String Theory in Physics and Mathematics

Harald Upmeier
University of Marburg, Germany

Marburg, July 2016

Elementary particle physics: matter fields

Space-time coordinates

$$
x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=\left(x^{\mu}\right), x^{0}=\text { time }
$$

Minkowski metric

$$
d x^{\mu} d x_{\mu}=\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}
$$

matter fields $=$ spinor fields $\psi(x)$ (fermions, half-integral spin)
3 colors plus no color

0	electron	charge -1
$1,2,3$	down quarks	charge $-\frac{1}{3}$
$\underline{0}$	neutrino	charge 0
$\underline{1}, \underline{2}, \underline{3}$	up quarks	charge $\frac{2}{3}$

plus antiparticles (opposite charge)
These sixteen matter particles occur in 3 almost identical generations

Elementary particle physics: force fields

force fields $=$ differential 1-forms $A(x)$ (bosons, integral spin)

$$
A_{\mu}(x) d x^{\mu}=A_{0}(x) d x^{0}+A_{1}(x) d x^{1}+A_{2}(x) d x^{2}+A_{3}(x) d x^{3}
$$

with matrix-valued coefficient functions $A_{\mu}(x)$.
$U(n)=\left\{u \in \mathbf{C}^{n \times n}: u u^{*}=I\right\}$ unitary group
$U(1)=\{u \in \mathbf{C}:|u|=1\}=\mathbf{T}$ unit circle, commutative
3 values plus no value:

$A^{1}=A_{\mu}^{1}(x) d x^{\mu}$	electro-magnetism, photon (light)	$U(1)$
$A^{2}=A_{\mu}^{2}(x) d x^{\mu}$	weak nuclear force, radioactive decay	$U(2)$
$A^{3}=A_{\mu}^{3}(x) d x^{\mu}$	strong nuclear force, gluons (binding quarks)	$U(3)$
$A^{0}=A_{\mu}^{0}(x) d x^{\mu}$	gravitation	no value

no generations

Feynman diagrams, scattering

Principle of Least Action

Scalar field: real valued function $\phi\left(x^{\mu}\right)$ on space-time Lagrange action functional

$$
\mathcal{L}(\phi):=\int_{\mathbf{R}^{4}} d x\left(\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right)
$$

classical fields minimize action (field equation)

$$
\frac{\partial \mathcal{L}}{\partial \phi}(\dot{\phi})=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \mathcal{L}(\phi+\epsilon \dot{\phi})=0
$$

free fields: wave equation

$$
\begin{gathered}
\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0 \\
\partial_{\mu} \partial^{\mu}=\partial_{0}^{2}-\partial_{1}^{2}-\partial_{2}^{2}-\partial_{3}^{2}
\end{gathered}
$$

Interacting fields: non-linear PDE

Standard model (theory of almost everything)

Lagrangian with several hundred summands and 26 free parameters

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{8} \operatorname{tr} W_{\mu \nu} W^{\mu \nu}-\frac{1}{2} \operatorname{tr} G_{\mu \nu} G^{\mu \nu} \\
+\left(\bar{\nu}_{L}, \bar{e}_{L}\right) \tilde{\sigma}^{\mu} i D_{\mu}\binom{\nu_{L}}{e_{L}}+\bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R}+\bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R}+h . c . \\
+\left(\bar{u}_{L}, \bar{d}_{L}\right) \tilde{\sigma}^{\mu} i D_{\mu}\binom{u_{L}}{d_{L}}+\bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R}+\bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R}+h . c . \\
+\overline{D_{\mu} \phi} D_{\mu} \phi-\frac{m_{h}^{2}}{2 v^{2}}\left(\bar{\phi} \phi-\frac{v^{2}}{2}\right)^{2} \text { Higgs field } \\
-\frac{\sqrt{2}}{v}\left(\left(\bar{\nu}_{L}: \bar{e}_{L}\right) \phi M^{e} e_{R}+\bar{e}_{R} \bar{M}^{e} \bar{\phi}\binom{\nu_{L}}{e_{L}}+\left(-\bar{e}_{L}, \bar{\nu}_{L}\right) \phi^{*} M^{\nu} \nu_{R}+\bar{\nu}_{R} \bar{M}^{\nu} \phi^{+}\binom{-e_{L}}{\nu_{L}}\right) \\
-\frac{\sqrt{2}}{v}\left(\left(\bar{u}_{L}, \bar{d}_{L}\right) \phi M^{d} d_{R}+\bar{d}_{R} \bar{M}^{d} \bar{\phi}\binom{u_{L}}{d_{L}}+\left(-\bar{d}_{L}, \bar{u}_{L}\right) \phi^{*} M^{u} u_{R}+\bar{u}_{R} \bar{M}^{u} \phi^{+}\binom{-d_{L}}{u_{L}}\right)
\end{gathered}
$$

