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Abstract. We prove that a holomorphic vector bundle E over a compact connected
Kähler manifold admits a flat connection, with a finite group as its monodromy, if
and only if there are two distinct polynomials f and g, with nonnegative integral
coefficients, such that the vector bundle f(E) is isomorphic to g(E). An analogous
result is proved for vector bundles over connected smooth quasi-projective varieties,
of arbitrary dimension, admitting a flat connection with finite monodromy group.

When the base space is a connected projective variety, or a connected smooth
quasi-projective curve, the above characterization of vector bundles admitting a flat
connection with finite monodromy group was established in [No1] and [No2] respec-
tively.

1. Introduction

A vector bundle over a connected projective variety X is called finite if there are two

distinct polynomials, say f and g, with nonnegative integral coefficients, such that the

vector bundle f(E) is isomorphic to g(E) [No1].

In [No1] Nori proved that a rank n vector bundle E over X is finite if and only if it is

given by a representation of π1(X) into GL(n,C) which factors through a finite group.

Equivalently, E is finite if and only if it admits a flat connection, compatible with its

holomorphic structure, such that the monodromy group is finite. That a vector bundle

which admits a flat connection with finite monodromy group is actually a finite vector

bundle was established in [We].

In [No2], the above result of [No1] was extended to the context of a smooth quasi-

projective curve.

Let X be a compact connected Kähler manifold, and let E be a holomorphic vec-

tor bundle over X. We prove that E admits a flat connection compatible with the

holomorphic structure and with finite monodromy group, if and only if there are two

distinct polynomials, say f and g, with nonnegative integral coefficients, such that the

two holomorphic vector bundles, namely f(E) and g(E), are isomorphic [Theorem 2.3].

The proof of the theorem is based on some results of [DPS] and [Si].
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In Section 3, the result of [No2] on connected smooth quasi-projective curves has been

extended to the more general situation of connected smooth quasi-projective varieties

of arbitrary dimension.

Given a connected smooth quasi-projective variety X0 over C, consider X = X0∪D,

where X is a smooth projective variety and D is a divisor on X with normal crossings.

Any flat connection ∇ on X0 gives rise to a parabolic vector bundle E(∇) over X.

The filtration over any component of D defining the parabolic structure of E(∇) is by

locally free subsheaves. If the monodromy group of ∇ is finite then all the parabolic

weights are rational numbers.

As before, define a parabolic vector bundle E∗ to be finite if there are two distinct

polynomials f and g with nonnegative integral coefficients such that the parabolic

vector bundle f(E∗) is isomorphic to g(E∗).

We prove that a parabolic vector bundle with rational parabolic weights and para-

bolic filtration by subbundles, is finite if and only if it corresponds to a flat connection

on X0 with finite monodromy [Theorem 3.3].

2. Finite vector bundles over Kähler manifolds

Let X be a compact connected Kähler manifold. For a holomorphic vector bundle

E over X, and a polynomial f(x) =
∑n

i=0 aix
i, where ai ∈ N, define the vector bundle

f(E) :=
n∑

i=1

aiE
⊗i

over X, where aiE
⊗i denotes the direct sum of ai copies of E⊗i and E⊗0 denotes the

trivial line bundle. Following [No1] we define

Definition 2.1. A holomorphic vector E over X is called finite if and only if there are

two distinct polynomials, say f and g, of the above type, such that the vector bundle

f(E) is isomorphic to g(E).

We will recall a construction of finite vector bundles. Let ρ denote the homomor-

phism from the fundamental group π1(X, x0) to GL(V ), where V is a finite dimensional

complex vector space, given by a composition of homomorphisms

π1(X, x0) −→ G
ρ′−→ GL(V ) ,

where G is a finite group. Let Eρ denote the flat vector bundle over X corresponding

to the representation ρ.

The following simple proposition gives examples of finite vector bundles.

Proposition 2.2. The above vector bundle Eρ is finite.
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Proof. Since G is a finite group, any complex G-module is completely reducible,

and furthermore, there are only finitely many isomorphism classes of irreducible G-

modules. Thus there are two distinct polynomials f and g, with nonnegative integral

coefficients, such that the two G-modules, namely f(V ) and g(V ), are isomorphic.

