Sort-Based Parallel Loading of R-trees

Daniar Achakeev, Marc Seidemann, Markus Schmidt, Bernhard Seeger

Department of Mathematics and Computer Science

Philipps-Universitit Marburg, Germany
achakeye@mathematik.uni-marburg.de

ACM SIGSPATTAL BigSpatial 2012

Agenda

Introduction

Sequential sort-based query-adaptive loading

® Sorted-Set Partitioning
Parallel Loading

® MapReduce
" Results

Conclusion

S35 B
f Motivation

¥ R-tree

" Spatial and multidimensional data

" Emerging applications
®Location Based Services
"KkNN, Reverse kNN, Spatial keyword search etc...

"Tuple-by-Tuple loading is inefficient
®Trade-off loading time query efficiency
®"NP-hard

" Parallelism
" modern hardware

®low cost parallel architecture e.g. Hadoop

Agenda

Introduction

Sequential sort-based query-adaptive loading

® Sorted-Set Partitioning
Parallel Loading

® MapReduce
" Results

Conclusion

R-tree

T \ [/O Model:
| r3,r4,rl I | r2,r5,19 I I r7,r6,r8 I
R-Tree nodes mapped to disk
[] — "0 (] [=, O blocks
] = Maximal capacity: B
O - Minimal capacity: b < [ﬂ
r3|:| I;l I%l |:| — I:l

Minimal Bounding Rectangle MBR

R-tree Query Types

A B C

| \

| r3, r4,rl | | r2,r5,r9 r7,r6,r8

r2 ;
a[] e s o O
Point Query P
rs5 r7
]]
ré A C
r3
1= o 0> o

Goal: minimize node accesses!

R-tree Query Types

A B C

| \

| r3, r4,rl | | r2,r5,r9 r7,r6,r8

7 | r9 ——— :
| 1, O] ‘: | O]
I I I 18
| 1 1 |
P — I R S
rs5 r7
Window|Query W
[]]
ré A C
r3
0 = g 0=

Goal: minimize node accesses!

R-tree Query Types

A, B, C
| r3,r4,rl | r2,r5,r9 r7,r6, 18
r2 9
r 1 [] 1] ;]
kNN Query
r57‘ r7 _
7\
@] ®]
ré A C
r3
0= 2 [= =

Goal: minimize node accesses!

Cost Model

Minimize sum of areas of node MBRs <
Minimize node accesses !

A B, C
r— — 7 7] / \
’ | Y | r3,r4,r1 r2,r5,19 17,16, r8
Yxay
dy Ogcy sX I
| it iy TS
o > :D] | O
|
The average number of rectangles T
intersecting the query window (5 7
C O
Z(dx,- + sx) - (dy; + sy) r6 A
i=1 r3
1
Query profile QP is given by (sx,sy) i 4 I%l D

I.Kamel and C. Faloutsos. On packing r-tress, In CIKM 1993

B.-U. Pagel et. al. Towards an analysis of range query performance in spatial data structures. In PODS 1993
Y. Theodoridis and T. Sellis A model for the prediction of r-tree performance. In PODS 1996

10

Rectangles

Objective

Al e s
. ‘,“'f-_.l\

T T
Queries i rATENE

Minimal bounding rectangles (MBR)
of R-tree leaf level 3

f. Sort-based Query-Adaptive Loading [1]

® NP-Hardness of optimal partitioning

" Conceptual Easy Heuristic Algorithm
" Sorting according Space Filling Curve
" Dynamic Programming
" Adaptive SFC

" Excellent I/O performance
" 1/0O Complexity is bounded by external sort O (% -logm %)
B

" Experiments
" Non trivial test framework
" Average better query performance
" Robustness for different query and data distribution

" Parallel Version

[1] D. Achakeev, B Seeeger and P. Widmayer, Sort-Based Qeury Adaptive Loading of R-trees, in CIKM 2012

11

12

f. Sort-based Query-Adaptive Loading

Bottom-Up and Level-by-Level

1. Determination of Sort Order and Sorting: For a given QP determine a
sort order that minimizes cost.

® Quadratic queries (aspect ratio 1:1); Hilbert or Z-Curve
" Otherwise asymmetric Z-Curve

2. Sorted set partitioning. Partition the sorted sequence of rectangles into
subsequences of size between minimal page capacity b and maximal page
capacity B

3. Recursive Step: Generation of index entries and recursion

Sorted-Set-Partitioning

The problem of optimal
partitioning is NP-hard!