1+3 Quantum fields: Feynman integrals

$h=$ Planck's constant (very small)
time-ordered positions $x_{1}, \ldots, x_{n} \in \mathbf{R}^{4}$, correlation functions

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle:=\int \mathcal{D} \phi \exp \left(\frac{2 \pi i}{h} \mathcal{L}(\phi)\right) \prod_{j=1}^{n} \phi\left(x_{j}\right)
$$

LSZ-scattering formula: momenta p_{1}, \ldots, p_{n}, incoming/outgoing

$$
\left\langle p_{1}, \ldots, p_{n}\right\rangle=\int \mathcal{D} \phi \exp \left(\frac{2 \pi i}{h} \mathcal{L}(\phi)\right) \prod_{j=1}^{n}\left(\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi\right)^{\wedge}\left(\pm p_{j}\right)
$$

$1+0$ fields, paths $X(t)$, Path integrals $t_{1}<\ldots t_{n}$

$$
<t_{1}, \ldots, t_{n}>:=\int \mathcal{D} X \exp (-\mathcal{L}(X)) \prod_{j=1}^{n} X\left(t_{j}\right)
$$

Wiener measure, stochastic processes
Stationary phase method: asymptotic expansion (zero radius of convergence)

$$
I(h) \approx \sum_{g} h^{g} A_{g} .
$$

Standard model agrees with experiment up to 12 decimal places On the other hand:

- gravity not included in quantization
- three generations of matter fields not explained
- too many free parameters, little predictive power
- needs summation over large number of Feynman graphs (ugly)
- pointlike singularities of Feynman graphs create infinities in quantum theory

String theory (theory of everything)

Replace 0-dimensional particles by $\mathbf{1}$-dimensional strings, depending on 1 spatial coordinate $s, 0 \leq s \leq \pi$. Two types of strings

- open strings $\partial_{s} X^{\mu}=0$ at endpoints
- closed strings $X(0, t)=X(\pi, t)$.

- all matter particles correspond to different vibrating modes of open strings
- gravity corresponds to closed strings
- World line of particle $t \mapsto X^{\mu}(t)$
- $\mathcal{L}(X)=\int_{0}^{T} d t\left\|\frac{d X}{d t}\right\|$ arc length
- Classical world lines $\left(\mathcal{L}^{\prime}(X)=0\right)$: geodesics

$$
\frac{d^{2} X^{\mu}}{d t^{2}}=\Gamma_{\nu \rho}^{\mu}(X) \frac{d X^{\nu}}{d t} \frac{d X^{\rho}}{d t}
$$

- World sheet of string $(s, t) \mapsto X^{\mu}(s, t)$
- $\mathcal{L}(X)=\int_{0}^{\pi} d s \int_{0}^{T} d t\left|\operatorname{det}\left(\partial_{i} X^{\mu} \partial_{j} X_{\mu}\right)\right|^{1 / 2}$ surface area
- Classical strings: minimal area surfaces

$$
\left(\partial_{s}^{2}-\partial_{t}^{2}\right) X^{\mu}=0 \text { wave equation }
$$

Classical string solutions have Fourier expansion

$$
X^{\mu}(s, t)=x^{\mu}+i c_{0}^{\mu}+i \sum_{n \neq 0} \frac{c_{n}^{\mu}}{n} \cos (n s) e^{i n t},
$$

Interacting strings: Riemann surfaces instead of Feynman graphs

Particles

Strings

Summation over Feynman graphs replaced by integration over 'moduli space' $\mathcal{M}_{g, n}$ of Riemann surfaces of genus g with n punctures

Bosonic strings in 26 spacetime dimensions

$$
\begin{gathered}
\mathbf{R} \subset \mathbf{C} \subset \mathbf{H} \subset \mathbf{O} \text { division algebras } \\
\operatorname{dim} \mathbf{K}=2^{a}, a=0,1,2,3
\end{gathered}
$$

