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Abstract. Accessible set functors can be presented by signatures and equa-
tions as quotients of polynomial functors. We determine how preservation of
pullbacks and other related properties (often applied in coalgebra) are re
ected
in the structure of the system of equations.

1. Introduction

With the recent development of General Coalgebra as a general theory of state
based systems [13], the study of properties of set functors has seen a renewed rise
of interest. The reason is that every set functor models its own type of coalgebras.
Systems as varied as streams, automata (with alphabet � and output setD), Kripke
structures, probabilistic transition systems or topological spaces can be modeled
as coalgebras, when we use as type functor the identity functor I, a polynomial
functor D � (�)�; the powerset functor P, the �nite distribution functor D or the
�lter functor F, respectively.

Not surprisingly, the properties of the type functor in
uence strongly the coal-
gebraic properties of the corresponding structures. For instance, the type functor
F preserves weak kernel pairs i� each congruence relation is a bisimulation [8], it
preserves inverse images i� the category CoAlg(F ) of all F -coalgebras is extensive,
see [6]. Preservation of inverse images is also relevant for recursive coalgebras, see
[15], and F preserves arbitrary intersections i� each coalgebra is a union of one-
generated subcoalgebras [14], etc. Therefore it often becomes necessary to decide
whether a given set functor has one of the mentioned properties.

Fortunately, a large body of knowledge about set functors was accumulated in the
1970's, see for example [11, 16, 17, 18]. Our main tool is the presentation of every
set functor as a class-directed union of accessible functors, and the presentation of
every accessible functor as a quotient of a polynomial one. The latter means that
for every accessible functor we have an equational presentation (using 
at terms).
For example, the �nite-powerset functor is described by one n-ary operation �n for
every n 2 N and by the equations �n(x) = �m(y) whenever x and y have the same
image.

The aim of the present paper is to express preservation properties of set functors,
often encountered in general coalgebra, in the language of equational presentations.
For example, an accessible functor preserves weak pullbacks i� its presentation is
dominating; this means that all equations are generated (in a sense made precise
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below) by equations of the form �(idn) = �(y) for n-ary symbols �. It follows that
P! weakly preserves pullbacks but almost none of its subfunctors Pn does.

For wide pullbacks we extend a result of A. Joyal [10] from �nitary to accessible
functors: we prove that an accessible functor weakly preserves wide pullbacks i� it
is analytic.

2. Preliminaries

2.1. Pullbacks, inverse images and intersections. Recall that a pullback of
a cocone fi : Ai ! A , i = 1; 2, is a limit of that cocone, that is, a commutative
square

A1
f1 // A

P

p1

OO

p2
// A2

f2

OO (2.1)

with the universal property that for every commutative square f1�q1 = f2�q2 there
exists a unique mediating morphism d, i.e. a morphism for which the diagram

A1
f1 // A

P

p1

OO

p2
// A2

f2

OO

Q

q1

<<

q2

AA

9d

>>

(2.2)

commutes. If the pullback (P; p1; p2) of f1 and f2 exists, then it is unique up to
isomorphism. If f1 is monic, then p2 is monic and the pullback is called the inverse
image of the subobject f1 : A1 ! A under f2 : A2 ! A. If both f1 and f2 are
monic, the pullback is known as a (�nite) intersection.

In the category Set of sets and mappings, in which we shall exclusively work in
this paper, the pullback of f1 and f2 always exists. It is given by

P := f(a1; a2) 2 A1 �A2 j f1(a1) = f2(a2)g (2.3)

and p1 and p2 are the domain restrictions of the canonical projections �i(a1; a2) = ai
for i = 1; 2.

When f2 is a subset inclusion � : A2 ,! A, the pullback simpli�es to fa1 j
f1(a1) 2 A2g = f�11 [A2] with p1 the natural inclusion of f�11 [A2] in A1 and p2 =
f 01 : f

�1
1 [A2]! A2, the domain-codomain restriction of f1:

Specializing further, when f1 : A1 ,! A and f2 : A2 ,! A are both subset
inclusions, then their pullback is given by the intersection A1 \ A2 with p1 and p2
the inclusions of A1 \A2 in A1 and in A2 .
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Generalizing the above notion of (binary) pullback, a wide pullback of a family
of morphisms (fi : Ai ! A)i2I is the limit (pi : P ! Ai)i2I of this sink:

Ai

fi

  @
@@

@@
@@

...

P

pi

>>~~~~~~~
// A

(2.4)

If all fi are monic, then the wide pullback is called a (wide) intersection of the
subobjects (fi)i2I .

2.2. Weak pullbacks. If in the above de�nition of the pullback of f1 : A1 ! A
and f2 : A2 ! A we drop the uniqueness condition for the mediating morphism d,
we obtain the notion of weak pullback.

Note that, if (P; p1; p2) is a weak pullback and one of p1 or p2 is monic, then
it is already a (real) pullback. More generally, a weak pullback square (2.1) is a
pullback square i� the morphisms pi are jointly monic.

Pullbacks and weak pullbacks can be combined, and under certain conditions be
split apart, as is stated in the following lemma from [12] whose proof is an easy
exercise:

Lemma 2.1. Let in the following diagram all squares be commutative, then

� // � // �

� //

OO

(A)

�
f //

g

OO

(B)

�

OO

(i) if (A) and (B) are (weak) pullback squares, then so is the perimeter (A;B)
(ii) if the perimeter (A,B) is a (weak) pullback square, and if f; g are jointly

monic, then (A) is a (weak) pullback square.

Since functors preserve composition � of morphisms, and identities idX , they
preserve every property that can be positively expressed in the language of � and
id. In particular they preserve commutativity of diagrams.

In the category Set, each epimorphism f is right-invertible, i.e. 9 �f . f� �f = id and
each monomorphism g with nonempty domain is left-invertible, i.e. 9�g: �g � g = id.
Consequently, set functors F preserve this property, so if f : X ! Y is epi, then
Ff : FX ! FY is epi, too, and if X 6= ; and f : X ! Y is monic, then so is
Ff : FX ! FY: In short: each set functor preserves epics, and all monics with the
possible exception of the empty maps ;X : ; ! X for any set X:

2.3. Preservation of intersections. Given a pullback (2.1), then a commutative
square (2.2) is a weak pullback i� the mediating morphism d is a split epimorphism.
Therefore, a functor weakly preserves pullbacks (i.e. maps pullback squares to weak
pullback squares) i� F preserves weak pullbacks. Analogously for other limits, such
as weak wide pullbacks.