Idea:
1. Space Filling Curves

2. Dynamic Programming

Example: b=2, B=3

[= "o [} =0

E]

]
L

r5 r7

. TE
ré
r3
[==] (=3 &7

Hilbert: (r3,,r4,,r1;,r2,,r5.,1r9,,17,,16,,18,)

Example:
Max page capacity B=3
Min page capacity b=2

Cost function:
Sum of MBR areas

13

= o] Ir— 21
] 1]

= =3
Emn= (W 1 =8 Smn=2 [y 15N

Standard approach Our approach

14

Storage-Bounded Partitioning

Dynamic Programming (DP)

Page Hilbert: {r3,,r4,,r1,,r2,,r5.,19,17.,r6,,r8.} b=2,B=3
index
3 min 4,2 Imin :g minz’g min 6,2
m
2 l‘nin 2,1 I min g'l min 3,1
/ " '
1 2 3 4 5 6 7 8 9 .. Rectangle index
N

C[5][2]=min {C[2][1] + area,p(MBR({3,4,5})), C[3][1] + areay, (MBR({4,5}))}
® V-Optimal Histograms
" N/B<m<N/b
" Quadratic time O(N? - B) and space O(N?)

opt™(i, k) = brgjiélB{opt*(i —j,k—1) + Areagp(MBR(pi-j+1,1))}

15

b=2,B=3 N Sorted Rectangles

...C[6]=min {C[3] + areay, (MBR({4,5,6})), C[4] + areay, (MBR({5,6}))}

" Linear time O(N - B) and linear space O(N)

® Number of output partitions m is bounded by N/B < m < N/b
gopt™ (i) = min {gopt™(i — j) + Areaop(MBR(pi-j+1,))}

" Generalized methods for all levels are also investigated

GOPT Example ...

16

b=2,B=3

Hilbert: (r3,,r4,,r1,1t2,,r5:,19.,r7,,16,,r8,)

...C[6]=min {C[3] + areag; (

), C[4] + areaqyp, (MBR({5,6}))}

R

e

GOPT Example ...

b=2,B=3

17

Hilbert: (r3,,r4}f1,,r2)r5.,r9Jr7.,164,r8,)

...C[6]=min {C[3] + areay, (MBR({4,5,6})), C[4] + areaqp, (MBR({5,6}))}

e | &

18

GOPT Example ...

Hilbert: (r3,rd k1,12, Jk5.,r9,r7 Jr6,,r8,

End Result

Practical Considerations

"Reduce CPU and memory costs
" Use main memory efficiently

" Simple heuristic: chunking

1t r 1+ rrrrrr°r ¢+ 1+ 1§ & ° ¢ FFr T FFTd
> > >

> B? > B2 > B2

19

Practical Considerations

"Sort data only once for leaf level

" Use the sorting order of the produced output

r2

n[] = "0 = B

£l

B]

L3

r5 r7

O I—E:I <
3 ré L1 } 4
[— [(=2 V= =] e

r8

Sorted data: {r3,,r4,,r1,,r2,,r5.,r9,17,,164,r8,}

Partitioning output: L1= {r3,,r4,}, L2= {r1;,12,}, L3={r5.,r9,17,}, L4={r64,18,}
Index Level: {L1,1.2,1.3,1L4}

21

10

mH

Results

m H-GO

m STR

Average leafs per query

H: standard sort-based bulk
loading, Hilbert-Order

H-GO: our approach GOPT,
Hilbert-Order

STR: STR loading
4 KB Pages;

Queries follow data
distribution.

The query size is defined by
the number of results.

