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Abstract. In this article we survey results on topological properties of simplicial com-
plexes ∆, mostly defined via algebraic properties of the Stanley-Reisner ring K[∆]. A
property of ∆ or K[∆] is called topological if it only depends on the homeomorphism type
of the geometric realization of ∆ (and on K).

1. Introduction

A (finite abstract) simplicial complex ∆ is a subset of the power set 2Ω for some finite
non-empty groundset Ω such that A ⊆ B ∈ ∆ implies A ∈ ∆. All simplicial complexes will
be non-empty. The simplicial complex {∅} is allowed. We call an F ∈ ∆ a face of ∆ and
an inclusionwise maximal face a facet of ∆. We also write F̄ for the simplicial complex 2F

and ∂F̄ for the simplicial complex F̄ \ {F}.
Let K be a field and SΩ = K[xω : ω ∈ Ω] be a polynomial ring over K. For a subset

A ⊆ Ω we write xA for
∏

ω∈A xω. The Stanley-Reisner ring or face ring K[∆] of ∆ is the
quotient SΩ/I∆ of SΩ by the Stanley-Reisner ideal I∆ = (xA : A 6∈ ∆, A ⊆ Ω). The set
of monomials xN for (inclusionwise) minimal non-faces N of ∆ is a minimal monomial
generating set of ∆.

Relabeling the vertices of ∆ preserves the isomorphism type of K[∆]. Hence ring theoretic
properties and invariants of K[∆] are determined by the combinatorics of ∆ and by K. In
this survey we will focus on properties and invariants of K[∆] and ∆ determined by the
topology of the geometric realization of ∆ (and the field K).

Basic algebraic topology (see e.g. [9]) teaches us that every simplicial complex comes
with a topological space which is called its geometric realization. Recall, that for the
definition one chooses points pω ∈ Rd for some d, such that for F ∈ ∆ the pω, ω ∈ F ,
are affinely independent and conv(F ) ∩ conv(F ′) = conv(F ∩ F ′) for F, F ′ ∈ ∆. Here for
F ∈ ∆ we denote by conv(F ) the geometric (#F −1)-simplex which is the set of all convex
combinations

∑
ω∈F λωpω for λω ≥ 0, ω ∈ F , and

∑
ω∈F λω = 1. Then |∆| =

⋃
F∈∆ conv(F )

considered as a subspace of Rd is a geometric realization of ∆. From algebraic topology we
know that all geometric realizations are homeomorphic. Given a geometric realization |∆|
of ∆ we write |F̄ | for the subspace conv(F ) of |∆|.

Clearly, the combinatorics of two simplicial complexes with homeomorphic geometric
realization can be quite different. Nevertheless, there are surprising results demonstrating
that not few properties of ∆ or ring theoretic invariants and properties of K[∆] depend only
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on K and the homeomorphism type of |∆|. These are usually called topological invariants
or topological properties of ∆ or K[∆].

In this article we survey properties and invariants that are topological and give coun-
terexamples for some others. We do not claim completeness but we do our best to at least
mention as many related results as possible. We also try to give an overview of the methods
from topological combinatorics used in the proofs. For that reason we for example provide
two proof of Munkres’ result on the toplogical invariance of depth Theorem 3.4. This result
is also the first result on topological invariance known to us. We assume the reader to be
familiar with basic algebraic topology (see e.g., [9]) and some methods from topological
combinatorics (see e.g., [2] or [20]). When proofs use heavy machinery from commutative
algebra we will confine ourselves to a brief outline of the proof and references. For definition
and facts from commutative algebra used but not defined in the paper we refer the reader
to [7].

2. Dimension

In this section we study the Krull dimension of K[∆]. For that we need to consider K[∆]
as a standard graded K-algebra. As a K-vectorspace we have K[∆] =

⊕∞
r=0Ar where Ar

is the K-vectorspace of cosets m+ I∆ of monomials m in SΩ of degree r. Now by A0 = K,
ArAs ⊆ Ar+s and the fact that K[∆] is generated by A1 as a K-algebra it follows, that
K[∆] is a standard graded algebra.

Before we can demonstrate that the Krull dimension is a topological invariant we need
to introduce some combinatorial invariants of simplicial complexes and relate them to the
dimensions of the vectorspaces Ar, r ≥ 0.

Recall that the dimension of a face F of ∆ is given by dim(∆) = #F − 1. We write
dim(∆) = maxF∈∆ dim(F ) for the dimension of ∆ and set fi = #{F ∈ ∆ : dim(F ) = i}
for all i ≥ −1. The f -vector of ∆ is the vector f∆ = (f−1, . . . , fdim(∆)) whose entries are
the nonzero fi.

We now show how the f -vector of a simplicial complex determines the Hilbert-series
of K[∆]. Recall that the Hilbert-series of K[∆] is Hilb(K[∆]) =

∑∞
r=0 dimK(Ar)t

r, where
dimK(Ar) denotes the K-Vectorspace dimension of Ar. It is well (see [7, Exercise 10.11])
known that the Hilbert-series of any standard graded K-algebra is a rational function of

the form h(t)
(1−t)d where d = dim(K[∆]) is the Krull-dimension of K[∆] and h(t) a polynomial

with h(1) 6= 0.

Theorem 2.1. Let ∆ be a simplicial complex with f -vector f = (f−1, . . . , fdim(∆)) then

Hilb(K[∆]) =

dim(∆)+1∑
i=0

ti (1− t)dim(∆)+1−i fi−1

(1− t)dim(∆)+1
.

In particular, dim(K[∆]) = dim(∆) + 1.

Proof. Since I∆ is an ideal generated by monomials, it follows that a polynomial from K[∆]
lies in I∆ if and only if each monomial with non-zero coefficient in the polynomial lies in
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I∆. Thus the cosets m + I∆ of the degree r monomials m 6∈ I∆ form a basis of Ar. Now
m+I∆ = I∆ if and only if m is divisible by xN for a minimal non-face N . Thus m+I∆ 6= I∆

if and only if the support supp(m) = {ω : xω divides m} of m lies in ∆. If i ≥ 0 then
for each i-dimensional face F ∈ ∆ there are

(
r−1
i

)
monomials of degree r − (i + 1) in the

variables xω, ω ∈ F . If i = −1 the unique (−1)-dimensional face ∅ of ∆ corresponds to
monomials with empty support and hence contributes only the unique basis element of A0.
It follows that for r ≥ 0

dimK(Ar) =
r−1∑
i=0

(
r − 1

i

)
fi =

∞∑
i=0

(
r − 1

i

)
fi

for arbitrary choices of fi when i > dim(∆). It follows that

Hilb(K[∆]) = f−1 +
∞∑
r=1

( ∞∑
i=0

(
r − 1

i

)
fi

)
ti

= f−1 +
∞∑
i=0

( ∞∑
r=1

(
r − 1

i

)
tr
)
fi

= f−1 +
∞∑
i=0

ti+1

(1− t)i+1
fi

=

dim(∆)+1∑
i=0

ti (1− t)dim(∆)+1−i fi−1

(1− t)dim(∆)+1
.

In the representation of the Hilbert-series as a rational function the numerator polynomial
evaluates to fdim(∆) 6= 0 at t = 1. Thus the Krull dimension of K[∆] is given by the power
of (1− t) in the denominator and hence is dim(∆) + 1. �

In particular, we see that proving the topological invariance of the Krull dimension of
K[∆] and the dimension of ∆ is equivalent. Before we deduce the topological invariance
of both dimensions, we prove the following lemma. It will serve as the key argument in
the proof of the invariance, which could also be deduced by much simpler means. But
the lemma will prove to be useful later in more complicated situations. We will use the
following notation. We write link∆(F ) = {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆} for the
link of F in ∆ and star∆(F ) = {G ∈ ∆ : F ∪ G ∈ ∆} for the (closed) star of F in ∆.
For two simplicial complexes ∆ and ∆′ on disjoint ground sets we denote by ∆ ∗ ∆′ =
{F ∪ F ′ : F ∈ ∆, F ′ ∈ ∆′} the join of ∆ and ∆′. Using the textbook definition (see [9,
p.9] of the join operation, we have that the join of the topological spaces |∆| ∗ |∆′| and
|∆ ∗ ∆′| are homeomorphic if ∆, ∆′ 6= {∅}. In case we (for example) have ∆ = {∅} the
textbook definition implies |∆| ∗ |∆′| = ∅ and |∆ ∗ ∆′| = |∆′|. In order to be avoid case
distinctions we set |∆| ∗ |∆′| = |∆′| in this case and proceed analogously in case ∆′ = {∅}.
Note that star∆(F ) = F̄ ∗ link∆(F ) and hence |star∆(F )| = |F̄ | ∗ |link∆(F )|. For a face
F of ∆ we write ∆ \ F for the simplicial complex {G ∈ ∆ : F 6⊆ G} and for a point x
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in |∆| we write |∆| − x for |∆| \ {x}. For a simplicial complex ∆ we write H̃i(∆,K) for
the ith reduced simplicial homology groups of ∆ with coefficients in K and for a space X

we write H̃i(X,K) for the ith reduced singular homology group of X with coefficients in

K. Of course it is well known that H̃i(∆,K) = H̃i(|∆|,K). For two simplicial complexes
Γ ⊆ ∆ we write Hi(∆,Γ,K) for the simplicial homology of the pair (∆,Γ) with coefficients
in K and Hi(X,A,K) for the singular homology with coefficients in K of a pair (X,A) of
topological spaces.

Lemma 2.2. Let ∆ be a simplicial complex, F a face of ∆ and x a point in the relative
interior of |F̄ |. Then |∆ \ F | is a deformation retract of |∆| − x and

Hj(|∆|, |∆| − x,K) = H̃j−dim(F )−1(link∆(F ),K).(1)

In particular, we have that

dim(∆) = max
{
j : exists x ∈ |∆| such that Hj(|∆|, |∆| − x,K) 6= 0

}
.(2)

Proof. Assume our geometric realization is given by points pω ∈ Rd, ω ∈ Ω. Since x is from
the relative interior of |F̄ | it follows that x =

∑
ω∈F λωpω with all λω > 0 and

∑
ω∈F pω = 1.