In [8] it is shown that a functor weakly preserves (�nite) pullbacks i� it weakly
preserves inverse images and kernel pairs. Nonempty intersections, as has been
shown in [16], are preserved for free:

Proposition 2.2. ([16]) Every set functor preserves �nite nonempty intersections.
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To see this, consider the commutative diagram representing a nonempty inter-
section in the category Set, where the hooked arrows denote the inclusion maps.

U
� � //

�f
���
�
� X

�g

���
�
�

U \ V
� � //

?�

f

OO

V

� ?

g

OO

When U \ V is not empty, we can �nd left inverses �f and �g to the inclusion maps
f and g, and with just a little care, we can choose them so that the inner diagram,
delineated by �f and �g, is commutative, too. Conversely, given a commutative
diagram as above, where the inner square commutes, too, and where g � �g � g = g,
it is easy to check that the diagram must be a pullback, i.e. an intersection. Thus,
being an intersection has been coded as a positive statement in the language of �
and id and must therefore be preserved by any set functor F (see [7]).

The restriction to nonempty intersections in the above proposition is, at �rst
sight, indispensable. Consider, for instance, any functor F with F; 6= ;. One
obtains a di�erent functor F 0 by setting F 0; := ; and F 0X = FX otherwise.
Clearly, either F or F 0 must fail to preserve empty intersections. Fortunately, as
we shall see, any functor can be \repaired" by just modifying it on the empty set
and on mappings with empty domain so that the resulting functor F 0 preserves all
�nite intersections and all monos.

2.4. Soundness. Let C1 be the constant functor with value 1 and C1;0 the functor
which agrees with C1 on all nonempty sets and mappings, except that C1;0; = ;:

De�nition 2.3. A set functor is called sound if every natural transformation
C1;0 ! F has a unique extension to C1 ! F:

Fact 2.4. Every set functor F can be modi�ed at ; to obtain a sound functor F 0.
That is

� F 0 agrees with F on all nonempty sets and on all mappings with nonempty
domain

� F 0 is sound.

One way to obtain F 0 is by replacing F; by the set of all natural transformations
nat(C1;0; F ) where C1;0 is the functor with object map

C1;0(X) =

(
; if X = ;

1 else
:

Notice that every element in F 0(;) := nat(C1;0; F ) corresponds to a collection of
elements �X 2 FX for each set X such that Ff(�X) = �Y whenever f : X ! Y:
Therefore, the elements of F 0(;) are called distinguished points. On the empty maps
;X , the functor F

0 is de�ned as

(F 0;X)(�) := �X

for each distinguished point � 2 F 0;: It is now easy to prove that F 0 preserves all
�nite intersections.

Proposition 2.5. [17] Every sound functor preserves monomorphisms and �nite
intersections.
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Example 2.6. The functors P, P! and (�)n are sound. The sound modi�cation
of C1;0 is C1.

2.5. Sound subfunctors. Recall that a natural transformation � between two
functors F and G is called cartesian, if each naturality square is a pullback. We
shall call a transformation � : F ! G sub-cartesian, if for every injective map
f : X ,! Y the naturality square Gf � �X = �Y � Ff is a pullback square. Related
to Proposition 2.2 is the following result from T. Schr�oder's thesis [14]. We shall
supply the proof here, since in the original [14], Thm. 4.15, the case where X is
empty was not treated correctly.

Proposition 2.7. Any injective natural transformation between sound set functors
is sub-cartesian.

Proof. Consider an injective map f : X ,! Y and an injective natural transforma-

tion � : F
�
,! G. Assume �rst X 6= ;, then we can �nd a left inverse �f : Y ! X, so

that �f � f = idX . Consider the naturality diagram below.

GX
� � Gf // GY

� � G
�f // GX

FX
?�

�X

OO

� � Ff // FY
?�

�Y

OO

� � F
�f // FX

?�

�X

OO

Since F �f � Ff = idFX and G �f � Gf = idGX , the perimeter square is a pullback.
By Lemma 2.1, the left square must be a pullback, too. The case X = Y = ; is
trivial, since Ff = Fid; = idF; and likewise Gf = idG; are isomorphisms. Finally,
assume X = ; and Y 6= ;: Consider the following cube, in which the bottom square
is a pullback and G;Y : G; ! GY is monic as a result of F and G being sound.
The back face is a pullback by the previous case. A diagram chase reveals that the
front face must be a pullback, too, �nishing the proof.

GY // G(Y + Y )

G; //
-



;;wwwww
GY

88rrrrr

FY

OO

// F (Y + Y )

OO

F;

OO

//

;;wwwww
FY

OO

88rrrrr

�

2.6. Decomposition of Set Functors. For every set functor F we have:

(i) if F1 = ; then F is the constant functor C; with value ;,
(ii) if F1 �= 1 then F is indecomposable, that is, F = G +H implies G = C;

or H = C;, and
(iii) in general, F is a coproduct of indecomposable functors

F =
a
i2F1

Fi (2.5)

where Fi, for each i 2 F1, is the subfunctor of F given as the inverse image
of fig under F !X , where !X is the trivial map !X : X ! 1.
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Indeed, the �rst claim follows from applying F to !X : X ! 1; the next is an easy
consequence, and the fact that the Fi are subfunctors of F follows from the fact
that !X =!Y � f for any f : X ! Y . The functors Fi are called the components of
F .

Example 2.8. The powerset functor P has two components: C1, the constant
functor sending every set X to 1 = f;g, and its complement, the nonempty-subsets
functor.

3. Accessible Set Functors

A set functor F is called accessible if it preserves, for some in�nite cardinal �; all
�-�ltered colimits. Given such a �, we call F �-accessible. Recall that a category
is �-�ltered i� for every subcategory of less than � objects it contains a cocone;
colimits of diagrams indexed by small, �-�ltered categories are called �-�ltered
colimits. Since every set X is a �-�ltered union of its subsets of cardinality less
than �, this implies the following representation of F (we use � : U ,! X to denote
set inclusion):

FX =
[
U�X

[
jU j<�

F�[FU ] (3.1)

In fact, having such a representation is equivalent for F to be ��accessible, see [3].
Obviously, products, coproducts, and subfunctors of accessible functors are all

accessible. The !-accessible functors are called �nitary.
Given an arbitrary functor F and any cardinal �, we can de�ne a subfunctor F�

of F by

F�X :=
[
n<�

[
f2Xn

Ff [Fn]: (3.2)

Then F is �-accessible i� F = F�. Clearly, we have for any functor F that

F =
[

�2Card

F�

provided that we allow unions indexed over a proper class.
In coalgebra, a somewhat di�erent condition is often used: F is called bounded

if for some in�nite cardinal � every element of a coalgebra A lies in a subcoalgebra
of cardinality at most �. Equivalently, (see [7]) every coalgebra has a subcoalgebra
of size at most �: Accessible functors are precisely the bounded ones, as proved in
[3, 7].

