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Abstract

Given an endofunctor F' on the category of sets, we investigate how the structure
theory of Setp, the category of F-coalgebras, depends on certain preservation prop-
erties of F'. In particular, we consider preservation of various weak limits and obtain
corresponding conditions on bisimulations and subcoalgebras. We give a character-
ization of monos in Setr in terms of congruences and bisimulations, which explains,
under which conditions monos must be injective maps.
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1 Introduction

In recent years it has been discovered that a wide range of state based systems,
amongst them various types of transition systems, automata, infinite and ob-
ject oriented data structures, even topological spaces, can all be uniformly
captured by the notion of coalgebra. 1t has turned out that the pertinent
notions such as bisimulation, finality, coinduction and cogeneration can be
defined uniformly for arbitrary coalgebras and their structure theory can be
developed to quite some depth in the abstract setting of coalgebras of type
F. Here F' is an arbitrary endofunctor on the category of sets which serves
as the type functor for the coalgebras under consideration. The above men-
tioned examples result from choosing for F' the powerset functor P(—), the
power functor (=)=, the product functor (=) x ¥, the filter functor F(—) (see
[Gum98]) or various combinations thereof.

A major advantage of coalgebras is that the theory can naturally deal
with nondeterminism and undefinedness, concepts which are hard, or even
impossible, to treat algebraically.
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The abstract theory of F-coalgebras has by now reached a certain kind
of maturity, perhaps comparable to the state of affairs in universal algebra
before the times of Mal’cev. The standard reference, which also includes many
examples, has been by J. Rutten [Rut96]. Based on the important observation,
that most relevant type functors share an extra property, namely they preserve
weak pullbacks, much of the structure theory has been developed under this
premise. Weak preservation of arbitrary pullbacks (that is limits of arbitrary
sets of arrows with a common codomain) guarantees, amongst other things,
that subcoalgebras of a coalgebra A are closed under intersection. This, in
turn, plays an important structure theoretic role, since it allows one to work
with one-generated subcoalgebras, that is subcoalgebras (a) of A, generated
by arbitrary elements a € A. In particular, every coalgebra is then a conjunct
sum of conjunctly irreducibles, see [GS98], and the lattice of subcoalgebras is
a sublattice of the powerset P(A) of A.

However, amongst some researchers there has always been the uneasy feel-
ing that assuming preservation of weak pullbacks trivializes interesting parts
of the theory. For instance, it implies that both union and intersection of
subcoalgebras are again subcoalgebras. In the dual field of universal alge-
bra, one would rarely expect unions of subalgebras to be subalgebras. In fact
such is the case essentially only with algebras whose nontrivial operations are
unary. Moreover, there are viable examples of coalgebras (topological spaces,
for instance) where one-generated subcoalgebras hardly ever exist.

For those reasons, in [Gum99] an attempt was made, to lay down an intro-
duction to the general theory of coalgebras which abstains from any particular
assumption on the type functor F'. Surprisingly, the relevant structure theory
could still be developed, including the isomorphism theorems and a coalge-
braic version of Birkhoff’s theorem. It turned out, that many proofs became
considerably simpler, however further notions needed to enter the stage, such
as e.g. congruences which previously had coincided with other notions, e.g.
bisimulation equivalence.

Thus, not all structure theoretic results from [Rut96] are valid in the gen-
eral case. For instance, monomorphisms need not be injective, the relational
product Ro S of two bisimulations need not be a bisimulation and the preim-
age ¢ U] of a subcoalgebra U < B under a homomorphism ¢ : A — B
need not be a subcoalgebra of A. In this article, we shall identify the partic-
ular preservation properties of the functor F' which are responsible for such
structure theoretic properties.

In particular, we shall prove structure theoretic equivalents in the category

Setr of F-coalgebras to the following preservation properties of a type functor
F

* F weakly preserves pullbacks,

* F weakly preserves kernels,



» F weakly preserves pullbacks along injective maps,
» I weakly preserves pullbacks of injective maps.

When F' does not preserve weak pullbacks, then monomorphisms need not
be injective. The dual situation is well known in universal algebra, where
epis are not necessarily surjective . We give a simple structural criterion for
the kernel Ker(¢) of a homomomorphism ¢ that determines whether ¢ is a
monomorphism or whether the monomorphism ¢ is injective.

2 Basic Notions

Let F': Set — Set be a functor on the category of sets. Such an F' is usually
called an endofunctor, but in our context we shall refer to it as a type.

An F-coalgebra (coalgebra of type F') is a pair A = (A, 4), consisting of
aset A and a map aq : A — F(A). The set A is called the carrier or the
underlying set and the map a4 is called the co-operation or the structure map
of A. In some contexts, it is suggestive to refer to A as the state space and to
a4 as the transition structure of A.

Given two F-coalgebras A = (A, a4) and B = (B,ap),amap ¢ : A - B
is called a homomorphisms if it preserves the structure, i.e. if it makes the
following diagram commute:

A—>—B
A ap
F(A) 2L p(B).

This definition turns the class of all coalgebras of type F' into a category,
Setp. This category inherits all colimits from Set, that is:

Theorem 2.1 ([Bar93]) The forgetful functor from Setp to Set creates col-
imits, in particular, in the category Setp all coproducts and all coequalizers
exist and are constructed as in Set, the category of sets.

