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f Motivation

¥ R-tree

" Spatial and multidimensional data

" Emerging applications
®Location Based Services
"KkNN, Reverse kNN, Spatial keyword search etc...

"Tuple-by-Tuple loading is inefficient
®Trade-off loading time query efficiency
®"NP-hard

" Parallelism
" modern hardware

®low cost parallel architecture e.g. Hadoop
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R-tree Query Types
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Goal: minimize node accesses!




R-tree Query Types
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R-tree Query Types
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Cost Model

Minimize sum of areas of node MBRs <
Minimize node accesses !
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Rectangles
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f. Sort-based Query-Adaptive Loading [1]

® NP-Hardness of optimal partitioning

" Conceptual Easy Heuristic Algorithm
" Sorting according Space Filling Curve
" Dynamic Programming
" Adaptive SFC

" Excellent I/O performance
" 1/0O Complexity is bounded by external sort O (% -logm %)
B

" Experiments
" Non trivial test framework
" Average better query performance
" Robustness for different query and data distribution

" Parallel Version

[1] D. Achakeev, B Seeeger and P. Widmayer, Sort-Based Qeury Adaptive Loading of R-trees, in CIKM 2012
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f. Sort-based Query-Adaptive Loading

Bottom-Up and Level-by-Level

1. Determination of Sort Order and Sorting: For a given QP determine a
sort order that minimizes cost.

® Quadratic queries (aspect ratio 1:1); Hilbert or Z-Curve
" Otherwise asymmetric Z-Curve

2. Sorted set partitioning. Partition the sorted sequence of rectangles into
subsequences of size between minimal page capacity b and maximal page
capacity B

3. Recursive Step: Generation of index entries and recursion




Sorted-Set-Partitioning

The problem of optimal
partitioning is NP-hard!

Idea:
1. Space Filling Curves

2. Dynamic Programming

Example: b=2, B=3
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Hilbert: (r3,,r4,,r1;,r2,,r5.,1r9,,17,,16,,18,)

Example:
Max page capacity B=3
Min page capacity b=2

Cost function:
Sum of MBR areas
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Storage-Bounded Partitioning

Dynamic Programming (DP)

Page Hilbert: {r3,,r4,,r1,,r2,,r5.,19,17.,r6,,r8.} b=2,B=3
index
3 min 4,2 Imin :g minz’g min 6,2
m
2 l‘nin 2,1 I min g'l min 3,1
/ " '
1 2 3 4 5 6 7 8 9 .. Rectangle index
N

C[5][2]=min {C[2][1] + area,p(MBR({3,4,5})), C[3][1] + areay, (MBR({4,5}))}
®  V-Optimal Histograms
" N/B<m<N/b
" Quadratic time O(N? - B) and space O(N?)

opt™(i, k) = brgjiélB{opt*(i —j,k—1) + Areagp(MBR(pi-j+1,1))}
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b=2,B=3 N Sorted Rectangles

...C[6]=min {C[3] + areay, (MBR({4,5,6})), C[4] + areay, (MBR({5,6}))}

" Linear time O(N - B) and linear space O(N)

® Number of output partitions m is bounded by N/B < m < N/b
gopt™ (i) = min {gopt™(i — j) + Areaop(MBR(pi-j+1,))}

" Generalized methods for all levels are also investigated




GOPT Example ...
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b=2,B=3

Hilbert: (r3,,r4,,r1,1t2,,r5:,19.,r7,,16,,r8,)

...C[6]=min {C[3] + areag; (

), C[4] + areaqyp, (MBR({5,6}))}
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GOPT Example ...

b=2,B=3
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Hilbert: (r3,,r4}f1,,r2)r5.,r9Jr7.,164,r8,)

...C[6]=min {C[3] + areay, (MBR({4,5,6})), C[4] + areaqp, (MBR({5,6}))}

e | &
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GOPT Example ...

Hilbert: (r3,rd k1,12, Jk5.,r9,r7 Jr6,,r8,

End Result




Practical Considerations

"Reduce CPU and memory costs
" Use main memory efficiently

" Simple heuristic: chunking

1t r 1+ rrrrrr°r ¢+ 1+ 1§ & ° ¢ FFr T FFTd
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> B? > B2 > B2
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Practical Considerations

"Sort data only once for leaf level

" Use the sorting order of the produced output

r2

n[] = "0 = B
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Sorted data: {r3,,r4,,r1,,r2,,r5.,r9,17,,164,r8,}

Partitioning output: L1= {r3,,r4,}, L2= {r1;,12,}, L3={r5.,r9,17,}, L4={r64,18,}
Index Level: {L1,1.2,1.3,1L4}
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mH

Results

m H-GO

m STR

Average leafs per query

H: standard sort-based bulk
loading, Hilbert-Order

H-GO: our approach GOPT,
Hilbert-Order

STR: STR loading
4 KB Pages;

Queries follow data
distribution.

The query size is defined by
the number of results.
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Introduction

Forest-Approach [1][2]

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial data with mapreduce, in
SSDBM 2009

[2] A. Papadopoulos, and Y. Manolopoulos. Parallel bulk-loading of spatial data. In Parallel Comput. 2003
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Our approach
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f. Parallel Level-By-Level Loading

1. Computation of initial split vector V

2. Parallel sort using SFC

3. Data distribution over machines using V

4, Computation of optimal partitioning GOPT

5. Computation of split vector for the next level

6. Recursion: Step 3 using output of step 4
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f MapReduce

" Leaf node generation:

" Mapper
[(null, MBRdata), ...] -> [(SFC-Key, Data),...]

" Split vector V [py, ..., p,,] computed using parallel random sampling
" Partitioner distributes data using V

" Reducer runs gopt for its sorted key interval
(SFC-Key, [MBRdata]) -> [((reducerRank, MBRRank), info), ... ]

® Reducer Output:
" Sorted input data
" Leaf node MBR
Key (reducerRank, localRank)
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p1:[0,5]

p2:6,11]

MapReduce

Reducer 2

GOPT

=
W
=
w

((2,1), (MBR, 2))
((2,2), (MBR, 2))
((2,3), (MBR, 2))
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f MapReduce

" Index node generation

® Mapper Identity

® Partitioner: lexicographical order (reducerRank, MBRRank)

® Reducer runs GOPT on ((reducerRank, MBRRank), info) objects
" Final R-tree

® level files in parallel

" level file sequentially
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Results

" Settings:

Java, Hadoop 0.20.205.0, XXL-Java-Library

Amazon: medium machines

Data set TIGER USA Streets 72M MBR approx. 3.6 GB
Extended TIGER USA approx. 13 GB

Machines (1),2,4,8,16 (+ 1 Jobtracker)

Random Sampling 3%




Results
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Results

1500
p-nopt: level-by-level, fixed-size
g partitioning
5 1000
2
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S 500
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0
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Bl Sampling N Leaf level

Index level ¥$2%% Local R-tree construction

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial data with mapreduce, in
SSDBM 2009
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f Conclusions & Next

" Novel parallel level-by-level approach

" Excellent I/O performance
" Almost linear speedup
" Robust query performance
" Conceptual Simplicity
" Efficient partitioning for load balancing

" Minimize overlap/MBR Area

" Loading algorithms for parallel R-trees

" Balancing query performance over set of machines
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Thank You!
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