Example 3.1. The powerset functor P is an example of a non-accessible func-
tor. The �nite-powerset functor P! is a �nitary subfunctor of P. The countable-
powerset functor P!1 , assigning to every set the set of all its countable subsets, is
!1-accessible.

3.1. Signatures and polynomial functors. We denote by

Qn (n a cardinal )

the functor of the n-th cartesian power, X 7! Xn: If we consider n as the set of
all smaller ordinals, then Qn is obviously naturally isomorphic to hom(n;�). The
functor Qn is accessible: choose � to be the �rst in�nite cardinal with � > n.

Sums of the cartesian power functors are called polynomial functors:
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H�X =
a
�2�

Xar(�):

Here, the indexing set � is a signature, that is a collection of symbols �, each of
which is equipped with a cardinal ar(�); called the arity of �. We de�ne �n :=
f� 2 � j arity(�) = ng:

Every element of H�X is uniquely identi�ed by its component � 2 � and by a
map x : ar(�)! X. We use the notation

�(x)

rather than (�; x) for the element x in the component �. We call the expressions
�(x) 
at terms. When ar(�) = n is �nite, then x : n! X is sometimes represented
by the tuple (x0; : : : ; xn�1), where xi = x(i) and consequently, the 
at term �(x)
is written as �(x0; : : : ; xn�1). The action of H� on a function u : X ! Y is

H�u = �(x) 7! �(u � x) (3.3)

for all � 2 �n; and all x : n! X.

Example 3.2. The components ofH� are the individual (indecomposable) functors
Qn:

3.2. Quotients and congruences. A quotient of a functor F is the usual concept
applied to the category of all set functors and natural transformations: a quotient
of F is represented by an epimorphism, that is a natural transformation " : F ! G
whose components "X : FX ! GX are epimorphisms in Set for each object X.

A quotient of a �-accessible functor is �-accessible. In fact, let (3.1) hold and
let x be an element of GX. Choose x0 2 FX with x = "X(x

0) and use (3.1) to
�nd f : n ! X and y0 2 Fn with Ff(y0) = x0. Then for y = "Y (y

0) we have
x = "X(Ff(y

0)) = Gf("Y (y
0) = Gf(y).

Every quotient of F de�nes a congruence, that is a collection of equivalence
relations �X on FX for all sets X such that for every morphism f : X ! Y we
have: if x �X x0 then Ff(x) �Y Ff(x0). Given a quotient � : F ! Q, then the
kernels of the �X form a congruence, and conversely, each congruence � de�nes a
quotient with GX = FX= �X where "X : FX ! GX is the canonical map sending
x 2 FX to its equivalence class [x] �X .

Congruences on a functor F are partially ordered in the usual sense: if � and �
are two congruences, then � is less than � if for every set X the relation �X on
FX is contained in �X :

Example 3.3. (i) Let F be the functor of all unordered pairs:

FX = ffx1; x2g j xi 2 X for i = 1; 2g

This is a quotient of Q2 modulo the least congruence with

(x; y) �X (y; x) for all x; y 2 X:

(ii) Another quotient of Q2 is obtained by merging the diagonal into a single
element (called d):

DX = (X �X ��X) + fdg:
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For morphisms f : X ! Y we put (Df)(d) = d and

Df(x; x0) =

(
(f(x); f(x0)) if f(x) 6= f(x0)

d otherwise.

D is the quotient of Q2 modulo the least congruence with

(x; x) �X (y; y) for all x; y 2 X:

(iii) P!1 is the quotient of C1 + Q! obtained by identifying x; y : ! ! X i�
their images agree, i.e. if x[!] = y[!].

(iv) P! is the quotient of H� with � = (�n)n2N and ar(�n) = n for all n 2 N,
obtained by identifying �m(x) with �n(y) i� x[m] = y[n].

3.3. Equational presentations. Taking quotients of polynomial functors leads to
identi�cations of 
at terms. Borrowing notations and conventions from algebraic
logic, we call a triple (X;�(x); �(y)) where X is a set and �(x) and �(y) �-terms
in H�X an equation and write it: �(x) =

X
�(y) .

De�nition 3.4. An equational presentation of a set functor F is a signature �
together with a set E of equations such that F is the quotient H�= � of the
polynomial functor of � modulo the least congruence � such that �(x) �X �(y)
holds for every equation �(x) =

X
�(y) in E.

The following example demonstrates that we need to clarify the logic of equations
we use for set functors.

Example 3.5. The functor C1;2 given by ; 7! 2 and X 7! 1 for X 6= ; has an
equational presentation in the signature � = fc1; c2; �g with c1; c2 nullary and �
unary, given by the equations

�(x) = c1 and �(x) = c2:

However, the equation c1 = c2 does not hold in the presentation of C1;2.

Fortunately, this example is less disquieting than it might seem at �rst sight: the
functor C1;2 is not sound (see 2.3) and we will show that our Equational Logic is
adequate for all sound set functors.

Lemma 3.6. For every presentation (�; E) of a sound functor the valid equations
�(x) =

X
�(y) are independent of the set X of variables in the following sense: if

X 0 is the set of variables that appear in �(x) or �(y) then E j= �(x) =
X

�(y) i�

E j= �(x) =
X0

�(y).

Proof. Let F be the sound functor presented by E and let � be the corresponding
congruence. Given a commutative diagram

Z 0

n

x0
BB����� x // Z
?�
u

OO

m

y0
]];;;;;;
yoo

where u : Z ,! Z 0 is the subset inclusion, then for every � 2 �n and � 2 �m we
have

�(x) �Z �(y) i� �(x0) �Z0 �(y0):
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This follows from (3.3) and the fact that Fu is a monomorphism, see Proposition
2.5, since

"Z0(�(x0)) = "Z0(�(u � x)) = ("Z0 �H�u)(�(x)) = Fu("Z(�(x)))

and analogously for �(y0). Consequently, "Z merges �(x) and �(y) i� "Z0 merges
�(x0) and �(y0). �

Notation 3.7. Due to Lemma 3.6 we need not mention the variable set X when
writing equations for sound functors.

