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ABSTRACT
Spatial histograms are extremely useful for approximate query
processing in large spatial databases. The problem of gen-
erating optimal spatial histograms is NP-hard; therefore,
many heuristic-based methods have emerged over the last
15 years. Shortcomings of these methods are their complex
algorithmic design and their sensitivity to parameter setting,
preventing easy integration into real systems.

In this paper, we present a class of spatial histograms de-
rived from the popular family of R-tree indexes. We propose
a cost-optimized approach that combines bulk-loading of R-
trees and construction of spatial histograms. This creates
a robust histogram method with high accuracy for selectiv-
ity estimation of spatial queries. In particular, the estima-
tion error continuously decreases with increasing number of
histogram buckets, and therefore, our histogram methods
benefit from a large number of histogram buckets.

For experimental evaluation, we compare the performance
of our methods with state-of-the-art spatial histograms. In
contrast to previously conducted experiments, we examine
the performance under different classes of workloads. Our
results confirm that our histograms display low estimation
errors and can be built fast. In addition, their performance
is very robust under different workloads.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Algorithms, Performance

Keywords
Histogram, R-tree, Spatial Query Selectivity Estimation

1. INTRODUCTION
Histograms are important data structures primarily used

in database systems for estimating the selectivity of queries.
They are also applied to obtaining quick approximate re-
sponse for aggregate queries. While one-dimensional his-
tograms are widely available in almost all database system,
only a very few systems offer multidimensional histograms.
Most of them are simple grid-based methods that are appli-
cable to two-dimensional point data only. These methods
perform poorly on rectangle data or when the independence
assumption of the attributes is violated.

The design of efficient multidimensional histograms turns
out to be much harder already for the two-dimensional case.
In fact, the problem of designing optimal multidimensional
histograms is known to be NP-hard. Therefore, many heuris-
tics have been developed and evaluated in various experimen-
tal settings. In general, these heuristics result in fairly com-
plex parameterized algorithms with a runtime often substan-
tially higher than the runtime of the one-dimensional coun-
terparts. This is often not acceptable because histograms
have to be rebuilt quite frequently. In addition, the algo-
rithms are often quite sensitive to small variances of the
parameter values.

In this paper, we revisit the problem of designing efficient
multidimensional histograms from the perspective of bulk-
loading spatial index-structures, e.g., R-trees. Similar to
R-trees, a histogram is viewed as a set of bounding boxes,
but each of them is associated with statistical indicators
like the number of spatial objects that are assigned to the
box. Rather than directly generating histogram buckets, our
method relies on a two-step approach: First, the leaf level
of an R-tree is generated and second, adjacent leaves are
merged into larger histogram buckets. Crucial and sensitive
parameters are avoided; instead both steps rely on the opti-
mization of a widely accepted cost function. This makes our
approach very appealing to an end-user.

Even though our optimization bases on minimizing a cost
function, it still remains a heuristics like it is for all other
multidimensional histograms. It is therefore of utmost im-
portance to use a thoroughly designed experimental setup
to provide a meaningful and fair comparison with competi-
tors. So far, there is no commonly agreed experimental setup
for spatial and multidimensional histograms. In particular,
we found serve deficiencies in current experimental work,
e.g., small data sets, low selectivity of queries, uniformly
distributed queries.

Our contributions are summarized as follows:

1. We present a uniform rectangle partitioning framework
for R-tree loading and histogram construction. De-
rived from this framework, we present an efficient two-
step approach to generating multidimensional histograms.

2. We introduce query models for workload generation
and examine the accuracy of histograms under these
workloads.

3. We present an experimental performance comparison
of a large number of multidimensional histograms.

The paper is organized as follows: In Section 2, we discuss
related work. Preliminaries like our underlying cost model



are introduced in Section 3. In Section 4, we present our
uniform framework for R-tree loading and histogram con-
struction. In Section 5, we introduce the query models and
report the most important results of an experimental eval-
uation of our methods in comparison to related histogram
methods. The paper concludes with a summary of the most
important results.

2. RELATED WORK
During the last three decades one-dimensional histograms

have been used widely for the purpose of selectivity esti-
mation and with a fair amount of success [15, 9]. Nev-
ertheless, in case of multidimensional histograms, we are
still facing many challenges, that need to be solved[8]. To
tackle these problems, many different heuristic based meth-
ods were proposed. All of them aim to partition the multi-
dimensional data in rectangular buckets for a given space
budget. The data within buckets is uniformly distributed,
since the query estimation relies on uniform data distribu-
tion assumption. The heuristic methods are motivated by
the results in [12]. The authors show that computing the
non-overlapping rectangular partitioning with near-uniform
data distribution within buckets is NP-hard.

