
Sort-Based Parallel Loading of R-trees

Daniar Achakeev, Marc Seidemann, Markus Schmidt, Bernhard Seeger
 Department of Mathematics and Computer Science

Philipps-Universität Marburg, Germany
achakeye@mathematik.uni-marburg.de

ACM SIGSPATIAL BigSpatial 2012

2

Agenda

 Introduction

 Sequential sort-based query-adaptive loading

 Sorted-Set Partitioning

 Parallel Loading

 MapReduce

 Results

 Conclusion

3

Motivation

 R-tree
Spatial and multidimensional data

 Emerging applications
Location Based Services
kNN, Reverse kNN, Spatial keyword search etc…

Tuple-by-Tuple loading is inefficient
Trade-off loading time query efficiency
NP-hard

Parallelism
modern hardware
low cost parallel architecture e.g. Hadoop

4

Agenda

 Introduction

 Sequential sort-based query-adaptive loading

 Sorted-Set Partitioning

 Parallel Loading

 MapReduce

 Results

 Conclusion

5

R-tree

I/O Model:

R-Tree nodes mapped to disk
blocks
Maximal capacity: 𝐵

Minimal capacity: 𝑏 ≤ 𝐵
2

Minimal Bounding Rectangle MBR

6

R-tree Query Types

Point Query P

Goal: minimize node accesses!

7

R-tree Query Types

Goal: minimize node accesses!

Window Query W

8

R-tree Query Types

kNN Query

Goal: minimize node accesses!

9

Cost Model

The average number of rectangles
intersecting the query window

Query profile QP is given by (sx,sy)

� 𝒅𝒙𝒊 + 𝒔𝒙 ⋅ (𝒅𝒚𝒊 + 𝒔𝒚)
𝑵

𝒊=𝟏

I.Kamel and C. Faloutsos. On packing r-tress, In CIKM 1993
B.-U. Pagel et. al. Towards an analysis of range query performance in spatial data structures. In PODS 1993
Y. Theodoridis and T. Sellis A model for the prediction of r-tree performance. In PODS 1996

Minimize sum of areas of node MBRs
Minimize node accesses !

10

Objective

Rectangles

Queries

Minimal bounding rectangles (MBR)
of R-tree leaf level

11

Sort-based Query-Adaptive Loading [1]

 NP-Hardness of optimal partitioning

 Conceptual Easy Heuristic Algorithm
 Sorting according Space Filling Curve
 Dynamic Programming
 Adaptive SFC

 Excellent I/O performance
 I/O Complexity is bounded by external sort 𝑂(𝑁

𝐵
⋅ 𝑙𝑙𝑙𝑀

𝐵

𝑁
𝐵

)

 Experiments
 Non trivial test framework
 Average better query performance
 Robustness for different query and data distribution

 Parallel Version

[1] D. Achakeev, B Seeeger and P. Widmayer, Sort-Based Qeury Adaptive Loading of R-trees, in CIKM 2012

12

Sort-based Query-Adaptive Loading

1. Determination of Sort Order and Sorting: For a given QP determine a
sort order that minimizes cost.

 Quadratic queries (aspect ratio 1:1); Hilbert or Z-Curve
 Otherwise asymmetric Z-Curve

2. Sorted set partitioning. Partition the sorted sequence of rectangles into
subsequences of size between minimal page capacity b and maximal page
capacity B

3. Recursive Step: Generation of index entries and recursion

Bottom-Up and Level-by-Level

13

Sorted-Set-Partitioning

Example:
Max page capacity B=3
Min page capacity b=2

Cost function:
Sum of MBR areas

The problem of optimal
partitioning is NP-hard!

 Idea:
1. Space Filling Curves
2. Dynamic Programming

Standard approach Our approach

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89)

14

Storage-Bounded Partitioning

 V-Optimal Histograms
 𝑁/𝐵 ≤ 𝑚 ≤ 𝑁/𝑏
 Quadratic time 𝑂 𝑁2 ⋅ 𝐵 and space 𝑂(𝑁2)

𝑙𝑜𝑡∗ 𝑖,𝑘 = min
𝑏≤𝑗≤𝐵

{𝑙𝑜𝑡∗ 𝑖 − 𝑗,𝑘 − 1 + 𝐴𝐴𝐴𝐴𝑄𝑄(𝑀𝐵𝑀(𝑜𝑖−𝑗+1,𝑖))}

b=2,B=3

Rectangle index

Page
index

Dynamic Programming (DP)
Hilbert: {r31,r42,r13,r24,r55,r96,r77,r68,r89}

C[5][2]=min {C[2][1] + areaQP(MBR({3,4,5})), C[3][1] + areaQP (MBR({4,5}))}

15

Query-Optimal Partitioning GOPT

 Linear time 𝑂 𝑁 ⋅ 𝐵 and linear space 𝑂(𝑁)