Example 3.8.

(i) The unordered-pairs functor, see Example 3.3(i), is presented by a binary
operation symbol � and the equation

�(x0; x1) = �(x1; x0):

(ii) The functor D of Example 3.3(ii) is presented by

�(x0; x0) = �(x1; x1):

(iii) The �nite-powerset functor P! can be presented by a signature � having
precisely one n-ary operation �n for every natural number n:

H�(X) = 1 +X +X2 + � � �

modulo the equations

�n(x0; : : : ; xn�1) = �m(y0; : : : ; ym�1)

for all pairs m;n of natural numbers and all tuples with fx0; : : : ; xn�1g =
fy0; : : : ; ym�1g.

(iv) The countable-powerset functor P!1 (see example 3.1), has a simple pre-
sentation: let � = fc; �g where c is nullary and � is an !-ary operation
symbol. E is the set of all equations

�(xn)n<! = �(yn)n<!

with fxn j n 2 !g = fyn j n 2 !g for x; y : ! ! !.

Proposition 3.9. Every accessible functor has an equational presentation.

Remark. If F is �-accessible, we prove that it has a �-ary presentation as follows:
Let � be the �-ary signature whose n-ary symbols are labeled by the elements of
F (n) :

�n = F (n) for all cardinals n < �:

Let E be the set of all equations �(x) = �(y), where � 2 F (n) and � 2 F (m), and
for k = max(n;m) we have

x : n! k and y : m! k with Fx(�) = Fy(�):

Proof. To show that the above is an equational presentation of F de�ne a natural
transformation

" : H� ! F

to have components

"X :
a
n<�

F (n)�Xn ! FX

given by the Yoneda transformations

(�; x) 7! Fx(�) for � 2 F (n) and x : n! X:
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This is an epi-transformation whose kernel de�nes the above presentation

E =
[
n<�

ker "n

of the functor F . �

Remark 3.10. Non-accessible set functors do not have an equational presentation.
(We would need to admit signatures � having a proper class of symbols, which
would render H�1 a proper class.) However, every set functor can be represented
as class-directed unions of accessible functors. Recall, that a ��directed union is
such that any n-tuple of its members with n < � is contained in a single member. A
class-directed union is a union which is ��directed for every cardinal �. For every
set functor F the union of the subfunctors in Formula (3.2)

F =
[

�2Card

F�

is class directed.

3.4. Equational Logic. An equational presentation (�; E) may entail further
equations, originally not present in E, but contained in the congruence relation
on H� generated by E. These equations can be derived by a set of rules reminis-
cent of the deduction rules of Birkho�'s equational logic. But, since we are dealing
with 
at terms, these rules have a particularly simple form:

De�nition 3.11. The equational deduction system for 
at equations consists of
one axiom

�(z) = �(z)
(3.4)

and three deduction rules

�(z) = �0(z0)

�0(z0) = �(z)
(3.5)

�(z) = �0(z0); �0(z0) = �00(z00)

�(z) = �00(z00)
(3.6)

�(z) = �0(z0)

�(u � z) = �0(u � z0)
(3.7)

where the last rule applies to all functions u with u � z and u � z0 de�ned.

The above deduction rules introduce the usual notion of derivability. To be
explicit, a formal proof of an equation e � �(x) = �(y) is a sequence e1; e2; : : : ; en
of equations with en � e , and where for each i = 1; : : : ; n either ei is an equation
in E or ei is the conclusion of one of the deduction rules whose assumptions lie in
fe1; e2; : : : ; ei�1g. We write E ` e , if there is a formal proof of e from E.

Lemma 3.12. [Adequacy of Equational Logic] Let F be a sound accessible functor.
Then for every equational presentation (�; E) of F we have F �= H�= � for the
congruence � of H� de�ned by

�(x) � �(y) i� E ` �(x) = �(y): (3.8)
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Proof. We prove that the rules (3.4) to (3.7) de�ne the least congruence on H�

containing E. Then F �= H�= � follows from the de�nition of equational presenta-
tions.

Due to lemma 3.6, the relation � is well de�ned by equation (3.8). It is re
exive
due to (3.4), symmetric due to (3.5) and transitive due to (3.6). The system �
of these equivalence relations is a congruence of H�, that is, for every morphism
u : Z ! Z 0 we have that 1

�(x) �Z �(y) =) �(u � x) �Z0 �(u � y);

due to (3.7). By de�nition, � contains E.
Let � be a congruence on H� containing E, then � contains � : In fact, given

�(x) �Z �(y), we prove �(x) �Z �(y) by induction on the length n of the proof
e1; : : : ; en(� �(x) = �(y)). If n = 1 then either �(x) is the same term as �(y); or
the equation �(x) = �(y) lies in E; in both cases �(x) �Z �(y).
In the induction step, we have n > 1 and there are three cases corresponding to the
three deduction rules applicable in the last step en of the formal proof:

� case (3.5) means that there exists i < n with ei � (�(y) = �(x)) an
equation in H�Z

0 for some set Z 0 of variables. By Lemma 3.6, the set of
variables plays no role, thus, by induction hypothesis we obtain �(y) �Z0

�(x) and this implies �(x) �Z0 �(y) ,
� case (3.6) is analogous to (3.5), and
� case (3.7) means that there is i < n with

ei � (�(z) = �0(z0))

such that for some u : Z 0 ! Z we have

�(x) � �(u � z) and �(y) � �0(u � z0):

This implies � = � and � = �0. By induction hypothesis (and since extra
variables play no role) we have �(z) �Z0 �0(z0): As � is a congruence of
H�; this implies

�(x) � �(u � z) �Z �0(u � z0) � �(y):

�

4. Preservation of Wide Intersections

We have seen in Proposition 2.5 that set functors \essentially" preserve �nite
intersections. In the present section, we characterize set functors preserving wide
intersections.

De�nition 4.1. Given a 
at equational presentation (�; E), we call a term �(xi)i<n
reduced, if for every equation

E ` �(xi)i<n = �(yj)j<m

the variables on the left-hand side are contained in the variables of the right-hand:

fxigi<n � fyjgj<m

We call the presentation reduced, provided that for every 
at term �(zk) there exists
a reduced term �(xi) such that E ` �(zk) = �(xi):

1For better understanding, we keep the indexing of congruences by sets of variables throughout
the proof of 3.12, even though Lemma 3.6 would allow us to drop them.
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Example 4.2. (i) The presentation of P! in Example 3.8(iii) is reduced. For
every term �n(x0; : : : ; xn�1) let k be the number of elements of fxigi<n:
Then there are variables xi1 ; : : : ; xik representing all x0; : : : ; xn�1: The
term �k(xi1 ; : : : ; xik) is reduced and E contains

�n(x0; : : : ; xn�1) = �k(xi1 ; : : : ; xik):

(ii) The presentations of the unordered-pairs functor in Example 3.8(i) is re-
duced, since every term is reduced.