One of the first methods proposed for multidimensional
data is hTree [11]. It constructs non-overlapping partition-
ing of multidimensional space based on a frequency as source
parameter. Only one dimension is approached at a time and
partitioned in buckets with an identical number of objects,
resulting in a equi-depth histogram. The advantage of hTree
is its low construction cost. However, the partitioning rule
is too rigid for highly skewed data. In contrast, mHist uses
space partitioning. Space is partitioned along the dimen-
sion that benefits most from a split. The split decision is
made based on a marginal frequency distribution. This ap-
proach was developed for relational data and focuses mainly
on approximating point frequencies. However, selectivity es-
timation for spatial data differs from traditional one [1]. The
object frequencies may be uniform, but the locations can be
highly skewed, and the objects vary in sizes and shapes.

To provide accurate estimation for spatial objects and
also I/O efficiency, the MinSkew -Histogram method was pro-
posed [1]. The authors proposed two construction strategies.
The basic variant works as follows: in the first phase, the
algorithm computes a regular grid and stores the number of
intersecting spatial objects for each cell. Based on the com-
puted grid, the recursive binary space partitioning (BSP) is
used for histogram computation. The buckets are picked for
further processing based on a split value that will lead to
greatest reduction of data skew. The decision is local, so
that for all dimensions, all possible cuts based on marginal
objects frequencies are considered. The authors observed
that a fixed grid size is sensitive to the size of queries [1]
(high grid resolution favors small sized queries and small
resolution large queries). To lessen this effect the second
construction strategy MinSkew-Progressive-Refinement uti-
lizes grids with different resolutions. Each grid resolution
is used to construct the equal portion of histogram buckets.
The computation is processed in top-down fashion starting
with a low resolution grid applying BSP in each step. The
downside of both strategies is that the performance is sensi-
tive to the grid resolutions.

GenHist proposed by [7] tries to identify high density
regions. In contrast to the previous methods, the bucket

rectangles may overlap. Moreover, the buckets can be con-
tained in other buckets. GenHist finds regions with high
object density, excises them but leaves enough data in the
parent bucket so that the parent buckets distribution flat-
tens. Again, the method uses a regular grid as a starting
point for histogram construction.

The recently proposed method STHist [16] applies the
idea of GenHist to 2-3-dimensional spatial objects. In the
basic variant decision about whether the region is dense is
made by applying a sliding window over all dimensions, ap-
proximating the frequency distribution by a marginal distri-
bution. The dense regions called Hot-Spots build hierarchies,
so that the Histogram is represented as an unbalanced R-
tree. In the advanced variant called STForest, the algorithm
first computes coarse partitions according to the object skew,
and then applies a sliding window algorithm to them. The
idea behind this is that if the region is already uniformly
distributed further partitioning is unnecessary. Moreover,
the coarse regions merge together if the skew of merged
bucket decrease. The experiments conducted in [16] show
that STHist is superior to other proposed methods. How-
ever, STHist has time complexity O(n2) for 2-dimensional
and O(n3) for 3-dimensional data.

Recently, the class of self-tuning histograms like STHoles
and ISOMER were proposed [4, 18]. In general these meth-
ods incrementally update buckets and their frequency infor-
mation, using query feedback. These kind of methods is
very appealing, because the incremental modification the
histogram adapts to the real distribution of a data. More-
over, the methods can be applied independently on top of
different approaches.

Another way to obtain a spatial histogram is to generate
it using a spatial index structure like R-tree [1, 8, 5]. The
recently proposed approach rKHist [5] uses this idea and
is based on R-tree bulk-loading procedure[10]. The data
is presorted according the Hilbert space-filling-curve. After
the leaf nodes are generated, one possibility to generate a
histogram is to pack nodes according to the sorting order
in equi-sized histogram buckets. This leads not always to
a good partitioning. Especially, for near-uniformly and uni-
formly distributed data equi-sized partitioning wastes buck-
ets for regions with a high object density and yield high
overlap, despite the fact that the regions have uniform dis-
tribution[1]. Therefore, the authors proposed a greedy al-
gorithm that utilizes a sliding window of pages along the
Hilbert order. The algorithm is parametrized with a num-
ber of buckets that should be considered for a splitting. A
bucket-split is applied if it leads to an improvement accord-
ing to the proposed cost function.

Our approach differs from rKHist in that we tune the R-
trees according to the widely used R-tree cost model. Our
generic sort-partition framework computes optimal partition-
ing for a given cost function according to the sorting order of
rectangles. The framework relies on the dynamic program-
ming scheme proposed by [9] for generating one dimensional
V-optimal histograms.

