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UNIVERSAL COALGEBRAS AND THEIR LOGICS

H. PETER GUMM

ABSTRACT. We survey coalgebras as models of state based systems together with their
global and local logics. We convey some useful intuition regarding Set-functors which
leads naturally to coalgebraic modal logic where modalities are validity patterns for the
successor object of a state.

1. INTRODUCTION

State based systems are natural models in numerous fields of computer science. Moore-
and Mealy-Automata are fundamental for the design of hardware systems, acceptors are
needed to define and implement the lexical part of programming languages, modifiable
objects in object oriented calculi can be seen as systems whose state is being changed by
method calls [14]. Nondeterministic Kripke structures provide universal formalisms for
modeling distributed systems and protocols, and probabilistic systems are used to model
performance issues.

A common feature of all those systems is the presence of some internal state, and of
methods for evolving from a given state to a combination of new states. States are usually
not directly observable, but only via some observer functions, which reveal certain features
of the current state or some other output depending on it.

Strikingly similar notions, questions and results in all of these domains are apparent, but
the similarities could for a long time only be discussed on an informal level. Only with the
invention and application of Universal Coalgebra [1, 21], has a common framework been
created, which, in a mathematically pleasing way, has all mentioned systems as particular
instances. With this in mind, the “right” definitions and the pertinent theorems are just
facets of a more general mathematical notion, that of a coalgebra. As a side effect, the
general viewpoint allows to integrate further examples, such as e.g. topological spaces,
whose kinship with state based systems had hitherto not been realized.

Universal coalgebra is dual to universal algebra over the dual of the category of sets. As
the category S et is not self dual, universal algebra can not simply be translated to deliver
a corresponding theory of coalgebras. It can, however, serve as a formidable source of
inspiration.

Parallel to the development of coalgebraic structure theory there has always been the
question, what “the” appropriate logic for universal coalgebras should be like. Just as in-
ductive datatypes are equipped with an induction principle, terminal coalgebras can be seen
as coinductive types, providing a coinduction principle as a proof rule for showing equality
of elements. Cofree coalgebras are generalizations of terminal coalgebras, their elements
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can be interpreted as coequations, and a dual of Birkhoff’s theorem can be obtained in
the realm of universal coalgebra. However, unlike the situation in universal algebra, co-
equations do not seem to play such a prominent role in classical applications of universal
coalgebra.

Many systems in Computer Science are modeled with Kripke structures, and their de-
sired properties are formulated in various modal languages, such as linear temporal logic
(LTL), computation tree logic (CTL) or Hennessy-Milner logic (HML), to name a few.
The famous Hennessy-Milner result for image finite Kripke structures establishes a com-
pleteness theorem for image finite Kripke-structures [13]. With the work of D. Pattinson
and L. Schröder, a corresponding modal logic together with a corresponding completeness
result is now available for general (finitary) coalgebras.

In this survey, we give an exposition of universal coalgebra with this logical com-
pleteness result in mind. The article is self-contained and geared towards Pattinson’s and
Schröder’s completeness result. We do provide complete proofs, but we mostly want to
relay an intuitive understanding of the role of type functors, and of modalities, which,
we believe, simplifies substantially the original approach by Pattinson [19] and Schröder
[22]. A slower paced textbook introduction to much of this material, excluding coalgebraic
modal logic, can be found in [15].

2. COALGEBRAS: DEFINITIONS, EXAMPLES AND FUNDAMENTAL NOTIONS

Let S et be the category of sets and mappings and F : S et →S et an endofunctor. A
coalgebra of type F, or F-coalgebra, is simply a morphism α : A→ F(A). It is common to
denote a coalgebra as a pair A = (A,αA ) where αA : A→ F(A). We shall call A the uni-
verse of A and αA its structure. Whenever possible, we shall draw structure morphisms
as downward pointing arrows:

A

αA

��
F(A)

Given two F-coalgebras A = (A,αA ) and B = (B,αB), a homomorphism from A to
B is a map ϕ : A→ B with αB ◦ϕ = F(ϕ)◦αA , i.e. which makes the following diagram
commutative

A

αA

��

ϕ // B

αB

��
F(A)

F(ϕ) // F(B)

To check that the class of all F−coalgebras with homomorphisms as defined above
forms a category requires no more and no less than applying the defining properties of an
endofunctor F .
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We shall call this the category of F-coalgebras1 and denote it by S etF .
Forgetting the structure map α , one obtains the “forgetful” functor U : S etF →S et,

and it is easy to check that U creates and preserves all colimits. For instance, the sum of
a collection (Ai)i∈I of coalgebras is formed on the sum S = Σi∈IAi in S et. Let ei : Ai→
Σi∈IAi be the canonical injections. Then the maps Fei ◦αi : Ai→ F(Ai) make F(Σi∈IAi) a
competitor to the sum, which is mediated by a unique map α : Σi∈IAi → F(Σi∈IAi). It is
easy to check that (Σi∈IAi,α) is indeed the sum of the coalgebras Ai = (Ai,αi).

Ai
ei //

αi

��

Σi∈IAi

α

���
�
�

F(Ai)
Fei // F(Σi∈IAi)

Likewise, the coequalizer ψ of two coalgebra homomorphisms ϕ1 and ϕ2 is constructed
with its universe being the coequalizer in S et of ϕ1 and ϕ2, and its structure map the
mediating map to the competitor Fψ ◦αB of ψ :

A

αA

��

ϕ1 //
ϕ2

// B

αB

��

ψ // C

���
�
�

F(A)
Fϕ1 //
Fϕ2

// F(B)
Fψ // F(C)

With sums and coequalizers existing in S etF , it follows that all colimits exist in S etF ,
see [2].

Most of our structure theoretic statements could be rephrased and proved with S et
replaced by any category S satisfying the following assumptions: S is complete and co-
complete, well-powered and all morphisms are uniquely epi-regular mono decomposable.

2.1. Automata, objects and transition systems. Let D be a set of output data and E
a set of inputs. In general, an automaton A = (A,δ ,γ) is given by a state transition map
δ : A×E→A which takes a state a∈A and an input e∈E to move to a new state δ (a,e)∈A
and some output map γ of varying formats, as follows.

Moore automata. In the case of Moore automata, the output is directly generated from the
state using an output map γ : A→ D. In graphical notation, one depicts the states as nodes
of a graph. An arrow labeled by input e connects state a to state a′ precisely if δ (a,e) = a′.
An output d is written next to state a when γ(a) = d.

?>=<89:;a
d

e // ?>=<89:;a′

A homomorphism ϕ : A → B between Moore automata A = (A,δA ,γA ) and B =
(B,δB,γB) is a map ϕ : A→ B satisfying for all e ∈ E and for all a ∈ A:

ϕ(δA (a,e)) = δB(ϕ(a),e) (1)

1The term coalgebra derives from the fact that universal algebras (see[4]) are given by structure maps in the
opposite direction. A group, for instance, is a set with a binary operation of multiplication ·, a unary inverse
operation −1 and a constant e, satisfying certain equations. These operations can be combined into a single map
G×G + G + 1→ G, and conversely, every such map can be decomposed into three individual operations, so a
group is a certain map F(G)→G, where F is the obvious functor with F(X) = X×X +X +1. Homomorphisms
of universal algebras are defined by the same diagram as above, when the structure maps are reversed.
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γA (a) = γB(ϕ(a)) (2)

Moore automata are coalgebras for the functor F(X) = D× XE which sends a map
f : X → Y to F f : D× XE → D×Y E with (F f )(d,µ) = (d, f ◦ µ). Every automaton
A = (A,δ ,γ) is an F-coalgebra by virtue of α(a) = (γ(a),δ (a,−)), and conversely, from
a coalgebra structure α : A→D×AE one recovers the automaton A = (A,δ ,γ) as γ(a) :=
π1(α(a)) and δ (a,e) := π2(α(a))(e). One easily checks that the coalgebraic definition of
homomorphism agrees with the standard definition given above.

Acceptors. Acceptors are automata with a set Q ⊆ A of accepting states. They can be
considered as Moore automata with output set D = {0,1} where the output function is
γ = χQ, the characteristic function of the accepting states. Rather than labeling states with
either 0 or 1, the accepting states are circled with a double line:

?>=<89:;a e // GFED@ABC?>=<89:;a′

Obviously, acceptors are coalgebras for the functor F(X) = 2×XE .