The following theorem of Rutten can be used to prove that a map is a
homomorphism:

Theorem 2.2 ([Rut96]) Let A, B, and C be coalgebras, p : A — C a homo-
morphism and f: A — B and g : B — C maps with go f = ¢. Then

(i) If f is a surjective homomorphism, then g is a homomorphism.

(i1) If g is an injective homomorphism, then f is a homomorphism.

! The natural embedding ¢ : Z — Q is both mono and epi in the category of rings.
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As a corollary, every bijective homomorphism ¢ is an isomorphism, that is,
its inverse ¢! is also a homomorphism.

2.1 Subcoalgebras

Subcoalgebras are defined in the usual way: If A = (A, «) is a coalgebra, then
a subset U C A is called closed, if an F-coalgebra structure can be defined on
U, so that the canonical inclusion map C: U — A becomes a homomorphism.
U together with this structure map is called a subcoalgebra of A and we write
U < A. It is easy to see that the mentioned coalgebra structure on U is
unique, so that one often uses “closed set” and “subcoalgebra” synonymously.

The empty set is always closed, more generally, arbitrary unions of closed
sets are closed ([Gum99]). Therefore, for any F-coalgebra A = (A, ) and for
any subset S C A, there is a largest subcoalgebra of A which is contained in
S. We shall denote it by [S] and call it the subcoalgebra cogenerated by S.
We shall need:

Theorem 2.3 ([Gum99]) Given a homomorphism ¢ : A — B, and given a
subcoalgebra U < A, then ¢[U] := {¢(u) | u € U} is a closed subset of B, that
isU < A implies U] < B and ¢ : U — ¢[U] is a surjective homomorphism.

If F' preserves weak pullbacks, then preimages of subcoalgebras are sub-
coalgebras, too, that is: Given ¢ : A — B and U < B, then ¢ '[U] := {a €
A | ¢(a) € U} is a subcoalgebra of A ([Rut96]). If F' does not preserve weak
pullbacks this is not true, as we shall see later.

2.2  Bistmulations

One of the most important notions of the theory of coalgebras is that of a
bisimulation. Given coalgebras A and B, a bisimulation between A and B is
a binary relation R C A X B on which a coalgebra structure § : R — F(R)
can be defined, so that the canonical projections 7y : R -+ Aand my : R — B
become homomorphisms. If A = B, we speak of a bisimulation on A.

A<—"—R—" B

N

F(A)~— F(R)

F(B)

F(m) F(m2)

We shall need the following facts about bisimulations, which are proved in
[Rut96]:



Theorem 2.4 Let A and B be coalgebras.

(i) The union of bisimulations is a bisimulation, in particular, there is a
largest bisimulation ~ 4 p between A and B.
(i) Ay :={(a,a) |a € A} is always a bisimulation on A.
(ii1) If R is a bisimulation between A and B, then

B ={(y,2) | (z,y) € B}

15 a bisimulation between B and A.

(iv) Given a coalgebra P and two homomorphisms ¢y : P — A and oy : P —
B, then

(¢1,02)P == {(21(p), w2(p)) | p € P}

15 a bistmulation between A and B. We call this the canonical bisimula-
tion arising from the 2-source (P, 1, p3). 2

As a consequence of this theorem, for every relation R C A x B there is
always a largest bisimulation between A4 and B which is contained in R. We
denote it by [R]. If R is reflexive or symmetric, then so is [R].

If ¢ : A — B is a homomorphism, then (id 4, ) A is a bisimulation accord-
ing to the above theorem. This set is nothing but

G(p) :={(a,¢(a)) [ a € A},

the Graph of .

2.3 Congruences

We define a congruence relation on a coalgebra A as the kernel of any homo-
morphism ¢ : A — B, more precisely:

Definition 2.5 A binary relation 6 on A is a congruence relation if there
exists a coalgebra B and a homomorphism ¢ : A — B so that

0= Ker(p) :={(z,y) € Ax A|o(r) =p(y)}.

Let 6 be an equivalence relation on a set A, then the map mp : A — A/0,
mapping every element a € A to [a]f, its equivalence class modulo 6, is the
coequalizer, in the category of sets, of the projection maps m; : 6 — A. Now
assume that ¢ happens to be a bisimulation on the coalgebra A, then the 7;
are homomorphisms with respect to somepf appropriate coalgebra structure
on #. By theorem 2.1, my is also the coequalizer in Setr of m; and 75, so
there exists some coalgebra structure on A/f for which 7y : A — A/0 is a

2 A 2-source ist just a pair of morphisms with common domain.



homomorphism. We still have § = Ker(mp), so # is a congruence, hence we
get a result, due to Aczel and Mendler:

Theorem 2.6 ([AMS89]) A bisimulation R on A is a congruence relation,
provided that R is reflexive, symmetric and transitive.

Whenever the type functor preserves weak pullbacks, the converse of this
theorem is also true ([Rut96]). In this case congruences are the same as
bisimulation equivalences. Congruences have originally been introduced by
Aczel and Mendler in 1989. As remarked earlier, most of the subsequent
literature on coalgebras did assume preservation of weak pullbacks, so the
notion of congruence has not received further attention.