8-dim Cayley numbers O, non-associative, automorphism group

$$
G_{2}=\operatorname{Aut}(\mathbf{O})
$$

Jordan algebra of self-adjoint 3×3-matrices with octonion entries

$$
\mathcal{H}_{3}(\mathbf{O})=\left(\begin{array}{c|c|c}
\mathbf{R} & \mathbf{O} & \mathbf{O} \\
\hline * & \mathbf{R} & \mathbf{O} \\
\hline * & * & \mathbf{R}
\end{array}\right)
$$

anti-commutator product $x \circ y=\frac{1}{2}(x y+y x)$, automorphism group

$$
F_{4}=A u t \mathcal{H}_{3}(\mathbf{O})
$$

Superstrings in 10 spacetime dimensions

Supersymmetry (SUSY) is a one-one correspondence between matter fields (fermions) and force fields (bosons)

$$
\begin{gathered}
\mathbf{K}^{0}=\{x \in \mathbf{K}: \operatorname{Re}(x)=(1 \mid x)=0\}, \quad \operatorname{dim}=2^{a}-1 \\
\mathbf{K}=\mathbf{R} \cdot 1 \oplus \mathbf{K}^{0}=\text { spinors of } \mathbf{K}^{0}, \quad \operatorname{dim}=2^{a}
\end{gathered}
$$

In particular, 1 is a spinor for $\mathbf{K}^{0}, \quad \operatorname{Aut}(\mathbf{K})=\left\{g \in S O\left(\mathbf{K}^{0}\right): g 1=1\right\}$.

$$
\begin{gathered}
\mathcal{H}_{2}(\mathbf{K})=\left(\begin{array}{l|l}
\mathbf{R} & \mathbf{K} \\
\hline * & \mathbf{R}
\end{array}\right)=\mathbf{R} \cdot 1 \oplus \mathcal{H}_{2}^{0}(\mathbf{K}) \\
\mathcal{H}_{2}^{0}(\mathbf{K})=\left\{x=x^{*} \in \mathcal{H}_{2}(\mathbf{K}): \operatorname{tr}(x)=0\right\}, \operatorname{dim}=2^{a}+1 \\
\binom{\mathbf{K}}{\mathbf{K}}=\text { spinors for } \mathcal{H}_{2}^{0}(\mathbf{K}), \quad \operatorname{dim}=2^{a+1} \\
\begin{array}{c|c|c}
\mathbf{R} & \mathbf{O} & \mathbf{O} \\
\hline * & \mathbf{R} & \mathbf{O} \\
\hline \hline * & * & \mathbf{R}
\end{array}
\end{gathered}
$$

Hidden microscopic dimensions

- Macroscopic spacetime is 4-dimensional

$$
\text { 10-dim spacetime }=\mathbf{R}^{4} \times M,
$$

where M is 'microscopic' spacetime, a compact 6-dimensional Calabi-Yau manifold, too small to be detected.

- Calabi-Yau manifolds generalize Riemann surfaces of genus 1 (elliptic curves, complex tori).
- Every Calabi-Yau manifold describes possible universe where strings can be quantized
- no experimental sign of supersymmetry ...desperately seeking SUSY

Euler characteristic

Number of generations $=$ half of Euler characteristic of Calabi-Yau manifold M

$$
\chi_{M}=\# \text { even-dim holes - \#odd-dimensional holes }
$$

Standard model: $\chi_{M}=-6$

Bosonic strings and the Monster

Finite simple groups are classified:

- Alternating groups A_{n} (even permutations)
- finite groups of Lie type (matrix groups over finite fields, including exceptional groups)
- 26 sporadic groups.

The Monster M is the largest sporadic group, of order

$$
\begin{aligned}
& 2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \\
= & 808017424794512875886459904961710757005754368000000000
\end{aligned}
$$

Total debt of Greece

For a prime number p consider the 'congruence subgroup'

$$
\Gamma_{0}(p):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbf{Z}), c \in p \mathbf{Z}\right\}
$$

acting on the upper half-plane $H=\{\tau \in \mathbf{C}: \operatorname{Im}(\tau)>0\}$ via Moebius transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\tau)=\frac{a \tau+b}{c \tau+d}
$$

genus 0

genus 1

genus 2

The modular curve $H / \Gamma_{0}(p)$ has genus $g=0$ if and only if

$$
p=\mathbf{2}, \mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 7}, \mathbf{1 9}, \mathbf{2 3}, \mathbf{2 9}, \mathbf{3 1} ; \mathbf{4 1}, \mathbf{4 7}, \mathbf{5 9}, 71
$$

Vertex operator algebras

creation/annihilation operators $m, n \in \mathbf{Z}, 0 \leq \mu, \nu<26$.

$$
\begin{gathered}
{\left[C_{m}^{\mu}, C_{n}^{\nu}\right]=m \delta_{m,-n} \delta^{\mu, \nu}} \\
C(z)=\sum_{n \in \mathbf{Z}} C_{n} z^{n}, z=e^{i t} \\
\int \frac{d z}{z} C(z)=C_{0} \log (z)+\sum_{n \neq 0} \frac{C_{n}}{n} z^{n}+q=\sum_{n>0} \frac{C_{n}}{n} z^{n}+\left(q+C_{0} \log (z)\right)-\sum_{n>0} \frac{C_{n}^{*}}{n} z^{-n}
\end{gathered}
$$