Mealy automata. Mealy automata take the input into account when generating an output,
that is γ : A×E → D. Here inputs as well as outputs are attached to the arrows as, for
instance, in the following picture, which encodes δ (a,e) = a′ and γ(a,e) = d:

?>=<89:;a
e/d // ?>=<89:;a′

Mealy automata are likewise modeled as coalgebras of the functor F(X) = (D×X)E . The
exponent law (D×X)E ∼= DE ×XE emphasizes that Mealy automata could be treated as
Moore automata with output set DE .

Partial automata. Partial automata are permitted to have a partial transition map δ . They
are coalgebras as well, but of type F(X) = D× (X +1)E where 1 = {?} denotes any one-
element set, and “+” is disjoint sum. δ (a,e) is undefined (denoted by⊥) if π2(α(a))(e) =
?. One checks that the coalgebraic homomorphism condition amounts to

δA (a,e) =⊥ ⇐⇒ δB(ϕ(a),e) =⊥ (3)

in addition to the equations (1) and (2).

2.2. Classes and methods. Classes in object oriented languages are automata in disguise.
State is encapsulated in objects as combinations of values stored in private fields which are
not visible to the outside. Output- and transition-functions are realized by “getter” and
“setter” methods, as shown in the following fragment of a Java class modeling rudimen-
tary Account objects. Each Account can reveal its balance by calling the output-function:
getBalance() and it can modify its internal state with a method called deposit(amount). We
can find out if the state has changed only by calling the method getBalance(). The full state
may encode further information, such as e.g. the identity of the holder or the bank’s billing
information. From the outside, the Account presents just its public methods:

class Account{
int getBalance();
void deposit(int amount);

}
With these methods, observations are restricted to calls to deposit followed by getBal-

ance. A classical mathematical description, must assume the existence of some internal
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state set S and must use this as explicit parameter to the methods:

getBalance : S → Z
deposit : S×Z → S

In practice, the state is hidden in the implementation, so it can never be directly ob-
served. Thus a specification such as

deposit(deposit(s,z1),z2) = deposit(s,z1 + z2)

is meaningless, since this formula asks for equality of two internal states. The bank may
not be willing to guarantee this equality, for instance, if it wants to record transactions
for a printout of a monthly statement or if it wants to keep some statistics. It is perfectly
acceptable, though, to specify equality of certain observations, as follows:

getBalance(deposit(deposit(s,z1),z2)) = getBalance(deposit(s,z1 + z2)).

“Methods” in object oriented languages do not explicitly refer to internal state, so the
above specification might be written as follows:

deposit(z1).deposit(z2).getBalance() = deposit(z1 + z2).getBalance().

2.3. Non-deterministic systems. A Kripke Structure is a non-deterministic system A =
(A,_, l) given by a transition relation _⊆ A×A and a fixed set Φ of elementary prop-
erties. A labeling function l : A→ P(Φ) assigns to each state the set of all elementary
formulas true in that state. Instead of (a,b) ∈_, we write a _ b.

Kripke structures are important devices for modeling hardware, programs, and proto-
cols, as well as distributed systems and games, etc. When the state of a program is given
by the value of certain variables, say x, y, z, PC, an instruction such as x:=x+5 modifies
the state by incrementing the value of x by 5 and (implicitly) the program counter PC by 1.
Properties in Φ are then Boolean terms involving these variables, such as e.g. “PC < 10”
or “x*x+y*y < z”.

Kripke structures can be modeled as coalgebras for the functor F(X) = P(X)×P(Φ).
Here, P denotes the covariant powerset functor which sends a map f : X → Y into the
image map P f : PX → PY given by (P f )(U) = { f (u) | u ∈U}. We shall often abbreviate
(P f )(U) by f [U ].

Conversely, a coalgebra structure α : A→ P(A)×P(Φ) decomposes into a binary tran-
sition relation _ in the first component and a labeling map in the second component.

Bounded Nondeterminism. In many applications, nondeterminism is restricted to a choice
from finitely many possible next states; in such a case one speaks of bounded non-determinism.
In general, a Kripke structure is called image-finite, if for every state a ∈ A the set of suc-
cessors α(a) := {a′ | a _ a′} is finite. Image-finite Kripke structures, may be modeled as
coalgebras for the finite-powerset functor Pω which is the subfunctor of P associating with
a set X the set Pω(X) of all finite subsets of X .

2.4. Bisimulations. In the theory of Kripke-Structures, the notion of bisimulation has
always played a central role for relating states displaying the same behavior. A bisimulation
between Kripke structures relates two states that can mutually simulate each other. To be
precise, a bisimulation between Kripke Structures A = (A,_A , lA ) and B = (B,_B, lB)
is defined as a binary relation R⊆ A×B such that aRb implies

lA (a) = lB(b) (4)
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∀a′ ∈ A.a _ a′ =⇒∃b′ ∈ B.b _ b′∧a′Rb′ (5)

∀b′ ∈ B.b _ b′ =⇒∃a′ ∈ A.a _ a′∧a′Rb′ (6)

a

����������
R b

��>>>>>>>

a′ R b′

Two states s and s′ are called bisimilar, written s ∼ s′, if there exists some bisimulation R
with sRs′.

Modal logic. Modal logic is a logical system for talking about Kripke Structures from a
local perspective. Modal formulas are generated by the syntax

φ ::= p foreach p ∈Φ

| �φ | ♦φ

| true | φ ∧φ | ¬φ .

A state s satisfies p ∈ Φ if p ∈ l(s), and s satisfies �φ (resp. ♦φ ) if each (resp. some)
successor of s satisfies φ . Formula induction shows immediately, that bisimilar states are
logically equivalent. The converse is true only for image-finite Kripke structures, and it is
known as the Hennessy-Milner Theorem [13]:

Theorem 2.1. Two states s and s′ of image-finite Kripke structures are bisimilar if and
only if they are logically equivalent.

Modal logic, interpreted over Kripke structures is called “normal”, since it satisfies the
following tautology:

�(φ → ψ)→�φ →�ψ

2.5. Labeled transition Systems. Variations of Kripke structures are fuzzy systems, weighted
systems, or probabilistic systems, where the probabilities attached to the transitions ema-
nating from any state s sum to 1.

� Let L be a complete lattice, and L X the set of all maps from X to L . This can be
made into a functor by translating a map f : X → Y into a map L f : L X →L Y

given by L f (σ)(y) :=
∨
{σ(x) | f (x) = y}. The elements of L X can be consid-

ered as L -fuzzy subsets of X . Indeed, with L = {0,1} we obtain just the covari-
ant powerset functor P, and with L = [0,1], the unit interval, L (−)−coalgebras
are just fuzzy relations.

� Choosing elements m from a monoid M = (M,+,0) as weights, we can model
weighted transition systems as coalgebras for the functor M

(−)
ω which sends a set

X to the set of all maps σ : X →M whose support supp(σ) = {x ∈ X | σ(x) 6= 0}
is finite. The elements of σ ∈M X

ω can be considered either as finite bags where
σ(x) specifies the multiplicity of x in “container“ σ , or as formal polynomials
m1x1 + ...+mnxn with variables from X and coefficients from M.
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� Let D(X) be the set of all finite probability distributions over X . Then D becomes
a functor and D-coalgebras are probabilistic transition systems. An appropriate
modal logic for probabilistic coalgebras has a modality [p] for each 0 ≤ p ≤ 1
with the semantics

s |= [p]φ :⇐⇒ p = Σ{pi | s′ |= φ , s
pi_ s′}.

2.6. Hypersystems. Neighborhood systems A = (A,νA ) associate with each a ∈ A a
collection of subsets ν(a)⊆ P(A). A morphism between two neighborhood systems A =
(A,νA ) and B = (B,νB) is a map ϕ : A→ B such that for each a ∈ A and for each subset
Y ⊆ B we have

Y ∈ νB(ϕ(a)) ⇐⇒ ϕ
−1(Y ) ∈ νA (a).

General neighborhood structures turn out to be coalgebras for the functor F(X) = 22X
,

which is the composition of the contra-variant powerset functor 2(−) with itself. Note that
the functors 2(−) and P(−) agree on objects, i.e. 2X and P(X) both denote the powerset
of X , but they differ on maps, in that a map f : X → Y is sent to 2 f : 2Y → 2X given by
2 f (V ) = f−1(V ) for each V ⊆ Y.

Topological spaces are special types of neighborhood systems and neighborhood mor-
phisms between them correspond to maps which are both continuous and open. Topologi-
cal spaces can also be modeled as coalgebras for the filter functor F, where F(X) denotes
the set of all filters on X . F is a subfunctor of 22(−)

and topological spaces are also F-
coalgebras.