2.4 A counterexample

The following example was also introduced in [AM89] to show that in general
not every congruence needs to be a bisimulation. Since we shall reuse this
example in the following sections, we present it here in detail:
Consider the functor (—)3 : Set — Set which associates with every set A
the set
A3 = {(z,y,2) € A7 | {z,y, 2} < 2}

A map f: A — B is transformed into (f)3 : A3 — B3 by way of

(N2, y,2) = (f(2), f(y), [(2)).

Clearly, the 1-element set 1 = {0} can be equipped with a (—)3-coalgebra
structure. It is, in fact, terminal in the category of (—)3-coalgebras.

Apart from this rather trivial example, it suffices to consider the two-
element (—)3-coalgebra A = (A, «) with A = {a,b}, a(a) = (a,b,b) and
a(b) = (b,b,a). There is a unique homomorphism ¢ : A — 1, and its kernel is
Ax A. However, Ax A is not a bisimulation, for its coalgebra structure ¢ would
have to satisfy m(d(a, b)) = a(a) = (a,b,b) and m3(d(a,b)) = a(b) = (b, b, a).
This implies 6(a,b) = ((a,b), (b,b), (b,a)) ¢ (A x A)3. The argument shows
that (a,b) (and similarly (b, a)) can not be contained in any bisimulation on
A. Therefore, the largest bisimulation on A is the diagonal A 4.

3 Epis and monos in Setp

A morphism which is epi (mono) in Set is trivially also epi (mono) in Setp.
Epis, in any category, are just those morphisms for which the diagram

A—*=B



is a pushout. Thus, the following result of Rutten is another consequence of
theorem 2.1:

Theorem 3.1 ([Rut96]) Let ¢ : A — B be a homomorphism. ¢ is epi in
Setrp iff it is epi in Set, i.e. surjective.

The story is different for monos, and we shall see that monos in Setr need
not be injective. The following theorem, in fact, points out what is missing:

Theorem 3.2 A homomorphism ¢ is mono iff [Ker(p)] = A4.

Proof. Assume that ¢ : A — B is mono. Let m,m : Ker(p) — A be the
canonical projection maps. Let 71,7 : [Ker(¢)] — A be their restrictions to
[Ker(p)]. The latter set is a bisimulation on A, so 7; and 7, are coalgebra
homomorphisms and o7, = pofry. It follows 71; = 7y, that is, [Ker(y)] = Ay.

Conversely, assume that [Ker(¢)] = A4 and assume that there are homo-
morphisms k1, ke : P — A with ¢ 0 k1 = ¢ 0 ky. By theorem 2.4, (ki, k2)P
is a bisimulation on A, and it is clearly contained in Ker(p). By assumption
then, (k1,k2)P C A4 which implies that £ = ko.

Corollary 3.3 A monomorphism ¢ : A — B is injective iff Ker(p) is a
bisimulation.

3.1 An example

The coalgebra A4 on the base set A = {a, b} from the previous section readily
provides us with an example of a homomorphism that is both epi and mono but
still not injective: The unique map ¢ : A — 1 is a surjective homomorphism,
infact, 1 is final, but the kernel of ¢ is A x A. The previous section shows
that ~ 4= Ay, therefore [Ker(p)] = Aa.

A purely category theoretic characterization of injective homomorphisms
can be given as follows:

Theorem 3.4 A homomorphism ¢ : A — B is injective if and only if ¢ is
an equalizer.

Proof. The equalizer of two homomorphisms 1, 1, : A — B is obtained from
Epiwn = [{a € A | Y1(a) = 92(a)}], the largest subcoalgebra of A contained
in the equalizer (in Set) of ¢; and 5. The equalizer of ¢; and v is just the
canonical embedding of the subcoalgebra &y, 4, into A. (For type functors F
preserving weak pullbacks, this is shown in [Wor98], a proof for the general
case can be found in [Gum99].)

Conversely, assume that ¢ : A — B is an injective homomorphism. In the
category Set, ¢ has a left inverse ¢~ with ¢~ o ¢ = idg. One checks that ¢
is the equalizer in Set of f; := po ¢ and fy = idg. Let (P,m,m) be the
pushout of ¢ with itself. (B, fi, f2) is a competitor for this pushout, so there



isaset map h: P — B with hom; = f; fori: =1, 2.

A—*L=B

X
‘pé T2 Wl% \wow
2. h
m\

B

We claim that ¢ is the equalizer in Setp of 7 and 7. So let x : @ — B
be a competitor of ¢, that is x is a homomorphism with

1 OX = T2 OX.

It follows that

fiox=homox
=homox
=f20ox.
Since ¢ is the equalizer, in Set, of f; and f5, there is a unique map x: Q — A
with ¢ o Kk = x. Since x and ¢ are homomorphisms, so is x by theorem 2.2.
Consequently, « is the unique homomorphisms with ¢ ok = .

4 Special Functors

Most functors which we have mentioned in the introduction share an extra
property which in the past was assumed in much of the structure theoretic
investigations into coalgebras: They preserve weak pullbacks. We shall study
this condition and a collection of somewhat weaker requirements on F', and
we shall relate them to their structure theoretic consequences.

4.1  Split epis

Definition 4.1 Amongst the objects of a category C we can define a relation
=< as follows:
A<B &

there are morphisms 7 : B — A and 6 : A — B with 7 o 0 = id4.