(iii) Let G be the quotient of X! modulo the congruence � given by

(xn)n2! � (yn)n2!i� xn = yn for all but �nitely many n 2 !:

There is an obvious presentation of G: use one !�ary operation and the
equations between congruent terms. This presentation is not reduced. In
fact, G does not have any reduced presentation, see the theorem below.

(iv) A �lter on a set X is a collection of subsets G � P(X) closed under �nite
intersections and supersets. The �lter functor F associates to each set
X the set of all �lters on X, and to each map f : X ! Y the map
Ff : FX ! FY which sends a �lter G on X to the �lter Ff(G) := fV �
Y j f�1[V ] 2 Gg: The �lter functor weakly preserves pullbacks, but does
not preserve wide intersections, see [4].

Theorem 4.3. A sound accessible set functor preserves wide intersections i� it has
a reduced presentation.

Proof. In [5], Theorem 7.4(ii), it is shown that a sound set functor F preserves wide
intersections if and only if for every set X and for each a 2 FX the �lter

�X(a) = fU � X j a 2 F�XU [FU ]g

is a principal �lter. (Here �XU : U ! X denotes subset inclusion.) That means:
for each a 2 FX there is a smallest U � X with a = F�XU (b) for some b 2 FU:
If F is accessible and " : H� ! F is a surjective natural transformation, the

elements of FX are exactly the elements of the form "X(�(x)) where x : ar(�)! X.
Therefore, the above condition translates into:

For each term �(x) with variables from X there exists a smallest U � X such
that for some "U (�(u)) with u : ar(�)! U we have

"X(�(x)) = F�XU ("U (�(u)))

= "X(H��
X
U (�(u)))

= "X(�(�
X
U � u)):

In other words: For each �(x) with variables from X there exists a smallest U � X
such that E ` �(x) = �(u) for some �(u) with variables in U . �

Example 4.4. The functor G of Example 4.2(iii) does not have a reduced presen-
tation, since it does not preserve intersections: consider e.g. the empty intersection
of the subobjects

! � k = fk; k + 1; k + 2; : : :g ,! !

and observe that G maps each of these subobjects to an isomorphism.

Proposition 4.5. A sound set functor preserves wide intersections i� it is a class-
directed union of functors having reduced presentations.
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Proof. If F is sound and preserves wide intersections, then each one of the functors
F� of (3.2) is clearly sound. And F� preserves wide intersections: given a wide
pullback (2.4) and an element lying in F�A and in the image of each F�ai, then
that element lies in FB. Since F� is accessible, it has a reduced presentation.

Conversely, if F =
S
i2I Fi is a class-directed union of functors Fi with reduced

presentations, then the fact that F is sound implies (due to F; =
S
i2I Fi; being

�-directed for for any in�nite cardinal � > card(F;) ) that there exists i0 2 I with
Fi sound for every i � i0:

Then each Fi; with i � i0, preserves wide intersections, from which we conclude
that F does, too. �

Remark 4.6. Let us call an element a 2 FA minimal, if no proper subobject m :
A0 ,! A has the property that a lies in the image of Fm. Observe that a sound set
functor F preserves wide intersections i� every element a 2 FA possesses a minimal
subset, i.e. a subset m : A0 ,! A such that for some minimal element a0 2 FA0 we
have a = Fm(a0):

5. Weak preservation of Pullbacks

In the present section we characterize set functors weakly preserving pullbacks.
This is a condition which is often imposed on coalgebraic type functors, since it
has numerous pleasant coalgebraic consequences. One of the most important ones
being that observational equivalence and bisimilarity coincide.

Example 5.1.

(i) Given a �lter F on the cardinal n, we have a congruence �F on Qn by
de�ning for u; v : n! X :

u �F v i� fx 2 n j u(x) = v(x)g 2 F :

The corresponding functor

Qn= �F

is called �ltered hom-functor. Every �ltered hom-functor preserves pull-
backs (strongly). Thus, also directed unions of �ltered hom-functors pre-
serve pullbacks. In fact, functors preserving pullbacks are characterized in
[17](VIII.5 and VII.10) as the directed unions of �ltered hom-functors.

(ii) For every group S of bijections on the set n ( a cardinal) we denote by

Qn=S

the quotient of Qn (see 3.1) modulo the congruence �S which for u; v :
n! X is de�ned by

u �S v i� u = v � s for some s 2 S:

Each of these functors weakly preserves pullbacks (even wide pullbacks,
see Section 6).

(iii) The �nite powerset functor P! weakly preserves pullbacks. In fact, given
a pullback (2.1) and elements ai 2 P!Ai with P!f1(a1) = P!f2(a2) choose
x = p�11 (a1)� p�12 (a2) 2 P!P to get ai = P!pi(x) for i = 1; 2:

We now turn to a characterization of functors weakly preserving (binary) pull-
backs. Here, like in the case of wide intersections, we use a syntactic condition.
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Remark 5.2.

(i) The rule (3.7) implies that given an equation �(idn) = �(u) in a presenta-
tion E, then every 
at term formed via � can be substituted by one formed
by � : for every n-tuple x of variables, we have E ` �(x) = �(x � u). We
can say that � dominates �.

(ii) Suppose that � dominates two symbols � and � : E ` �(idn) = �(u) and
E ` �(idm) = �(v). Then we clearly derive E ` �(x) = �(y) whenever
x �u = y � v. We call such equations �(x) = �(y) consequences of the joint
domination by �.

De�nition 5.3. A 
at equational presentation (�; E) is called dominated provided
that every equation derivable from E is a consequence of some joint domination.

Explicitly, an equational presentations (�; E) being dominated means, that for
every equation �(x) = �(y) derivable from E (where � 2 �n; x : n! X; � 2 �m; y :
m ! X) there exists an operation symbol � in �k and two k-tuples u 2 nk and
v 2 mk such that

E ` �(u) = �(idn)

E ` �(v) = �(idm)

and

x � u = y � v : k ! X:

Example 5.4. (i) The equational presentation of P! in Example 3.8 is domi-
nated: given �n(x) = �m(y) in E where fxig = fyjg is a set of k elements,
then let u : k ! n and v : k ! m be such that x�u = y �v. The equations
�n(idn) = �k(u) and �m(idm) = �k(v) lie in E.