Modal logic for neighborhood systems also uses the modalities � and ♦. In this case,
a state a ∈ A satisfies �φ provided [[φ ]] ∈ ν(a), where [[φ ]] stands for the set of all a ∈ A
satisfying φ . The semantics of ♦φ is defined by the formula ♦φ = ¬�¬φ .

3. SET FUNCTORS

S et-functors F are the coalgebraic types, so it is important to know the most relevant
properties. First of all, we can assume that F(X) = /0 implies X = /0, for otherwise F
would have to be the constant functor. Since monos in S et are left-invertible, provided
their domain is nonempty, every S et functor F preserves monos with nonempty domain.
More surprising is the following classical result by Trnková [23], a short proof of which
can be found in [11]:

Lemma 3.1. Every S et functor F preserves finite nonempty intersections. By redefining F
on the empty set and on empty mappings, one can obtain a set functor F+, which preserves
all finite intersections.

Since empty coalgebras are of no relevance we may assume from now on that F has
been “normalized” to preserve all monos and all finite intersections.

3.1. Weak pullback preservation. A pullback (P,πA,πB) is the limit of a diagram of two
arrows f and g with common codomain.

P
πX //___

πY

���
�
� X

f
��

Y
g // Z

In S et, the pullback of f and g is the set P = {(x,y) ∈ X ×Y | f (x) = g(y)} with πX and
πY the projection morphisms. If f and g are set-inclusions, then their pullback is the same
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as the intersection: P ∼= X ∩Y . Therefore, Trnková’s theorem allows us to assume that F
preserves pullbacks of inclusions.

For general maps f and g this is not possible. Applying F to the above diagram does
not render (F(P),FπX ,FπY ) as pullback, not even as a weak pullback of F f and Fg. This
is unfortunate, since at the end it is going to prevent bisimilarity, as we shall define it for
general coalgebras, from becoming an equivalence relation. In turn, we cannot hope for
a Hennessy-Milner type theorem, characterizing bisimilarity by logical equivalence, since
the latter is by its very nature an equivalence relation.

Weak preservation of pullbacks would be a convenient property for the structure theory
of coalgebras, too, and luckily it is satisfied for the type functors of the standard examples
that we have seen, including automata, probabilistic systems and Kripke structures. There-
fore, almost all of the early literature on universal coalgebra required the type functor F to
weakly preserve pullbacks.

On the other hand, there are important functors which do not weakly preserve pull-
backs, but for which important coalgebraic constructions are still well behaved. The dou-
ble contra-variant power set functor 22(−)

, yielding hypersystems, for instance, does not
weakly preserve pullbacks, yet bisimilarity of hypersystems is an equivalence relation,
thus removing a big obstacle on the way towards a Hennessy-Milner style theorem for
hypersystems.

This motivated the search for conditions on type functors that are less restrictive than
“weak pullback preservation” and for a characterization of their structure theoretical im-
pact. In [11], it was shown that preservation of weak pullbacks could be decomposed into
two simpler preservation conditions:

Lemma 3.2. A S et-functor F weakly preserves pullbacks iff it weakly preserves preim-
ages and kernel pairs.

Here, a kernel pair is the pullback of two identical arrows and a preimage is a pullback
along a mono. The key to the mentioned result is a decomposition, as in the following
diagram of an arbitrary pullback diagram of two maps f and g into a kernel diagram,
two preimage diagram and an intersection. Preservation of the latter is taken care of by
Trnková’s theorem.

X

f

""
�� // X +Y

[ f ,g] // Z

• �� //____

OO�
�
�

Ker

OO�
�
�

//___ X +Y

[ f ,g]

OO

P
?�

OO�
�
�

�� //____ •
?�

OO�
�
�

//____ Y

g

``

?�

OO

In [10, 9, 11], the mentioned preservation properties of a S et-functor F are related to
structure theoretic properties of the category S etF . In particular, it is shown that a functor
F weakly preserves kernel pairs if and only if for every constant set C, the largest bisimu-
lation on C×F(−)-coalgebras is always transitive. As an example, the functor 22(−)

does
weakly preserve kernel pairs, but not preimages, see [12].
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3.2. Some intuition regarding S et-functors. A good intuition for S et-functors F is
achieved by thinking of the elements u ∈ F(X) as some mathematical shapes, such as
sets, trees, graphs, maps, or combinations thereof, containing certain “holes” which are
filled with elements of X . A map f : X → Y leads to a replacement or substitution map
F f : FX → FY which in any object u ∈ FX replaces each occurrence of x ∈ X by the
corresponding object f (x) ∈ Y . The resulting object (F f )(u) might have to be simplified
due to the fact that certain holes end up being filled with equal elements.

Imagine, for instance, a shape with five holes, given by a triple and a set as: (◦1,◦2,{◦3,
◦4,◦5}). With x1,x2,x3 ∈ X , a corresponding element of F(X) might be u = (x1,x3,{x1,x2,
x3}). A map f : X→Y with f (x3) = y1 and f (xi) = yi otherwise, transforms u to (F f )(x1,
x3,{x1,x2,x3}) = (y1,y1,{y1,y2,y1}) = (y1,y1,{y1,y2}) in F(Y ).

If we formally define a κ-shape as any element p ∈ F(κ), it is easy to see that any set
of 1-shapes gives rise to a subfunctor of F . For every s ∈ F(1) let Fs be the functor given
by all those u ∈ F(X) which become equal to s when all holes are filled with the same
element, 0, that is: Fs(X) = {u ∈ F(X) | F!X (u) = s}, where !X : X → 1. Then Fs is not
only a subfunctor of F but also F = Σs∈F(1)Fs is the sum of all functors Fs, each based on
a single shape s ∈ F(1), see [23].

3.3. Accessibility. For any functor F and any cardinal κ, we let Fκ be the subfunctor of
F which is based on shapes of cardinality at most κ . A formal definition of this intuitive
notion is easy:

Fκ(X) := {(FιU )(w) | w ∈ F(U),U ⊆ X , |U | ≤ κ}, (7)

where ιU : U ↪→ X denotes the natural inclusion of U ⊆ X . For each cardinal κ this is a
subfunctor of F , and so is F<κ :=

⋃
τ<κ Fτ . We can recover F as F(X) =

⋃
κ∈Ord Fκ .

Definition 3.3. F is called κ-accessible, if F = F<κ , and accessible, if F is κ-accessible
for some κ . F is called finitary, if it is ω-accessible.

Every automaton functor D× (−)E is κ+-accessible with κ = |E|. If a functor F is
κ-accessible and η : F → G is a surjective natural transformation, then G is κ-accessible,
too.

Since every map σ : κ → X factors as σ = ιU ◦σ ′ with |U | ≤ κ , we readily obtain an
alternative representation of Fκ as

Fκ(X) = {(Fσ)(w) | w ∈ F(κ), σ : κ → X}. (8)

Fixing κ , we can now consider the automaton functor F(κ)× (−)κ with output set D =
F(κ) and input set E = κ . The natural transformation

η
κ : F(κ)× (−)κ → F(−)

given by ηκ
X (u,σ) = (Fσ)(u) has as image precisely the functor Fκ as described in (8).

We therefore note:

Theorem 3.4. A S et-functor F is accessible iff it is the image under a surjective natural
transformation of an automaton functor.

So, very intuitively, accessible functors are those based on a set (rather than a class) of
shapes, whereas finitary functors are based on finite shapes.
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3.4. Separability. We shall later have reasons to consider 0-1-shapes, i.e. elements of
F(2). Every element u ∈ F(X) determines a set of 0-1-shapes given by (F f )(u) for any
f : X → 2 . The question is, whether some u ∈ F(X) is uniquely representable by the set
of its 0-1-shapes. In the coalgebraic logic context, we shall have formulas φ determining
maps [[φ ]] : A→ 2. We shall be interested, whether elements u,v ∈ F(A) can be separated
by some logical formula φ , in the sense that F [[φ ]](u) 6= F [[φ ]](v) are different 0-1-shapes.
Temporarily replacing 2 by κ , we define:

Definition 3.5. A functor is κ-separable, if for any pair u,v∈ F(X) with u 6= v there exists
some map f : X → κ so that (F f )(u) 6= (F f )(v).