22

Agenda

Introduction

Sequential Loading

® Sorted-Set Partitioning
Parallel Loading

® MapReduce
Results

Conclusion

Introduction

Forest-Approach [1][2]

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial data with mapreduce, in
SSDBM 2009

[2] A. Papadopoulos, and Y. Manolopoulos. Parallel bulk-loading of spatial data. In Parallel Comput. 2003

23

24

IRINRERRINRENRINRIRRREEEEN

Introduction

- QE

A [

N Eiy=

A

yF
HE
f)

[1] Daniar Achakeev, Marc Seidemann, Markus Schmidt, Bernhard Seeger: Sort-based Parallel Loading of R-trees, ACM

SIGSPATIAL BigSpatial-2012;

Our approach
Level-by-level [1]

see ——i

O
1

Sk

e

O

-

[]
L]

25

f. Parallel Level-By-Level Loading

1. Computation of initial split vector V

2. Parallel sort using SFC

3. Data distribution over machines using V

4, Computation of optimal partitioning GOPT

5. Computation of split vector for the next level

6. Recursion: Step 3 using output of step 4

26

f MapReduce

" Leaf node generation:

" Mapper
[(null, MBRdata), ...] -> [(SFC-Key, Data),...]

" Split vector V [py, ..., p,,] computed using parallel random sampling
" Partitioner distributes data using V

" Reducer runs gopt for its sorted key interval
(SFC-Key, [MBRdata]) -> [((reducerRank, MBRRank), info), ...]

® Reducer Output:
" Sorted input data
" Leaf node MBR
Key (reducerRank, localRank)

27

p1:[0,5]

p2:6,11]

MapReduce

Reducer 2

GOPT

=
W
=
w

((2,1), (MBR, 2))
((2,2), (MBR, 2))
((2,3), (MBR, 2))

28

f MapReduce

" Index node generation

® Mapper Identity

® Partitioner: lexicographical order (reducerRank, MBRRank)

® Reducer runs GOPT on ((reducerRank, MBRRank), info) objects
" Final R-tree

® level files in parallel

" level file sequentially

29

Results

" Settings:

Java, Hadoop 0.20.205.0, XXL-Java-Library

Amazon: medium machines

Data set TIGER USA Streets 72M MBR approx. 3.6 GB
Extended TIGER USA approx. 13 GB

Machines (1),2,4,8,16 (+ 1 Jobtracker)

Random Sampling 3%

Results

8000
10 1
T 6000
8 1 g
o, o
=] ¥
<y 4000
b >
o =
v 4 = 2000
2 4
0 1 2 4 8 16
1 2 4 & 16 Number of machines
Number of machines B Sompling M Leaf level oo Index level

Results

1500
p-nopt: level-by-level, fixed-size
g partitioning
5 1000
2
k= p-trees: forest approach [1]
S 500
=
p-gopt: out approach
0

p-nopt p-trees p-gopt
Bulkloading approach
Bl Sampling N Leaf level

Index level ¥$2%% Local R-tree construction

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial data with mapreduce, in
SSDBM 2009

31

* 9
f Conclusions & Next

" Novel parallel level-by-level approach

" Excellent I/O performance
" Almost linear speedup
" Robust query performance
" Conceptual Simplicity
" Efficient partitioning for load balancing

" Minimize overlap/MBR Area

" Loading algorithms for parallel R-trees

" Balancing query performance over set of machines

32

Thank You!

33

	Sort-Based Parallel Loading of R-trees
	Agenda
	Motivation
	Agenda
	R-tree
	R-tree Query Types
	R-tree Query Types
	R-tree Query Types
	Cost Model
	Objective
	Sort-based Query-Adaptive Loading [1]
	Sort-based Query-Adaptive Loading
	Sorted-Set-Partitioning
	Storage-Bounded Partitioning
	Query-Optimal Partitioning GOPT
	GOPT Example …
	GOPT Example …
	GOPT Example …
	Practical Considerations
	Practical Considerations
	Results
	Agenda
	Introduction
	Introduction
	Parallel Level-By-Level Loading
	MapReduce
	MapReduce
	MapReduce
	Results
	Results
	Results
	Conclusions & Next
	Thank You!

