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Motivation 

 R-tree  
Spatial and multidimensional data  

 
 Emerging applications 
Location Based Services 
kNN, Reverse kNN,  Spatial keyword search etc… 

 
Tuple-by-Tuple loading is inefficient 
Trade-off  loading time query efficiency 
NP-hard 

 
Parallelism 
modern hardware  
low cost parallel architecture  e.g. Hadoop 
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R-tree 

I/O Model: 
 
R-Tree nodes mapped to disk 
blocks 
Maximal capacity: 𝐵 

Minimal capacity: 𝑏 ≤ 𝐵
2

 

 
 
 

 
Minimal Bounding Rectangle MBR 
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R-tree Query Types 

Point Query P 
 
 

 

Goal: minimize node accesses! 
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R-tree Query Types 

Goal: minimize node accesses! 

Window Query W 
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R-tree Query Types 

kNN  Query 
 
 

 

Goal: minimize node accesses! 
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Cost Model  

The average number of rectangles 
intersecting the query window 

Query profile QP is given by (sx,sy)  

� 𝒅𝒙𝒊 + 𝒔𝒙 ⋅ (𝒅𝒚𝒊 + 𝒔𝒚)
𝑵

𝒊=𝟏

 

I.Kamel and C. Faloutsos. On packing r-tress, In CIKM 1993  
B.-U. Pagel et. al. Towards an analysis of range query performance in spatial data structures. In PODS 1993 
Y. Theodoridis and T. Sellis A model for the prediction of r-tree performance. In PODS 1996 

Minimize sum of areas of node MBRs  
Minimize node accesses ! 
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Objective 

Rectangles 
 

Queries 
 

Minimal bounding rectangles (MBR) 
of R-tree leaf level 
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Sort-based Query-Adaptive Loading [1] 

 NP-Hardness of optimal partitioning 
 

 Conceptual Easy Heuristic Algorithm 
 Sorting according Space Filling Curve 
 Dynamic Programming 
 Adaptive SFC 

 
 Excellent I/O performance 
 I/O Complexity is bounded by external sort 𝑂(𝑁

𝐵
⋅ 𝑙𝑙𝑙𝑀

𝐵

𝑁
𝐵

)  
 

 Experiments 
 Non trivial test framework 
 Average better query performance 
 Robustness for different query and data distribution 

 
 Parallel Version  

 
 
 
 
 
 

 
 

[1] D. Achakeev, B Seeeger and P. Widmayer, Sort-Based Qeury Adaptive Loading of R-trees, in CIKM 2012 
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Sort-based Query-Adaptive Loading 

1. Determination of Sort Order and Sorting:  For a given QP determine a 
sort order that minimizes cost.  
 
 Quadratic queries (aspect ratio 1:1); Hilbert or Z-Curve  
 Otherwise asymmetric Z-Curve   

 
 

 
 

2. Sorted set partitioning. Partition the sorted sequence of rectangles into 
subsequences of size between minimal page capacity b and maximal page 
capacity B 
 

 

3. Recursive Step:  Generation of index entries and recursion 
 

Bottom-Up  and  Level-by-Level 
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Sorted-Set-Partitioning 

Example: 
Max page capacity B=3 
Min page capacity b=2 
 
Cost function: 
Sum of MBR areas 

The problem of optimal 
partitioning is NP-hard! 
 
 Idea: 
1. Space Filling Curves 
2. Dynamic Programming 
 

Standard approach  Our approach  

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89) 
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Storage-Bounded Partitioning 

  V-Optimal Histograms 
  𝑁/𝐵 ≤ 𝑚 ≤ 𝑁/𝑏  
 Quadratic time 𝑂 𝑁2 ⋅ 𝐵  and space  𝑂(𝑁2)  

𝑙𝑜𝑡∗ 𝑖,𝑘 = min
𝑏≤𝑗≤𝐵

{𝑙𝑜𝑡∗ 𝑖 − 𝑗,𝑘 − 1 + 𝐴𝐴𝐴𝐴𝑄𝑄(𝑀𝐵𝑀(𝑜𝑖−𝑗+1,𝑖))} 

b=2,B=3 

Rectangle index  

Page 
index 

Dynamic Programming (DP) 
Hilbert: {r31,r42,r13,r24,r55,r96,r77,r68,r89} 

C[5][2]=min {C[2][1]  + areaQP(MBR({3,4,5})), C[3][1]  + areaQP (MBR({4,5}))} 
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Query-Optimal Partitioning GOPT 

 

 Linear time 𝑂 𝑁 ⋅ 𝐵  and linear space 𝑂(𝑁) 
 

 Number of  output partitions m is bounded by 𝑁/𝐵 ≤ 𝑚 ≤ 𝑁/𝑏  
 
 