From the discussion above, we will mainly be interested in 2-separability, and indeed,
most functors, we have seen, are 2-separable:

� The automaton functor F(X) = D×XE is 2-separable. Consider u = (d1,σ1) 6=
(d2,σ2) = v. The case d1 6= d2 being trivial, assume σ1 6= σ2, i.e. σ1(e) 6= σ2(e)
for some e ∈ E. Choose f : X → 2 with f (σ1(e)) = 1 and f (σ2(e)) = 0. Then
(F f )(u) = (F f )(d1,σ1) = (d1, f ◦σ1) 6= (d1, f ◦σ2) = (F f )(v).

� The powerset functor is 2-separable: Given u,v∈ P(X) with u 6= v, there is w.l.o.g.
some a ∈ u with a 6∈ v. Choose f : X → 2 with f (a) = 1 and f (x) = 0 for x 6= a.
Then (P f )(u) = f [u] 6= f [v] = (P f )(v).

� To show that the distribution functor D, the fuzzy logic functor L (−) and the
doubly covariant powerset functor 22(−)

are 2-separable, is an easy exercise.
On the other hand, it is not hard to come up with a functor that is not 2-separable. Define,
for instance, F(X) := {?}+{(x1,x2,x3) ∈ X3 | |{x1,x2,x3}|= 3} with the obvious action
on maps. Then F is 3-separable, but not 2-separable, for the trivial reason that F(2) = {?}.

4. PROPERTIES OF S et-COALGEBRAS

In every category with unique epi-mono decomposition of arrows, epis are orthogonal
to monos in the following sense: Given a commutative square where e is epi and m is
mono, there is a unique diagonal d, making the arising triangles commute.

· e // //

��

·

��

d

���
�

�
�

· // m // ·

(9)

One can, indeed, obtain d by decomposing the two downward arrows into an epi followed
by a mono and then filling in the morphism witnessing uniqueness of the decomposition.
We shall first show that the epi-mono decomposition in Set of a homomorphism ϕ : A →
B induces an epi-mono decomposition in S etF as well.

4.1. Epi-Mono-decomposition in S etF . Given a homomorphism of F-coalgebras ϕ :
A →B, we can decompose the map ϕ as a S et-map into a surjective ϕ ′ followed by
an embedding ι as ϕ = ι ◦ϕ ′. Applying F and filling in the coalgebra maps, we obtain
the perimeter of the following figure. Since, Fι is necessarily mono, ϕ ′ is orthogonal to
Fι , so we obtain a coalgebra structure δ on ϕ[A], the image of A under ϕ , as a diagonal
fill in. Clearly, δ is unique in turning both ϕ ′ and the embedding ι into homomorphisms.
Therefore, the coalgebra ϕ[A ] := (ϕ[A],δ ) is called the image of A under ϕ . In general, a
homomorphic image of a coalgebra A is a coalgebra B for which there is an epimorphism
ϕ : A � B.
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A

ϕ

&&ϕ ′ // //

αA

��

ϕ[A] // ι //

δ

���
�
� B

αB

��
F(A)

Fϕ

66
// F(ϕ[A]) // Fι // F(B)

Isomorphisms in S etF are the same as bijective homomorphisms and an epi in S etF is
the same as a surjective homomorphism. Monomorphisms in S etF need not be injective.
In fact, [11] contains a characterization of monos in S etF , and an example of a coalgebra
homomorphism which is both mono and epi, but not iso.

4.2. Subcoalgebras and Cogeneration. By a subcoalgebra U of a coalgebra A = (A,
αA ), we understand a coalgebra defined on a subset U ⊆ A, for which the inclusion map
ι : U ↪→ A is a homomorphism. We write U ≤A if U is a subcoalgebra of A .

Given any subset U of A, there is at most one way to define a subcoalgebra structure on
U . In that case, we use the term subcoalgebra for that subset, as well. The above diagram
shows that every arrow ϕ : A →B in S etF factors into A � ϕ[A ] ↪→B where ϕ[A ] is
both a homomorphic image of A and a subcoalgebra of B.

The union of a collection of subcoalgebras is a subcoalgebra, again. Therefore, given
any subset M ⊆ A, there is always a largest subcoalgebra of A = (A,αA ), which is con-
tained in M. It is called the subcoalgebra of A co-generated by M and is denoted by [M]A .
The following figure shows how [M]A =

⋃
{Ai |Ai ≤A , Ai ⊆M} arises as the image fac-

torization of the sum ΣAi of all subcoalgebras Ai of A , whose universe is contained in
M.

⋃
Ai

ι

((
�� // M �� // A

ΣAi

OOOO

Ai

?�

OO

ei
oo

/ �

>>~~~~~~~~

4.3. Bisimulations and bisimilarity. It was Aczel and Mendler, in [1], who carried the
important concept of bisimulation to the level of abstract coalgebras for an arbitrary S et-
functor F . Their observation was, that bisimulations are relations that can be given a
coalgebra structure which agrees with the structure on both components, leading to the
following definition:

Definition 4.1. A relation R⊆ A×B is a bisimulation between F-coalgebras A = (A,αA )
and B = (B,αB), provided that an F-coalgebra structure can be defined on R so that the
canonical projections π1 and π2 become homomorphisms. Elements a ∈ A and b ∈ B are
called bisimilar, and we write a∼ b, if aRb for some bisimulation R.
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A

αA

��

R
π1oo π2 //

ρ

���
�
� B

αB

��
F(A) F(R)

Fπ1oo Fπ2 // F(B)

Example 4.2. It is straightforward to check that for Kripke structures the above definition
agrees with the classical definition given by (4), (5), and (6). For automata we obtain a
similar condition, which we choose to formulate in the form of a proof rule:

aRb
γ(a) = γ(b)∧∀e ∈ E.δ (a,e)Rδ (b,e)

. (10)

It is rather easy to prove that a map f : A→ B is a homomorphism if and only if its
graph G( f ) = {(a, f (a)) | a ∈ A} is a bisimulation. The union of a family of bisimulations
between A and B is again a bisimulation, hence there is a largest bisimulation ∼A ,B .
This can be described as follows:

Lemma 4.3. a ∼A ,B b iff there exists some coalgebra R, homomorphisms ϕ1 : R → A
and ϕ2 : R→B, and an element r ∈ R so that a = ϕ1(r) and b = ϕ2(r).

The following picture shows the situation. Notice that it also demonstrates that bisim-
ulations are precisely those relations which can be written as the relational composition
G(ϕ1)−1 ◦G(ϕ2) where ϕ1 and ϕ2 are homomorphism with common domain.

rE
ϕ1

��������� y
ϕ2

��9999999

a ∼ b

(11)

It would be wrong, however, to conclude that in general relational compositions of
bisimulations would result in bisimulations. In fact, this is not even the case, when we re-
strict attention to bisimulations on a single coalgebra. Even though the largest bisimulation
on a coalgebra A , called ∼A , is always reflexive and symmetric, it need not be transitive!

The fact that ∼A is transitive in the standard examples of automata and Kripke struc-
tures, and the desire to factor by the largest bisimulation, has initially lead researchers to
impose requirements on the type functor F in order to ensure this property. Trying to prove
transitivity, the above characterization requires an element u together with appropriate ho-
momorphisms as in the following figure.

u

~~   
r1?

�������� �
ψ1

��?????? r2?
ψ2

�������� �

��??????

a b c

Thus, given homomorphisms ψ1 and ψ2 and elements r1,r2 with ψ1(r1) = ψ2(r2), we need
a common preimage u. A way to obtain such a preimage would be to take a weak pullback
of ψ1 and ψ2. Indeed, ∼A is transitive, whenever the type functor F weakly preserves
pullbacks. (It can be shown that weak preservation of kernel pairs suffices [11].)

As mentioned before, most of the functors considered above, prominently the automata
functors D× (−)E , the powerset functor P and the distribution functor D, weakly preserve
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pullbacks. It is easy to check that this property is preserved when forming compositions,
products and sums.

On the other hand, there remain useful functors, not preserving weak pullbacks, such as
the doubly contravariant powerset functor 22(−)

, or the fuzzy set functor L (−), unless L
is completely distributive, see [10].