(ii) The functor Qn= �F above has a dominated presentation by a single n-ary
equation symbol � and by the equations

�(idn) = �(w)

where w ranges over all endofunctions of n whose set of �xed points lies in
F . Here we choose, of course, � = �; u = w and v = id:

Theorem 5.5. A sound accessible functor weakly preserves pullbacks if it has a
dominated presentation.

Proof. Let F be a sound functor with a dominated presentation (�; E) and let

" : H� ! F

be the corresponding natural transformation. Given a pullback

X
f // Z

P

�g
OO

�f // Y

g

OO

and elements x 2 FX; y 2 FY with Ff(x) = Fg(y) , we are to �nd z 2 FP
with x = F �g(z) and y = F �f(z): Choose �(xi) 2 H�X and �(yj) 2 H�Y with
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x = "X(�(xi))and y = "Y (�(yj)). Then "Z merges �(f(xi)) and �(g(yj)) :

"Z(�(f(xi)) = "Z � F�f(�(xi))

= Ff � "X(�(xi))

= Ff(x)

= Fg(y)

= "Z(�(g(yj)):

Consequently,

E ` �(f � x) = �(g � y):

Then we have, by the de�nition of dominated presentation, equations E ` �(idn) =
�(u) and E ` �(idm) = �(v) such that

f � x � u = g � y � v:

Choose �z such that the diagram

X
f // Z

P

�g
OO

�f // Y

g

OO

k

�z
;;vvvvvvv

y�v

AA

x�u

55

commutes. Then the element

z = "P (�(�z))

ful�lls

F �g(z) = "X �H��g(�(�z))

= "X(�(�g � �z))

= "X(�(x � u))

= "X �H�x(�(u))

= Fx � "n(�(idn))

= "X �H�x(�(idn))

= "X(�(x))

= x

and analogously F �f(z) = y:
Conversely, if F is a sound �-accessible functor weakly preserving pullbacks, we

prove that the presentation of Proposition 3.9 is dominated. Given an equation
�(x) = �(y) in E:

Fx(�) = Fy(�)

for x : n! Z; y : m! Z, we form the pullback

n
x // Z

k
�y //

�x

OO

m

y

OO

and assume, without loss of generality, that the domain k is a cardinal. Since n < �
and m < �; we conclude from Formula (2.3) that k < �. Moreover, there exists
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� 2 F (k) such that F �x(�) = � and F �y(�) = � and this is a k-ary operation symbol
such that E contains �(idn) = �(�x) and �(idn) = �(�y): Put u = �x and v = �y. �

Since directed unions commute with pullbacks in Set, we obtain from Remark
3.10 immediately:

Corollary 5.6. A sound functor weakly preserves pullbacks i� it is a directed union
of functors having dominated presentations.

6. Weak Preservation of Wide Pullbacks

Finitary set functors weakly preserving wide pullbacks were characterized by A.
Joyal [10] as precisely the analytic functors. We generalize the concept of analytic
functor from �nitary to accessible, and prove that these functors are precisely those
weakly preserving wide pullbacks. Our proof follows the ideas of R. Hasegawa [9].

Notation 6.1. For a cardinal � we denote by B� the category of all sets of cardinal-
ities less than � and all bijections.

De�nition 6.2. A set functor F is called analytic if it is, for some cardinal �, the
left Kan extension of a functor from B� to Set. Equivalently: F is a coproduct
of the functors Qn=S of Example 5.1(ii) where S is a group of permutations on a
cardinal n < �.

Example 6.3.

(i) Polynomial functors are analytic. They preserve wide pullbacks (strongly).
In fact, these are the only set functors preserving wide pullbacks, see [14].
Indeed, if F preserves wide pullbacks and F =

`
i2I Fi with Fi1 �= 1, see

Formula (2.5), then each Fi preserves wide pullbacks, thus it preserves
limits. By the Special Adjoint Functor Theorem, each Fi is representable.
Thus, F is polynomial.

(ii) The powerset functor P weakly preserves wide pullbacks, the argument is
analogous to Example 5.1(iii). None of the subfunctors Pn (of all subsets
of cardinalities less than n) with n > 3 is analytic { and none of them
weakly preserves wide pullbacks, as the next theorem demonstrates.

(iii) The functor

eX =
a
n2!

Xn=n!

where n! denotes the symmetric group (of all permutations) on n is ana-
lytic.

Remark 6.4. Before characterizing functors weakly preserving wide pullbacks, let us
compare this with weak preservation of products. Although a product A = �i2IXi

with projections �i is a wide pullback of the trivial cocone (!Xi
: Xi ! 1)i2I

Xj

...

!Xj

##G
GG

GG
GG

A = �i2IXi

�j
77nnnnnnnnn

// 1

(6.1)

it is not true that a functor F weakly preserving pullbacks must also weakly pre-
serve products. The powerset functor P; for example, does not weakly preserve the
product ; � 1: However, the implication does hold whenever F is indecomposable,
i.e. F1 �= 1. Observe that weak preservation of products states precisely that
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given a set of elements ai 2 FAi (i 2 I; I any set) then there exists an element
a 2 F

Q
i2I Ai such that for all i 2 I we have ai = F�i(a). We thus derive the

following

Lemma 6.5. An accessible functor weakly preserves products i� it is a quotient of
a hom-functor.

Proof. Let F be accessible and weakly preserve products. Since F is accessible,
there is a set Y such that for every set X and every x 2 FX there is a map
f : Y ! X and some y 2 FY such that (Ff)(y) = x: Choose A to be the Y -th
power of Y: Since F weakly preserves products, there exists a 2 FA such that

FY = fFf(a) j f : A! Y g:

Then F is a quotient of hom(A;�) because the Yoneda transformation f 7! Ff(a)
is an epimorphism " : hom(A;�)! F .

Conversely, every quotient hom(A;�)= � weakly preserves products: given ele-
ments xi = [fi] of hom(A;Xi)= �Xi

for fi : A ! Xi, then f = hfii : A ! �Xi

ful�ls
F�i([f ]) = [pi � f ] = [fi] = xi

for every i 2 I. �

Theorem 6.6. An accessible set functor weakly preserves wide pullbacks i� it is
analytic.