This immediately implies that the vector bundle f(Eρ) is isomorphic to g(Eρ). In

other words, Eρ is finite. 2

The following theorem shows that the converse of the above proposition is valid.

Theorem 2.3. A holomorphic vector bundle over X is finite if and only if it cor-

responds to a representation of a finite quotient of the fundamental group of X, or

equivalently, if and only if it admits a flat connection, compatible with the holomorphic

structure, and with finite monodromy group.

Proof. We will start by recalling some concepts introduced in Section 1 of [DPS]. A

line bundle L over a compact complex manifold M , equipped with a Hermitian metric

ω, is called nef if given any ε > 0, there is a smooth Hermitian metric hε on L such

that Θ(hε) + εω is a nonnegative Hermitian form, where Θ(hε) is the Chern curvature

form. This definition actually does not depend on the choice of ω. A vector bundle V

on M is called nef if the tautological line bundle OP(V )(1) on P(V ) is nef.

A vector bundle V over M is called numerically flat if both V and V ∗ are nef.

Lemma 2.4. If a holomorphic vector bundle E over X is finite, then E is numerically

flat.

Proof of Lemma 2.4. Since the Krull-Remak-Schmidt theorem is valid for coherent

analytic sheaves on X [At], a vector bundle E is finite if and only if there are finitely

many indecomposable vector bundles, say V1, V2, . . . , Vm, on X such that any tensor

power E⊗i has the following direct sum decomposition:

(2.5) E⊗i =
m∑

j=1

ai,jVj ,

where each ai,j is a nonnegative integer.

Let E be a finite vector bundle over X.

Fix Hermitian structures on each Vj. Using (2.5), this induces a Hermitian structure

on each E⊗i. These Hermitian metrics on the tensor powers of E clearly satisfy the

curvature criterion in Theorem 1.12 (page 306) of [DPS]. Now Theorem 1.12 of [DPS]

implies that E is nef. The dual E∗ is also finite, as E is finite. Thus E must be

numerically flat. 2



4 I. BISWAS, Y.I. HOLLA, AND G. SCHUMACHER

Theorem 1.18, page 311, of [DPS] says that a holomorphic vector bundle E over X

is numerically flat if and only if it admits a filtration of vector subbundles of E

E1 ⊂ E2 ⊂ . . . ⊂ Ei ⊂ . . . ⊂ Em−1 ⊂ Em = E

such that each quotient Ei+1/Ei is given by a unitary representation of π1(X). In

particular, each Ei+1/Ei is a direct sum of stable vector bundles of vanishing Chern

classes. Thus this theorem of [DPS] combines with Lemma 2.4 to give the following

corollary :

Corollary 2.6. Let E be a finite vector bundle over X. Then E is semistable with

cj(E) = 0 for all j ≥ 1. Furthermore, E admits a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Ej ⊂ . . . ⊂ El−1 ⊂ El = E

such that for all i ∈ [1, l], the subsheaf Ei is a subbundle of E and Ei/Ei−1 is a stable

vector bundle with cj(Ei+1/Ei) = 0 for all j ≥ 1 and i ≥ 0.

For a semistable Higgs bundle E with c1(E) = 0 = c2(E) and admitting a Higgs

field preserving a filtration by subbundles of E such that each subsequent quotient is a

stable Higgs vector bundle of degree zero, in [Si, Lemma 3.5] Simpson has constructed a

canonical flat connection on E. In this context we note that a theorem of K. Uhlenbeck

and S.-T. Yau says that a polystable vector bundle E over X, with c1(E) = 0 = c2(E),

admits a unique unitary flat connection [UY].

This canonical flat connection has the following properties. The connection on a

direct sum of Higgs bundles is the direct sum of the connections for the individual

Higgs bundles. The same statement is valid for the tensor product. Also, if E is the

trivial vector bundle of arbitrary rank with zero Higgs field, then it gets the trivial

connection. This construction in [Si] actually gives a bijective correspondence between

isomorphism classes of flat connections and isomorphism classes of semistable Higgs

bundles satisfying the condition c1(E) = 0 = c2(E) and admitting a filtration, compat-

ible with the Higgs field, such that each subsequent quotient is a stable Higgs vector

bundle of degree zero.

