be a �nal ���	�coalgebra� We
would need a bijection between its base set A and its power set �A� Cantor
has shown� that this is impossible� �

The �nal coalgebra� if it exists� must subsume all possible behaviours�
This is a consequence of theorem 
��� Usually� therefore� we shall expect
this to be a rather large object � so large in fact� that it cannot possibly
be a proper set� However� there is a useful condition guaranteeing its exis�
tence� We only need a collection of coalgebras� ample enough to generate
all possible �local behaviours��

De�nition 	���� A collection of coalgebras �Gi�i�I is called a set of gener�
ators� if for every a � A � SetF there exists some Gi which is isomorphic
to a subcoalgebra U � A with a � U �

The existence of a set of generators is usually formulated as a smallness
condition on the functor F � For that we de�ne�

De�nition 	���� A functor F is bounded� if there is some cardinality � so
that for every F �coalgebra A and every a � A one can �nd a subcoalgebra
Ua of A with a � Ua and jUaj � ��

Lemma 	��
� F is bounded if and only if SetF has a set of generators�

The following theorem could be obtained as an application of the �Spe�
cial Adjoint Functor Theorem���Lan
���� In the given context the proof
simpli�es considerably�

Theorem 	���� If F is bounded� then the �nal F �coalgebra exists�

Proof� Let G � �i�IGi be the sum of all generators and let ( be the largest
congruence relation on G� We claim that P � G
( is �nal�

Given any coalgebra A� then for every a � A there is a Ua � A which is
isomorphic to one of the Gi� There is an onto homomorphism � � �a�AUa �
A and a canonical homomorphism � to �i�IGi� Let �� be the canonical
factor homomorphism from �i�IGi to P � We need to �nd a homomorphism
from A to P�

Form the pushout Q of � and �� This results in a map #� � A � Q and an
epi #� � G � Q� Surely� ker� #�� � (� so there is a homomorphism � � Q � P

�Assume that f � �A � A is bijective with inverse f��� Consider the set G � fx j x ��
f���x�g� then we get the contradiction f�G� � G� f�G� �� G�
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and therefore � 
 #� � A � P � It remains to show that this homomorphism
from A to P is unique�

A
�	 �� Q


 �� P

Ua
��

OO

��
���a�AUa

�
ccHHHHHHHHHH

	 �� �i�IGi

��

eeLLLLLLLLLLL
��

OO

So� assume that there is an A with two homomorphisms ��� �� � A � P�
Consider the coequalizer � � P � R of �� and ��� Again� ker�� 
 ��� �
ker����� so it follows that ker��� � &P � This implies �� � ���

A
�� ��

��
�� P

� �� R

�i�IGi

��

OO ��wwwwwwwww


�
� Exercises�

Exercise 	�� �Equalizers�� Find two coalgebras A and B and homomor�
phisms ��� � A � B whose equalizer in SetF is a proper subset of their
equalizer in Set�

Exercise 	�� �Final coalgebra�� Prove that the �nal coalgebra for the func�
tor ��Id� � is given by ��� the set of all �nite and in�nite sequences of
elements of � �Example ��� in the notes��

Exercise 	�� �Strongly simple�� Prove the statement of lemma ����� i�e� if
the �nal coalgebra P exists� then the strongly simple coalgebras are just the
subcoalgebras of P�


� Co�varieties and cofree coalgebras


��� Co�varieties�

De�nition 
��� Let K be a class of F �coalgebras� We de�ne the following
classes


�� H�K� 
 the class of all homomorphic images of objects from K�
�� S�K� 
 the class of all subcoalgebras of objects from K�
�� ��K� 
 the class of all sums of objects from K�

A class K is called closed under H� S� or �� provided that H�K� � K�
S�K� � K� or ��K� � K�

Lemma 
��� S� H and � are closure operators� that is for arbitrary classes
K� K�� K� of coalgebras and any operator O � fS�H��g we have


�� K � O�K�
�� K� � K� �� O�K�� � O�K��
�� O�K� � O�O�K��

Lemma 
��� For an arbitrary class K of coalgebras we have


�� HS�K�� � SH�K��
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�� �S�K� � S��K�
�� �H�K� � H��K�

Proof� Let A � K und A � B � C� Let Q with morphisms p� � A � Q
and p� � C � Q be the pushout of this diagram� p� is epi� hence Q � H�K��
Since Q with p� and p� is also the pushout in Set �theorem ����� it follows
that p� is injective� Consequently� C is isomorphic to a subcoalgebra of Q�
hence C � SH�K��� The other two cases are analogous�

De�nition 
��� A co�variety is a class K of coalgebras� which is closed
under S� H and �� A co�quasivariety is a class closed under H and ��

From the preceding lemma we obtain immediately�

Theorem 
��� �GS��� Let K be a class of F �coalgebras� Then SH��K� is
the smallest co�variety containing K�

De�nition 
�	� Let U � A be coalgebras� Let Q�A�U� be the class of
all those coalgebras C� for which every homomorphism � � C � A factors
through U � i�e� for which there exists a homomorphism )� � C � U with
� 
 )� � ��

The following theorem was proved in �GS��� under additional assump�
tions�

Theorem 
�
� Q�A�U� is closed under homomorphic images and under
sums� i�e� a co�quasivariety�

Proof� �Sums� Consider Ai � Q�A�U� and � � �Ai � A� The composition
with the canonical embeddings ei � Ai � �Ai factors through U � hence
there exist �i � Ai � U with � 
 ei � � 
 �i� The sum property yields a
unique morphism � � �Ai � U with � 
 ei � �i� For all ei we have now�
� 
 ei � � 
 � 
 ei� hence � � � 
 ��

�Ai
� ��

�

��C
C

C
C A

Ai

ei

OO

�i
�� U

	

OO

�Homomorphic images� Let B � Q�A�U� and � � B � C an epimorphism�
Let � � C � A be a homomorphism� The composition �
� factors through U
by way of �� hence �
� �� 
 �� It follows that ker��� � ker��
�� � ker��

 �� � ker���� Consequently� there is a unique homomorphism � � C � U
with � 
 � � �� We conclude that � 
 � 
 � � � 
 � and� since � is epi�
� 
 � � ��

C
� ��

�



�
�

�
� A

B

	

OOOO

�
�� U

	

OO
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��� Conjunct Sums�

De�nition 
��� Let �Gi�i�I be a family of coalgebras� A coalgebra A is
called a conjunct sum of the Gi� if for every a � A there is an i � I
and an injective homomorphism �i � Gi � A with a � �i�Gi�� A conjunct
representation of A by the Gi is a family of embeddings ��k � Gik � A�k�K
of some of the Gi� so that

S
k�K f �Gik � � A�

Thus� if A is a conjunct sum of the Gi� then for every a � A we an �nd
a subcoalgebra U � A which contains a and which is isomorphic to one of
the Gi� A is therefore a �glued sum� of some of the Gi� This means that
the Gi are building blocks from which A is glued together�see page ���� The
blocks used in the glueing are allowed to overlap�

Let K be a class of coalgebras� With �C�K� we denote the class of all
coalgebras which are isomorphic to a conjunct sum of some objects from K�

Lemma 
��� �C is a closure operator and �C�K� � H��K��

Proof� The �rst part of the claim follows directly from the de�nition� Let
��i � Gi � A�i�I be a conjunct representation of A� Then there is a canonical
homomorphism � � �i�IGi �� A� Since A �

S
�i�Gi� it follows that � is

epi�

For each coalgebra we have the trivial� but rather useless� conjunct repre�
sentation idA � A � A� If a coalgebra does not possess a better representa�
tion� it must be used as an irreducible building block� we call it conjunctly
irreducible� The precise de�nition is�

De�nition 
��
� A coalgebra A is called conjunctly irreducible� if in each
conjunct representation ��i � Gi � A�i�I of A one of the �i is onto� i�e� an
isomorphism�

Example 
���� A coalgebra structure on an Id�coalgebra A is just a self
map of A� We represent it by arrows indicating the transition structure�
The coalgebra


 �� 
 �� 

��

hh 
oo

is a conjunct sum of


 �� 
 �� 

��

hh and of 


��

hh 
oo �

The latter ones are conjunctly irreducible�

De�nition 
���� A coalgebra A is called one�generated� if there is an a �
A� so that A is the only subcoalgebra of A which contains a� In short


a � U � A �� U � A

Theorem 
���� A coalgebra is conjunctly irreducible� i� it is ��generated�

Proof� Let A be conjunctly irreducible� If A was not one�generated� then
to every a � A we would have a proper subcoalgebra Ua � A with a � Ua�
The Ua yield a nontrivial conjunct representation of A� Conversely� let A be
one�generated� then there is an a � A� so that for all closed subsets U � A
we have� a � U �� U � A� For every conjunct representation ��i � Gi �
A�i�I there must be an i � I with a � �i�Gi�� Since a � �i�Gi� � A we
conclude �i�Gi� � A� consequently the representation was trivial�
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This theorem begs the question whether an analog to the �rst Birkho��s
theorem might be true� Is every coalgebra a conjunct sum of conjunctly
irreducibles �

In general the answer is no� If F is the �lter functor and �X� �� a topo�
logical space then we get an F�coalgebra on X by de�ning �X�x� � U�x�
where U�x� is the set of all neighborhoods of x� Subcoalgebras of �X��X�
are precisely the open sets in � � Clearly� it is easy to �nd examples of topolo�
gies where there is no smallest open set containing a given point� that is for
which there are no one�generated subcoalgebras�

In contrast� for functors �weakly preserving pullbacks��section ��� such a
representation theorem can be proven� see �GS����


��� Cofree coalgebras� Let F be a functor and X a set� We consider
the elements of X as �colors� and every map f � A � X as coloring� A
cofree F �coalgebra over X consists of an F �coalgebra SX together with a
coloring �X � SX � X� so that for every F �coalgebra A and for every
coloring f � A � X there is precisely one F �homomorphism #f � A � SX
with � 
 #f � f �

X

A

f
����������

�f

����� SX

�X

OO

Theorem 
���� The F �coalgebra �S� �� with coloring � � S � X is cofree
over X� i� �S� ��X � ��� is the �nal X � F ����coalgebra�

It is easy to see that if the functor F is bounded then the functorX�F ���
must be bounded too for any set X� that is�

Corollary 
���� If F is bounded then for every set X the cofree coalgebra
SX exist�

Example 
��	� The set of all streams of elements of X can be considered
as cofree coalgebra over X for the identity functor Id� The Id�coalgebra
structure is given by the map tl � X� � X�� The coloring is hd � X� � X�

Theorem 
��
� If the cofree coalgebra SX exists for every set X� then a
functor from Set to SetF can be de�ned on objects as X �� SX and on maps
as f �� map�f��

With the aid of cofree coalgebras we can now describe maps between
streams over di�erent base sets�

Lemma 
���� Let g � X � Y be a set map� If �SX � �X� is cofree over
X and �SY � �Y � is cofree over Y � then there is a unique F �homomorphism
map�g� � SX � SY with g 
 �X � �Y 
map�g�� If g is left invertible �right
invertible�� then map�g� is left� �right�� invertible in SetF �

Proof� Put map�g� � �g 
 �X � If g is left invertible� i�e� idX � g� 
 g for a
certain g�� then idSX � map�idX� � map�g� 
 g� � map�g�� 
map�g��
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X g
�� Y

SX

�X

OO

map�g	
����� SY

�Y

OO

Lemma 
���� Let SX be cofree over X and let A � B be any F �coalgebras�
Every homomorphism � � A � SX can be extended to a homomorphism
� � B � SX with � � � 
 ��

Proof� �X 
 � is a coloring of A� In Set it can be extended to a coloring
f � B � X� Let � � #f � B � SX be the homomorphic extension of f � Then
f � �X 
 � and �X 
 � 
 � � f
 � � �X 
 �� From the uniqueness of the
extension we get � 
 �� ��

B
f ��

	



B
B

B
B X

A

	

OO

�
�� SX

�X

OO

Corollary 
��
� If SX is cofree and U � SX then Q�SX �U� is a co�variety�

The co�varieties �resp� co�quasivarieties� Q�SX �U� are in no way special�
if the functor F is bounded� In particular� we have�

Theorem 
���� If F is bounded� then for every co�variety K there is a set
X and a subcoalgebra U � SX so that K � Q�SX �U��

Proof� Since F is bounded� cofree coalgebras exist for every set of colors�
Moreover� there is a set X so that for every F �coalgebra A and every a � A
there is a subcoalgebra Ua � A with a � Ua and jUaj � jXj� For any such Ua
we have an injective mapping ga � Ua � X� which extends to an embedding
#ga � Ua � SX � Consequently� every F �coalgebra A is a conjunct sum of
subcoalgebras of SX �

Let now K be a co�variety� let U � SX be the union of all images #g�A�
where A � K and g � A � X� Clearly� U is a subcoalgebra of SX and K �
Q�SX �U�� Moreover� U � �CH�K�� hence U � K� Let now B � Q�SX �U��
we have to show that B � K� B is a conjunct sum of subcoalgebras of
SX � Since B � Q�SX �U� and Q�SX �U� is closed under subcoalgebras� every
summand of B is in Q�SX �U�� But a subcoalgebra of SX which at the same
time is in Q�SX �U�� is clearly a subcoalgebra of U � It follows that B is a
conjunct sum of subcoalgebras of U � thus B � K�


��� Completeness of SetF � A category C is called complete if limits of
arbitrary diagrams D exist� It is called co�complete� if all possible co�limits
exist� We have already seen in theorem ��� that SetF is co�complete� A
standard exercise in category theory shows that C is complete if and only if
equalizers and arbitrary products exist� According to theorem 
��� equalizers
exist in SetF � so we only need to concentrate on products�
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To show the existence of products� we shall need to assume that the cofree
coalgebra SX exists for every set X� We have seen that for this it is enough
to assume that the functor F is bounded� so we shall conveniently use this
assumption�

In constructing products of coalgebras� we start with a special case� the
product of a family of cofree coalgebras SXi

� i � I� The following lemma is
easy to check directly from the de�nitions of products and co�freeness�

Lemma 
���� If F is bounded� then the product of any family of cofree
coalgebras exists� in fact

!i�ISXi
�� S�i�IXi

�

Again assuming boundedness of F � every coalgebra A can be embedded
in some cofree coalgebra � take SA with the homomorphism #idA � A � SA
which extends the coloring map idA � A � A� Therefore� we get from
theorem 
���

Theorem 
��� ��Wor�����GS��b��� If the functor F is bounded then SetF
is complete�

A careful inspection of the ingredients of the proof reveals that in fact the
same result holds for an arbitrary covariety in place of SetF �


�	� Forbidden behaviours and Birkho��s theorem� In universal al�
gebra varieties are de�nable by equations� The famous Birkho� theorem
states that a class of universal algebras can be de�ned by a set of equa�
tions if and only if this class is a variety� What is the right co�algebraic
notion to replace equations� Traditional universal algebra uses compara�
tively well behaved type functors� They are �polynomial functors� of the
form F ��� � �i�I���ni � In particular� these functors are bounded� so the
�absolutely� free algebra F�X� exist� for every set X� Moreover� its elements
have a �syntactical� description� derived from the construction of F out of
sums and powers� In the co�algebraic approach� we shall also need to require
that the functor F is bounded� As a consequence� cofree coalgebras exist for
every set Y � But more importantly� there is one set X large enough so that
we really need only consider one cofree coalgebra� SX � We shall keep this set
X �xed for the rest of this section� If F is bounded by � �see page ���� then
it su�ces to take any �xed set X of cardinality at least �� The material of
this section had previously been proven only for functors preserving weak
pullbacks in �Gum��a� Gum����

The cofree coalgebra over the ��element set fxg is nothing but the �nal
coalgebra� Its elements can be identi�ed with all possible behaviours� up
to bisimulation� Cofree coalgebras over larger color sets� can by the same
token� be identi�ed with some parameterized behaviour� or some behaviour
pattern�

We could now interpret the previous theorem in such a way that a co�
variety K is always speci�ed by a set U of permissible behaviours as K �
Q�SX �U�� To get local validity of a behaviour u at a point a � A in some
coalgebra A we could de�ne�

u holds at a � A �� �g�A�X �#g�a� � u

u holds in A �� �a�A�u holds at a�
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A covariety would then be de�ned by a disjunction of behaviours�
W
u�U u�

It is a matter of taste that we opt for the negated version of the above
notion of validity� Our choice is dictated� perhaps� by a dislike of in�nite dis�
junction� but� in a positive sense� by the experience that in many branches
of mathematics classes of models are conveniently de�ned by the exclusion
of particular con�gurations� Modular lattices� for instance� are character�
ized by the exclusion of a certain �ve�element lattice� planar graphs by the
exclusion of two small graphs� K� and K���� etc� With such examples in
mind� we de�ne�

De�nition 
���� Let F be a bounded functor� A a coalgebra and a � A� A
behaviour pattern is an element v of any cofree coalgebra SY � We say that
v holds at a� if for every coloring g � A� Y we have that #g�a� �� v� We say
that A satis�es v� and we write

A j� v�

if v holds at every a � A� For a set V of behaviours� we say A j� V � provided
A j� v for every v � V �

Let now V � SX be any set of behaviour patterns and K a class of
coalgebras� We de�ne�

Mod�V � �� fA � SetF j 
v � V�A j� vg� and

Beh�K� �� fv � SX j 
A � K�A j� vg�

Then we have �

Lemma 
���� Mod�V � is a co�variety for any set of behaviour patterns V �

Proof� Put U �� �SX�V �� the largest subcoalgebra of SX which is contained
in the complement of V � Obviously� A j� V i� A � Q�SX � U��

Lemma 
��	� SX �Beh�K� is a subcoalgebra of SX and it is contained in
�CH�K��

Proof� By de�nition� SX � Beh�K� �
S
f#g�A� j g � XA�A � Kg� This is

a union of subcoalgebras of SX � each of which is a homomorphic image of
some A � K� Let U be the subcoalgebra of SX with base set SX �Beh�K��
then U is a a conjunct sum of homomorphic images of coalgebras in K� i�e�
U � �CH�K��

Finally� the following is the coalgebraic counterpart of the famous Birkho�
theorem from universal algebra�

Theorem 
��
 �Coalgebraic Birkho� Theorem�� Every co�variety can be
speci�ed by a set of behaviour patterns� that is for an arbitrary class K
of coalgebras we have

SH��K� �Mod�Beh�K���

Proof� By de�nition� Mod�Beh�K�� � Q�SX � U� where U �
S
f#g�A� j g �

XA�A � Kg and Beh�K� � SX � U � Consequently� Mod�Beh�K�� is a
covariety� which contains K� so SH��K� �Mod�Beh�K��� For the converse�
let B �Mod�Beh�K��� then for every b � B there is a subcoalgebra Ub � B
so that b � Ub and jUbj � jXj� Hence Ub �� Gb for some subcoalgebra Gb of
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SX � We must have Gb � Mod�Beh�K�� too� so Gb � U � But U � �CH�K��
each Gb � S�C�K�� and B is a conjunct sum of the Gb� so B � �CS�C�K� �
SH��K��


�
� Exercises�

Exercise 
�� �Covarieties�� Complete the proof of lemma ����

Exercise 
�� �Injectives�� A coalgebra C is called injective� if the following
holds
 For all coalgebras B and every subcoalgebra A of B and every homo�
morphism � � A � C there exists at least one homomorphism #� � A � C
with #� 
 � � ��

B
��



�
�

�
�

A
��

	

OO

�
�� C

�� Show that injective coalgebras are weakly �nal� i�e� if C is injective�
then for every coalgebra A � SetF there is at least one homomorphism
� � A � C�

�� Show that every cofree coalgebra is injective�

Exercise 
�� �Injectives are retracts�� A retraction is a pair of morphisms
� � A � B and � � B � A so that � 
 � � idA� In this case� A is called a
retract of B�

Assume that the functor F is bounded� Show that an F �coalgebra A is
injective i� A is a retract of some cofree coalgebra�

Exercise 
�� �Products of cofree coalgebras�� Assume that F is bounded�
Let �Xi�i�I be a family of sets� Show that the product !i�ISXi

in SetF of
the cofree coalgebras SXi

is given by S�i�IXi
� i�e� the cofree coalgebra over

the product in Set of the Xi�

Exercise 
�� �Relatively cofree coalgebras�� Let K be a class of coalgebras
and X a set� A coalgebra SKX together with a map �a coloring� � � SKX � X
is called cofree over X with respect to K� if for every A � K and for every
coloring f � A � X there is exactly one homomorphism #f � A � SKX with

� 
 #f � f �

X

A

f
����������

�f

����� SKX




OO

Let F be bounded and K a class of coalgebras� Show that

�� SKX exists�

�� if K is a co�quasivariety �see de�nition ���� then SKX � K�

�� Special Functors

Most functors which we have considered� share an extra property that we
have not yet made use of� They preserve weak pullbacks� This property will
be seen to have far reaching consequences for their structure theory� We
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shall study this condition and a collection of somewhat weaker requirements
on F � The material of this section is from �GS��b��

���� Split epis�

De�nition ���� Amongst the objects of a category C we can de�ne a natural
relation � as follows


A � B �� there are morphisms � � B � A and � � A� B with � 
 � � idA

It follows that � is mono and � is epi� Such a � is also called split epi�
The relation � is a quasi ordering� i�e� � is

� re'exive�

A � Co�A � A�

� transitive�

A�B�C � Co�A � B�B � C �� A � C�

In the category of sets we have A � B �� jAj � jBj therefore� according
to the Schr�oder�Bernstein theorem � � is

� anti�symmetric�

A�B � Co�A � B�B � A �� A �� B�

The relation � is preserved by any functor F �

� Monotony�

A�B � Co�A � B �� F �A� � F �B��

Every split epi is an epi� In Set we have the converse� in other categories
this need not be the case�

���� Weak limit preservation�

De�nition ���� Let F � Set� Set be a functor and D a diagram� We say
that

� F weakly preserves D�limits� if F transforms every limit cone over
D into a weak limit cone over F �D�� i�e� for every limit �L� ��i�i�I�
of diagram D we get that �F �L�� �F ��i��i�I� is a weak limit over the
transformed diagram F �D�

� F preserves weak D�limits if it transforms every weak limit cone over
D into a weak limit cone over F �D��

Fortunately� the �ne linguistic di�erence between �F preserves weak lim�
its� and �F weakly preserves limits� are easily seen to disappear in every
category where all D�limits exist� This is an easy consequence of the follow�
ing observation�

Lemma ���� Let D be a diagram in an arbitrary category C�

�� If �W� �wi�i�I� is a weak limit of D and W � W � with split epi � �
W � �W � then �W �� �wi 
 ��i�I� is also a weak limit of D�

�� If the limit �L� �pi�i�I� of D exists� then �W� �wi�i�I� is a weak limit of
D if and only if wi � pi 
� for some split epi � � W � L� in particular�
L �W �

�Given sets A and B and injective maps f � A � B and g � B � A then there is a
bijection between A and B
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Thus� with respect to the order �� introduced on the objects of a category�
limits� if they exist� are just the in�ma of all weak limits�

Corollary ���� Let C be a category and D a diagram so that every D�limit
exists in C� Then F preserves weak D�limits if and only if F weakly preserves
D�limits�

Theorem ���� Let C be a category in which every D�limit exists� then an
endo�functor F preserves weak D�limits if and only if for every D�limit
�L� �pi�i�I� there exists a morphism � from the limit �Q� �qi�i�I� of F �D� to
F �L�� so that F �pi� 
 � � qi for all i�

Proof� Let �L� �pi�i�I� be the limit ofD� We wish to show that �F �L�� �F �pi��i�I�
is a weak limit of the transformed diagram F �D�� Consider the limit
�Q� �qi�i�I� of F �D�� There is a �unique� morphism � � F �L� � Q with
F �pi� � qi 
 � for all i � I� If F �L� is to be a weak limit then there must be
at least one morphism � � Q� F �L� with F �pi� 
 � � qi�

L
pi

��	
		

		
		

	 F �L�

�

��

F �pi	

��H
HHH

HH
HH

H

Di Q

�

JJ



�
�

qi
�� F �Di�

Conversely� if there is such a morphism � then qi 
 � 
 � � qi 
 idQ� so
� 
 � � idQ� Hence � � F �L� � Q is split epi� so F �L� is a weak limit from
lemma ����

���� Weak ��pullbacks and their preservation� We illustrate the above
situation in the case of a pullback �L� p�� p�� of two morphisms f � A � C
and g � B � C�

L
p� ��

p�
��

A

f
��

B g
�� C

Let Q the limit of the transformed diagram� then F weakly preserves pull�
backs i� there is a map � � Q� F �L� with F �pi� 
 � � qi for all i�

Q
q�

��

�

��D
DD

DD
DD

D

q�

��

F �L�

�

aaDDDDDDDD

F �p�	
��

F �p�	
��

F �A�

F �f	
��

F �B�
F �g	

�� F �C�

The pullback of two morphisms f � A � C and g � B � C in Set has
as object the set pb�f� g� � f�a� b� j f�a� � g�b�g and as morphisms the
canonical projections �� and ��� From this we get an easy criterion for a
Set�endofunctor to preserve weak pullbacks�
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Theorem ��	� A functor F � Set � Set preserves weak pullbacks� i� for
all maps f � A� C and g � B � C we have
 Given u and v with F �f��u� �
F �g��v� then there is a w � F �f�x� y� j f�x� � g�y�g� with F �����w� � u
and F �����w� � v�

Corollary ��
� F weakly preserves the pullback of f and g i� the map
F ����� F ���� � F �pb�f� g�� � pb�F �f�� F �g�� is onto�

We will need to generalize the notion of pullback to consider pullbacks of
a family of arrows with common codomain�

De�nition ���� Let � be an ordinal� A ��sink is a family �fi � Ai � A�i��
of morphisms with common codomain� A ��pullback is the limit �P� ��i�i���
of a ��sink� A weak ��pullback is a weak limit of a ��sink�

Thus� a ��pullback is just an ordinary pullback� There has occasionally
been slight confusion in the literature concerning the notion of �preservation
of weak pullbacks�� There are functors preserving weak pullbacks� which do
not preserve weak ��pullbacks for � � �� An example is the �lter functor�
see �Gum��b��

The category of sets is complete �and cocomplete�� which is to say that
all limits �and all colimits� exist� ��pullbacks� in particular� are constructed
similar as in the �nite case�

Proposition ���� Let �fk � Ak � A�k�� be a ��sink� Then

pb��fk�k��� � f�ak�k�� j 
i� j � ��fi�ai� � fj�aj�g

with canonical projections �j de�ned as �j��ak�k��� � aj is the ��pullback
of the fk in Set� A functor F preserves weak ��pullbacks i� for every family
�uk�k�� � pb�F ��fk�k���� there exists an element w � F �pb��fk�k���� with
F ��k��w� � uk for all k � ��

Example ���
� Most functors considered so far preserve weak ��pullbacks
for arbitrary �� Amongst those are


�� The constant functor F �X� � A for a �xed set A�
�� The identity functor Id�
�� F �X� � A�X for a �xed set A�
�� F �X� � X� for a �xed set ��

	� The power set functor ���	�

The following lemma allows us to combine the above examples� Most of
the practically relevant coalgebras have a type which arises in such a way�

Lemma ����� If functors F and G preserve weak ��pullbacks for some ��
then so do F 
G and F �G�

Example ����� The �lter functor �see page ��� can be shown to preserve
weak ��pullbacks if and only if � � � � see �Gum��b���

Example ����� The functor ����� does not preserve weak pullbacks� How�
ever� if at least one of f � A � C� g � B � C is injective� then the functor
weakly preserves the pullback of f and g� We say� that ����� weakly preserves
pullbacks along injective maps�
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Proof� Given f � A � C� g � B � C� �u�� u�� u�� � A�
�� and�v�� v�� v�� � B�

�

with f�ui� � g�vi�� We must �nd w � f�x� y� j f�x� � g�y�g�� so that
����

�
��w� � u and ����

�
��w� � v� The only possibility isw � ��u�� v��� �u�� v��� �u�� v����

It remains to show that w � �A � B���� i�e� that two of the components of
w are equal� We may assume w�l�o�g� that u� � u�� If v� � v� then we
are done� The other case is� again w�l�o�g� that v� � v�� If f is injective
then f�u�� � g�v�� � g�v�� � f�u��� so �u�� v�� � �u�� v��� similarly� if g is
injective then �u�� v�� � �u�� v���

To see that ����� does not preserve weak pullbacks of arbitrary maps�
choose f � g the constant map f�� �g � f�g� For u � ��� �� �� and v �
��� �� �� we cannot �nd the required w�

���� Preservation theorems� In the following we shall consider� and char�
acterize� several particular properties which the functor F might have in
regard to the weak preservation of particular types of pullbacks� It is not
clear yet whether all these properties are really distinct� The material of
this section is from �GS��a��

Clearly� if F weakly preserves pullbacks� then

� F weakly preserves kernel pairs�
� F weakly preserves pullbacks along injective maps�
� F weakly preserves pullbacks of injective maps�

We shall study these conditions and characterize them by way of their struc�
ture theoretical consequences�

������ F weakly preserving pullbacks� The following theorem characterizes
functors weakly preserving pullbacks� The implications ��� �� �� are due
to Rutten �Rut�
��

Theorem ����� For a functor F the following are equivalent


�� F weakly preserves pullbacks�
�� The pullback of two homomorphisms is a bisimulation
�� The relational product R 
 S of two bisimulations is a bisimulation�

The key in proving the reverse direction of this and some later theorems
is�

Lemma ����� Let F � Set� Set be a functor and f � A� C and g � B �
C be maps� Then the following are equivalent