Let y =
∑

ω∈Ω µωpω ∈ |∆| given as a convex combination with {ω : µω > 0} ∈ ∆. The
from the fact that each barycentric coordinate defines a continuous map on |∆| it follows
that f : y 7→ minω∈F

µω
λω

is a continuous map on |∆|. Clearly 0 ≤ f(y) ≤ 1, f(y) = 1 if and

only if y = x and f(y) = 0 if and only if y ∈ |∆\F |. Define the map g : |∆|−x→ |∆\F | as
follows. For y ∈ |∆| −x set g(y) = 1

1−f(y)
(y− f(y)x). One easily checks that g(y) ∈ |∆ \F |

and g(y) = y for y ∈ |∆\F |. Continuity follows from the continuity of f . Now the standard
interpolation between f and the identity of |∆| shows the claim (see [12, Lemma 2.2] for
detailed calculations).

By excising |∆| − |star∆(F )| we get

Hj(|∆|, |∆| − x,K) = Hj(|star∆(F )|, |star∆(F )| − x,K).

Since star∆(F ) is contractible, it is acyclic. Thus by the long exact sequence in reduced

homology we get that Hj(|star∆(F )|, |star∆(F )| − x,K) = H̃j−1(|star∆(F )| − x,K). Since
star∆(F ) \ F = ∂F̄ ∗ link∆(F ) we know from the first part that |∂F̄ | ∗ |link∆(F )| is a
deformation retract of |star∆(F )| − x. Thus

H̃j−1(|star∆(F )| − x,K) = H̃j−1(|∂F̄ )| ∗ |link∆(F )|,K).

Now ∂F̄ is the boundary of an dim(F )-simplex and hence a triangulation of an (dim(F )−1)-
sphere. From

H̃j−1(|∂F̄ )| ∗ |link∆(F )|,K) = H̃j−1−(dim(F )−1+1)(|link∆(F )|,K)

= H̃j−dim(F )−1(|link∆(F )|,K)

= H̃j−dim(F )−1(link∆(F ),K)

we now deduce (1).
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For (2) consider the following argumentation. Let F be a face of ∆. Pick a point x
in the relative interior of |F̄ |. If F is a facet of dimension dim(F ) = dim(∆). It follows
that link∆(F ) = {∅}. From (2) we deduce Hj(|∆|, |∆| − x,K) 6= 0 if and only if j =
dim(F ) = dim(∆). For an arbitrary face F of ∆ the we deduce from dim(link∆(F )) =

dim(∆) − dim(F ) − 1 that H̃j−dim(F )−1(link∆(F ),K) = 0 for j > dim(∆). This implies
(2) �

We can now deduce the topological invariance of dimension and Krull dimension.

Theorem 2.3. Let ∆ and ∆′ are simplicial complexes such that |∆| and |∆′| are home-
omorphic. Then the Krull dimensions of K[∆] (resp. the dimensions of ∆) and of K[∆′]
(resp. ∆′) coincide.

Proof. By Theorem 2.1 it suffices to argue that for two simplicial complexes ∆ and ∆′ with
homeomorphic geometric realizations we have dim(∆) = dim(∆′).

From the facts that |∆| and |∆′| are homeomorphic and that homeomorphic spaces have
isomorphic homology it follows that:

dim(∆)
(2)
= max

{
j : exists x ∈ |∆| such that Hj(|∆|, |∆| − x,K) 6= 0

}
|∆|∼=|∆′|

= max
{
j : exists x ∈ |∆′| such that Hj(|∆′|, |∆′| − x,K) 6= 0

}
= dim(∆′)

�

The last property which we study in this section is the purity condition. A simplicial
complex ∆ is called pure if all facets have the same dimension.

Theorem 2.4. Let ∆ and ∆′ simplicial complexes such that |∆| and |∆′| are homeomor-
phic. Then ∆ is pure if and only if ∆′ is pure.

Proof. From Lemma 2.2 we know that for a point x from the relative interior of |F̄ | for a
face F of ∆ we have that

Hj(|∆|, |∆| − x,K) = H̃j−dim(F )−1(link∆(F ),K).(3)

On the right hand side there can only be a non-zero contribution if j ≥ dim(F ). Moreover,
there is a non-trivial contribution for j = dim(F ) if and only if F is a facet. Assume ∆ is
pure and F is a face of ∆. Then there is a facet G of dimension dim(∆) such that F ⊆ G.
Thus for any x in the relative interior of |F̄ | and every open neighborhood x ∈ U ⊆ |∆|
there is a y ∈ U such that y is in the relative interior of |Ḡ|. In particular, for every x in
the relative interior of |F̄ | and every open neighborhood U of x in |∆| there is a y ∈ U
such that Hdim(∆)(|∆|, |∆| − x,K) = K. Assume ∆′ is not pure then there is a face G of
dimension < dim(∆). But then for every x form the relative interior of |Ḡ| there is a small
neighbourhood which only contains points y from |Ḡ|. For them Hdim(∆)(|∆|, |∆|− y,K) =

H̃dim(∆)−dim(G)−1(link∆(G),K) = 0 as link∆(G) = {∅}. �
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3. Minimal free resolution and depth

In this section we review results from [13] which show the topological invariance of the
depth of K[∆] using a formula by Hochster for the Betti-number of its free resolution.
Recall that the depth depth(K[∆]) is the maximal number d of elements f1, . . . , fd ∈ K[∆]
such that fi is a non-zerodivisor on K[∆]/(f1, . . . , fi−1) for i = 1, . . . , d. We follow Munkres’
approach and study this invariant through its relation to minimal free resolutions. In the
next paragraphs we review some basic material on minimal free resolutions. In particular,
We will easily see that the minimal free resolution as a whole is far from being a topological
invariant.

A free resolution of K[∆] over SΩ is an exact sequence:

F : · · · ∂i+1−−→ SbiΩ

∂i−→ · · · ∂2−→ Sb1Ω

∂1−→ Sb0Ω

∂0−→ K[∆]→ 0

where all maps are SΩ-module homomorphisms. It is well known that there is a free
resolution which minimizes all the bi simultaneously and has bi = 0 for i > |Ω|. This
resolution is unique up to isomorphism and is called the minimal free resolution of K[∆]
over SΩ and the corresponding bi are called the Betti-numbers of K[∆] as an SΩ-module.
We will write βi(K[∆]) or βi for these bi.

For our purposes we need a more refined structure of the free resolution. For that we
use the multigraded structure of SΩ which is inherited by K[∆]. For a monomial

∏
ω∈Ω x

αω
ω

we call (αω)ω∈Ω its multidegree. For α = (αω)ω∈Ω ∈ NΩ we write xα for
∏

ω∈Ω x
αω
ω . Then as

vectorspaces

SΩ =
⊕
α∈NΩ

xαωK

and

K[∆] =
⊕
α∈NΩ

Aα

where Aα = 0 if α 6= (0)ω∈Ω and xα ∈ I∆ and xα+I∆ otherwise. We can speak of the scalar
multiples of xα in SΩ as the α-graded part of SΩ and of Aα as the α-graded part of K[∆].
For α ∈ NΩ we write SΩ(−α) to denote the multigrading on SΩ where the multiples xα′

form the α′ + α graded part. Clearly, SΩ(−α) is an NΩ-graded SΩ-module. A muligraded
free resolution of K[∆] over SΩ is an exact sequence:

F : · · · ∂i+1−−→
⊕
α∈NΩ

SΩ(−α)bi,α
∂i−→ · · · ∂2−→

⊕
α∈NΩ

SΩ(−α)b1,α
∂1−→
⊕
α∈NΩ

Sω(−α)b0,α
∂0−→ K[∆]→ 0

where all maps are multigraded SΩ-module homomorphisms. Again it is well known that
there is a free resolution which minimizes all the bi,α simultaneously and which satisfies
bi,α = 0 for i > |Ω|. This resolution is unique up to multigraded isomorphism and is called
the multigraded minimal free resolution of K[∆] over SΩ and the corresponding bi,α are
called the multigraded Betti-numbers of K[∆] as an SΩ-module. We will write βi,α(K[∆])
or βi,α for these bi,α.
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It is also well known that βi,α = 0 unless α ∈ {0, 1}Ω. We can identify α ∈ {0, 1}Ω with
the set W of all ω with αω = 1. We then write βi,W for βi,α (resp. βi,W (K[∆]) for βi,α(K[∆]).

The connection between the structure of the minimal free resolution of K[∆] and the
geometry of ∆ is provided through the following formula by Hochster. For its formulation
we denote for W ⊆ Ω by ∆W = {F ∈ ∆ : F ⊆ W} the restriction of ∆ to W .

Theorem 3.1 (Hochster formula [10]). Let ∆ be a simplicial complex over ground set Ω
and let W ⊆ Ω. Then for i ≥ 0 the multigraded Betti-number βi,W (K[∆]) is given as

βi,W (K[∆]) = dimK

(
H̃#W−i−1(∆W ,K)

)
.

The following is an immediate corollary.

Corollary 3.2. Let ∆ and ∆′ be simplicial complexes over Ω and Ω′ respectively. If |∆|
and |∆′| are homotopy equivalent then βi+#Ω,Ω(K[∆]) = βi+#Ω′,Ω′(K[∆′]) for all i ≥ 0.

Proof. By Theorem 3.1 we have

βi+#Ω,Ω(K[∆]) = dimK

(
H̃#Ω−i−#Ω−1(∆Ω,K)

)
= dimK

(
H̃i−1(∆Ω,K)

)
= dimK

(
H̃i−1(|∆|,K)

)
= dimK

(
H̃i−1(|∆′|,K)

)
= dimK

(
H̃i−1(∆′Ω′ ,K)

)
= dimK(H̃#Ω′−i−#Ω′−1(∆′Ω′ ,K)

)
= βi+#Ω′,Ω′(K[∆′])

�

On the other hand the set of topologies that arise among the restrictions ∆W for subsets
W of the ground set can be very different for simplicial complexes with homeomorphic
geometric realization.