4.4. Observational equivalence. We have seen that two elements a and b are bisimilar, iff
they have a common homomorphic preimage r with ϕ1(r) = a and ϕ2(r) = b. We can form
the pushout (Q,η1,η2) of ϕ1 and ϕ2 , and obtain η1(a) = η2(b). Hence, bisimilar elements
have a common homomorphic image, too. This suggests to turn the dual of Lemma 4.3
into the following definition:

Definition 4.4. Elements a ∈A and b ∈B are called observationally equivalent if there
exists some coalgebra C and homomorphisms ϕ1 : A → C and ϕ2 : B → C such that
ϕ1(a) = ϕ2(b). In that case, we write a∇b.

a ~

ϕ1 ��>>>>>> ∇ b@

ϕ2��������

c

Forming the pushout in Diagram 11, it follows that ∼⊆ ∇. By the same token, ∇ is
transitive, hence an equivalence relation. Therefore ∇ is a better candidate for a logical
characterization than ∼.

Early papers on universal coalgebra relied on the notion of bisimilarity for describing
“same behavior”. In the well studied classical cases of automata and Kripke structures,
the “back and forth comparison” in the definition of bisimilarity, 5 and 6, had always
been easily applicable. Observational equivalence was introduced by Kurz in [16], and
only gradually was it realized that this notion is preferable to bisimilarity. After all, both
notions agree in the classical examples (automata, Kripke structures, hyper-systems).

4.5. Limits and the terminal coalgebra. Whereas colimits lift from the base category S
to the category SF of F-coalgebras, this is not true for limits. Even though the equalizers
of two morphisms ϕ1,ϕ2 : A → B does exist in S etF , its universe is usually different
from E(ϕ1,ϕ2) = {a∈ A | ϕ1(a) = ϕ2(a)}, the equalizer of ϕ1 and ϕ2 in the category S et.
In fact, the equalizer of ϕ1 and ϕ2 in S etF is the largest coalgebra contained in E(ϕ1,ϕ2),
see [11]. A similar fact is true for preimages i.e. pullbacks along monos.

The most elementary limit which is not guaranteed to exist in S etF is the terminal
coalgebra T , i.e. the product over the empty index set. It turns out that the elements of the
terminal coalgebra, if that exists, represent all states of all F-coalgebras, up to bisimilarity.
This is the reason, why terminal coalgebras have received special attention. More precisely,
assume that the terminal object T exists in S etF , then [5]:

Lemma 4.5. For every F-coalgebra A and for every a∈A there is precisely one element
t in T , which is bisimilar to a.

Proof. Let τA : A →T be the unique homomorphism. Since the graph of τA is a bisimu-
lation, we can choose t = τA (a). Suppose that also a∼ t ′ for some t ′ ∈ T . Then there must
be some coalgebra R, an element r ∈R and homomorphisms ϕ1 : R→A and ϕ2 : R→T
with ϕ1(r) = a and ϕ2(r) = t ′. Now τA ◦ϕ1 and ϕ2 are both homomorphisms from R to
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the terminal coalgebra, whence t ′ = ϕ2(r) = (τA ◦ϕ1)(r) = τA (a) = t.

a
∼

� τA // t

r � ϕ2 //_____
A
ϕ1

@@�
�

�
t ′

�

4.6. Lambek’s lemma. In searching for the terminal coalgebra for any functor and in
deciding whether it exists, the following result, known as Lambek’s Lemma [17] is of
central importance:

Lemma 4.6. The structure morphism of a terminal coalgebra must be an isomorphism.

Proof. The proof is immediate from the following diagram which shows the terminal coal-
gebra T = (T,α) together with the coalgebra FT = (F(T ),Fα) obtained from it by
applying the functor F .

T

α

��

α // F(T )

Fα
��

β // T

α

��
F(T ) Fα // F(F(T ))

Fβ // F(T )

Let β be the unique homomorphism from FT to T . Then all squares commute and β ◦α

is a homomorphism from T to itself. Since T is terminal, β ◦α = idT . From the right
square, α ◦β = Fβ ◦Fα = F(β ◦α) = FidT = idF(T ), which proves that β is inverse to
α. �

So Lambek’s lemma tells us that in order to guess the terminal coalgebra, we should
first solve the equation T ∼= F(T ). This is the key to the following examples:

� Consider the functor F(X) = D× X . Coalgebras for F are systems where the
transition α : X → D×X yields in each step an output d ∈ D and a new state
x ∈ X . The terminal coalgebra for this functor must solve the equation T ∼= D×
T . Thinking of this definition as a type definition in a programming language,
the solution T = Dω , the set of infinite streams of elements of D suggests itself.
Indeed, the coalgebra operation Dω → D×Dω is given by splitting a stream into
head and tail: α(s) := (hd(s), tl(s)), and this transition is inverse to the algebra
operation cons : D×Dω →Dω where cons(d,s) attaches the element d to the front
of stream s. To show that T = (Dω ,〈hd, tl〉) is indeed terminal, consider any other
F-coalgebra A = (A,αA ). We can split αA : A→ D×A into the components
γ : A→ D and δ : A→ A. To check whether there is a unique homomorphism, we
have to verify that the following diagram defines a unique map ϕ :

D

A

γ
??������

δ
��

ϕ //_____ Dω

tl
��

hd
aaBBBBBB

A
ϕ //_____ Dω

Indeed, for every a ∈ A this amounts to the equations
– hd(ϕ(a)) = γ(a)
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– tl(ϕ(a)) = ϕ(δ (a))
which define ϕ(a) uniquely as the stream (γ(a),γ(δ (a)), . . . ,γ(δ n(a)), . . .).

� Adding a set of inputs, consider the automaton functor F(X) = D×XE . The ter-
minal coalgebra requires solving the equation T ∼= D× T E . Again, it is easy to
guess as a solution the set of infinite E-branching trees whose nodes are labeled
by elements of D. The structure map yields the pair consisting of the root label
d ∈ D and the E-collection of subtrees of the root. Technically, such trees can
be represented as T = DE?

where E? is the set of all words over the alphabet E.
(The elements of E? are freely generated by starting with the empty word ε and
by prefixing a new letter e ∈ E to an already existing word w ∈ E?, yielding a new
word e.w ∈ E?.) Each word w ∈ E? can be interpreted as a path from the root
to a unique node in an E-branching tree, representing that node’s unique address,
hence each element σ of DE?

is a map σ : E?→ D, labeling each node with some
element from D.
The coalgebra structure on T = DE?

, written as automaton T = (DE?
,δT , γT ),

is given by γT (t) :=t(ε) and δT (t,e)(w) = t(e.w) for each t ∈ DE?
, e ∈ E and

w ∈ E?. To see that T is indeed the terminal automaton, consider an arbitrary
automaton A = (A,δA ,γA ). Then a homomorphism ϕ : A → T is required to
satisfy

– ϕ(a)(ε) = γT (a) = γA (a)
– ϕ(a)(e.w) = δT (ϕ(a),e)(w) = ϕ(δA (a,e))(w)

which again is a recursive definition of ϕ(a) .
� An interesting special case is obtained by reducing the output set to D = {0,1}.

An E-branching {0,1}-labeled tree is uniquely described by the set of all nodes
whose label is 1. The addresses of these nodes make up a language L ⊆ E?and
conversely, each language L ⊆ E? arises from an E-branching tree whose node at
address w is labeled 1 iff w ∈ L . Therefore, the universal acceptor is given as
T = (P(E?),δ ,Q) where for L⊆ E? :

– L ∈ Q ⇐⇒ ε ∈ L
– δ (L,e) = {w ∈ E? | e.w ∈ L}=: Le.

Le is also known as the e-derivative of language L.

So Lambek’s lemma helps us on the one hand, to approach the terminal F-coalgebra as a
solution to the equation T ∼= F(T ), but it also can serve to refute the existence of a terminal
coalgebra due to set theoretic reasons. In particular, it follows that no terminal Kripke
structure can exist, simply because there can be no set T with T ∼= P(T ).

Things can be alleviated, if we consider finitely branching transition systems, where
each state has only finitely many successors. These transition systems can be considered
as coalgebras of type Pω(−), where Pω(X) denotes the set of all finite subset of X .

The size issue is in fact the only problem which inhibits the existence of the terminal
coalgebra. It has been shown by Aczel and Mendler that the terminal coalgebra does
exist, if we allow its base set to be a proper class, see [1]. Without resorting to class
based coalgebras, it is often possible to consider a given family of F-coalgebras as Fκ -
coalgebras, for sufficiently large κ . Now Fκ is accessible, and for accessible functors, the
terminal coalgebra always does exist, as we shall see below.