 
𝑙𝑙𝑜𝑡∗ 𝑖 = min

𝑏≤𝑗≤𝐵
{𝑙𝑙𝑜𝑡∗ 𝑖 − 𝑗 + 𝐴𝐴𝐴𝐴𝑄𝑄(𝑀𝐵𝑀(𝑜𝑖−𝑗+1,𝑖))} 

 Generalized methods for all levels are also investigated 
 

Sorted Rectangles  b=2,B=3 

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89) 

…C[6]=min {C[3] + areaQP (MBR({4,5,6})), C[4] + areaQP (MBR({5,6}))} 
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GOPT Example … 

 

b=2,B=3 

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89) 

…C[6]=min {C[3] + areaQP (MBR({4,5,6})), C[4] + areaQP (MBR({5,6}))} 
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GOPT Example … 

 

b=2,B=3 

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89) 

…C[6]=min {C[3] + areaQP (MBR({4,5,6})), C[4] + areaQP (MBR({5,6}))} 
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GOPT Example … 

 Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89) 

End Result 
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Practical Considerations 

Reduce CPU and memory costs 
 Use main memory efficiently 
Simple heuristic: chunking 

 

≥ 𝑩𝟐 ≥ 𝑩𝟐 ≥ 𝑩𝟐 
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Practical Considerations 

Sort data only once for  leaf level 
Use the sorting order of the produced output  

 

Sorted data: {r31,r42,r13,r24,r55,r96,r77,r68,r89} 

Partitioning output: L1= {r31,r42}, L2= {r13,r24}, L3={r55,r96,r77}, L4={r68,r89} 
Index Level: {L1,L2,L3,L4} 
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Results 

H: standard sort-based bulk 
loading, Hilbert-Order 
 
H-GO: our approach GOPT,  
Hilbert-Order 
 
STR:  STR loading 
 
4 KB Pages;  
 
Queries follow data 
distribution.  
 
The query size is defined by 
the number of results. 
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Introduction 

 
 

Forest-Approach [1][2] 

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe.  Experiences on processing spatial data with mapreduce, in 
SSDBM 2009   
[2] A. Papadopoulos, and Y. Manolopoulos. Parallel bulk-loading  of spatial data.  In Parallel Comput. 2003 



24 

Introduction 

Our approach  
Level-by-level [1] 

[1] Daniar Achakeev, Marc Seidemann, Markus Schmidt, Bernhard Seeger: Sort-based Parallel Loading of R-trees, ACM 
SIGSPATIAL BigSpatial-2012;  
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Parallel Level-By-Level Loading 

1. Computation of initial split vector V 
 

2. Parallel sort using SFC 
 

3. Data distribution over machines using V 
 

4. Computation of optimal partitioning GOPT 
 

5. Computation of split vector for the next level 
 

6. Recursion: Step 3 using output of step 4  
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MapReduce 

 Leaf node generation: 
 
 Mapper  

[(null, MBRdata), …] -> [(SFC-Key, Data),…] 
 
 Split vector V [p1, … , pm] computed using parallel random sampling 

 
 Partitioner distributes data using V 

 
 Reducer runs gopt for its sorted key interval 

(SFC-Key, [MBRdata]) -> [((reducerRank, MBRRank), info), … ]  
 
 Reducer Output: 
 Sorted input data  
 Leaf node MBR 
 Key (reducerRank, localRank) 
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MapReduce 
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MapReduce 

 Index node generation 
 
 Mapper Identity 

 
 Partitioner: lexicographical order (reducerRank,  MBRRank) 

 
 Reducer runs GOPT on ((reducerRank,  MBRRank), info) objects 

 
 Final R-tree 

 
 level files in parallel 

 
 level file sequentially  
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Results 

 Settings: 
 
 Java, Hadoop 0.20.205.0, XXL-Java-Library 

 
 Amazon: medium machines 

 
 Data set TIGER USA Streets  72M MBR approx. 3.6 GB 

 
 Extended TIGER USA approx. 13 GB 

 
 Machines (1),2,4,8,16 (+ 1 Jobtracker) 

 
 Random Sampling 3%  
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Results 
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Results 

p-nopt: level-by-level, fixed-size 
partitioning 
 
p-trees: forest approach [1] 
 
p-gopt: out approach 

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe.  Experiences on processing spatial data with mapreduce, in 
SSDBM 2009   
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Conclusions & Next 

 Novel parallel level-by-level approach 
 
 Excellent I/O performance 
 Almost linear speedup 
 Robust query performance 
 Conceptual Simplicity 

 
 Efficient partitioning for load balancing 

 
 Minimize overlap/MBR Area 

 
 Loading algorithms for parallel R-trees  

 
 Balancing query performance over set of machines 
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Thank You! 

Q&A 
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