Let E be a finite vector bundle over X. Consider it as a Higgs bundle with zero

Higgs field. Now Corollary 2.6 implies that this Higgs bundle satisfies all the conditions

needed in Lemma 3.5 of [Si] to have a canonical flat connection. Let ∇ denote the

canonical flat connection on E. We observe that since the Higgs field on E has been

set to be zero, the flat connection ∇ is compatible with the holomorphic structure on

E. In other words, flat sections for E are holomorphic sections.

For a polynomial h with nonnegative integral coefficients, let h(∇) denote the con-

nection on h(E) induced by ∇.
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If f(E) is isomorphic to g(E), then from the above properties of the canonical

connection in [Si] we conclude that the two flat connections, namely f(∇) and g(∇),

are isomorphic.

Fix two polynomials

(2.7) f(x) =
n+1∑

i=0

aix
i and g(x) =

n∑

i=0

bix
i ,

where ai, bi ∈ N and an+1 6= 0, such that the vector bundle f(E) is isomorphic to g(E).

Let

ρ : π1(X, x0) −→ GL(V )

be the monodromy representation corresponding to the connection ∇, where V is the

fiber Ex0 of E at x0. The group π1(X, x0) acts on the tensor algebra
⊗

V using ρ. An

isomorphism between the two flat connections f(∇) and g(∇) induces an isomorphism,

as π1(X, x0)-modules, between f(V ) and g(V ).

The proof of the theorem will be completed once we are able to establish the following

proposition.

Proposition 2.8. Let G be a finitely generated subgroup of GL(V ) such that f(V )

is isomorphic to g(V ) as G-modules, where f and g are two distinct polynomials as in

(2.7). Then G must be a finite group.

Setting G to be the image ρ(π1(X, x0)), Proposition 2.8 states that the monodromy

of the connection ∇ is a finite group.

Proof of Proposition 2.8. Any finitely generated subgroup of GL(n,C) contains a

subgroup of finite index which is torsion-free [Ra, Theorem 6.11, page 93]. So it suffices

to show that every element of G is torsion.

We will first show that all the eigenvalues of any element of G are torsion.

Lemma 2.9. Take any γ ∈ G. All the eigenvalues of γ are roots of unity.

Proof of Lemma 2.9. From the given condition that f(V ) and g(V ) are isomorphic as

G-modules it is easy to deduce that there are finitely many G-modules, say V1, V2, . . . ,

Vk, such that every
⊗jV admits a decomposition

∑k
i=1 aj,iVi as G-modules, where aj,i

are nonnegative integers. So there are finitely many complex numbers, say {λi}1≤i≤N ,

such that all the eigenvalues for the action of γ on any
⊗jV are contained in {λi}1≤i≤N .

Since the i-th power of an eigenvalue for the action of γ on V becomes an eigenvalue

for the action of γ on
⊗iV , from the above remark it is immediate that all the eigen-

values for the action of γ on V must be roots of unity. This completes the proof of the

lemma. 2
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Now the proof of the proposition is completed by the following lemma.

Lemma 2.10. If g ∈ G is a matrix with 1 as its only eigenvalue. Then the equality

g = IdV is valid.

Proof of Lemma 2.10. Let An denote the (n+1)× (n+1) matrix whose (i, j)-th entry

is 1 if i = j or i + 1 = j and 0 otherwise. Then An has a standard action on Cn+1

which is indecomposable. We will denote Cn+1 equipped with the action of An by Vn.

The proof of the lemma will be completed once we are able to establish the following

assertion :

If n ≥ m then the Jordan canonical form of An ⊗ Am has the form

An+m ⊕ An+m−2 ⊕ . . .⊕ An−m .

That the assertion indeed implies the lemma can be seen in the following way.

The indecomposable components which occur in V for the action of g are of the

form Vn for some n. If g 6= IdV , then not all such n are zero. Since there are only

finitely many indecomposable components occurring in all tensor powers of V , we

conclude that there will only be finitely many indecomposable components occurring

in all tensor powers of Vn for the action of An. On the other hand, the assertion implies

that Vkn occurs as an indecomposable component for the action of A⊗k
n on

⊗kVn. Hence

Vkn occurs as a indecomposable component of
⊗kV for all k, which is a contradiction.