4.7. Terminal coalgebras for accessible functors. The underlying idea is very plausible
from Kripke structures. Even if there is no terminal Kripke structure, there is a terminal
object for the subcategory of Kripke structures with out-degree at most κ . Given any set
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of Kripke structures, we can choose κ larger than the out-degree of all structures involved
and consider these as Pκ -coalgebras, rather than as P-coalgebras.

Recall that accessibility means that there is a surjective natural transformation

η
κ : F(κ)× (−)κ � F(−).

Obviously the first functor G(−) := F(κ)× (−)κ can be considered as automaton functor
with input set κ and output set F(κ). Therefore, it has a terminal coalgebra TG = (T,αT )
as seen above. From this information, we shall construct a terminal coalgebra for F .

In general, note that if η : G � F is a surjective natural transformation, then thanks to
the axiom of choice, every F-coalgebra AF = (A,α) can be obtained from some suitable
G-coalgebra AG = (A,β ) by extending its structure with ηA, i.e. α = ηA ◦ β . This is
enough to verify that the structure of any (weakly) terminal G-coalgebra WG = (W,αW )
can be extended by ηW to yield a weakly terminal F-coalgebra WF = (W,ηW ◦αW ):

A

α

��

β
��

τ // W
αW
��

G(A)

ηA����

G(τ) // G(W )

ηW����
F(A)

F(τ) // F(W )

The final step is, to turn a weakly terminal coalgebra W into a terminal one. This,
however, is simply a matter of factoring by the largest congruence or, equivalently, by
taking the pushout of all homomorphisms leaving W , which is the same as forming T :=
W /∇W . Altogether we therefore have:

Theorem 4.7. If F is an accessible functor, then there exists a terminal F-coalgebra.

So, terminal coalgebras exist, if the functor is accessible. Otherwise their universe
might be a proper class, which is really a set theoretical technicality. In fact, given a
coalgebra A = (A,αA ) and a ∈ A let the out-degree of a be the smallest κ such that
αA (a) ∈ Fκ(A)⊆ F(A). The out-degree of A is then the supremum of all out-degrees of
all a ∈ A.

As stated before for Kripke structures, given a set of F-coalgebras, we can find some
bound κ on their out-degrees, and consider them all as Fκ -coalgebras. In this case the ter-
minal Fκ -coalgebra can for most purposes serve as replacement for a terminal F-coalgebra,
see [8].

5. LOGICS

5.1. Behaviors. We are dealing with systems, that may accept some input, causing them
to change their state or to generate new states and to create some output. States are usually
not observable, but only their output behavior occurring as a response to the inputs. So
what exactly is a behavior?

There are good reasons to identify behaviors with the elements of the terminal coalge-
bra. We have seen, that every element a∈A of every coalgebra A is bisimilar to precisely
one element in T . The same holds if we replace bisimilarity by observational equivalence.

� Consider the case of acceptors with input alphabet E. We can feed a sequence of
inputs after which we can decide whether we have reached an accepting state or
not. So two states s and s′ display the same behavior iff no matter whether starting
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from s or from s′, the same words are accepted. Therefore, the behavior of a state s
is encoded by the language L(s) which the automaton accepts when starting from
initial state s. Indeed, the terminal acceptor is the set of all languages over E and
the terminal morphism is the map s 7→ L(s).

� In the case of the functor F(X) = D×X , the coalgebra structure yields a (hidden)
state s′ = δ (s) and an observable output d = γ(s). Continuing, the observable
behavior of a state is the infinite series of outputs (γ(s),γ(δ (s)),γ(δ (δ (s))), ...,)∈
Dω . Now Dω with operations hd and tl is nothing but the terminal coalgebra for
the functor F(X) = D×X .

� Coalgebras for the functor F(X) = D×X +1 can in each step, starting from state
s, either yield an output d ∈ D and change into a new state s′ or they can choose
to stop. Therefore, an observation may yield either a finite sequence σ ∈ D? or an
infinite sequence τ ∈ Dω , and indeed D∞ = Dω +D?, is the basis for the terminal
coalgebra. The coalgebra structure α : D∞→ D×D∞ +1 is given by hd and tl as
before, with the special case of the empty sequence [ ] ∈ D? ⊆ D∞ being mapped
to α([ ]) = 0 ∈ 1. α is invertible, by Lambek’s lemma, and its inverse is given by
the obvious maps cons : D×D∞→ D∞ and nil : 1→ D∞.

5.2. Coinduction. Whereas properties of initial datatypes are proved by induction, fol-
lowing the construction of all possible data objects, terminal co-datatypes allow for a prin-
ciple of co-induction, which can be phrased as inference rule

t ∼ t ′

t = t ′
. (12)

This means that in order to prove two objects of the co-datatype to be the same, it is
enough to show that they are bisimilar. And in order to show that they are bisimilar, it is
enough to come up with some bisimulation R with tRt ′. The role of the relation R is dual
to that of the inductive hypothesis in an induction proof. Proving that R is a bisimulation is
dual to the inductive step, and the conclusion is that t1 = t2. So the coinductive principle,
which is valid for the elements of any terminal coalgebra is:

In order to show that t1 = t2 :
Hyp: invent R⊆ T 2 with t1Rt2
Step: show that R is a bisimulation
Con: conclude R = id , hence t1 = t2.

Example 5.1. “Lazy” functional languages provide the co-datatype “stream”. A stream is
given as a pattern p = h : t, where h = hd(p) and t = tl(p). Infinite streams can be defined
co-recursively, such as e.g. in the following interaction:

ones = 1 : ones
from n = n : from (n+1)
plus a:as b:bs = (a+b): plus as bs

Given this program, which defines a stream “ones = (1,1,1,...)”, a unary function
“from” producing the stream of all integers beginning with some n, and an operation “plus”
that adds two streams componentwise. We would like to prove:
Claim: plus ones from 0 = from 1
The co-inductive hypothesis generalizes our claim:
∀n ∈ N.plus ones (from n) ∼ from (n+1)
that is, we claim the following to be a bisimulation:

Hyp: R = {( plus ones (from n), from (n+1) | n ∈ N}
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For the “Step” we must check rule (10) with E trivial and γ = hd, δ = tl:
Step1: hd(plus ones (from n)) = (1+n) = hd(from (n+1))
Step2: tl(plus ones (from n)) = plus ones (from (n+1)) R from (n+2)

= tl(from (n+1))
Con: ∀n ∈ N.plus ones (from n) = from (n+1)
Rutten considers in [20] the example of coinductive proofs of equations between regular
expressions:

Example 5.2. The states of the terminal acceptor are the languages L ⊆ E? where L is
accepting iff ε ∈ L and where δ (L,e) = Le is the e-derivative of L. On the set of all
languages we have the classical operation of sum: L + M = L∪M, concatenation: L ·
M = {u · v | u ∈ L, v ∈ L}, and Kleene-Star: L? = {u1 · . . . ·un | n ∈ N,ui, ∈ L}. The trivial
languages are: 0 := /0 and 1 := {ε}.

It is rather easy to derive the rules of differentiation:

1e = 0
(L+M)e = Le +Me

(L?)e = (L ·L?)e

According to (10), a bisimulation is then a relation R satisfying the proof rule
LRM

(ε ∈ L ⇐⇒ ε ∈M)∧∀e ∈ E.Le RMe
.

A coinductive proof for (1+L ·L?) = L? can choose the relation

R := {(1+LL?,L?) | L⊆ Σ
?}∪{(L,L) | L⊆ L?}

as coinductive hypothesis. To show that this is indeed a bisimulation follows straightfor-
wardly from the above rules.

5.3. Cofree Coalgebras. Terminal coalgebras encode behaviors and they satisfy a co-
inductive principle, just as dually the initial algebra is an inductively defined object. Since,
more generally, algebraic theories are specified by equations, one is led to consider a notion
of coequations suitable for delivering a result dual to that famous theorem of Birkhoff,
which states that a class of algebras is equationally defined if and only if it is a variety, i.e.
closed under homomorphic images, subalgebras and products.

Let Z be a set, the elements of which we shall call colors or covariables. A coalgebra
TZ = (TZ ,αT ) together with a “coloring” map εZ : TZ → Z is called cofree over Z, pro-
vided that for any F-coalgebra A with coloring map g : A→ Z there exists precisely one
homomorphism g̃ : A →TZ such that g = εZ ◦ g̃.