 Number of output partitions m is bounded by 𝑁/𝐵 ≤ 𝑚 ≤ 𝑁/𝑏

𝑙𝑙𝑜𝑡∗ 𝑖 = min

𝑏≤𝑗≤𝐵
{𝑙𝑙𝑜𝑡∗ 𝑖 − 𝑗 + 𝐴𝐴𝐴𝐴𝑄𝑄(𝑀𝐵𝑀(𝑜𝑖−𝑗+1,𝑖))}

 Generalized methods for all levels are also investigated

Sorted Rectangles b=2,B=3

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89)

…C[6]=min {C[3] + areaQP (MBR({4,5,6})), C[4] + areaQP (MBR({5,6}))}

16

GOPT Example …

b=2,B=3

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89)

…C[6]=min {C[3] + areaQP (MBR({4,5,6})), C[4] + areaQP (MBR({5,6}))}

17

GOPT Example …

b=2,B=3

Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89)

…C[6]=min {C[3] + areaQP (MBR({4,5,6})), C[4] + areaQP (MBR({5,6}))}

18

GOPT Example …

 Hilbert: (r31,r42,r13,r24,r55,r96,r77,r68,r89)

End Result

19

Practical Considerations

Reduce CPU and memory costs
 Use main memory efficiently
Simple heuristic: chunking

≥ 𝑩𝟐 ≥ 𝑩𝟐 ≥ 𝑩𝟐

20

Practical Considerations

Sort data only once for leaf level
Use the sorting order of the produced output

Sorted data: {r31,r42,r13,r24,r55,r96,r77,r68,r89}

Partitioning output: L1= {r31,r42}, L2= {r13,r24}, L3={r55,r96,r77}, L4={r68,r89}
Index Level: {L1,L2,L3,L4}

21

Results

H: standard sort-based bulk
loading, Hilbert-Order

H-GO: our approach GOPT,
Hilbert-Order

STR: STR loading

4 KB Pages;

Queries follow data
distribution.

The query size is defined by
the number of results.

22

Agenda

 Introduction

 Sequential Loading

 Sorted-Set Partitioning

 Parallel Loading

 MapReduce

 Results

 Conclusion

23

Introduction

Forest-Approach [1][2]

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial data with mapreduce, in
SSDBM 2009
[2] A. Papadopoulos, and Y. Manolopoulos. Parallel bulk-loading of spatial data. In Parallel Comput. 2003

24

Introduction

Our approach
Level-by-level [1]

[1] Daniar Achakeev, Marc Seidemann, Markus Schmidt, Bernhard Seeger: Sort-based Parallel Loading of R-trees, ACM
SIGSPATIAL BigSpatial-2012;

25

Parallel Level-By-Level Loading

1. Computation of initial split vector V

2. Parallel sort using SFC

3. Data distribution over machines using V

4. Computation of optimal partitioning GOPT

5. Computation of split vector for the next level

6. Recursion: Step 3 using output of step 4

26

MapReduce

 Leaf node generation:

 Mapper

[(null, MBRdata), …] -> [(SFC-Key, Data),…]

 Split vector V [p1, … , pm] computed using parallel random sampling

 Partitioner distributes data using V

 Reducer runs gopt for its sorted key interval

(SFC-Key, [MBRdata]) -> [((reducerRank, MBRRank), info), …]

 Reducer Output:
 Sorted input data
 Leaf node MBR
 Key (reducerRank, localRank)

27

MapReduce

28

MapReduce

 Index node generation

 Mapper Identity

 Partitioner: lexicographical order (reducerRank, MBRRank)

 Reducer runs GOPT on ((reducerRank, MBRRank), info) objects

 Final R-tree

 level files in parallel

 level file sequentially

29

Results

 Settings:

 Java, Hadoop 0.20.205.0, XXL-Java-Library

 Amazon: medium machines

 Data set TIGER USA Streets 72M MBR approx. 3.6 GB

 Extended TIGER USA approx. 13 GB

 Machines (1),2,4,8,16 (+ 1 Jobtracker)

 Random Sampling 3%

30

Results

31

Results

p-nopt: level-by-level, fixed-size
partitioning

p-trees: forest approach [1]

p-gopt: out approach

[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on processing spatial data with mapreduce, in
SSDBM 2009

32

Conclusions & Next

 Novel parallel level-by-level approach

 Excellent I/O performance
 Almost linear speedup
 Robust query performance
 Conceptual Simplicity

 Efficient partitioning for load balancing

 Minimize overlap/MBR Area

 Loading algorithms for parallel R-trees

 Balancing query performance over set of machines

33

Thank You!

Q&A

	Sort-Based Parallel Loading of R-trees
	Agenda
	Motivation
	Agenda
	R-tree
	R-tree Query Types
	R-tree Query Types
	R-tree Query Types
	Cost Model
	Objective
	Sort-based Query-Adaptive Loading [1]
	Sort-based Query-Adaptive Loading
	Sorted-Set-Partitioning
	Storage-Bounded Partitioning
	Query-Optimal Partitioning GOPT
	GOPT Example …
	GOPT Example …
	GOPT Example …
	Practical Considerations
	Practical Considerations
	Results
	Agenda
	Introduction
	Introduction
	Parallel Level-By-Level Loading
	MapReduce
	MapReduce
	MapReduce
	Results
	Results
	Results
	Conclusions & Next
	Thank You!