�� F weakly preserves the pullback of f and g�
�� f�a� b� j f�a� � g�b�g is a bisimulation for each coalgebra structure on

A� B� and C for which f and g are homomorphisms �
�� For each pair �x� y� � pb�f� g� and for all coalgebra structures on A� B�

and C making f and g homomorphisms there is a ��source �Q� p�� p��
and an element q � Q with f 
 p� � g 
 p�� p��q� � x and p��q� � y�

Proof� The equivalence of �� and �� is rather straightforward� If pb�f� g� is a
bisimulation� then �pb�f� g�� ��� ��� is an appropriate ��source� Conversely�
from a ��source commuting with f and g we get the standard bisimulation
as a subset of pb�f� g�� The extra condition guarantees that the sum of all
such ��sources has precisely pb�f� g� as standard bisimulation�
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The implication ��� � ��� is due to Rutten��Rut�
��� Let �P� ��� ��� be
the pullback of the homomorphisms f � A � C and g � B � C� Then
�F �P �� F ����� F ������ by assumption� is a weak pullback of F �f� � F �A� �
F �C� and F �g� � F �B� � F �C�� Since f and g are homomorphisms� we
calculate

F �f� 
 �A 
 �� � �C 
 f 
 ��

� �C 
 g 
 ��

� F �g� 
 �B 
 ��

B
g ��

��

C

�C

��

P

��
��rrrrrrr �� ��

�P

���
�
�
�
� A

f

��rrrrrrr

�A

��

F �B�
F �g	 �� F �C�

F �P �
F ���	

��ttttt

F ���	
�� F �A�

F �f	

��ttttt

This makes �P� �A
��� �B
��� a competitor of the weak limit �F �P �� F ����� F �����
from which we get the desired mediating map �P with �A 
�� � F ����
�P
and �B 
 �� � F ���� 
 �P �

�� � ��� Let f � A � C and g � B � C be maps and �P� ��� ��� their
pullback� Consider the pullback �Q� p�� p�� of F �f� and F �g�� We need to
construct a map � � Q� F �P � with F ��i� 
 � � pi�

Take any q � Q and de�ne structure maps �qA� �
q
B � and �qC on A� B� and

C as the constant functions

�qA � �a�p��q��

�qB � �b�p��q�� and

�qC � �c�F �f��p��q�� � �c�F �f��p��q���

It is easy to see that f and g are homomorphisms with respect to these
structures� We therefore �nd a structure map �qP on P turning P into a
bisimulation� We �nally set

��q� � �P �p�

for an arbitrary p � P � By construction�

F �������q�� � F ������
q
P �p��

� �qA����p��

� p��q��

Similarly� F ���� 
 ��q� � p��q�� hence pi � F ��i� 
 � as required�
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B
g ��

��

C

�qC

��
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We now �nish the proof of the theorem ����� The equivalence of �� and ��
follows directly from the above lemma� Let now R� resp� S� be bisimulations
between A and B� resp� B and C� The pullback of the projections �R� � R�
B and �S� � S � B is R �� S �� f��a� b��b� c�� j �a� b� � R� �b� c� � Sg� By
assumption� this can be equipped with a coalgebra structure� making �R� 
��
and �S� 
 �� into homomorphisms� R 
 S is just the canonical bisimulation
for this ��source�

R �� S
��

zzuu
uu
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I
�� ������ R 
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��

��I
III

II S

zzuuu
uu
u

��GG
GGG

G

A B C

Conversely� assume that the relational product of any two bisimulations is
a bisimulation� Let � � A � C and � � B � C be homomorphisms� G���
and G���� are bisimulations� hence also G��� 
G����� This is nothing but
pb������ the pullback of � and � in Set�

������ F weakly preserving kernels� Recall that a kernel is the pullback of a
morphism f � A� B with itself�

Theorem ���	 ��GS��a��� F weakly preserves kernels if and only if every
congruence relation is a bisimulation�

Proof� Every congruence relation � is the kernel of a homomorphism �� �
A � A
�� that is � � pb���� ���� If F weakly preserves this pullback� then
� is a bisimulation by lemma ���	�

Conversely� for every structure on A and B for which � � A � B is
a homomorphism� its pullback pb����� is a congruence relation� hence a
bisimulation� By lemma ���	� F weakly preserves the pullback of � with
itself� i�e� the kernel �in Set� of ��

Lemma ���
� If F weakly preserves kernels then the largest bisimulation
�A on a coalgebra A is transitive� in fact it agrees with the largest congruence
relation on A�

Proof� Theorem ���
 implies that every congruence � is contained in �� On
the other hand� lemma 	��	 shows that there is a congruence h�i containing
�� consequently� �� h�i�
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Corollary ����� If F weakly preserves kernels then every mono in SetF is
injective�

Proof� If F weakly preserves kernels� then ker��� � �ker����� hence if � �
A� C is mono we have ker��� � �ker���� � &A�

������ F weakly preserving pullbacks along injectives� F is said to weakly
preserve pullbacks along monos if F weakly preserves pullbacks of f� g �
A� B whenever f or g is mono�

This condition on F is properly weaker than the condition of preserving
arbitrary pullbacks� for we have seen that the functor ����� has this property
yet it does not weakly preserve pullbacks of two arbitrary maps�

Theorem ���� ��GS��a��� Let F be a Set�endofunctor� then the following
are equivalent


�� F weakly preserves pullbacks along monos�
�� If U � B and R is a bisimulation between A and B� then R��U� ��
fa � A j �u � U��a� u� � Rg is a subcoalgebra of A�

�� If � � A � B is a homomorphism and U � B is a subcoalgebra� then
����U�� the pre�image of U under �� is a subcoalgebra of A�

Proof� �� � ��� Assume that F preserves pullbacks along monos and R �
A�B is a bisimulation� The pullback in Set of �� U � B and �� � R� B
is Q � f�u� �a� u�� j �a� u� � Rg� By assumption� Q must be a bisimulation�

hence� there is a structure map on Q so that �Q� � Q� R� and consequently�

�R� 
 �
Q
� � Q � A a homomorphism� Its image� which is just R��U�� is a

subcoalgebra of B�
�� � ��� This is a specialization with R � G����
�� � ��� Let � � A � C and � � B � C be homomorphisms with �

injective� The epi�mono�factorization of � yields a subcoalgebra B� of C and
an isomorphism #� � B � B� so that � ��B� 
 #�� ��

��B����� �� is a source

in SetF � Finally� ����B���� #�� 
 �� is a source in SetF whose canonical
bisimulation is precisely the pullback in Set of � and ��

������ F weakly preserving ��pullbacks of injective maps� The only�if direc�
tion of the following characterization is again due to Rutten��Rut�
��� the
other one is from �GS��a��

Theorem ���
� F preserves weak ��pullbacks of injective maps if and only
if the intersection of a ��family of subcoalgebras is a subcoalgebra�

Proof� The intersection of a family �Uk�k�� of subcoalgebras of A is just the
pullback of their embedding� Thus� if F preserves weak pullbacks of these
embeddings� the pullback is a bisimulation� so in this case� the intersection
is a subcoalgebra�

Conversely� suppose that the intersection of a ��family of subcoalgebras
is a subcoalgebra� We shall present the proof for � � �� the general case is
proven the same way� Let � � A � C and � � B � C be injective coalgebra
homomorphisms� We try to ful�ll the condition of lemma ���	 For any �x� y�
with ��x� � ��y�� we need to �nd a ��source �Q� p�� p�� and a q � Q with
� 
 p� � � 
 p� and p��q� � x� p��p� � y�
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We start with the epi�mono�factorizations � 
 #� � � and � 
 #� � ��
Then #� and #� are isomorphisms with A �� A� � #��A� and B �� B� � #��B��
The pullback� in Set� of � and � can be taken stepwise� as indicated in the
following diagram� Since A��B� is a subcoalgebra� the innermost pullback is
also a pullback in SetF � Continuing to the outside� we are taking pullbacks
along isomorphisms� which always exist in SetF � Thus �Q� ��� ��� is a source
as required� i�e� � 
 �� � � 
 ��� and ���q� � x� ���p� � y�

A
�� �� A�

� � �� C

R ��

OO

A� �B�
��

OO

� � �� B�
��

OO

Q ��

OO

S

OO

�� B

�	

OO

If the collection of all subcoalgebras is closed under intersection then for
every subset U � A there is a smallest subcoalgebra of A containing U �
This will be denoted by � U � and called the subcoalgebra generated by U �
For an element a � A we write � a � as a shorthand for � fag ��

We have seen before that conjunctly irreducible coalgebras are just the
one�generated ones� If subcoalgebras are closed under intersection then
�one�generated� is indeed the same as generated by a ��element set� i�e�
� a �� Hence� by theorem 
���� the collection of all � a � with a � A forms
a conjunct representation of A by conjunctly irreducibles� We thus get�

Theorem ����� �GS��� If the functor F weakly preserves ��pullbacks of
injective maps for any �� then every coalgebra is a conjunct sum of conjunctly
irreducibles�

Again the �lter functor may serve as an example of a functor which pre�
serves ��pullbacks of injectives if and only if � � ��

Corollary ����� If F weakly preserves ��pullbacks then the subcoalgebras
of an F �coalgebra form a topological space� Every homomorphism between
F �coalgebras is continuous and open with respect to the corresponding topolo�
gies� Conversely� every topological space arises as the collection of subcoal�
gebras of type F � where F is the �lter functor�

In a certain sense� the converse is also true� see �Gum��b�� On every
topological space �X� �� we can de�ne a coalgebra A� � �X��X � so that
the open sets of � become exactly the subcoalgebras of A and the continu�
ous open maps between �X� �� and �Y� 
� are exactly the homomorphisms
between A � �X��X � and B � �Y� �Y �� The type F is given by the ��lter
functor� which associates to any set X the set F�X� of all �lters on X� For
a given topological space �X� �� we de�ne the structure map � by

��x� �� U�x�

where U�x� is the neighborhood �lter of the point x�
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