Now, to prove the assertion, let E denote the standard two dimensional represen-

tation of SL(2,C), and let SymnE be its n-th symmetric power. Denote by A the

element

A :=

(
1 1
0 1

)

of SL(2,C). For the representation SymnE of SL(2,C), there exists a basis with

respect to which A acts by the matrix An. The assertion now follows from the fact

that for n ≥ m, the tensor product SymnE
⊗

SymmE is equivalent to

Symn+mE ⊕ Symn+m−2E ⊕ . . .⊕ Symn−m+2E ⊕ Symn−mE

as SL(2,C) modules ([FH], page 151, Ex. 11.11). This completes the proof of the

lemma. 2

We already noted that Lemma 2.10 completes the proof of the assertion that any

finite vector bundle over X is given by a representation of a finite quotient of the

fundamental group of X. The converse to it was already observed in Proposition 2.2.

This completes the proof of the theorem. 2
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Remark 2.11. A principal G-bundle P over X, where G is a reductive algebraic

group over C, is called finite if for every finite dimensional complex representation

ρ : G −→ Aut(V ), the associated vector bundle P (ρ) is finite. It is enough to check

the criterion for one faithful representation. For ρ, as above, Aut(V )/G is affine. So

constant maps are the only holomorphic maps from X to Aut(V )/G. From this fact

and Theorem 2.3 it is straight-forward to deduce that a principal G-bundle over X is

finite if and only if it admits a flat connection with finite monodromy group.

In the next section we will consider representations of finite quotients of the funda-

mental group of a connected smooth quasi-projective variety.

3. Flat connections with finite monodromy over connected smooth

quasi-projective varieties

Let X be a connected smooth projective variety over C. Let D be a normal crossing

divisor on X. By this we mean that D is a reduced effective divisor such that each

irreducible component of D is smooth, and furthermore, the irreducible components

intersect transversally. The complement X −D will be denoted by X0.

Let

(3.1) ρ : π1(X0) −→ U(n)

be a unitary representation. The corresponding unitary flat bundle over X0 will be

denoted by E(ρ). This flat connection, in general, does not extend across D. However,

there is a natural extension of E(ρ) as a holomorphic vector bundle over X [De].

Denoting this vector bundle over X by E, the unitary flat connection on Eρ extends

as a logarithmic singular connection on E.

The vector bundle E has a natural parabolic structure over D (the basic definitions

of parabolic vector bundles can be found in [MS], [MY]). The parabolic structure on E

over an irreducible component Di of D is determined by the residue of the logarithmic

singular connection along Di. A parabolic vector bundle arising this way has the

property that the parabolic filtration over Di is actually a filtration of subbundles of

E|Di
. (In general a parabolic structure is given by a filtration of coherent subsheaves

over Di [MY].)

If the monodromy of the unitary connection around Di is of finite order then all the

parabolic weights for the parabolic structure over Di are rational numbers.

For another unitary representation ρ1, the parabolic vector bundle corresponding to

the representation ρ⊕ρ1 is simply the direct sum of the corresponding parabolic vector

bundles. The parabolic vector bundle corresponding to ρ ⊗ ρ1 is the parabolic tensor
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product of the corresponding parabolic vector bundles. (See [Bi1], [Y] for the definition

of the parabolic tensor product.)

For a parabolic vector bundle E∗ and a polynomial g as in (2.7), define g(E∗) to

be the parabolic vector bundle constructed just as in Section 2 with the usual tensor

product being replaced by the parabolic tensor product.

Since any finite subgroup of GL(n,C) is conjugate to a subgroup of U(n), any rep-

resentation

(3.2) ρ′ : π1(X0) −→ GL(n,C)

whose image is a finite subgroup of GL(n,C), gives rise to a parabolic vector bundle

over X with parabolic structure over D and satisfying the following two conditions:

1. all the parabolic weights are rational numbers;

2. the filtration over any irreducible component Di, of D, defining the parabolic

structure, is actually a filtration by subbundles.

Let E∗ denote this parabolic vector bundle corresponding to ρ′.

