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Elementary particle physics: matter fields
Space-time coordinates

x = (x0, x1, x2, x3) = (xµ), x0 = time

Minkowski metric

dxµ dxµ = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

matter fields = spinor fields ψ(x) (fermions, half-integral spin)
3 colors plus no color

0 electron charge −1
1,2,3 down quarks charge − 1

3

0 neutrino charge 0

1,2,3 up quarks charge 2
3

plus antiparticles (opposite charge)
These sixteen matter particles occur in 3 almost identical generations
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Elementary particle physics: force fields

force fields = differential 1-forms A(x) (bosons, integral spin)

Aµ(x)dxµ = A0(x)dx0 +A1(x)dx1 +A2(x)dx2 +A3(x)dx3

with matrix-valued coefficient functions Aµ(x).
U(n) = {u ∈Cn×n ∶ uu∗ = I} unitary group
U(1) = {u ∈C ∶ ∣u∣ = 1} = T unit circle, commutative
3 values plus no value:

A1 = A1
µ(x)dxµ electro-magnetism, photon (light) U(1)

A2 = A2
µ(x)dxµ weak nuclear force, radioactive decay U(2)

A3 = A3
µ(x)dxµ strong nuclear force, gluons (binding quarks) U(3)

A0 = A0
µ(x)dxµ gravitation no value

no generations
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Feynman diagrams, scattering
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no loop one loop
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Principle of Least Action

Scalar field: real valued function ϕ(xµ) on space-time
Lagrange action functional

L(ϕ) ∶= ∫
R4

dx(∂µϕ ∂µϕ −m2ϕ2)

classical fields minimize action (field equation)

∂L
∂ϕ
(ϕ̇) = d

dϵ
∣
ϵ=0L(ϕ + ϵϕ̇) = 0

free fields: wave equation

(∂µ∂µ +m2)ϕ = 0

∂µ∂
µ = ∂20 − ∂21 − ∂22 − ∂23

Interacting fields: non-linear PDE
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Standard model (theory of almost everything)

Lagrangian with several hundred summands and 26 free parameters

L = −1
4
BµνB

µν − 1

8
tr WµνW

µν − 1

2
tr GµνG

µν

+(νL, eL)σ̃µiDµ (
νL
eL
) + eRσµiDµeR + νRσµiDµνR + h.c.

+(uL, dL)σ̃µiDµ (
uL
dL
) + uRσµiDµuR + dRσµiDµdR + h.c.

+DµϕDµϕ −
m2

h

2v2
(ϕϕ − v

2

2
)
2

Higgs field

−
√
2

v
((νL ∶ eL)ϕMeeR+eRM

e
ϕ(νL

eL
)+(−eL, νL)ϕ∗MννR+νRM

ν
ϕ+ (−eL

νL
))

−
√
2

v
((uL, dL)ϕMddR+dRM

d
ϕ(uL

dL
)+(−dL, uL)ϕ∗MuuR+uRM

u
ϕ+ (−dL

uL
))
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1+3 Quantum fields: Feynman integrals
h=Planck’s constant (very small)
time-ordered positions x1, . . . , xn ∈R4, correlation functions

< x1, . . . , xn >∶= ∫ Dϕ exp (2πi
h
L(ϕ))

n

∏
j=1

ϕ(xj)

LSZ-scattering formula: momenta p1, . . . , pn, incoming/outgoing

< p1, . . . , pn >= ∫ Dϕ exp (2πi
h
L(ϕ))

n

∏
j=1
((∂µ∂µ +m2)ϕ)∧(±pj)

1+0 fields, paths X(t), Path integrals t1 < . . . tn

< t1, . . . , tn >∶= ∫ DX exp ( −L(X))
n

∏
j=1

X(tj)

Wiener measure, stochastic processes
Stationary phase method: asymptotic expansion (zero radius of
convergence)

I(h) ≈∑
g

hgAg.