For example consider for a simplicial complex ∆ over ground set Ω its barycentric subdi-
vision sd(∆); that is the simplicial complex on group set ∆\{∅} with simplices {F0, . . . , Fi}
being sets of non-empty faces of ∆ which if suitable numbered satisfy F0 ⊂ F1 ⊂ · · · ⊂ Fi.
It is well known that |∆| and |sd(∆)| are homeomorphic. Indeed the geometric realizations
can be choosen such that |∆| = |sd(∆)| by the following construction. Assume the geo-
metric realization |∆| ⊆ Rd has simplicies that are convex hulls of points pω ∈ Rd, ω ∈ Ω.
For F ∈ ∆ \ {∅} set pF = 1

#F

∑
ω∈F pω. Then one can show that for a face {F0, . . . , Fi}

of sd(∆) the pFi , i = 0, . . . , i are affinely independent and define a geometric realization
|sd(∆)| of sd(∆). When speaking of a simplicial complex and its barycentric subdivision we
will assume assume that the geometric realizations are chosen in that way. In particular,
|∆| = |sd(∆)|.
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Let ∆ = ∂2{1,...,n} be the boundary of the (n − 1)-simplex. For any W ⊆ {1, . . . , n},
W 6= ∅, {1, . . . , n}, we have that ∆W is a simplex and hence contractible and acyclic. For
sd(∆) any restriction to W = {F, F ′} for F, F ∈ ∆ such that F 6⊆ F ′ and F ′ 6⊆ F is a 0-
sphere and hence has homology of rank 1 in dimension 0. Similarly, for any face F ∈ ∆\{∅}
and W = ∂F̄ we have that ∆W is a triangulation of a (dim(F )− 1)-sphere and hence has
homology of rank 1 concentrated in dimension dim(F )− 1.

Finally we can relate the depth of K[∆] to its minimal free resolution. The following is
the Auslander-Buchsbaum formula (see [7, Theorem 19.9]) in our context. Recall that the
projective dimension of K[∆] is the maximal i for which βi(K[∆]) 6= 0.

Theorem 3.3 (Auslander-Buchsbaum formula)). Let ∆ be a simplicial complex over
ground set Ω. Then

depth(K[∆]) = #Ω− pd(K[∆]).

Theorem 3.3 allowed Munkres to use Theorem 3.1 in order to deduce the topological
invariance of the depth from the invariance of the difference of the cardinality of the ground
set and the projective dimension. For that let us introduce a homological version of depth.
The following homological version of depth which is obviously a topologcial invariant of a
simplicial complex ∆ over ground set Ω

hdepth(∆) = min
i

{
H̃i(|∆|,K) 6= 0 or

Hi(|∆|, |∆| − x,K) 6= 0 for some x ∈ |∆|

}
+ 1.

Theorem 3.4. Let ∆ be a simplicial complex over ground set Ω. Then

pd(K[∆]) = #Ω− hdepth(∆).

In particular, if ∆′ is a simplicial complex over ground set Ω′ such that |∆| and |∆′| are
homeomorphic then #Ω− pd(K[∆]) = #Ω′ − pd(K[∆′]).

Clearly, the second part of the theorem is an immediate consequence of the first. We will
prove the first part in the next section. For that we need to recall several lemmas from [13]
that are of independent interest in topological combinatorics.

Finally, by Theorem 3.3 the following theorem is equivalent to Theorem 3.4

Theorem 3.5. Let ∆ be a simplicial complex over ground set Ω. Then

depth(K[∆]) = hdepth(∆).

In particular, if ∆′ is a simplicial complex such that |∆| and |∆′| are homeomorphic then
depth(K[∆]) = depth(K[∆′]).

We will present independent proofs of the two equivalent theorems Theorem 3.4 and
Theorem 3.5. The first in Section 4 proves Theorem 3.4 and follows the lines of Munkres’
proof. For this proof one has to develop tools from topological combinatorics which are
of independent interest. In Section 5 we prove Theorem 3.5 in a rather straightforward
manner but use deep facts about local cohomology.
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4. Munkres’ proof of Theorem 3.4 and Theorem 3.5

First we define a covering of the barycentric subdivision of a simplicial complex which
carries a lot of structural information but which is not covered by most texts on methods
in topological combinatorics (e.g. [2]). For a simplicial complex ∆ and a face F ∈ ∆ we
denote by dblock∆(F ) the subcomplex of sd(∆) which consists of all subsets of faces of the
form {F = F0 ⊂⊆ · · · ⊂ Fi}. The simplicial complex dblock∆(F ) is called the dual block
to F . By definition, dblock∆(F ) is a subcomplex of starsd(∆)({F}). As we have observed
before as a star of a simplicial complex starsd(∆)({F}) = overline{F} ∗ linksd(∆)({F}).
The dual block has a similar decomposition as dblock∆(F ) = {F} ∗ lblock∆(F ), where
lblock∆(F ) consists of all {F1 ⊂ · · · ⊂ Fi} ∈ sd(∆) for which F is a proper subset of
F1. In particular, as a cone |dblock∆(F )| is contractible and hence acyclic. We can also
decompose linksd(∆)({F}) = sd(∂F̄ ) ∗ lblock∆(F ). Thus

star∆(F ) = {F} ∗ sd(∂F̄ ) ∗ lblock∆(F ).(4)

Thus the pairs (starsd(∆)(F ), linksd(∆)(F )) and (dblock∆(F ), lblock∆(F )) exhibit analo-
gous structural properties. The following lemma, which is an analog of Lemma 2.2, shows
that these structural similarities lead to analogous homological behavior.

Lemma 4.1. Let ∆ be a simplicial complex and F ∈ ∆ \ {∅} a face of ∆. For an point x
in the relative interior of |F̄ | we have

Hj(|∆|, |∆| − x,K) = H̃j−dim(F )−1(lblock∆(F ),K).

Proof. By excising |∆| \ |dblock∆(F )| we obtain

Hj(|∆|, |∆| − p,K) = Hj(|dblock∆(F )|, |dblock∆(F )| − x,K).

Since dblock∆(F ) is contractible the long exact sequence in homology shows

Hj(|dblock∆(F )|, |dblock∆(F )| − x,K) = H̃j−1(|dblock∆(F )| − x,K).

Using (4) we obtain

|dblock∆(F )| = |{F}| ∗ |sd(∂F̄ )| ∗ |lblock∆(F )|.

Since x is taken from the relative interior of |F̄ | and |F̄ | = |sd(F̄ )| = |{F}| ∗ |sd(∂F̄ )| we
can see analogous to the proof of Lemma 2.2 that |sd(∂F̄ )| ∗ |lblock∆(F )| is a deformation
retract of |dblock∆(F )| − x = | ¯{F}| ∗ |sd(∂F̄ )| ∗ |lblock∆(F )| − x. Thus

Hj(|∆|, |∆| − x,K) = H̃j−1(|sd(∂F̄ )| ∗ |lblock∆(F )|,K).

From the fact that |sd(∂F̄ )| is a (dim(F )− 1)-sphere we infer

H̃j−1(|sd(∂F̄ )|∗|lblock∆(F )|,K) = H̃j−dim(F )−1(|lblock∆(F )|,K) = H̃j−dim(F )−1(lblock∆(F ),K)

. �
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Next we study collections of dual blocks. Let ∆ be a simplicial complex. For a face
F ∈ ∆ set mF = maxF⊆G∈∆ dim(G). It follows from dblock∆(F ) = {F} ∗ lblock∆(F ) and
(4) that dim(dblock∆(F )) = mF −dim(F ) ≤ dim(∆)−dim(F ). We call mF −dim(F ) also
the codimension of F in ∆ and set fcodim(F ) = fdim(dblock∆(F )) = dim(∆) − dim(F )
which we call the formal codimension of F and the formal dimension of dblock∆(F ).

We collect in Db∆ all dblock∆(F ) for F ∈ ∆ \ {∅}. We say that a collection C ⊆
dblock∆(F ) is a block-subcomplex if dblock∆(F ) ∈ C and F ⊆ G ∈ ∆ implies that
dblock∆(G) ∈ C. For a block-subcomplex C ⊆ Db∆ we write C〈k〉 for the collection of
all dblock∆(F ) ∈ C for F ∈ ∆ \ {∅} such that fdim(dblock∆(F )) ≤ k or equivalently
fcodim(F ) ≤ k. Note that C〈k〉 is also a block-subcomplex. If C is a block-subcomplex
then we call the set FaceC = {F ∈ ∆ : dblock∆(F ) ∈ C} the face set of C. Clearly,
C = {dblock∆(F ) : F ∈ FaceC}.

For a block-subcomplex C ⊆ Db∆ we write |C| for

|
⋃

dblock∆(F )∈C

dblock∆(F )| ⊆ |sd(∆)| = |∆|.

Lemma 4.2. Let ∆ be a simplicial complex and C ⊆ Db∆ a block-subcomplex. Then for a
number k ≥ 0 we have

Hi

(
Db
〈k〉
∆ ∪ C,Db

〈k−1〉
∆ ∪ C,K

)
=

⊕
F∈∆\FaceC
fcodim(F )=k

Hi

(
dblock∆(F ), ∂sd(F̄ ) ∗ lblock∆(F ),K

)
Proof. For F, F ′ ∈ ∆ we have that dblock∆(F ) ∩ dblock∆(F ′) = if F ∪ F ′ 6∈ ∆ and

dblock∆(F ∪ F ′) otherwise. Since dblock∆(F ) = {F} ∗ lblock∆(F ) it then follows that∣∣∣Db
〈k〉
∆ ∪ C

∣∣∣/∣∣∣Db
〈k−1〉
∆ ∪ C

∣∣∣
is a wedge of the suspensions of |lblock∆(F )| for F of formal codimension k and such that
F 6∈ FaceC. Hence

Hi

(
Db
〈k〉
∆ ∪ C,Db

〈k−1〉
∆ ∪ C,K

)
=

⊕
F∈∆\FaceC
fcodim(F )=k

H̃i−1(lblock∆(F ),K).

Since dblock∆(F ) is contractible and hence acyclic it follows that

H̃i−1(lblock∆(F ),K) = Hi(dblock∆(F ), lblock∆(F ),K).