It follows that ¢ is mono and 7 is epi. Such a 7 is also called split epi. The
relation < is a quasi ordering, i.e. <is

e reflexive:

VAeC. A=A,

e transitive:

VA,B,Ce(C. A<B,B(C = A=X<C.



=< is preserved by arbitrary functors, that is, each functor F'is

e monotone:

VA, BeC.A<B = F(A)<XF(B).

In the category of sets we have A < B <= |A| < |B|, therefore, according
to the Schroder-Bernstein theorem 2 < is

* anti-symmetric:

VAABeC. AXB,B=A = AZB.

Every split epi is an epi. In Set, assuming the axiom of choice, we have
the converse, i.e. every epi is a split epi.

4.2 Weak limit preservation

Given a diagram D in a category C, a weak limit of D is given by a cone
(W, (w;);er) so that for every other cone (@, (¢;)icr) over D (that is for every
competitor of (W, (w;);er)) there is at least one morphism d : @ — W with
w;od=q; foralls e I.

Definition 4.2 Let F' : Set — Set be a functor and D a diagram. We say
that

* I weakly preserves D-limits, if F' transforms every limit cone over D into
a weak limit cone over F(D), i.e. for every limit (L, (v;)icr) of the diagram
D we get that (F (L), (F(v;))icr) is a weak limit of the transformed diagram
F (D).

o I preserves weak D-limits if it transforms every weak limit cone over D
into a weak limit cone over F (D).

Fortunately, the fine linguistic difference between “F' preserves weak lim-
its” and “F weakly preserves limits” is easily seen to disappear in every cat-
egory where all D-limits exist. This is an easy consequence of the following
observation:

Lemma 4.3 Let D be a diagram in an arbitrary category C.
(i) If (W, (w;)ier) is a weak limit of D and W < W' with split epi 7 : W' —
W, then (W', (w; o T)ier) is also a weak limit of D.
(11) If the limit (L, (p;)icr) of D exists, then (W, (w;)icr) is a weak limit of D
of and only iof w; = p; o1 for some split epi 7 : W — L, in particular,
L<W.

Thus, with respect to the order <, introduced on the objects of a category,
limits, if they exist, are just the infima of all weak limits.

3 Given sets A and B and injective maps f : A — B and g : B — A then there is a bijection
between A and B.



Corollary 4.4 Let C be a category and D a diagram so that every D-limit
exists in C. Then F preserves weak D-limits if and only if F' weakly preserves
D-limaits.

Theorem 4.5 Let C be a category in which every D-limit exists, then an
endo-functor F' preserves weak D-limits if and only if for every D-limit (L, (p;)ier)
there exists a morphism § from the limit (Q, (¢;)ier) of F(D) to F(L), so that
F(p;)od = q; for alli.

Proof. Let (L, (p;)icr) be the limit of D and (@, (¢;)ic;s) the limit of F/(D). If
(F(L), (F(pi))ier) is a weak limit of F'(D), then by definition there must be
at least one morphism ¢ : ) — F(L) with F(p;) 06 = ¢;.

Conversely, if such a 0 : Q — F(L) exists, consider the unique morphism
7:F(L) — Q with F(p;) =g oT.

L F(L)
y{ MA )T F(p:)
\
D; Q—qRF(D)

Then ¢; 0706 = ¢; 0idg, so 7 oJ = idg. Hence 7 is split epi and F(L) is a
weak limit of F/(D).

4.3 Weak k-pullbacks and their preservation

We illustrate the above situation in the case of a pullback (L, p;,ps) of two
morphisms f: A — C and g: B — C.

L—2=A4
pzl lf
B——=C

Let @ the limit of the transformed diagram, then F' weakly preserves pullbacks
iff there is a map § : Q — F(L) with F(p;) od = ¢; for i =1,2.

The pullback of two maps f : A — C and ¢ : B — C' in Set has as
object the set pb(f,g9) = {(a,b) € A x B | f(a) = g(b)} and as morphisms
the canonical projections 7; and 75. From this we get an easy criterion for a
Set-endofunctor to preserve weak pullbacks:

10



Proposition 4.6 ([Gum98]) A functor F : Set — Set preserves weak pull-
backs, iff for all maps f: A — C and g : B — C we have: Given u € F(A)
and v € F(B) with F(f)(u) = F(g)(v) then there exists w € F({(x,y) |
f(z) =g(y)}) with F(m)(w) = u and F(ms)(w) = v.

Corollary 4.7 F weakly preserves the pullback of f and g iff the map F(my) X
F(ms) « F(pb(f,9)) = pb(F(f), F(g)) is onto.

We will need to generalize the notion of pullback to consider pullbacks of
a family of arrows with common codomain.

Definition 4.8 Let k be an ordinal. A k-sink is a family (f; : A; — A)icw of
morphisms with common codomain. A k-pullback is the limit (P, (7;)icx) of a
k-sink. A weak k-pullback is a weak limit of a k-sink.

Thus, a 2-pullback is just an ordinary pullback. There has occasionally
been slight confusion in the literature concerning the notion of “preservation
of weak pullbacks”. We know of functors preserving weak pullbacks, which do
not preserve weak rk-pullbacks for £k > w. An example is the filter functor, see
[Gum98].