Now, from the proof of Proposition 2.2 we conclude that there are two distinct

polynomials, say f and g, as in (2.7), such that the parabolic vector bundle f(E∗) is

isomorphic to g(E∗).

The converse to this is also valid, as shown in the following theorem.

Theorem 3.3. Let E∗ be a parabolic vector bundle over X, with E as the underlying

vector bundle, and with a parabolic structure over D which satisfies the following three

conditions:

1. all the parabolic weights are rational numbers;

2. the parabolic filtration over any irreducible component Di of D is defined by a

filtration of subbundles of E|Di
;

3. there are two distinct polynomials f and g, as in (2.7), such that the parabolic

vector bundle f(E∗) is isomorphic to g(E∗).

Then there is a representation ρ : π1(X0) −→ U(n), with ρ(π1(X0)) a finite subgroup

of U(n), such that the parabolic vector bundle corresponding to ρ is isomorphic to E∗.
(The validity of the converse of the statement was observed earlier.)

Proof. Fix a positive integer N such that all the parabolic weights of E∗ are of the

form m/N , where m is an integer.

Let

D =
l∑

i=1

Di
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be the decomposition of D into its irreducible components.

The “Covering Lemma” of Y. Kawamata [KMM, Theorem 1.1.1] says that there is

a connected projective manifold Y and a Galois covering morphism

(3.4) p : Y −→ X

such that the reduced divisor (p∗D)red is a normal crossing divisor on Y and further-

more, p∗Di = kiN.(p∗Di)red, where ki, 1 ≤ i ≤ l, are positive integers. Let Γ denote

the Galois group for the covering map p.

A construction of [Bi2] (we will not describe it here since it has already been repeated

in [Bi1], [Bi3], [BN] etc.) gives a one-to-one correspondence between the collection of

parabolic vector bundles over X, with parabolic structure over D which satisfies the

first two conditions in the statement of the theorem, and the collection of a certain

class of Γ-linearized vector bundles over Y . The class of Γ-linearized vector bundles

in question satisfy the condition that for any point y ∈ Y , the action of the isotropy

subgroup Γy ⊆ Γ on the fiber of the vector bundle over y is of order N , and the action

of Γz, where z ∈ Y − p−1(D), is the trivial action.

Let W denote the Γ-linearized vector bundle corresponding to the parabolic vector

bundle E∗. The above mentioned construction of [Bi2] takes the parabolic tensor prod-

uct (respectively, direct sum) of parabolic vector bundles to the usual tensor product

(respectively, direct sum) of the corresponding Γ-linearized vector bundles equipped

with the induced Γ-linearization. Thus the given condition f(E∗) = g(E∗) implies that

the following is valid

f(W ) = g(W )

as Γ-linearized vector bundles.

Theorem 2.3 says that W corresponds to a unitary representation of π1(Y ). (This

representation is unique up to a conjugation.) Let ∇ denote the unique unitary flat

connection on W .

Let p′ denote the restriction of p to p−1(X −D′), where D′ is the divisor on X over

which p is ramified. The direct image

V := p′∗(W |p−1(X−D′))

has a unitary flat connection induced by ∇; this flat connection on V will be denoted

by ∇′. The Γ-linearization of W induces an action of Γ on the vector bundle V , i.e.,

we have a homomorphism

γ : Γ Aut(V ) .

This action of Γ is compatible with the flat connection ∇′ on V in the sense that any

automorphism γ(g) of V preserves ∇′. So the invariant part V Γ, for the action of Γ on

V , has a natural unitary flat connection, which will be denoted by ∇Γ.
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For any y ∈ p−1(X0) the isotropy subgroup Γy ⊆ Γ acts trivially on the fiber Wy

[Bi2]. Hence the flat vector bundle V Γ extends to X0. Let V0 denote the unitary flat

vector bundle over X0 obtained by extending V Γ.

Let E ′
∗ denote the parabolic bundle over X, with parabolic structure over D, cor-

responding to the unitary flat vector bundle V0 over X0. It is easy to see that in the

correspondence between parabolic vector bundles and Γ-linearized vector bundles con-

structed in [Bi2], the parabolic vector bundle E ′
∗ is actually isomorphic to E∗. This

completes the proof of the theorem. 2
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