This completes the proof. �

Consider a subcomplex Γ ⊆ ∆ of a simplicial complex ∆ such that Γ 6= {∅}. Note that in
this situation Γ\{∅} is a subset of the ground set of sd(∆). Moreover, sd(Γ) is a subcomplex
of sd(∆). Now if Γ is a proper subcomplex then sd(∆)∆\Γ is the subcomplex of sd(∆) with
simplices {F0 ⊂ · · · ⊂ Fi} such that F0, . . . , Fi ∈ ∆ \ Γ. We write Db∆\Γ for the set of
simplicial complexes dblock∆(F )∆\Γ for F ∈ ∆ \ Γ. Clearly, Db∆\Γ is a block-subcomplex
of Db∆.
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Lemma 4.3. Let ∆ be a simplicial complex and Γ ⊂ ∆ a proper subcomplex 6= {∅}. Assume
that for some 0 ≤ M ≤ dim(∆) we have that Hi(|∆|, |∆| − x,K) = 0 for all x ∈ |Γ| and
0 ≤ i < M . Then

(i) Hj(|sd(∆)|, |sd(∆)∆\Γ|,K) = 0 for 0 ≤ j < M − dim(Γ).
(ii) HM−dim(Γ)(|sd(∆)|, |sd(∆)∆\Γ|,K) is isomorphic to the cokernel of

HM−dim(Γ)+1

(
|Db

〈dim(∆)−dim(Γ)+1〉
∆ ∪Db∆−Γ|, |Db

〈dim(∆)−dim(Γ)〉
∆ ∪Db∆\Γ|

)

HM−dim(Γ)

(
|Db

〈dim(∆)−dim(Γ)〉
∆ ∪Db∆\Γ|, |Db

〈dim(∆)−dim(Γ)−1〉
∆ ∪Db∆−Γ|

)∂∗(5)

Proof. Claim 1: For i ≤ j we have

Hi(|Db
〈j+dim(∆)−M+1〉
∆ ∪Db∆\Γ|, |Db

〈j+dim(∆)−M〉
∆ ∪Db∆\Γ|,K) = 0(6)

/ Proof of Claim: By Lemma 4.2 we know that the homology group on the left hand side of

(6) decomposes as a direct sum of groupsHi(dblock(F ), lblock(F ),K) = H̃i−1(lblock∆(F ),K)
for faces F ∈ ∆ of formal codimension

fcodim(F ) = dim(∆)− dim(F ) = j + dim(∆)−M + 1

that are not in Γ. By Lemma 4.1 we have that Hi−1(lblock∆(F ),K) = Hi+dim(F )(|∆|, |∆| −
x,K) for any x in the interior of |F̄ |. By assumption this group vanishes for i+dim(F ) < M .
Now

i+ dim(F ) = i+ dim(∆)− (j + dim(∆)−M + 1) = M + (i− j)− 1.

Since M + (i− j)− 1 < M for i ≤ j the assertion follows. .

Claim 2: For i ≤ j and ` ≥ 1 we have

Hi

(
|Db

〈j+dim(∆)−M+`〉
∆ |, |Db

〈j+dim(∆)−M〉
∆ |,K

)
= 0.(7)

In particular,

Hi

(
|∆|, |Db

〈j+dim(∆)−M〉
∆ |,K

)
= 0.(8)

/ Proof of Claim: Since |Db
〈j+dim(∆)−M+`〉
∆ | = |∆| for ` ≥ M − j we get (8) as a direct

consequence of (7).
We prove (7) by induction on `. For ` = 1 the assertion coincides with Claim 1.
Let ` ≥ 2. Set K = j + dim(∆)−M and consider the long exact sequence

· · · Hi

(
|Db

〈K+`−1〉
∆ |, |Db

〈K〉
∆ ,K

)
|,K) Hi

(
|Db

〈K+`〉
∆ |, |Db

〈K〉
∆ |,K

)

· · · Hi(|Db
〈K+`〉
∆ |, |Db

〈K〉
∆ |,K) Hi

(
|Db

〈K+`−1〉
∆ |, |Db

〈K〉
∆ |,K

)
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of the triple

(|Db
〈K+`〉
∆ |, |Db

〈K+`−1〉
∆ |, |Db

〈K〉
∆ |).

By induction we can deduce the vanishing all homology groups except for

Hi(|Db
〈K+`〉
∆ |, |Db

〈K〉
∆ |,K).

The fact that the sequence is exact then implies also the vanishing of this group. .

Claim 3: For i < dim(∆)− dim(Γ) we have

Db
〈i〉
∆ ∪Db∆\Γ = Db∆\Γ.

/ Proof of Claim: For a face F of Γ the formal dimension of dblock∆(F ) is at least dim(∆)−
dim(Γ). This shows that |Db

〈i〉
∆ | ⊆ |Db∆\Γ| for i < dim(∆) − dim(Γ) and implies the

assertion. .

Now we are in position to prove part (i) and (ii) of the lemma.

/ Proof of (i): For i < dim(∆)− dim(Γ) we have

Hi(|sd(∆)|, |sd(∆)∆\Γ|,K) = Hi(|Db∆|, |Db∆\Γ|,K)

Claim 3
= Hi(|Db∆|, |Db

〈j〉
∆ ∪Db∆\Γ|,K)

Claim 2
= 0.

.
/ Proof of (ii): Let ` be such that |Db

〈j+dim(∆)−M+`〉
∆ | = |Db∆|. Setting i = j = M −dim(Γ)

in Claim 2 we obtain:

HM−dim(Γ)(
(
|Db∆|, |Db

〈dim(∆)−dim(Γ)〉
∆ |,K

)
= 0.(9)

Setting i = j = M − dim(Γ) + 1 in Claim 2 we obtain

HM−dim(Γ)+1)(
(
|Db∆|, |Db

〈dim(∆)−dim(Γ)+1〉
∆ |,K

)
= 0.(10)

Using long exact sequences of triples in rows and columns and (10) to obtain the 0 on
the top of the first column and (9) to obtain the 0 at the end of the second row we derive
the following commutative diagram with exact rows and columns. In the diagram we write
D for dim(∆) and G for dim(Γ).

0

HM−G+1

(
|∆|,

|Db
〈D−G〉
∆ ∪Db∆\Γ|

,K
)

HM−G+1

(
|Db
〈D−G〉
∆ ∪Db∆\Γ|,
|Db∆\Γ|

,K
)

HM−G

(
|Db∆|,
|Db∆\Γ|

,K
)

0

HM−G+1

( |Db
〈D−G+1〉
∆ ∪Db∆\Γ|,
|Db
〈D−G〉
∆ ∪Db∆\Γ|

,K
)

HM−G

( |Db
〈D−G〉
∆ ∪Db∆\Γ|,

|Db
〈D−G−1〉
∆ ∪Db∆\Γ|

,K
)
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Note that the equality in the second column is a consequence of Claim 3. Since |sd(∆)| =
|Db∆| and |sd(∆)Γ−∆| = |Db∆−Γ| it suffices to show that by the exactness of the second

row it follows that HM−G

(
|Db∆|, |Db∆−Γ|,K

)
is isomorphic to the image of (5). By the

exactness of the diagram above it follows that HM−G

(
|Db∆|, |Db∆−Γ|,K

)
is isomorphic to

the cokernel of the left map in the second row of the above diagram. From the fact that the
diagram is commutative and the exactness of the first column the assertion then follows.
. �

Lemma 4.4. Let ∆ be a simplicial complex over ground set Ω such that ∆ 6= 2Ω. Assume
further that M is a number such that for all x ∈ |∆| and all i < M we have Hi(|∆|, |∆| −
x,K) = 0. Then the following are equiavlent:

(i) There is an x ∈ |∆| for which HM(|∆|, |∆| − x,K) 6= 0.
(ii) There is a subcomplex Γ ⊆ ∆, Γ 6= {∅} such that for every x in the relative interior

of |Γ| we have HM(|∆|, |∆| − x,K) 6= 0.
(iii) There is a face F 6= ∅ of ∆ such that for every x in the relative interior of |F̄ | we

have HM(|∆|, |∆| − x,K) 6= 0.
(iv) There is face F 6= ∅ of ∆ such that such that for Γ = F̄ we have

HM−dim(Γ)(|sd(∆)|, |sd(∆)∆−Γ|,K) 6= 0.

Proof. The implications (iii) ⇔ (ii) ⇒ (i) and (v) ⇒ (iv) are valid for trivial reasons.
First we show (i)⇒ (iii). By Lemma 4.1 we know that the homology groupsHM(|∆|, |∆|−

x,K) are isomorphic whenever x is choosen from the relative interior of |F̄ | for a fixed face
F of ∆. This implies the assertion.

Before we show (iv) ⇔ (iii) we analyze

HM−dim(Γ)(|sd(∆)|, |sd(∆)∆\Γ|,K)

more closely in case Γ = F̄ for a non-empty face F of ∆. By Lemma 4.3(ii) the hmology
group is isomorphic to the cokernel of the map from (5). By Lemma 4.2 we know that

(A)

HM−dim(Γ)+1(|Db
〈dim(∆)−dim(Γ)〉
∆ ∪Db∆−Γ|, |Db

〈dim(∆)−dim(Γ)−1〉
∆ ∪Db∆−Γ|,K)

is isomorphic to a direct sum of homology groups HM−dim(Γ)(lblock∆(G),K) for
G ∈ Γ of formal codimension fcodim(G) = dim(∆) − dim(Γ) or equivalently of
dimension dim(Γ). By Γ = F̄ only F ∈ Γ satisfies this condition and it follows that
the homology group is isomorphic to HM−dim(Γ)(lblock∆(F ),K).