Proof. (1) Let F be �-accessible and weakly preserve wide pullbacks. It is su�cient
to prove that

F indecomposable =) F �= Qn=S

for some group S of permutations on n. In fact, the general case follows since every
component, see (2.5), of a functor weakly preserving wide intersections also has this
property.

Since F is accessible and preserves weak products, there is a set A and an element
a 2 FA such that for every set X

FX = fFf(a) j f : A! Xg: (6.2)

Moreover, since F preserves intersections, we can choose A to be minimal, see
Remark 4.6. Consequently, given a morphism f : B ! A then

a 2 Ff [FB] implies that f is an epimorphism. (6.3)

We call the element a 2 FA analytic, provided that it has the property that given
a parallel pair u; v : A ! X and Fu(a) = Fv(a) then u = v � s for some bijection
s : A ! A with Fs(a) = a. If we prove that F has an analytic element, we are
ready: let S be the group of all bijections s : A! A with Fs(a) = a; then we claim
that F is the quotient

F �= hom(A;�)= �

where u � v i� u = v � s for s 2 S.
In fact, the Yoneda transformation hom(A;�)! F of a 2 FA factorizes through

� via a natural isomorphism; this follows from a being analytic.
Assuming no analytic element exists, we derive a contradiction. We will de�ne

a trans�nite chain of objects Ai, elements ai 2 FAi and connecting maps

eji : Aj ! Ai
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for (i � j) with Feji(aj) = ai such that for i < j each eji is an epimorphism but
not an isomorphism, and Ai is minimal for ai:

This is the desired contradiction: since F is �-accessible, we have by Formula
(3.1) that minimal sets of elements of F cannot have cardinalities beyond �: How-
ever, since eji is not an isomorphism, for all i < j, we see that Ai has cardinality
at least that of i for every ordinal i.

Initial step: (A0; a0) = (A; a) above.
Limit step: Given a limit ordinal j, let

êji : Âj ! Ai

for i < j be a limit of the preceding j-chain. Then each êji is an epimorphism,
see (6.3), but not an isomorphism (since the preceding chain had that property).
Moreover, the limit cone is also the wide pullback of the cocone of all ei;0 : Ai ! A

for i < j. Since F weakly preserves this wide pullback, there exists âj 2 FÂj with

F êji(âj) = ai for all i < j. Let m : Aj ,! Âj be a minimal set for the element âj
and let aj 2 FAj ful�ll âj = Fm(aj). Denote by

eji = êji �m : Aj ! Ai

for i < j the domain restriction of the above cone. Then we have

Feji(aj) = aj

for i < j and this implies that eji is an epimorphism.
Isolated step: Given (Ai; ai) then since ai is not analytic, we have a pair u; v :

A ! X with Fu(ai) = Fv(ai) and u 6= v � s for all bijections s : A ! A with
Fs(ai) = ai. Since F weakly preserves the pullback of u and v,

A
u // X

Ai+1
� � //___ B

u0
OO

v0 // A

v

OO

there exists b 2 FB with Fu0(b) = Fv0(b) = ai: Let m : Ai+1 ,! B be a minimal
set for b and let ai+1be an element of FAi+1 with b = Fm(ai+1): From

F (u0 �m)(ai+1) = ai

we conclude that u0 �m is an epimorphism. If this is not an isomorphism, put

ei+1;i = u0 �m:

If u0 �m is an isomorphism but v0 �m is not, put

ei+1;i = v0 �m:

Observe that it is not possible that both u0 �m and v0 �m are isomorphisms, for
then s = (v0 �m) � (u0 �m)�1 would be an isomorphism with Fs(ai) = ai and

v � s = v � v0 �m � (u0 �m)�1 = u � (u0 �m) � (u0 �m)�1 = u:

(2) The converse implication

analytic =) weakly preserves wide pullbacks
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is easy. Since coproducts commute with wide pullbacks in Set, it is su�cient to
verify that each Qn=S weakly preserves wide pullbacks. Let

Ai
gi

$$H
HH

HH
HH

B

g0i
::vvvvvvv b // A

be a wide pullback and let [xi] 2 An
i =S be classes of n-tuples with

Qn=S(gi)[xi] = [y]

independent of i. Then y : n! A satis�es: for every i 2 I there is si 2 S with

y = gi � xi � si:

Consequently, there exists z : n! B with

g0i � z = xi � si

which means that
Qng

0
i(z) �S xi;

thus
Qn=S(g

0
i)[z] = [xi]

for i 2 I: �

Remark 6.7. The characterization in Theorem 5.5 is of course much less intuitive
than Joyal's result for wide pullbacks. This can be mended for the functors called
super-�nitary in [2]: these are precisely the quotient functors of H� where � is a
�nite and �nitary signature. The proof of the following theorem presented in [2]
was very complicated. But it is easy to see how the technique of Theorem 6.6 above
immediately adapts to the proof of

Theorem 6.8. A super-�nitary functor weakly preserves pullbacks i� it is analytic.

Remark 6.9. Unfortunately, there does not seem to be a \nice" characterization
of set functors (not necessarily accessible) that weakly preserve wide pullbacks.
Observe e.g. that although P has this property, none of its proper subfunctors
not contained in P3 shares that property. In fact, it is easy to verify that P has
no proper subfunctors besides Pn for cardinals n. Thus class-directed unions of
accessible subfunctors do not help. In contrast, we have:

Theorem 6.10. A sound functor weakly preserves products i� it is a class-directed
union of quotients of hom-functors.

Proof. Let F weakly preserve products. For each cardinal n there exists, by Remark
6.4, an element an in the n-th power of n, such that the subfunctor F [n] generated
by an

F [n]X = fFf(an) j f : An ! Xg

contains the n-accessible subfunctor Fn of Formula (3.2). Since F [n] is generated
by a single element, it clearly shares with F the property of weakly preserving
products. Thus it is a quotient of a hom-functor, by Lemma 6.5. From Fn � F [n]

we get

F =
[

n2Card

F [n]:

The converse implication is trivial. �
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7. Preservation of Inverse Images

As we have remarked earlier, a functor preserves weak pullbacks i� it weakly
preserves inverse images and kernel pairs. Observe that a sound functor preserves
inverse images i� it preserves them weakly.

Preservation of inverse images plays a central role in the theory of recursive
coalgebras, see [15]. Also, as has been argued in [5], functors preserving inverse
images can be considered as generalized container types.