The category of sets is complete and cocomplete, which is to say that all
limits and all colimits exist. In particular, k-pullbacks in Set exist and they
are constructed similar as in the finite case:

Proposition 4.9 Let (fy : Ay — A)gex be a k-sink. Then

Po((filrer) = {(an)ren | Vi, j € K- fi(ai) = fi(a;)}

with canonical projections m; defined as m;((ax)ker) = a; is the k-pullback of
the fr in Set. A functor F preserves weak k-pullbacks iff for every family
(ur)kew € PO(F((fr)rex)) there exists an element w € F(pb((fx)rex)) with
F(mk)(w) = ug, for all k € k.

Example 4.10 Most functors considered so far preserve weak r-pullbacks for
arbitrary k. Amongst those are:
(i) The constant functor F(X) = A for a fized set A.
(ii) The identity functor Zd.
(iii)) F(X)=A+ X for a fized set A.
(iv) F(X)= X7 for a fived set 3.
(v) The power set functor P(—).

The following lemma allows us to combine the above examples. Most of
the practically relevant coalgebras have a type which arises in such a way.

Lemma 4.11 If functors F' and G preserve weak k-pullbacks for some k, then
sodo FoG, FxG, and F +G.

11



Example 4.12 The functor (—)3 does not preserve weak pullbacks. However,
if at least one of f: A — C, g: B — C 1is injective, then the functor weakly
preserves the pullback of f and g. We say, that (—)3 weakly preserves pullbacks
along injective maps.

Proof. Given f: A — C, g: B — C, (uy,us,u3) € A3, and(vy,vq,v3) € Bj
with f(u;) = g(v;). We must find w € {(z,y) | f(z) = g(y)}3 so that
(m1)3(w) = v and (my)3(w) = v. The only possibility is w = ((uy, v1), (uz, ve), (us, vs)).
It remains to show that w € (A x B)3, i.e. that two of the components of
w are equal. We may assume w.l.o.g. that u; = us. If v; = vy then we are
done. The other case is, again w.l.o.g, that v = v3. If f is injective then
f(ug) = g(ve) = g(vs) = f(u3), so (uz,vs) = (u3,vs3), similarly, if g is injective
then (uy,v1) = (ug, v2).

To see that (—)3 does not preserve weak pullbacks of arbitrary maps, choose
[ = g the constant map {0,1} — {0}. For u = (0,0,1) and v = (1,0, 0) it is
impossible to find the required w with ()3 (w) = u and (m2)3(w) = v.

5 Preservation theorems

In the following we shall consider and characterize several particular properties
which the functor F' might have in regard to weak preservation of certain types
of pullbacks.

Clearly, if F' weakly preserves pullbacks, then

» I weakly preserves kernel pairs,
» F (weakly) preserves pullbacks along injective maps,
» F (weakly) preserves pullbacks of injective maps.

We shall study these conditions and characterize them by way of their struc-
ture theoretical consequences.

5.1 F weakly preserving pullbacks

There are many reasons why functors weakly preserving pullbacks entail nice
structure theoretical properties. In purely category theoretical terms, such
functors are characterized by the fact that they can be extended to functors
on Rel, the category having as objects all sets and as morphisms all binary
relations. This fact is due to Carboni, Kelly, and Wood [CKW90], for a further
discussion see Rutten [Rut98].

The following theorem characterizes functors weakly preserving pullbacks
in a coalgebraic context. The implications 1. — 2. — 3. are due to Rutten
[Rut96].

Theorem 5.1 For a functor F' the following are equivalent:

12



(i) F weakly preserves nonempty pullbacks.

(ii) The pullback pb(p, 1) of two F-homomorphisms ¢ : A — C and ) : B —
C is a bisimulation between A and B.

(1ii) In Setp, the relational product Ro S of two bisimulations R and S is a
bisimulation.

(v) If ¢ + A — C and ¢ : B — D are F-homomorphisms, and if R is a
bisimulations between C and D, then

(0, 9) [R] := {(a,;b) € A x B[ p(a) R(b)}

15 a bisimulation between A and B.

The key in proving the reverse direction of this and some later theorems
is:
Lemma 5.2 Let F' : Set — Set be a functor and f: A— C and g: B — C
be maps with pb(f,g) # 0. Then the following are equivalent:

(i) F weakly preserves the pullback of f and g.

(ii) {(a,b) | f(a) = g(b)} is a bisimulation for each coalgebra structure on A,
B, and C for which f and g are homomorphisms .

(iii) For each pair (a,b) € pb(f,qg) and for all coalgebra structures on A, B,
and C making f and g homomorphisms there is a 2-source (Q, p1,p2) and

an element g € Q with f op; = go pa, p1(q) = a and pa(q) = b.

Proof. The equivalence of 2. and 3. is rather straightforward: If pb(f, g) is a
bisimulation, then it is an appropriate 2-source. Conversely, from a 2-source
(Q,p1,p2) with f op; = g ops we get the canonical bisimulation (py, p2)@ as
a subset of pb(f,g). The extra condition guarantees that the sum of all such
2-sources has precisely pb(f, g) as standard bisimulation.