(B)

HM−dim(Γ)(|Db
〈dim(∆)−dim(Γ)+1〉
∆ ∪Db∆\Γ|, |Db

〈dim(∆)−dim(Γ)〉
∆ ∪Db∆\Γ|,K)

is isomorphic to a direct sum of homology groups HM−dim(Γ)−1(lblock∆(G),K) for
G ∈ Γ of formal codimension fcodim(G) = dim(∆)− dim(Γ) + 1 or equivalently of
dimension dim(Γ)− 1. By Γ = F̄ it follows that the homology group is isomorphic
to the direct sum HM−dim(Γ)−1(lblock∆(F \ {ω}),K) for ω ∈ F .
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Now we can prove (iv) ⇒ (iii). By assumption the cokernel of (5) is nontrivial. Thus it
follows from (A) that HM−dim(Γ)(lblock∆(F ),K) is non-trivial. By Lemma 4.1 the latter is
isomorphic to HM(|∆|, |∆| − x,K) for any x in the interior of |F̄ |. This implies (iii)

To prove (iii) ⇒ (iv) By Lemma 4.1 each group HM−dim(Γ)−1(lblock∆(F \ {ω}),K) for

ω ∈ F is isomorphic to HM−1(|∆|, |∆| −x,K) for x in the relative interior of |F \ {ω}|. By
assumption the latter group is trivial. Thus by (A) and (B) the cokernel of (5) is isomorphic
to HM−dim(Γ)(lblock∆(F ),K). By Lemma 4.1 the latter is isomorphic to HM(|∆|, |∆|−x,K)
for x in the relative interior of |F̄ |. Thus it is non-trivial by the hypothesis of (iii). Now
the assertion follows. �

We now show that hdepth is a homological version of depth.

Lemma 4.5. Let ∆ be a simplicial complex over ground set Ω and T ⊆ Ω. Then

(i) H̃j−#T (|∆| \ |∆T |,K) = 0 for j < hdepth(∆)− 1

(ii) H̃j−#T (|∆| \ |∆T |,K) = 0 for j ≤ hdepth(∆)− 1 if ∆T 6= T̄ .

Proof. If T = ∅ then ∆T = {∅} = ∅̄ and H̃j−#T (|∆| \ |∆T |,K) = H̃j(|∆|,K) which vanishes
for j < hdepth(∆)− 1 by definition.

If T = Ω then ∆T = ∆ and Then H̃j−#T (|∆| \ |∆T |,K) = H̃j−#Ω(∅,K) = 0 for all
j − #Ω 6= −1. Now hdepth(∆) ≤ #Ω and therefore for j < hdepth(∆) − 1 we have
j −#Ω < −1. If ∆ 6= 2Ω = Ω̄ then hdepth(∆) < #Ω and for j ≤ hdepth(∆)− 1 we have
j −#Ω < −1.

Now let T 6= ∅,Ω. Consider the long exact sequence

· · · → Hi+1(|∆|, |∆| \ |∆T |,K)→ H̃i(|∆| \ |∆T |,K)→ H̃i(|∆|,K)→ · · · .
The group on the right hand side vanishes for i < hdepth(∆) − 1 by definition. By
Lemma 4.3(i) and the definition of hdepth(∆) the group on the left hand side vanishes

for i + 1 < hdepth(∆) − 1 − dim(∆T ). Therefore, H̃i(|∆| − |∆T |,K) = 0 for i + 1 <
hdepth(∆)− 1− dim(∆T ). Since dim(∆T ) ≤ #T − 1 with equality if and only if ∆T = T̄
the assertions (i) and (ii) now follow. �

We are now in position to prove the following proposition which will immediately implies
Theorem 3.4.

Proposition 4.6. Let ∆ be a simplicial complex on ground set Ω and set
Then

(i) hdepth(∆) = #Ω−maxi{βi(K[∆]) 6= 0} = #Ω− pd(K[∆]).
(ii) Let ∅ 6= W ∈ ∆ and assume that Hhdepth(∆)−|T |(|∆|, |∆| − x,K) 6= 0 for some x in

the relative interior of |W̄ | then Hi(|∆W |,K) = 0 for i 6= 0.

Proof. (i)
Case 1: ∆ = F̄ for some F ⊆ Ω is a full simplex.

Then K[∆] = K[xω : ω ∈ Ω \ F ] and by simple homological algebra βi(K[∆]) = 0 for
i > #Ω−#F and β#Ω−#F (K[∆]) = 1 for i = #Ω−#F . Thus pd(K[∆] = #Ω−#F . Thus
we need to show that hdepth(∆) = #F .
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If F = ∅ then H̃i(|∆|,K) = 0 for i > −1 and K for i = −1. Obviously, there are no x in
the relative interior of |∆|. Thus hdepth(∆) = (−1) + 1 = 0 = #F .

Now assume that F 6= ∅. Since ∆ = F̄ is a full simplex we have H̃i(|∆|,K) = Hi(|∆|, |∆|−
x,K) = 0 for all x in the boundary of the simplex and all i ≥ −1. If x is in the relative
interior of |∆| then Hi(|∆|, |∆| − x,K) is 0 for i < dim(F ) and K for i = dim(F ). Thus
hdepth(∆) = dim(F ) + 1 = #F .

Since in both cases hdepth(∆) = #F the assertion (i) follows.

Case 2: ∆ is not a full simplex.
By Hochster’s formula Theorem 3.1 we know that

βi,W = dimK

(
H̃#W−i−1(∆W ,K)

)
and therefore

pd(K[∆]) = max
i
{βi(K[∆]) 6= 0} = max

i
{H̃#W−i−1(∆W ,K) 6= 0 for some W ⊆ Ω}.

Recall that H̃#W−i−1(∆W ,K) = H̃#W−i−1(|∆| − |∆Ω\W |,K). We apply Lemma 4.5 to

T = Ω \ W and deduce that H̃j−#Ω+#W (∆W ,K) = 0 for j < hdepth(∆) − 1. It fol-

lows that H̃#W−i−1(∆W ,K) = 0 for i > #Ω − hdepth(∆). Hence we infer pd(K[∆]) ≤
#Ω− hdepth(∆).

It remains to show that there is a W ⊆ Ω such that H̃#W−i−1(∆W ,K) 6= 0 for i =
#Ω− hdepth(∆).

If H̃hdepth(∆)−1(∆,K) 6= 0 then for W = Ω one has H̃hdepth(∆)−1(∆W ,K) 6= 0. Thus for

i = #W − hdepth(∆) one has H̃#W−i−1(∆W ,K) 6= 0 and the assertion follows.

If H̃hdepth(∆)−1(∆,K) = 0 then there is some x ∈ ∆ such that Hi(|∆|, |∆| − x,K) 6= 0 for
i = hdepth(∆) − 1 and Hi(|∆|, |∆| − y,K) = 0 for i < hdepth(∆) − 1 and any y ∈ |∆|.
Thus we can apply Lemma 4.4 for M = hdepth(∆)− 1. It follows that There is face T 6= ∅
of ∆ such that such that for Γ = T̄ we have

Hhdepth(∆)−1−dim(Γ)(|sd(∆)|, |sd(∆)∆−Γ|,K) = Hhdepth(∆)−#T (|∆|, |∆| \ |∆T |,K) 6= 0.

For W = Ω \ T we obtain that Hhdepth(∆)−#Ω+#W (|∆|, |∆W |,K) 6= 0. Since −#Ω +

#W ≤ 0 we know from H̃hdepth(∆)−1(∆,K) = 0 that Hhdepth(∆)−#Ω+#W (|∆|,K) = 0 =
Hhdepth(∆)−#Ω+#W (|∆|,K) = 0. The long exact sequence

· · · H̃hdepth(∆)−#Ω+#W (|∆|,K) Hhdepth(∆)−#Ω+#W (|∆|, |∆W |,K)

· · · H̃hdepth(∆)−#Ω+#W (|∆|,K) H̃hdepth(∆)−#Ω+#W−1(|∆W |,K)

now shows that

0 6= Hhdepth(∆)−#Ω+#W (|∆|, |∆W |,K) ∼= H̃hdepth(∆)−#Ω+#W−1(|∆W |,K).

Thus for i = #Ω− hdepth(∆) we obtain H̃#W−i−1(|∆W |,K) 6= 0. �
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5. Local cohomology proof of Theorem 3.4 and Theorem 3.5

In this section we use local cohomology (see [4] for definitions and basic properties) to
prove Theorem 3.5 and hence Theorem 3.4. This verification is much shorter then the one
from Section 4 but builds on substantially more deep theory from commutative algebra.
Topologically, the simplification comes from the fact that here we can work with links,
which are easier to control than the induced subcomplexes used in the previous section.

Let K[∆] =
⊕∞

r=0Ar be the vectorspace decomposition of K[∆] as a standard graded
algebra as in Section 2. We write m =

⊕∞
r=1Ar for the unique graded maximal ideal of

K[∆] and H i
m(K[∆]) for the ith local cohomology module of K[∆]. The local cohomology

H i
m(K[∆]) is itself a graded module and the following formula by Hochster expresses its

Hilbert series in homological terms (see e.g. [18, Theorem 4.1]).

Theorem 5.1 (Hochster Formula for Local Cohomology). Let ∆ be a simplicial complex
over ground set Ω. Then

Hilb(H i
m(K[∆])) =

∑
F∈∆

dimK

(
H̃i−dim(F )−2(link∆(F ),K)

) 1

(t− 1)#F
.

Local cohomology is a powerful tool which encodes many invariants of a module. Here
the following fact will be important. We formulate this very general fact for Stanley-Reisner
rings only.

Theorem 5.2. Let ∆ be a simplicial complex over ground set Ω. Then

dim(K[∆]) = max
i
H i

m(K[∆]) 6= 0

and
depth(K(∆)) = min

i
H i

m(K[∆]) 6= 0.

Using Theorem 5.1 we immediately obtain the following corollary.

Corollary 5.3. Let ∆ be a simplicial complex over ground set Ω. Then

dim(K[∆]) = max
i
{H̃i−dim(F )−2(link∆(F ),K) 6= 0 für ein F ∈ ∆}

and
depth(K[∆]) = min

i
{H̃i−dim(F )−2(link∆(F ),K) 6= 0 für ein F ∈ ∆}.

Now we already in position to prove Theorem 3.5.

Proof or Theorem 3.5. If F = ∅ then link∆(F ) = ∆ and

H̃i−dim(F )−2(link∆(F ),K) = H̃i−1(∆,K) = H̃i−1(|∆|,K).(11)

If F 6= ∅ and x is a point from the relative interior of |F̄ | then by Lemma 2.2 we have:

H̃i−dim(F )−2(link∆(F ),K) = Hi−1(|∆|, |∆| − x,K).(12)

The minimal i for which at least one of homology groups on the right hand side of (11)
or (12) is non-zero is exactly hdepth(∆)− 1. Thus Theorem 3.5 follows. �



WHICH PROPERTIES ARE TOPLOGICAL ? 17

6. Cohen-Macaulay, Gorenstein, Buchsbaum

A ring R is called Cohen-Macaulay if dim(R) = depth(R), i.e. its depth equals it Krull
dimension. As an immediate consequence of Theorem 2.3 and Theorem 3.5 we obtain the
following result by Munkres (see [13, Corollary 3.4]).