Harald Upmeier String Theory in Physics and Mathematics



Standard model agrees with experiment up to 12 decimal places
On the other hand:

▸ gravity not included in quantization

▸ three generations of matter fields not explained

▸ too many free parameters, little predictive power

▸ needs summation over large number of Feynman graphs (ugly)

▸ pointlike singularities of Feynman graphs create infinities in quantum
theory
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String theory (theory of everything)

Replace 0-dimensional particles by 1-dimensional strings, depending
on 1 spatial coordinate s, 0 ≤ s ≤ π. Two types of strings

▸ open strings ∂sX
µ = 0 at endpoints

▸ closed strings X(0, t) =X(π, t).

▸ all matter particles correspond to different vibrating modes of open
strings

▸ gravity corresponds to closed strings
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▸ World line of particle t↦Xµ(t)

▸ L(X) =
T

∫
0

dt ∥dX
dt
∥ arc length

▸ Classical world lines (L′(X) = 0): geodesics

d2Xµ

dt2
= Γµ

νρ(X)
dXν

dt

dXρ

dt

▸ World sheet of string (s, t)↦Xµ(s, t)

▸ L(X) =
π

∫
0

ds
T

∫
0

dt ∣det(∂iXµ ∂jXµ)∣1/2 surface area

▸ Classical strings: minimal area surfaces

(∂2s − ∂2t )Xµ = 0 wave equation

Classical string solutions have Fourier expansion

Xµ(s, t) = xµ + icµ0 + i∑
n≠0

cµn
n

cos(ns)eint,
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Interacting strings: Riemann surfaces instead of Feynman graphs

Summation over Feynman graphs replaced by integration
over ’moduli space’Mg,n of Riemann surfaces of genus g with n punctures
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Bosonic strings in 26 spacetime dimensions

R ⊂C ⊂H ⊂O division algebras

dimK = 2a, a = 0,1,2,3

8-dim Cayley numbers O, non-associative, automorphism group

G2 = Aut(O)

Jordan algebra of self-adjoint 3 × 3-matrices with octonion entries

H3(O) =
⎛
⎜
⎝

R O O
∗ R O
∗ ∗ R

⎞
⎟
⎠

anti-commutator product x ○ y = 1
2
(xy + yx), automorphism group

F4 = Aut H3(O)
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Superstrings in 10 spacetime dimensions
Supersymmetry (SUSY) is a one-one correspondence between matter
fields (fermions) and force fields (bosons)

K0 = {x ∈K ∶ Re(x) = (1∣x) = 0}, dim = 2a − 1
K =R ⋅ 1⊕K0 = spinors of K0, dim = 2a

In particular, 1 is a spinor for K0, Aut(K) = {g ∈ SO(K0) ∶ g1 = 1}.

H2(K) = (
R K
∗ R

) =R ⋅ 1⊕H0
2(K)

H0
2(K) = {x = x∗ ∈H2(K) ∶ tr(x) = 0}, dim = 2a + 1

(K
K
) = spinors for H0

2(K), dim = 2a+1

R O O
∗ R O

∗ ∗ R
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Hidden microscopic dimensions

▸ Macroscopic spacetime is 4-dimensional

10-dim spacetime =R4 ×M,

where M is ’microscopic’ spacetime, a compact 6-dimensional
Calabi-Yau manifold, too small to be detected.

▸ Calabi-Yau manifolds generalize Riemann surfaces of genus 1
(elliptic curves, complex tori).

▸ Every Calabi-Yau manifold describes possible universe where strings
can be quantized

▸ no experimental sign of supersymmetry
...desperately seeking SUSY
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Euler characteristic

Number of generations = half of Euler characteristic of Calabi-Yau
manifold M

χM =#even-dim holes −#odd-dimensional holes

Standard model: χM = −6
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Bosonic strings and the Monster

Finite simple groups are classified:

▸ Alternating groups An (even permutations)

▸ finite groups of Lie type (matrix groups over finite fields, including
exceptional groups)

▸ 26 sporadic groups.