Z

A

g
??~~~~~~ g̃ //_____ TZ

εZ
``AAAAAA

Note that (the map) εZ is left cancellative with respect to homomorphisms ϕ,ϕ ′ : A →
TZ , i.e. εZ ◦ϕ = εZ ◦ϕ ′ implies ϕ = ϕ ′. It is also immediate to check that every homo-
morphism ϕ : U →TZ from a subcoalgebra U ≤A can be extended to a homomorphism
ϕ ′ : A →TZ with ϕ = ϕ ′◦ ⊆.

The terminal F-coalgebra is the same as the cofree F-coalgebra over the one-element
color set Z = {0}, and conversely, the cofree F-coalgebra over color set Z is just the ter-
minal coalgebra over the functor Z×F(−), for Z constant.
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5.4. Covarieties. Given a class K of F-coalgebras, we shall denote by H (K), S (K)
and Σ(K) the class of all homomorphic images, subcoalgebras and all sums of coalgebras
in K. A covariety is a class K of coalgebras which is closed under taking homomorphic
images, sums and subcoalgebras. Given any class K of coalgebras, the smallest covariety
containing K turns out to be S H Σ(K), and a class K is a covariety, if and only if K =
S H Σ(K), see [6]. Examples of covarieties are the class of all F-coalgebras, the class of
all F-coalgebras with out-degree below κ (see [8]), the class of all topological spaces as
F-coalgebras [7].

Let C be a coalgebra with subcoalgebra U ≤ C and let

K(C ,U ) = {A ∈S etF | ∀ϕ : A → C .∃ϕ ′ : A →U .ϕ = ι ◦ϕ
′}

be the class of all coalgebras A , such that every homomorphism ϕ : A → C factors
through the inclusion ι of U in C . It is immediate that K(C ,U ) is closed under sums.
To show closure under homomorphic images, one uses the fact that epis are orthogonal to
monos in S etF (see Diagram 9). Closure under subcoalgebras requires C to be cofree, so

Lemma 5.3. If TX is cofree and U ≤TX , then K(TX ,U ) is a covariety.

5.5. Coequations. Elements of terminal coalgebras T represent behaviors, so elements
of cofree coalgebras TX are behaviors with respect to the functor F(−)×X . Relative to
F , we consider them as behavior patterns p, where the elements of X can be considered
as covariables. It turns out that each covariety is indeed determined by a set of behavior
patterns, thus yielding a dual to Birkhoff’s famous theorem in universal algebra. For this
reason we define:

A coequation with covariables from X is an element p ∈TX , the cofree coalgebra over
X . Let A be a coalgebra, a∈A and g : A→ X a coloring. We define a satisfaction relation
|= between elements of A and patterns p by

A ,a |=g p :⇐⇒ g̃(a) 6= p.

We further put:
A ,a |= p ⇐⇒ ∀g : A→ X .A ,a |=g p
A |= p ⇐⇒ ∀a ∈ A.A ,a |= p

Notice that we defined satisfaction of a pattern as “avoidance” of that pattern. This
choice permits us to give semantics to a single coequation as an element p ∈ TX . Alterna-
tively, one might have defined a coequation Q as a subset of TX and required that g̃(a) ∈Q.
We find it more attractive though, to give a semantics to single elements rather than to sub-
sets only. After all, the characterization of classes of structures via “forbidden patterns”
follows well established mathematical traditions in graph theory, algebra, topology, and
other fields.

Given a set P of coequations, and a class K of F-coalgebras. Define

M od(P) := {A ∈S etF | ∀p ∈ P.A |= p}

C eqZ(K) := {p ∈TZ | ∀A ∈ K.A |= p}.
as the class of all models of P and the set of all coequations with variables in Z satisfied by
all members of K. With these definitions one obtains a perfect dual to Birkhoff’s theorem
in universal algebra:

Theorem 5.4. Let F be κ-accessible. Then for every class of coalgebras one has

M od(C eqκ(K)) = S H Σ(K).
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Proof. With the help of Lemma 5.3, it is rather easy to verify that for every set P of patterns
M od(P) is always a covariety. It follows that M od(C eqκ(K)) ⊇ S H Σ(K). For the
converse, let A ∈M od(C eqκ(K)) be given. Then we find for every a ∈ A a subcoalgebra
Ua with a ∈Ua and |Ua| < κ . Obviously, A =

⋃
a∈A Ua, so there is an epi Σa∈AUa � A .

As S H Σ(K) is closed under sums and homomorphic images, it is enough, to show that
each Ua is contained in S H Σ(K).

Since |Ua|< κ , there is an injective map g :Ua→ κ, hence g̃[Ua] is a subcoalgebra of Tκ

which is isomorphic to Ua. Every element of p ∈ Ua is a coequation which is obviously
violated by Ua. So there must be some Bp ∈ K with Bp 6|= p. This means that every
p ∈Ua is in some homomorphic image ϕp[Bp] of some Bp from K. Consequently, Ua is
a subcoalgebra of the Union

⋃
p∈U ϕp[Bp]≤Tκ . This shows that A ∈S H Σ(K). �

So, coequations as sets of forbidden behavior patterns can be used to provide a logical
language for coalgebras. Indeed, it is not hard to find a coequational calculus which is
dual to Birkhoff’s equational calculus. Given a set P⊆ TX of coequations, that is a set of
forbidden patterns, a coalgebra A satisfies P if for each coloring g : A→ X each homo-
morphic image g̃[A ] is a subcoalgebra of TX completely contained in the complement of
P. Let CP = [TX −P] be the largest coalgebra contained in the complement of P. Then
the consequences of P are given by Con(P) = TX − [TX −P] (see [6]). A set of rules for
generating Con(P) from P is presented in [3].

In spite of its mathematically pleasing duality to Birkhoff’s theorem, it turns out that
there are only few “natural” examples of previously studied classes of coalgebras− be they
automata or Kripke structures. The main obstacle seems to be that coequations describe
coalgebras globally: All elements must avoid a certain pattern. This is distinctly different
in modal logics, which describe coalgebras locally.

5.6. Modal Logics. The first successful attempt at designing a modal logic for coalgebras
is due to L. Moss [18]. The formulas of his logical language were given as a fixpoint LF
of the equation LF ∼= P(LF)+ F(LF), so they always formed a proper class. To show
expressiveness, it was necessary to assume that the type functor preserves weak pullbacks.

A different approach was championed in a series of papers by Pattinson [19] and Schröder
[22], using so called predicate transformers. Essentially, a predicate transformer for a func-
tor F is a transformation describing how to transform a predicate R ⊆ X on a set X into
a predicate µ(R) ⊆ F(X), more precisely, a natural transformation between the contra-
variant functors 2X and 2F(X). Every such predicate transform gives rise to a modality,
leading to a modal logic, which under mild conditions on the functor is both admissible
with homomorphisms and expressive.

We present here a simplification of the Pattinson-Schröder approach, which, we believe,
gives a rather concrete and intuitive interpretation to modalities.

5.7. Modalities as 0-1-patterns. First recall that modal formulas in Kripke structures de-
scribe local properties as seen from a particular point s:
s |= �φ iff all immediate successors of s satisfy φ

s |=♦φ iff some immediate successors of s satisfies φ .
Considering the same from a different angle, let α(s) be the set of immediate successors
of s. Let φ be a state formula and let [[φ ]] : A→ 2 denote the characteristic function for
the elements of A satisfying φ . Then [[φ ]][α(s)] replaces each element of α(s) by its truth
value, yielding a pattern in P({0,1}). Note that
s |= �φ iff [[φ ]][α(s)] ={1}
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s |=♦φ iff [[φ ]][α(s)] ={1} or [[φ ]][α(s)] ={0,1}

In other words, modalities are 0-1-patterns that are allowed for the validity of a formula in
the successor set.

5.8. Syntax and semantics. We shall define modalities as 0-1-patterns and their seman-
tics as validity patterns for the successor α(s) of a state s:

Definition 5.5. [Syntax] Given a S et-functor F , define the formulas φ of modal logic by
the syntax

φ ::= [p]φ foreach p ∈ F(2)
| φ1∧φ2 | ¬φ | true

The semantics of the boolean operators true, ∧, and ¬ is the obvious one. Before
spelling out the semantics of the modalities, we can already highlight the semantic role of
the boolean operators. Here we use the symbol ≈ to denote logical equivalence:

Lemma 5.6. For each map f : A/≈ → 2 and for each finite subset U ⊆ A there exists a
formula φ f such that [[φ ]] f ◦ ιU = f ◦π≈ ◦ ιU .