Theorem 6.1 (Munkres). Let ∆ and ∆′ be simplicial complexes such that |∆| and |∆′| are
homeomorphic. Then K[∆] is Cohen-Macaulay if and only if K[∆′] is Cohen-Macaulay.

As a further consequence of Theorem 3.5 and (11) and (12) we obtain the following
criterion for Cohen-Macaulayness by Reisner [14].

Theorem 6.2 (Reisner’s Criterion). Let ∆ be a simplicial complex over ground set Ω.
Then K[∆] is Cohen-Macaulay if and only if for all F ∈ ∆

H̃i(link∆(F ),K) = 0 for all i < dim(link∆(F )).

In particular, if K[∆] is Cohen-Macaulay then so if K[link∆(F )] for all F ∈ ∆.

For a Cohen-Macaulay K[∆] the Betti-number βpd(K[∆](K[∆]) is called the Cohen-Macaulay
type of K[∆]. The Cohen-Macaulay K[∆] of type 1 are called Gorenstein.

Example 6.3. Let Ω = {1, 2, 3, 4} and ∆ the simplicial complex over Ω with facets {1, 2, 3}
and {2, 3, 4}. Then K[∆] = S/I∆ = SΩ/(x1x4) and

0→ SΩ

(
x1x4

)
−−−−−→ SΩ

m7→m+I∆−−−−−−→ K[∆]→ 0

is the minimal free resolution. In particular, pd(K[∆]) = 1 and β1(K[∆]) = 1. Thus by
Theorem 3.3 we have depth(K[∆]) = #Ω − 1 = 3. Since dim(∆) = 2 it follows that
dim(K[∆]) = 3. Thus K[∆] is Cohen-Macaulay and of type 1 and therefore K[∆] is Goren-
stein.

Now consider ∆′ over ground set Ω′ = {1, 2, 3, 4, 5} with facets {1, 2, 3}, {2, 3, 4} and
{1, 2, 5}. Then K[∆] = SΩ′/I∆′ = SΩ′/(x1x4, x3x5, x4x5). It can be checked the the minimal
free resolution is given by

0→ S2
Ω′

x3x4 −x1x4 0
0 x4 −x3


−−−−−−−−−−−−−−−−→ S3

Ω′


x1x4

x3x5

x4x5


−−−−−→ SΩ′

m7→m+I∆′−−−−−−→ K[∆′]→ 0.

In particular, pd(K[∆′]) = 2 and β2(K[∆]) = 2. Thus by Theorem 3.3 we have depth(K[∆′]) =
#Ω′−2 = 3. Since dim(∆′) = 2 it follows that dim(K[∆′]) = 3. Thus K[∆] is again Cohen-
Macaulay but of type 2 and hence not Gorenstein.

Both |∆| and |∆′| are homeomorphic to a 2-ball. It follows that the Gorentein property
is not topological.

The following will allow us to deduce the topological invariance of a property which
is slightly stronger than Gorenstein. simplicial complex ∆ is called Gorenstein* (over K)

if K[∆] is Gorenstein and H̃dim(∆)(∆,K) 6= 0. To study the topological invariance of the
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Gorenstein* property, we need a few more definitions. For a simplicial complex ∆ we
define its core core(∆) as the induced subcomplex ∆core(Ω) where core(Ω) is the set of all

ω ∈ Ω such that star∆(ω) 6= ∆. It follows that ∆ = 2Ω\core(Ω) ∗ core(∆) and dim(∆) =
dim(∆core(Ω)) + #Ω−#core(Ω).

Theorem 6.4. Let ∆ be a simplicial complex over ground set Ω. Then the following are
equivalent.

(i) K[∆] is Gorenstein.
(ii) For all F ∈ core(∆) we have

H̃i(linkcore(∆)(F ),K) =

{
K if i = dim(linkcore(∆)(F ))
0 if i < dim(linkcore(∆)(F ))

(iii) For all x ∈ |core(∆)| we have

H̃i(|core(∆)|,K) = Hi(|core(∆)|, |core(∆)| − x,K) =

{
K if i = dim(linkcore(∆)(F ))
0 if i < dim(linkcore(∆)(F ))

Proof. The equivalence of (ii) and (iii) again follows from Lemma 2.2.
The equivalence of (i) and (ii) is much harder and was orginally proved in [16]. A detailed

proof of this fact can be found in [5, Section 5.5.]. �

It follows that if ∆ is a simplicial complex for which K[∆] is Gorenstein then K[core(∆)]
is Gorenstein as well. Condition (ii) from Theorem 6.4 then implies for F = ∅ that

H̃dim(core(∆))(core(∆),K) 6= 0 and hence core(∆) is Gorenstein*. Thus any simplicial com-

plex ∆ for which K[∆] is Gorenstein has a decomposition ∆ = 2Ω\core(Ω) ∗ core(∆) and
core(∆) is Gorenstein*.

Corollary 6.5. Let ∆ be a simplicial complex over ground set Ω and ∆′ a simplicial
complex over ground set Ω′ such that

• core(∆) = ∆ and core(∆′) = ∆′,
• |∆| is homeomorphic to |∆′|.

Then K[∆] is Gorenstein* if and only if K[∆′] is Gorenstein*.

Proof. The result follows from Theorem 6.4(iii) and the fact that core(∆) = ∆ and
core(∆′) = ∆′. �

Next we consider the Buchsbaum property of K[∆]. We refer the reader to [19] for the
general theory. For its definition we need the concept of a weak K[∆]-sequence. A sequence
f1, . . . , fr of elements from the maximal graded ideal of K[∆] is called a weak K[∆] sequence
if m((f1, . . . , fi−1 : fi) ⊆ (f1, . . . , fi−1) for i = 1, . . . , r. Now K[∆] is called Buchsbaum if
every system of parameters is a weak K[∆]-sequence. The following is an analog of Reisner’s
criterion for Buchsbaum rings proved by Schenzel in [15].

Theorem 6.6. Let ∆ be a simplicial complex over ground set Ω. Then the following are
equivalent.

(i) K[∆] is Buchsbaum.
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(ii) For all F ∈ ∆, F 6= ∅ we have H̃i(link∆(F ),K) = 0 for i < dim(link∆(F )).
(iii) For all x ∈ |∆| we have Hi(|∆|, |∆| − x,K) = 0 for i < dim(∆).

The equivalence of (ii) and (iii) is again in immediate consequence of Lemma 2.2. The
equivalence of (i) and (ii) is Theorem 3.2 in [15]. Its proof first shows a characterization of
Buchsbaum K[∆] as those K[∆] for which the localization at all prime ideals different from
the graded maximal ideal is Cohen-Macaulay. Using this characterization the equivalence
can be reduced to Reisner’s criterion Theorem 6.2.

Since condition (iii) from Theorem 6.6 is obviously a topological property, we obtain the
following immediate corollary.

Corollary 6.7. Let ∆ and ∆′ be simplicial complexes such that |∆| and |∆′| are homeo-
morphic. Then K[∆] is Buchsbaum if and only if K[∆′] is Buchsbaum.

7. n-purity, n-Cohen-Macaulay and n-Buchsbaum

A simplicial complex ∆ over ground set Ω is called n-pure if for any subset W ⊆ Ω of
cardinality #W < n we have that ∆Ω\W is pure and dim(∆) = dim(∆Ω\W ). In particular,
1-pure is the usual pure property.

For n ≥ 3 the n-pure property is not topological.

Example 7.1. Let ∆ be the simplicial complex over ground set Ω = {1, . . . , n + 2} for
some n ≥ 1 with facets {i, j} for 1 ≤ i < j ≤ n. Then ∆ is (n + 1)-pure. The deletion
of an vertex set of size < n + 1 leaves a connected 1-dimensional simplicial complex.
Consider ∆′ = sd(∆) on ground set Ω′ = 2Ω \{∅}. Clearly, |∆| and |∆′| are homeomorphic.
We set W = {{1}, {2}} and get that ∆′Ω′\W is a simplicial complex with two connected
components. One component is a connected 1-dimensional simplicial complex and the
other the 0-dimensional complex {{1, 2}}. In particular, ∆′Ω′\W is not pure. Thus ∆′ is not

(n+ 1)-pure for n+ 1 ≥ 3 > 2 = #W .

Theorem 7.2. Let ∆ be a pure simplicial complex over ground set Ω. Then the following
are equivalent:

(i) ∆ is 2-pure
(ii) If F is a face of ∆ such that Hdim(∆)(|∆|, |∆| − x,K) = 0 for all x in the relative

interior of |F̄ | then dim(F ) ≤ dim(∆)− 2.
(iii) For any simplicial complex ∆′ such that |∆′| and |∆| are homeomorphic and for all

faces F of ∆′ and all x from the relative interior of |F̄ | we have Hdim(∆′)(|∆′|, |∆′|−
x,K) = 0.

Proof.

(i) ⇒ (ii)

Let F be a face of ∆ of dimension dim(∆)− 1. Since ∆ is pure there must be a facet G
of dimension dim(∆) containing F . Let ω be the unique vertex in G \F . Since ∆Ω\{ω} is of
the same dimension as ∆ it follows that there must be at least a second facet containing



20 VOLKMAR WELKER

F . In particular, writing 0 as dim(∆)− dim(F )− 1 we get

Hdim(∆)(|∆|, |∆| − x,K)
Lemma 2.2

= H̃0(link∆(F ),K) 6= 0

for every x in the relative interior of |F̄ |.
Let F be a face of ∆ of dimensions dim(∆). It follows that

Hdim(∆)(|∆|, |∆| − x,K)
Lemma 2.2

= H̃−1(link∆(F ),K) = K 6= 0

for any x in the relative interior of |F̄ |.
These two facts imply (ii).

(ii) ⇒ (i)

By assumption, for a face F of dimension dim(∆)− 1 we have that

Hdim(∆)(|∆|, |∆| − x,K) = H̃0(link∆(F ),K) 6= 0.