The implication (1. — 2.) is due to Rutten([Rut96]): Let (P, m,m) be
the pullback of the homomorphisms f : A — C and ¢ : B — C. Then
(F(P), F(m), F(m)), by assumption, is a weak pullback of F(f) : F(A) —
F(C) and F(g) : F(B) — F(C). Since f and g are homomorphisms, we
calculate

F(f)oapsom=aco fom

=Qc O gOTy
=F(g) oagom
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2
e T
e
jap
-~ F(B) 19) F(C)
v ) o
F(P) F(A

This makes (P, «q0omy, apomy) a competitor of the weak limit (F'(P), F(m), F(ms))
from which we get the desired mediating map ap with ay om = F(m) o ap
and ap o my = F(ms) o ap.

2. —> 1.: Let f: A— C and g : B — C be maps and (P, m,ms) their
pullback with P # (). Consider the pullback (@, p1,p2) of F(f) and F(g). By
theorem 4.5, we need to construct a map 0 : Q — F(P) with F(m;) o = p;.

Take any ¢ € @ and define structure maps o, o, and of, on A, B, and
C' as the constant functions

afy = Aa.pi(q),
al=Xb.pa(q), and
aly=Ae.F(f)(pi(g) = Ae.F(g)(p2(q))-

It is easy to see that f and ¢ are homomorphisms with respect to these struc-
tures. We therefore find a structure map af on P turning P into a bisimula-
tion. We finally set

d(q) = ar(p)
for an arbitrary p € P. By construction,
F(m)(0(q)) = F(m)(cp(p))
= afy(mi(p))
=pi1(q).
Similarly, F'(m) o §(q) = p2(q), hence p; = F(m;) o § as required.

? A al,
B Pp(e)
P2
)\ ﬁ(ﬁ) /
Q7 6-->F(P) F(A F(f)

We now finish the proof of the theorem 5.1. The equivalence of 1. and 2.
follows directly from the above lemma.

In order to prove (2.)—(3), let R, resp. S, be bisimulations between A
and B, resp. between B and C. The pullback of the projections 7 : R — B
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and 7 : S — B is
R S :={((a,b),(b,c)) | (a,b) € R, (b,c) € S}.

By assumption, this can be equipped with a coalgebra structure, making 7 o
71 and 75 omy into homomorphisms. Ro S is nothing but (7o, 75 o) (R >
S), the canonical bisimulation for this 2-source.

BraS-—-—-=RoS

7

The implication (3.)—(4.) follows from the observation that

(0, 9) [R] = (G(p)) o Ro (G(4)) ",
whilst (4.)—(1.) is due to the equality

5.2 F weakly preserving kernels

Recall that a kernel is the pullback of a morphism f : A — B with itself. We
have seen above that the functor (—)3 does not weakly preserve kernels.

Theorem 5.3 F weakly preserves kernels of non-empty mappings if and only
if every congruence relation is a bisimulation.

Proof. Let R be a congruence on A with projection homomorphism 7p :
A—A/R. If F weakly preserves kernels, then R = pb(mr, 7g) is a bisimulation
by lemma 5.2.

Conversely, let f : A — B be a non-empty mapping and 7, mp : Ker(f) —
A the canonical projection maps.

Given u,v € F(A) with F(f)(u) = F(f)(v), we need to find some w €
F(Ker(f)) with F(m)(w) = u and F(my)(w) = v.

If f is injective, then so is F(f), yielding v = v. So, in any case, we
can find a pair (z,y) € Ker(f) and a map as : A — {u,v} C F(A) with
as(r) = v and aa(y) = v. Obviously f is a homomorphism from (A, )
to (B, ap), when ag is the constant map with image {F(f)(u)} C F(B). In
particular, Ker(f) is a congruence on A, and therefore, by our assumption, a
bisimulation.

This yields a structure map 6 : Ker(f) — F(Ker(f)) with

F(m)od=aqom.

Clearly, w = d(z,y) is the required element.
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Lemma 5.4 If F' weakly preserves kernels then the largest bisimulation ~ 4
on a coalgebra A is transitive, in fact it is the largest congruence relation on

A.

Proof. Theorem 5.3 implies that every congruence # is contained in ~ 4. On
the other hand, consider the coequalizer 1) of the projection homomorphisms
m; and o :
Mmoo Y
~AT_ZA——C.

T2

Then ~4C Ker(¢) C~ 4, hence ~4= Ker(¢) is a congruence relation.

Corollary 5.5 If F' weakly preserves kernels then every mono in Setp is in-
jective.

Proof. If F' weakly preserves kernels, then Ker(y) = [Ker(y)], hence if ¢ :
A — C is mono we have Ker(p) = [Ker(p)] = Aa.

5.8 F weakly preserving pullbacks along injective maps

F' is said to weakly preserve pullbacks along injective maps if F' weakly pre-
serves pullbacks pb(f, g), whenever f or g is injective.

This condition on F' is properly weaker than the condition of preserving
arbitrary weak pullbacks, for we have seen that the functor (—)3 has this
property, yet it does not weakly preserve pullbacks of two arbitrary maps.

Lemma 5.6 Assume that f is injective and that pb(f,g) # 0. If F weakly
preserves the pullback pb(f, g), then F preserves the pullback of f and g.