U � �

ιU
// A

[[φ ]]

""w
o g _ W O

G

π≈
// A/≈ f

// 2

Proof. For a,b ∈ A with a 6≈ b there exists a formula φa,b with a |= φa,b and b 6|= φa,b. Then
φa :=

∧
{φa,b | b ∈U, a 6≈ b} defines a (up to logical equivalence) relative to U . Now the

claim is true for φ f :=
∨
{φa | a ∈U, f (π≈(a)) = 1}. �

Definition 5.7. [Semantics] Given an F-coalgebra A = (A,αA ) and an element a∈ A, we
define a |= [p]φ :⇐⇒ (F [[φ ]])(αA (a)) = p.

This formulates precisely our intuition: Take the successor αA (a) of a and replace
every occurrence of an element x ∈ A by its logical value [[φ ]](x). We obtain a 0-1-pattern
p = F [[φ ]](αA (a)) ∈ F(2). Now a |= [p]φ means that “p is the validity pattern under φ of
the successor of a”.

a // A
[[φ ]]

//

αA
��

2

F(A)
F [[φ ]]

// F(2)
poo

Observe, that the logic is such that we cannot have both s |= [p]φ and s |= [q]φ at the same
time, unless p = q.

We discuss two examples:

� Assume that the functor F associates with any set X the set of all binary trees
whose leaves are labeled with elements of X . A map f : X → Y is taken to a
substitution map F f : F(X)→ F(Y ) which in every tree of F(X) replaces each
leaf label x by the new label f (x). Assume that in the F-coalgebra A = (A,α) an
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element a ∈ A is mapped by α to a tree α(a) = (a1,(a2,a3)),

◦

yyyyyy
AAAAAA

a � αA // a1 ◦

~~~~~~
@@@@@@

a2 a3

and that a1 |=φ , a3 |= φ , but a2 6|= φ . Then a |= [(1,(0,1))]φ . So, p = (1,(0,1)) ∈
F(2) is the validity pattern of φ in the successor of a.

� Consider the finite distribution functor D which associates to each set X the set of
all discrete probability distributions, i.e. all σ ∈ [0,1]X with σ(x) = 0 for almost all
x ∈ X and Σx∈X σ(x) = 1. A map f : X → Y is taken to D f : D(X)→ D(Y ) where
(D f )(σ)(y) = Σ f (x)=yσ(x). A 0-1-pattern σ ∈ D(2) for this functor is described
uniquely by a number p ∈ [0,1], where σ(1) = p and σ(0) = 1− p.
A D-coalgebra A = (A,α) can be interpreted as a probabilistic transition system,
where for each s ∈ A the distribution σ = α(s) ∈ D(A) specifies for each other
state s′ the probability σ(s′) for it to be selected next.
Given a state formula φ and p ∈ [0,1], the modality [p]φ describes the probability
that the successor of s chosen next will satisfy φ . It can be computed as Σa|=φ σ(a)
where σ = α(s). Therefore, s |= [p]φ ⇐⇒ Σa|=φ α(s)(a)= p ⇐⇒ D [[φ ]](α(s))=
p.

5.9. Admissibility and expressiveness. We intend to show that logical equivalence is the
same as observational equivalence, in short: ≈= ∇. The following lemma ensures the
logic to be compatible with homomorphisms, we say that the logic is admissible:

Lemma 5.8. If ϕ : A →B is a homomorphism and a ∈ A, then for any modal formula φ

we have a |= φ ⇐⇒ ϕ(a) |= φ .

Proof. By induction on the construction of modal formulas. Passing from a formula φ to
the modality [p]φ is the only interesting case.

By induction hypothesis, a |= φ ⇐⇒ ϕ(a) |= φ , which means that the upper triangle
in the figure commutes. Applying F yields the lower triangle, so this commutes, too.
Commutativity of the rectangle is equivalent to ϕ being a homomorphism. Now we read off
the following figure that the successor of a has the same φ -validity pattern as the successor
of ϕ(a), meaning that for each p we have a |= [p]φ ⇐⇒ ϕ(a) |= [p]φ .

2

a � // A
α

��

ϕ //

[[φ ]] ==zzzzzzz
B

β

��

[[φ ]]bbDDDDDDD

FA
Fϕ //

F [[φ ]] !!DDDDDD FB

F [[φ ]]||zzzzzz

F2 p�oo

�
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As a consequence and with the help of Lemma 4.3, observational equivalence implies
modal equivalence, i.e. ∇ ⊆≈. The converse inclusion amounts to expressivity of the
logic. It is valid under mild conditions on the functor:

(1) F is finitary, and
(2) F is 2-separating.

Both requirements may be weakened. The first condition permits the logic to be finitary.
If F is κ-ary, the logical language will need κ-ary conjunctions. The second condition
permits to work with unary modalities in a 2-valued logic. If F was κ−separating for
some κ > 2, then we could either pass to a logic with κ truth values, or we could use κ-ary
modalities [p](φ1, ...,φk, ...). We leave these modifications to the reader.

Theorem 5.9. If the functor F is finitary and 2-separating, then finitary coalgebraic modal
logic is expressive.

Proof. In order to prove ≈⊆ ∇, it suffices to turn A/≈ into a coalgebra so that π≈ : A→
A/≈ is a homomorphism. This requires to complete the following diagram:

A
π≈ // //

α

��

A/≈

��
F(A)

Fπ≈ // // F(A/≈)

The sought completion exists, provided that we can show for arbitrary x,y ∈ A that assum-
ing π≈(x) = π≈(y), i.e. x≈ y, implies ux := (Fπ≈)(α(x)) = (Fπ≈)(α(y)) =: uy.

By way of contradiction assume that ux 6= uy. Then by 2-separability of F , there exists
a map f : A/≈→ 2 with px := (F f )(ux) 6= (F f )(uy) =: py. If we can find a formula φ f so
that f ◦π≈ = [[φ f ]], then x |= [px]φ f , whereas y |= [py]φ f , contradicting x≈ y.

y

��

x

��
U � � ιU // A

α

��

π≈ // //

[[φ f ]]

((k j h f d c a _ ] [ Z X V T S
A/≈

��

f // 2

F(U) � � FιU // F(A)
Fπ≈ //

F [[φ f ]]

55T V X Z [ ] _ a c d f h j
F(A/≈)

F f // F(2)

α(x)

OO

α(y)

OO

ux

OO

uy

OO

px

OO

py

OO

Using the fact that F is finitary, we can find some finite U ⊆A with α(x),α(y)∈ (FιU )[F(U)].
Lemma 5.6 now provides a formula φ f with [[φ ]] f ◦ ιU = f ◦π≈ ◦ ιU . Applying F yields
commutativity of the bottom row: F [[φ ]] f ◦FιU = F f ◦Fπ≈ ◦FιU . In particular,

F [[φ ]] f (α(x)) = F f ◦Fπ≈(α(x)) = px

and
F [[φ ]] f (α(y)) = F f ◦Fπ≈(α(y)) = py,

so x |= [px]φ f whereas y |= [py]φ f . �

We may enrich the logic by allowing as modalities sets of patterns P⊆ F(2) rather than
elements p ∈ F(2). Obviously, s |= [P]φ is to mean s |= [p]ϕ for some p ∈ P. Clearly, the
logic remains admissible and expressive, and it may be preferable for practical purposes.
Whereas the classical box-modality of Kripke structures is expressible either way: s |=
�φ ⇐⇒ s |= [{{},{1}}]φ ⇐⇒ (s |= [{}]φ ∨ s |= [{1}]φ), the added expressiveness is
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useful for probabilistic systems: s |= [[0, p]]φ means that the probability of a successor of
s satisfying φ is between 0 and p, i.e. at most p.

6. CONCLUSION

We have presented universal coalgebras as models for state based systems, looked at
their basic structure theory and at several logics. The first logic amounts to a coinduction
principle for terminal coalgebras, in particular for terminal data types. The second logic
is based on coequations as elements of cofree coalgebras. For this logic we presented a
Birkoff-style theorem. Modal logic, in contrast, serves to describe coalgebras from a lo-
cal perspective. We exposed an elegant proof of a correctness and completeness theorem
which encompasses the famous Hennessy-Milner theorem for image finite Kripke struc-
tures.

Even though most of the material has appeared in the literature, this is not the case for
the intuition that we make explicit both regarding set functors and modalities. In hindsight,
and with this intuition in mind, one wonders why much of this material had not been
developed some 10 years earlier.
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نستطلع الجبريات المصاحبة آنماذج للأنظمة المبنية على الحالة مع  . (Abstract)ةصلاخال
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