The Monster M is the largest sporadic group, of order

246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71

= 808017424794512875886459904961710757005754368000000000

Total debt of Greece 403860000000
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For a prime number p consider the ’congruence subgroup’

Γ0(p) ∶= {(
a b
c d

) ∈ SL2(Z), c ∈ pZ}

acting on the upper half-plane H = {τ ∈C ∶ Im(τ) > 0} via Moebius
transformations

(a b
c d

)(τ) = aτ + b
cτ + d

.

The modular curve H/Γ0(p) has genus g = 0 if and only if

p = 2,3,5,7,11,13,17,19,23,29,31;41,47,59,71
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Vertex operator algebras

creation/annihilation operators m,n ∈ Z, 0 ≤ µ, ν < 26.

[Cµ
m,C

ν
n] =mδm,−nδ

µ,ν

C(z) = ∑
n∈Z

Cnz
n, z = eit

∫
dz

z
C(z) = C0 log(z)+∑

n≠0

Cn

n
zn+q = ∑

n>0

Cn

n
zn+(q+C0 log(z))−∑

n>0

C∗n
n
z−n

Vertex operator for emission of string of momentum p = (pµ)

Vp(z) =∶ exp (∫
dz

z
p ⋅C(z))

∶= exp (p ⋅ ∑
n>0

Cn

n
zn) exp (p ⋅ (q +C0 log(z))) exp( − p ⋅ ∑

n>0

C∗n
n
z−n)

M is the automorphisms group of vertex operator algebra, compactified
on the Leech lattice Λ ⊂R24.
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T-duality and mirror symmetry

long strings (length ℓ) in Calabi-Yau manifold M equivalent to short
strings (length 1

ℓ
) in ’mirror’ CY-manifold M̌.

M =C/Λ torus M̌ =C/Λ−1 dual torus

’symplectic’ category of Lagrangian subspaces in M=lines with rational
slope θ = p

q

’holomorphic’ category of coherent analytic sheaves in M̌
Holomorphic vector bundles of degree p and rank q.
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What if θ is irrational?
Symplectic side: Kronecker foliation

Irrational rotation algebras Aθ, generated by two Hilbert space
unitaries u, v satisfying

uv = e2πiθvu.

Holomorphic side completely unknown.
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S-duality and Langlands program

S-duality: weakly coupled strings in M equivalent to strongly coupled
strings in dual M̃.

A = A0(x)dx0 + . . . +A3(x)dx3 4 − dim Yang-Mills Theory

connection 1-form in Lie group G.

FA = dA + k[A ∧A] field strength, coupling constant k

F a
µν = ∂µ Aa

ν − ∂ν Aa
µ + kfabcAb

µA
c
ν

FA = dA +
1

k
[A ∧A] dual field strength, coupling constant

1

k

weakly coupled YM-theory in Lie group G equivalent to strongly
coupled YM-theory in Langlands dual group GL.
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formal series ∑
i∈Z

aip
i, 0 ≤ ai < p

real numbers R =Q∞ ∶
k

∑
−∞

aip
i, p-adic numbers Qp ∶

∞
∑
i=k
aip

i

▸ commutative case (class field theory)

characters Gal(Q/Q) χÐ→C× ⇐⇒ ∏
p≤∞

Q×p ideles

▸ non-commutative case: finite-dimensional representations (number
theory)

ρ ∶ Gal(Q/Q)→ GLn(C)

infinite-dimensional representations of adelic Lie groups (harmonic
analysis)

π ∶ GLn(Qp)→ U(H)
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Chern-Simons TQFT and higher categories

dimM = 3, topological QFT, independent of choice of metric

A = A0(x)dx0 + .. +A2(x)dx2,

L(A) = ∫
M

dA ∧A + 2

3
A ∧A ∧A

classical solutions: affine space H1(M,G) of flat connexions (zero
curvature)

FA = dA +A ∧A = 0

Feynman integrals yield knot polynomials (V. Jones)
Open problem: What is H2(M,G)? Not a set (member of a category)
but member of ’higher category’

▸ Topology: higher homotopy theory

▸ Mathematical logic: Russell’s type theory

▸ Theoretical computer science: programming language using proof
assistant Coq (Voevodsky)
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10500 choices of CY-manifolds (string landscape)
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