Proof. Let f : A — C and g : B — C be maps and (pb(f,g), 1, m2) their
pullback. In every category pullbacks along monos are mono, so if f is injec-
tive, then so is my : pb(f,g) — B. If this is not the empty map then, by the
axiom of choice it is left invertible, and so is, consequently, F'(ms). Now it is
easy to check that a weak limit must in fact be a limit, once a single one of
its projections is mono.

Theorem 5.7 Let F' be a Set-endofunctor, then the following are equivalent:

(i) F (weakly) preserves non-empty pullbacks along injective maps.
(it) If U < B and R is a bisimulation between A and B, then

R Ul:={a€ A|FuelU.au) € R}

is a subcoalgebra of A.

(1ii) If ¢ :+ A — B is a homomorphism and U < B is a subcoalgebra, then
o L[U], the pre-image of U under o, is a subcoalgebra of A.

(iv) IfU < A and V < B, then the bisimulations between U and V are just
the restrictions to U X V' of bisimulations between A and B.
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Proof. 1. — 2.: Assume that F' preserves non-empty pullbacks along injective
maps and R C A x B is a bisimulation. The pullback in Set of <: U — B and
R — Bis Q = {(u,(a,u)) | u € U, (a,u) € R}. By assumption, @) must
be a bisimulation, hence, there is a structure map on ¢ so that W;Q '@ — R,
and consequently, m o7r§2 : Q — A a homomorphism. Its image, which is just
R~[U], is a subcoalgebra of A.

2. — 3.: This is a specialization with R = G(y).

3. - 1. Let ¢ : A — C and ¢ : B — C be homomorphisms with
injective. The epi-mono-factorization of ¢ yields a subcoalgebra B’ of C and
an isomorphism 1) : B — B' so that ¢ = <g o 1). By assumption, A’ := ¢ [U]
is a subcoalgebra of A, and by theorem 2.2 the restriction ¢’ of ¢ to A’ is a
homomorphism. It follows that the canonical embedding <: A" — A together
with the homomorphism ! o ¢/ : A" — B form a 2-source in Set; whose
canonical bisimulation is just the pullback in Set of ¢ and .

1. — 4.: Every bisimulation between U/ and V is clearly a bisimulation
between A and B. Conversely, let R be a bisimulation between A and B
and let <;: U—A and <y: V—B be the embeddings. Using the fact that
pullbacks of injectives are injective, we are able to repeatedly take pullbacks
along injective maps as shown in the following diagram where each square is
a pullback:

NN\

P P,
P
With P, = RN (U x B) and P, = RN (A x V) we get that

PzplﬂPQZRﬂ(UXV):(Su,éy)_[R]

is a bisimulation, since all arrows are homomorphisms.
4. — 3.. Let ¢ : A — B be an F-homomorphism and &4 < B. By
assumption,

(G(@)) N (AxU) = {(a,¢(a) | p(a) € U}

is a bisimulation, so

m:(Glp)N(AxU)— A
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is an F-homomorphismus whose image is nothing but ¢ }[U]. Consequently,
this is a subcoalgebra of A.

Recall that V4 is the largest congruence relation on a coalgebra A. We
drop the index 4, if it is clear from the context.

Theorem 5.8 If F' preserves pullbacks along injectives, then the following are
equivalent:

(i) ~ 4 is transitive for all A € Setp.
(ii) V4= ~a forall A € Setp.

Proof. V4 is always transitive, so one direction is trivial. For the other
direction, consider a,a’ € A with aVa'. We are going to show that a ~4 a'.

Let m : A — A/V be the canonical projection and consider the sum
S = A+ A/V + A with its canonical embeddings ¢1, t2, and 3. Now
induces an endomorphism ¢ := [(t3 0 7), 19, (12 0 )] on S, satisfying

wOLIZLQOﬂ':’Q/)Obg.

Using the fact that the graph of 1) and its converse must be contained in
~g, we obtain:

n(a) ~s P(n(a)) = 1a(m(a)) = 1a(m(a’)) = Ples(a’)) ~s e5(a’).

It is easy to see that v1(x) ~g t3(z) for every x € A, in particular, i3(a’) ~s
t1(a"). By hypothesis, ~g is transitive, so with the above, we obtain ¢;(a) ~s
t1(a"). Theorem 5.7 allows us to conclude a ~ 4 a'.

We caution the reader that we do not claim that ~ 4 being transitive would
imply ~ 4= V 4. In fact, we have a counterexample to this stronger hypothesis:

Recall the earlier example of a (—)3-coalgebra A with a homomorphism
to a one-element coalgebra 1, where ~, was the diagonal relation on A. In
particular, ~ 4 is transitive, but V, = A x A # ~ 4, even though the functor
(—)3 preserves pullbacks along injective maps.

Reusing this counterexample, we can construct a (—)3 coalgebra whose
largest bisimulation is not transitive: The proof of the theorem shows, that
we can simply take A + 1+ A.

5.4 F (weakly) preserving k-pullbacks of injective maps

The previous examples demonstrated that the functor (—)3, which preserves
pullbacks along injective maps, does not weakly preserve arbitrary pullbacks
(not even kernels, i.e. pullbacks of identical maps). We start this section with
an example of a functor F': Set — Set which fails to preserve weak pullbacks
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along injective maps, but will, nevertheless, preserve pullbacks of injective
maps.