As a consequence there are at least two facets containing F . This implies that for any
ω 6∈ F there is a facet of dimension dim(∆) containing F in ∆Ω\{ω}. In particular, ∆Ω\{ω}
is pure.

(iii) ⇒ (ii)

This is obvious.

(ii) ⇒ (iii)

Since |∆′| is homeomorphic to |∆| it follows from Theorem 2.4 that ∆′ is pure of the same
dimension as ∆. Assume there is a face F of ∆′ such that Hdim(∆′)(|∆′|, |∆′|−x,K) = 0 for
some x from the relative interior of |F̄ | and dim(F ) ≥ dim(∆′)− 1. If dim(F ) = dim(∆′)
then

Hdim(∆)(|∆|, |∆| − x,K)
Lemma 2.2

= H̃−1(link∆(F ),K) = K 6= 0.

Thus we have dim(F ) = dim(∆′) − 1. Note that our assumptions imply that for any x′

from the relative interior of |F | we have Hdim(∆′)(|∆′|, |∆′| − x′,K) = 0. But then (ii)
shows that the homemomorphic image of the relative interior of |F̄ |, which is an open
dim(F )-ball, must be covered by the relative interiors of |Ḡ| for faces G of ∆ of dimension
≤ dim(∆)−2 < dim(F ). The latter is impossible in the geometric realization of a simplicial
complex. Thus (iii) follows. �

The next corollary immediately follows from the fact that condition (iii) in Theorem 7.2
only depends on the homeomorphism type of the geometric realization.

Corollary 7.3. Let ∆ and ∆′ be two pure simplicial complexes such that |∆| and |∆′| are
homeomorphic. Then ∆ is 2-pure if and only if ∆′ is 2-pure.

A simplicial complex ∆ over ground set Ω is called n-Cohen-Macaulay (over K) if for
any subset W ⊆ Ω of cardinality #W < n we have that K[∆Ω\W ] is Cohen-Macaulay
and dim(∆) = dim(∆Ω\W ). In particular, 1-Cohen-Macaulay is the usual Cohen-Macaulay
property of K[∆].
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If ∆ and ∆′ are the simplicial complexes from Example 7.1 then the arguments in the
example show that for n ≥ 2 we have that K[∆] is (n+ 1)-Cohen-Macaulay but ∆′ is not.
Thus for n ≥ 3 the property of being n-Cohen-Macaulay is not topological.

In the thesis of J. Walker [21, Theorem 9.8] it is proved that 2-Cohen-Macaulayness is
indeed a topological property. Following idea from [12] we will provide a proof of this result
below. As a preparation we need to study properties of links.

Lemma 7.4. If F is a face of ∆ such that for any face F ⊆ G ∈ ∆ we have H̃i(link∆(G),K) =

0 for i < dim(link∆(G)) then for any face G′ ∈ link∆(F ) we have that H̃i(linklink∆(F )(G
′),K) =

0 for i < dim(linklink∆(F )(G
′)).

In particular, it follows that

(i) if K[∆] is Cohen-Macaulay then so is K[link∆(F )] for every F ∈ ∆.
(ii) if K[∆] is Buchsbaum, then K[link∆(F )] is Cohen-Macaulay for every ∅ 6= F ∈ ∆.

(iii) if K[∆] is 2-Cohen-Macaulay then so is K[link∆(F )].

Proof. If G′ ∈ link∆(F ) then G = F ∪G′ ∈ ∆. Then

link∆(G) = {H ⊆ Ω : H ∩G = ∅ and H ∪G ∈ ∆}
= {H ⊆ Ω : H ∩G′ = ∅ and H ∪G′ ∈ link∆(F )}
= linklink∆(F )(G

′).

This implies the first assertion of the lemma. The claims (i) about the Cohen-Macaulay
and (ii) aboout the Buchsbaum property follow from Theorem 6.2 and Theorem 6.6. For
(iii) we argue as follows. By (i) we already know that K[link∆(F )] is Cohen-Macaulay for
all F ∈ ∆. Let ω ∈ Ω and set W = Ω \ {ω}. If F ∩W 6= ∅ then there is nothing to show.
If F ∩W = ∅ then

(link∆(F ))W = {G ⊆ W : G ∩ F = ∅ and G ∪ F ∈ link∆(F )}
= {G ⊆ W : G ∩ F = ∅ and G ∪ F ∈ link∆W

(F )} = link∆W
(F ).

Now the facts that ∆W is Cohen-Macaulay and dim(∆W ) = dim(∆) imply the claim. �

As a last prerequisite for a topological characterization of 2-Cohen-Macaulayness we
need the following simple fact about chain complexes.

Lemma 7.5. Let ∆ be a simplicial complex and H ⊆ K faces of ∆. Then there is a
commutative diagram

H̃i(link∆(H),K) Hi(link∆(H), link∆(H) \ (K \H),K)

H̃i+dim(H)−dim(K)(link∆(K),K)

Hi+dim(H)+1(∆,∆ \H,K) Hi+dim(H)+1(∆,∆ \K,K)
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Where the maps in the rows are given by the long exact sequences of the

pair (link∆(H), link∆(H) \ (K \H)) and the triple (∆,∆ \K,∆ \H)

and the maps in the columns are isomorphisms.

Proof. Consider for a simplicial complex ∆′, a face E of ∆′. For i ≥ −1 let Ci+dim(E)+1(∆′,∆′\
E,K) be the simplicial chain group in dimension i+ dim(E) + 1 and the reduced simplicial

chain group C̃i(link∆(E),K) in dimension i. The first chain group has as a basis the faces
E ′ of ∆′ such that E ⊆ E ′ and dim(E ′) = i+ dim(E) + 1, the second a has as a basis faces
E ′′ ∈ link∆(E) with dim(E ′′) = i. Now mapping E ′′ to E ′′ ∪E establishes a bijection with
the two bases which after choosing appropriate orientations extends to an isomorphism of
chain complexes.

This fact explains all isomorphism in the columns of the asserted diagram. It is then
easily checked that these isomorphisms commutes with the exact sequences of the pair and
the triple. The assertion then follows (see [12, Theorem 2.1] for more details). �

Now we are in position to state and prove a result which will immediately imply the
result by Walker [21, Theorem 9.8]. For the formulation and the proof of the next theorem
we again mostly follow [12].

Theorem 7.6. Let ∆ be a simplicial complex on ground set Ω such that K[∆] is Cohen-
Macaualay. Then the following are equivalent

(i) ∆ is 2-Cohen-Macaulay.
(ii) For all ∅ 6= F ∈ ∆ the map

H̃dim(∆)(∆,K)→ Hdim(∆)(∆,∆ \ F,K)(13)

from the long exact sequence of the pair (∆,∆ \ F ) is surjective.

(iii) For all ∅ 6= F ∈ ∆ we have H̃dim(∆)−1(∆ \ F,K) = 0.

(iv) For all x ∈ |∆| we have H̃dim(∆)−1(|∆| − x,K) = 0.

Proof.

(i) ⇒ (ii)

We prove the assertion by induction on dim(F ) for arbitrary ∆ for which K[∆] is 2-
Cohen-Macaulay. If dim(F ) = 0 then ∆\F = ∆Ω\F which is Cohen-Macaulay of dimension

dim(∆) by assumption. It follows that H̃dim(∆)−1(∆ \F,K) = 0. Hence by the exactness of
the long exact sequence of the pair (∆,∆ \ F ) the map in (13) must be surjective.

Now let F be a face of dimension dim(F ) > 0 and let ω ∈ F be some fixed element.
We set G = F \ {ω}. From Lemma 7.4 we know that link∆(G) is 2-Cohen-Macaulay of
dimension dim(∆)− dim(G)− 1. Hence by induction we know that the map

H̃i−dim(G)−1(link∆(G),K)→ Hi−dim(G)−1(link∆(G), link∆(F ) \ {ω},K)

is surjective. Thus by Lemma 7.5 for H = G and K = F we obtain that the map

Hi(∆,∆ \G,K)→ Hdim(∆)(∆,∆ \ F,K)
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is surjective. Again by induction we know that the map

H̃dim(∆)(∆,K)→ Hdim(∆)(∆,∆, \G,K)

is surjective.

By the naturality of the maps it follows that the composition map H̃dim(∆)(∆,K) →
Hdim(∆)(∆,∆ \ F,K) is surjective.

(ii) ⇒ (i)

Let ω ∈ Ω and F ∈ ∆.
If F ∪ {ω} 6∈ ∆ then link∆Ω\{ω}(F ) = link∆(F ). Since ∆ is Cohen-Macaulay it follows

from Theorem 6.2 that H̃i(link∆Ω\{ω}(F ),K) = 0 for i < dim(link∆Ω\{ω}) = dim(link∆(F )).

We are left with the case when G = F ∪ {ω} ∈ ∆. For that consider the commutative
diagram

H̃dim(∆)(∆) Hdim(∆)(∆,∆ \G,K)

Hdim(∆)(∆,∆ \ F,K)

with maps induced by the long exact sequence of the pairs (∆,∆ \ G), (∆,∆ \ F ) and
the triple (∆,∆\F,∆\G). The map in the first row is surjective by (ii). Thus the diagonal
map is surjective too. By Lemma 7.5 for H = F and K = G we deduce that the map

H̃dim(∆)−dim(F )−1(link∆(F ),K)→ Hdim(∆)−dim(F )−1(link∆(F ), link∆(F ) \ {ω},K)

is surjective as well. Since K[link∆(F )] is Cohen-Macaulay it follows by Theorem 6.2 that

H̃i(link∆(F ),K) = 0 for i < dim(∆)− dim(F )− 1. By Lemma 7.5 Hi(link∆(F ), link∆(F ) \
{ω},K) = H̃i−1(link∆(G),K). Since K[link∆(G)] is also Cohen-Macaulay again by The-

orem 6.2 we obtain is H̃i−1(link∆(G),K) = 0 for i − 1 < dim(∆) − dim(G) − 1 =
dim(∆)− dim(F )− 2.

Hence in the long exact sequence of the pair (link∆(F ), link∆(F ) \ {ω}). We have that

H̃i(link∆\{ω}(F ),K) = H̃i(link∆(F ) \ {ω},K) = 0

for i < dim(∆)− dim(F )− 1.
Now it follows from Theorem 6.2 that K[∆ \ {ω}] is Cohen-Macaualay and hence ∆ is

2-Cohen-Macaulay.