Indeed, given any functor F , then the \generalized elements" of any container
c 2 F (X) can be de�ned as

�X(c) := fU � X j c 2 F�XU [FU ]g;

where �XU : U ,! X denotes subset inclusion. (In a di�erent notation, the �lters
�X(c) were already introduced and used by V. Koubek [11]). Due to Proposition
2.2, � is a transformation from F to the �lter functor F, see Example 5.1. For a
general functor, � need not be natural, but it is always sub-natural, meaning that
the naturality square commutes whenever f : X ! Y is monic:

Y FY
�Y // FX

X
?�

f

OO

FX
?�

Ff

OO

�X // FX
?�

Ff

OO

Moreover, � is sub-cartesian, meaning that the naturality squares are pullback
squares for monic f : X ! Y . In fact, it was shown in [5] that F preserves inverse
images i� � is a natural transformation. A related characterization from [5] is:

Proposition 7.1. A set functor preserves inverse images if and only if there exists
a natural and sub-cartesian transformation to the �lter functor.

Combining this with Proposition 2.7 and using the fact that by Lemma 2.1 the
composition of two sub-cartesian transformations is sub-cartesian, we infer a result
�rst proved using coalgebraic arguments by T. Schr�oder in his thesis [14]:

Proposition 7.2. If a sound functor preserves inverse images, then so do all sound
subfunctors.

For �nitary functors, see section 3.1, preservation of inverse images has also been
characterized in [1]. Recall that in general algebra an equation is called regular if it
has the same variables on both sides. The sound �nitary functors preserving inverse
images are precisely those having an equational presentations by regular equations.

Example 7.3. (i) Every polynomial functor H� preserves inverse images.
(ii) The class of inverse image preserving functors is closed under products and

coproducts.
(iii) The functors P , P! preserve inverse images.
(iv) The functor D of Example 3.3(ii) does not preserve inverse images, nei-

ther does its sound modi�cation D0 with D0; = 1. In fact, consider the
inverse image of the embedding 1 ,! 2 (explicitly: f0g ,! f0; 1g) under
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the constant map c1 : 2! 2 with value 1:

2
� � c1 // 2

;
?�

�0
OO

� � // 1
?�
�

OO

For the elements (0; 1) 2 D2 and d 2 D1 with

Dc1(0; 1) = d = D�(d)

there is no element of D0; which D0�0 would map to (0; 1).
(v) The functor G, see Example 4.2(iii), preserves inverse images, as we shall

derive from the characterization theorem below. But it clearly has no
presentations by regular equations. We thus need a new idea for in�nitary
signatures.

De�nition 7.4. Let (�; E) be an equational presentation. We say that a term
�(xi)i<n depends only on a subset a : A ,! n provided that for every m-tuple y of
variables with x � a = y � a we have

E ` �(xi)i<n = �(yj)j<m:

The presentation is called almost regular if for every equation E ` �(xi)i<n =
�(yj)j<m the term �(xi) only depends on the variables that appear on both sides.
(That is, �(xi) only depends on fi j xi = yj for some jg. )

Theorem 7.5. A sound accessible functor preserves inverse images i� it has an
almost regular presentation.

Proof. (1) Let (�; E) be an almost regular presentation of a sound functor F , and
let

" : H� ! F

be the corresponding transformation. Given an inverse image

X
f // Y

A
?�

a

OO

f0

// B
?�
b

OO

we are to �nd, for any pair p 2 FX, q 2 FB with

Ff(p) = Fb(q)

an element r 2 FA with

Fa(r) = p:

Since F , being sound, preserves monomorphisms, it then follows that Ff0(r) = q.
We can express

p = "X(�(x)) and q = "B(�(y))
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for some � 2 �n; x : n! X and � 2 �m; y : m! B. The naturality of " implies

"Y (�(f � x)) = "Y �H�f(�(x))

= Ff � "X(�(x))

= Ff(p)

= Fb(q)

= "Y (�(b � y)):

Consequently,

E ` �(f � x) = �(b � y)

and we conclude that �(f � x) only depends on

fi < n j f(xi) 2 Bg = fi < n j xi 2 Ag:

Choose x0 : n ! A with x0i = xi whenever xi 2 A; then E ` �(x) = �(x0) and
x = a � x0. The desired element r with Fa(r) = p is r = "A(�(x

0)) :

Fa(r) = Fa � "A(�(x
0)) = "X(�(a � x

0)) = "(�(x)) = p:

(2) Let F be accessible and preserve inverse images. Then we prove that the
presentation of Proposition 3.9 is almost regular. Let

E ` �(x) = �(y)

that is, let x : n! X, � 2 Fn, y : m! X and � 2 Fm ful�ll

Fx(�) = Fy(�):

Factorize y as an epimorphism y0 : m! �m followed by a monomorphism �y : �m ,!
X. It is our task to prove that �(x) only depends on the subset p : k ,! n in the
inverse image

X
x0
//

x //
X

k
?�

p

OO

q
// �m
?�
�y

OO

In fact, let x0 : n! X ful�ll

x0 � p = x � p:

Since F preserves the above pullback and Fx(�) = F �y(Fy0(�)), there exists � 2 Fk
with Fp(�) = �: Then the desired conclusion

E ` �(x) = �(x0)

follows from

Fx(�) = F (x � p)(�) = F (x0 � p)(�) = Fx0(�):

�

Corollary 7.6. A sound functor preserves inverse images i� it is a directed union
of functors having almost regular presentations.
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8. Conlusions and Open Problems

We have characterized set functors having some of the properties frequently uti-
lized in General Coalgebra. The most important of these is weak preservation of
(binary) pullbacks: we characterize accessible functors that weakly preserve pull-
backs as those that have a dominating equational presentation. The canonical
presentation of the �nite powerset functor is a prototypical example of such a dom-
inating presentation. Unfortunately, we have no direct description of the weak
preservation of pullbacks, and also no characterization that would be applicable to
non-accessible functors.

The situation is better for functors weakly preserving wide pullbacks: Andr�e
Joyal described all �nitary functors with this property as being the analytic func-
tors, that is, coproducts of representables modulo a group of isomorphisms. We
prove the same result for accessible functors. However, also here we have no char-
acterization for non-accessible functors. Why, for that matter, does the powerset
functor weakly preserve wide pullbacks ?

We further characterize the functors preserving (wide) intersections and inverse
images. In both cases the characterization of accessible functors with that property
is in terms of equational presentations, whereas general functors have that property
i� they are class-directed unions of accessible functors with the same property.
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