Example 5.9 On a set A, define F identical to the powerset functor:
F(A) :=P(A),
but on maps f: A — B define F(f) on any U € P(A) as

flU] if fiv is injective

0 otherwise.

We leave it to the reader to check that F is a functor.

Obviously, Setr and Setp agree on objects, that is, every P-coalgebra is
an F-coalgebra, and conversely. Also, the notion of subcoalgebra is the same
in Setr and in Setp, since both categories have the same injective homomor-
phisms. In particular, F'-subcoalgebras will be closed under intersection.

Consider now the following F'-coalgebras:

A= ({a1,a2,a3}, @) with a(a1) = {as, a3} and a(az) = afaz) = 0.
B = ({b1, b2}, B) with 5(b1) = B(b2) = 0.

It is easy to check that p(a1) := by and @(as) := ¢(a3) := by defines a
homomorphism ¢ : A — B. However, ¢ '[{b;}] = {a:} is not a subcoalgebra
of A. By theorem 5.7, F' does not preserve pullbacks along injective maps.

To see that F' does preserve pullbacks of injective maps, in fact of an
arbitrary collection (fx)rer of injective maps with a common codomain, one
could directly check this, using the criterion from [Gum98], but it will also
follow from the following characterization theorem. The only-if direction of
this is again from [Rut96:

Theorem 5.10 F (weakly) preserves k-pullbacks of injective maps if and only
iof the intersection of a k-family of subcoalgebras is a subcoalgebra.

Proof. The intersection of a family (Uy)kex of subcoalgebras of A is just the
pullback of their embedding. If this intersection is empty, nothing is to prove.
Otherwise, if F' preserves pullbacks of these embeddings, the pullback is a
bisimulation, so in this case, the intersection is a subcoalgebra.

Conversely, suppose that the intersection of a k-family of subcoalgebras
is a subcoalgebra. We shall present the proof for x = 2, the general case is
proven the same way. Let ¢ : A — C and ¢ : B — C be injective coalgebra
homomorphisms. We try to fulfill the condition of lemma 5.2 For any (a,b)
with ¢(a) = ¢(b), we need to find a 2-source (Q,p1,p2) and a ¢ € @Q with
popr =1 op;and pi(q) = a, pa(p) = . _

We start with the epi-mono-factorizations < o ¢ = ¢ and < o ¥ = .
Then ¢ and ¢ are isomorphisms with A = A’ = ¢[A] and B = B' = ¢[B].
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The pullback, in Set, of ¢ and 1 can be taken stepwise, as indicated in the
following diagram. Since A’ N B’ is a subcoalgebra, the innermost pullback is
also a pullback in Setr. Continuing to the outside, we are taking pullbacks
along isomorphisms, which always exist in Setp. Thus (Q, 7, m2) is a source
as required, i.e. p om =1 omy, and m(q) = x, T(p) = v.

A—— g~ C
A
N
Q S B

We conclude this subsection with an example of a functor not preserving
pullbacks of injective maps.

Example 5.11 Define F' : Set — Set on a set A as

F(4) = PAND |A]<1
T P4 otherwise,

and on a map f : A— B as

)0 A=10
Fli) = {(P(f))F(A) otherwise.

One easily checks that F' is a functor. However, the intersection of two
subcoalgebras A and B of a given F-coalgebra C need not be a subcoalgebra
of C.

To see this, consider C = ({a, b, c},7) with y(a) = {b} and (b) := v(c) :=
(). Then it is easy to see that A := {a,b} and B := {b, ¢} are subcoalgebras
of C, but {b} is not.

5.5 Preservation of k-pullbacks

If a functor F' weakly preserves pullbacks of two maps, it need not weakly
preserve pullbacks of infinitely many maps. In fact, the filter functor (see
[Gum98]) preserves r-pullbacks of injective maps if and only if £ < w.

Proposition 5.12 If F' weakly preserves 2-pullbacks then the subcoalgebras
of an F-coalgebra form a topological space. Fvery homomorphism between F'-
coalgebras is continuous and open with respect to the corresponding topologies.
Conversely, every topological space arises as the collection of subcoalgebras of
type F, where F is the filter functor.
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In a certain sense the converse is also true, see [Gum98]. On every topolog-
ical space (X, 7) we can define a coalgebra A, = (X, ax) so that the open sets
of 7 become exactly the subcoalgebras of A and the continuous open maps be-
tween (X, 7) and (Y, o) are exactly the homomorphisms between A = (X, ay)
and B = (Y, ay). The type F is given by the “filter functor” which associates
to any set X the set F(X) of all filters on X. For a given topological space
(X, 7) we define the structure map « by

where U(z) is the neighborhood filter of the point z.

6 Conclusion

We have characterized variants of weak pullback preservation properties of
type functors for coalgebras. In particular we have considered weak preser-
vation of arbitrary pullbacks, of pullbacks along monos, and of pullbacks of
monos. In each case we have isolated structure theoretic properties that are
entailed by, or that in fact are equivalent to, such preservation assumptions.
We have given examples that show these properties to be really different. Fur-
ther, we have given a structure theoretic criterion for characterizing monomor-
phisms in Setp, and for establishing when a mono is injective.
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