Vertex operator for emission of string of momentum $p=\left(p_{\mu}\right)$

$$
\begin{gathered}
V_{p}(z)=: \exp \left(\int \frac{d z}{z} p \cdot C(z)\right) \\
:=\exp \left(p \cdot \sum_{n>0} \frac{C_{n}}{n} z^{n}\right) \exp \left(p \cdot\left(q+C_{0} \log (z)\right)\right) \exp \left(-p \cdot \sum_{n>0} \frac{C_{n}^{*}}{n} z^{-n}\right)
\end{gathered}
$$

\mathbf{M} is the automorphisms group of vertex operator algebra, compactified on the Leech lattice $\Lambda \subset \mathbf{R}^{24}$.

T-duality and mirror symmetry

long strings (length ℓ) in Calabi-Yau manifold M equivalent to short strings (length $\frac{1}{\ell}$) in 'mirror' CY-manifold \check{M}.

$$
M=\mathbf{C} / \Lambda \text { torus } \quad \check{M}=\mathbf{C} / \Lambda^{-1} \text { dual torus }
$$

'symplectic' category of Lagrangian subspaces in $M=$ lines with rational slope $\theta=\frac{p}{q}$
'holomorphic' category of coherent analytic sheaves in M K Holomorphic vector bundles of degree p and rank q.

What if θ is irrational?
Symplectic side: Kronecker foliation

Irrational rotation algebras A_{θ}, generated by two Hilbert space unitaries u, v satisfying

$$
u v=e^{2 \pi i \theta} v u
$$

Holomorphic side completely unknown.

S-duality and Langlands program

S-duality: weakly coupled strings in M equivalent to strongly coupled strings in dual M.

$$
A=A_{0}(x) d x^{0}+\ldots+A_{3}(x) d x^{3} \quad 4-\operatorname{dim} \text { Yang-Mills Theory }
$$

connection 1-form in Lie group G.

$$
\begin{gathered}
F_{A}=d A+k[A \wedge A] \text { field strength, coupling constant } k \\
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+k f_{b c}^{a} A_{\mu}^{b} A_{\nu}^{c} \\
F_{A}=d A+\frac{1}{k}[A \wedge A] \text { dual field strength, coupling constant } \frac{1}{k}
\end{gathered}
$$

weakly coupled YM -theory in Lie group G equivalent to strongly coupled YM-theory in Langlands dual group G^{L}.
formal series $\sum_{i \in \mathbf{Z}} a_{i} p^{i}, \quad 0 \leq a_{i}<p$
real numbers $\mathbf{R}=\mathbf{Q}_{\infty}: \sum_{-\infty}^{k} a_{i} p^{i}, \quad$ p-adic numbers $\mathbf{Q}_{p}: \sum_{i=k}^{\infty} a_{i} p^{i}$

- commutative case (class field theory)

$$
\text { characters } \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \xrightarrow{\chi} \mathbf{C}^{\times} \Longleftrightarrow \prod_{p \leq \infty} \mathbf{Q}_{p}^{\times} \quad \text { ideles }
$$

- non-commutative case: finite-dimensional representations (number theory)

$$
\rho: G a l(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow G L_{n}(\mathbf{C})
$$

infinite-dimensional representations of adelic Lie groups (harmonic analysis)

$$
\pi: G L_{n}\left(\mathbf{Q}_{p}\right) \rightarrow U(H)
$$

Chern-Simons TQFT and higher categories

$\operatorname{dim} M=3$, topological QFT, independent of choice of metric

$$
\begin{aligned}
& A=A_{0}(x) d x^{0}+. .+A_{2}(x) d x^{2} \\
& \mathcal{L}(A)=\int_{M} d A \wedge A+\frac{2}{3} A \wedge A \wedge A
\end{aligned}
$$

classical solutions: affine space $H^{1}(M, G)$ of flat connexions (zero curvature)

$$
F_{A}=d A+A \wedge A=0
$$

Feynman integrals yield knot polynomials (V. Jones)
Open problem: What is $H^{2}(M, G)$? Not a set (member of a category) but member of 'higher category'

- Topology: higher homotopy theory
- Mathematical logic: Russell's type theory
- Theoretical computer science: programming language using proof assistant Coq (Voevodsky)

10^{500} choices of CY-manifolds (string landscape)

$$
\mathrm{D}=\mathbf{1 1}
$$