(ii) ⇔ (iii)

Consider the exact sequence

· · · → H̃dim(∆)(∆,K)→ Hdim(∆)(∆,∆ \ F,K)→ H̃dim(∆)(∆ \ F,K)→ H̃dim(∆)−1(∆,K)→

Since K[∆] is Cohen-Macaulay we know by Theorem 6.2 that H̃dim(∆)−1(∆,K) = 0. It

follows that H̃dim(∆)(∆ \ F,K) = 0 if and only if the map H̃dim(∆)(∆,K)→ Hdim(∆)(∆,∆ \
F,K) is surjective.

(iii) ⇔ (iv)
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We know by Lemma 2.2 that |∆Ω\F | is a deformation retract of |∆| − x for x in the
relative interior of |F̄ |. In particular, the homology groups of the two spaces coincide. �

The next corollary is an immediate consequence of the fact that condition (iv) of Theo-
rem 7.6 depends only on the homeomorphism type of |∆|.
Corollary 7.7 (Walker). Let ∆ and ∆′ be two simplicial complexes for which K[∆] and
K[∆′] are Cohen-Macaulay and such that |∆| and |∆′| are homeomorphic. Then ∆ is 2-
Cohen-Macaulay if and only if ∆′ is 2-Cohen-Macaulay.

A simplicial complex ∆ over ground set Ω is called n-Buchsbaum (over K) if for any
subset W ⊆ Ω of cardinality #W < n we have that K[∆Ω\W ] is Buchsbaum and dim(∆) =
dim(∆Ω\W ). In particular, 1-Buchsbaum is the usual Buchsbaum property for K[∆].

Analogous to the case of the Cohen-Macaulay property n-Buchsbaum is not a topological
property for n ≥ 3.

For the n = 2 there is the following result [12, Theorem 4.3].

Theorem 7.8. Let ∆ be a simplicial complex such that K[∆] is Buchsbaum. Then the
following are equivalent.

(i) ∆ is 2-Buchsbaum
(ii) For any x ∈ |∆| and any neighbourhood U of x in ∆ there exists an open set V

such that
(a) x ∈ V ⊆ U
(b) The inclusion |∆| \ V ↪→ |∆| − x induces an isomorphisms

H̃i(|∆| − V,K)→ H̃i(|∆| − x,K)

for all i ≥ 0

(c) For any y ∈ V we have H̃dim(∆)−1(|∆| − y,K) = 0.

The proof of Theorem 7.8 in [12] is based on arguments similar to those used in the proof
of Theorem 7.6. But the deduction becomes more technical and more involved. We refer
the reader to the paper [12] for details. Condition (ii) of the preceding result obvious only
depends on the homeomorphism type of |∆|. Therefore, Theorem 7.8 immediately implies
the following corollary (see [12, Corollary 4.4]).

Corollary 7.9 (Miyazaki). Let ∆ and ∆′ be two simplicial complexes for which K[∆]
and K[∆′] are Buchsbaum and such that |∆| and |∆′| are homeomorphic. Then ∆ is 2-
Buchsbaum if and only if ∆′ is 2-Buchsbaum.

Building on condition (iv) of Theorem 7.6 one can define the class of Buchsbaum*

simplicial complexes. A simplicial complex ∆ such that K[∆] is Buchsbaum is called

Buchsbaum* (over K) if H̃dim(∆)−1(|∆|,K) = H̃dim(∆)−1(|∆|,K) for all x ∈ ∆. By defi-

nition the Buchsbaum* property depends only on the homeomorphism type of |∆|. In the
following results (see [1, Proposition 2.5, 2.8]) the relation of this property to the properties
Gorenstein*, 2-Cohen-Macaulay and 2-Buchsbaum is clarified.

Lemma 7.10. Let ∆ be a simplicial complex.



WHICH PROPERTIES ARE TOPLOGICAL ? 25

(i) If K[∆] is Cohen-Macaulay then

∆ is 2− Cohen-Macaulay⇔ ∆ Buchbaum*.

(ii) If K[∆] is Gorenstein then

∆ Gorenstein* ⇔ ∆ Buchsbaum*.

(iii) If ∆ is Buchsbaum* then ∆ is 2-Buchsbaum.

The statement in (i) is immediate from the that fact that by Theorem 6.2 we have

that H̃dim(∆)−1(∆,K) = 0 for a Cohen-Macaulay ∆. Statements (ii) and (iii) follows by
arguments similar to those used in the proof of Theorem 7.6

8. Other properties

In this section we go over other properties of K[∆] studied in the literature for which
the question of whether the property is topological or not was considered. We do not think
that the list exhaustive but we have included all results known to us.

An interesting strengthening of the Cohen-Macaulay property was studied in [11]. Here
a simplicial complex ∆ for which K[∆] is Cohen-Macaulay is called uniformly Cohen-
Macaulay (over K) if K[∆ \ F ] is Cohen-Macaulay and dim(∆ \ F ) = dim(∆) for every
facet F of ∆. The authors show the following topological characterization in [11, Theorem
1.1].

Theorem 8.1. Let ∆ be a Cohen-Macaulay simplicial complex. Then the following are
equivalent.

(i) ∆ is uniformly Cohen-Macaulay.

(ii) For every x ∈ |∆| the map H̃dim(∆)(|∆|,K)→ H̃dim(∆)(|∆|, |∆|−x,K) from the long
exact sequence of the pair (|∆|, |∆| − x) is an inclusion.

Clearly, condition (ii) from the theorem depends only the homeomorphism type of |∆|
and hence the property is topological.

In commutative algebra the Cohen-Macaulay property of a ring is equivalent to the ring
having Serre’s property (Sd) for the Krull dimension d of the ring. We refer the reader to [5,
p. 62] for the defintion of property (Sr) in general. It can be shown, again using Hochster’s
formula Theorem 5.1 on the local cohomology of K[∆], that K[∆] has property (Sr) if and

only if H̃i(link∆(F ),K) = 0 for all i < min{r− 1, dim(∆)− dim(F )− 1}. Clearly for r = d
we recover Reisner’s criterion Theorem 6.2 for the Cohen-Macaulay property of K[∆]. In
[22, Theorem 4.4] Yanagawa showed that the property (Sr) is topological for any r, which
is a vast generalization of Munkres’ result Theorem 6.1 on Cohen-Macaulayness.

Theorem 8.2 (Yanagawa). Let ∆ and ∆′ be two simplicial complexes such that |∆| and
|∆′| are homeomorphic and r ≥ 0 a number. Then K[∆] has property (Sr) if and only of
K[∆′] has property (Sr).

The original proof from [22, Theorem 4.4] uses quite heavy machinery from commutative
algebra. Recently a short proof was given in [8, Corollary 3].
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Equally natural as these weakenings and strengthenings of the Cohen-Macaulay con-
dition are generalizations of the Cohen-Macaulay condition towards pairs of simplicial
complexes. A pair (∆,Γ) of simplicial complexes consists of two simplicial complexes over
the same ground set Ω such that Γ is a subcomplex of ∆. For a relative simplicial com-
plex (∆,Γ) its Stanley-Reisner ideal is the ideal I∆,Γ in K[∆] generated by the monomials
xF for F ∈ ∆ \ Γ. The relative simplicial complex (∆,Γ) is called Cohen-Macaulay (over
K), if the SΩ module I∆,Γ is. As for rings the equality of depth and dimension defines
Cohen-Macaulayness for modules.

In [18] Stanley deduces the topological invariance of the Cohen-Macaulay property from
results in [17, Corollary 5.4]. Topological invariance here means that the property only
depends on the homemorphism type of the pair (|∆|, |Γ|). The proof heavily relies on a
relative version of Reisner’s criterion Theorem 6.2.

Theorem 8.3 (Stanley). Let (∆,Γ) and (∆′,Γ′) be two pairs of simplicial complexes
such that (|∆|, |Γ|) and (|∆|′, |Γ|′) are homeomorphic pairs of spaces. Then I∆,Γ is Cohen-
Macaulay if and only if I∆′,Γ′ is Cohen-Macaulay.

In the 90s motivated by a series of interesting non-pure simplicial complexes arising in
combinatorics, Stanley [18, p. 87] defined the notion of a sequentially Cohen-Macaulay
module. We do not want to work with the general definition here. Using [18, Proposition
2.11] we rather define sequential Cohen-Macaulayness for Stanley-Reisner rings K[∆] only.
Let ∆ be a simplicial complex. For a number 0 ≤ i ≤ dim(∆) let ∆i be the simplicial
complex of all F ∈ ∆ such that there is a facet G ∈ ∆ such that dim(G) = i and F ⊆ G.
Then one calls K[∆] sequentially Cohen-Macaulay (over K) if for all 0 ≤ i ≤ dim(∆) the
relative simplicial complex

(∆i,∆i ∩ (∆i+1 ∪ · · · ∪∆dim(∆))

is Cohen-Macaulay over K (see [6, 3] for equivalent formulations).
Stanley’s result on the sequential Cohen-Macaulay property follows from Theorem 8.3.
In [21, Theorem 4.1.6] Wachs provides an obviously topological property which is equiv-

alent to sequential Cohen-Macaulayness.

Theorem 8.4. Let ∆ be a simplicial complex. Then K[∆] is sequentially Cohen-Macaulay
if and only if for all 0 ≤ j < i ≤ dim(∆) and x ∈ |∆i| we have

H̃j(|∆i|,K) = Hj(|∆i|, |∆i| − x,K) = 0.

So either using Theorem 8.3 or using Theorem 8.4 we get the Stanley’s result as a
corollary.

Corollary 8.5 (Stanley). Let ∆ and ∆′ be simplicial complexes such that |∆| and |∆′| are
homeomorphic. Then K[∆] is sequentially Cohen-Macaulay if and only if K[∆′] is.

In a similar fashion sequential versions have been attached to other properties of ∆
or K[∆]. In [8, Corollary 7] the topological invariance of the sequential (Sr) properties is
proved. In [3] sequential connectivity and sequential acyclicity are shown to be topological
properties.
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