The scheme proposed in [9] is also used in [20] for comput-
ing a set of k minimal bounding rectangles (MBR) from a
2-dimensional point set. The goal was to reduce communi-
cation costs for mobile devices by approximating the spatial
query result by a set of MBRs with a minimal information
loss fi. The authors showed that computing such represen-
tations is NP-hard even for d=2. One of their heuristics



first sorts the query output using the Hilbert order and then
apply the partitioning method of [9]. Multi-dimensional his-
tograms and representation with a minimal information loss
fi are related, since both techniques are considered as data
summarization methods. In contrast to histograms the opti-
mization function is different and space constraints are dis-
regarded.

In this work, we adapt the dynamic programming scheme
[9] for a R-tree based histogram generation introducing the
space constraints on bucket capacity size. This allows to
generalize the partitioning scheme and to design new more
efficient algorithms for R-tree and R-tree based histogram
generation. We show that especially for highly skewed data,
the R-tree methods return more accurate results. Moreover,
R-tree histograms constructed using our dynamic program-
ming framework display good estimation accuracy for near-
uniform and uniform data sets.

3. PRELIMINARIES
In this paper, we investigate the problem of histograms

construction based on R-trees for a d-dimensional set of N
rectangles {r1, . . . , rN}. The basis for our development of R-
tree histograms is sort-based algorithm for bulk-loading of
R-tree. Further, we give a brief overview about bulk-loading
and a cost model for R-tree, since our histogram relies on R-
tree tuned according to it. We assume that R-trees consist of
pages with maximum capacity B and minimum occupation
b ≤ dB/2e. Our description will address the case d = 2; the
generalization for d > 2 is only discussed when necessary.

3.1 Sort-Based Bulk-Loading
Roussopoulos and Leifker [17] introduced the problem of

R-tree loading from scratch and presented a sort-based load-
ing technique with complexity O(N

B
log M

B

N
B

), where M de-

notes the available main memory. After sorting the rectan-
gles according to a one-dimensional criterion, an R-tree can
be built bottom-up like it is known from B+-trees. Because
the sorting order has a considerable impact on the search
efficiency, Kamel and Faloutsos [10] proposed a double trans-
formation: first a rectangle is mapped to a multidimensional
point. Then a space-filling curve (SFC) like the Hilbert- or
Z-curve is used to generate a one-dimensional value. Hilbert
order yield slightly better results, however, Z-curve is sim-
pler to compute and process [13].

The query performance can be estimated using the cost
model [10, 14, 19]. We briefly discuss this model in the
following. The range queries can be classified by aspect ratio,
location (either data distributed or uniform) and size (either
volume or number of results) [19]. Assuming an aspect ratio
of 1:1 yields four different query models. The simplest query
model refers to the uniform distribution of query rectangles
with an equal area.

Assume that the domain corresponds to the two-dimensional
unit square [0, 1)2. A rectangle ri = (cxi, cyi, dxi, dyi) is rep-
resented by its center (cxi, cyi) and its extension (dxi, dyi).
For a window query WQq,s given by its center q = (qx, qy)
and its extension s = (sx, sy), the probability that a rectan-
gle ri intersects the window is (dxi + sx) · (dyi + sy). The
average number of rectangles intersecting the query window
is then given by

∑N
i=1(dxi + sx) · (dyi + sy). Note that for

point queries with s = (0, 0), the equation computes the
sum of MBR volumes. By applying this function to the set
of leaf bounding boxes, we obtain the expected number of

Figure 1: Range query estimation.

leaf accesses. This is a typical performance indicator for
R-trees.

3.2 Histogram
We define the output histogram H as a set of buckets

h1, . . . , hm. The bucket hi contains statistical information
about the set of spatial objects (rectangles) Ri = r1, . . . , rn.
These are [1]: MBR(hi) of set Ri, number of elements ni,
average rectangle side length dxiavg, dy

i
avg over set Ri and

spatial density information si = Area(hi)/Area(MBRhi).
Where, Area(hi) is defined a sum of rectangle areas in Ri

and Area(MBRhi) is defined as an area of bucket MBR.
In this paper, we use notion bucket and MBR as synonyms

depending on the context. Further, our goal is to build the
histogram in such way that the number of elements refer-
enced in each bucket varies only by a small constant factor,
so that H is close to an equi-depth histogram.

The selectivity estimation est(q) for range and point queries
is computed based on the uniform distribution assumption.
The selectivity estimation of a point query is computed as
follows: Let MBRhi be the bucket MBR containing a query
point. Then si is an average number of rectangles hit by
given point query in the bucket hi.

Consider a range query WQq,s. Let MBRhi be a bucket
MBR overlapping with the queryWQq,s. Let rs = MBRhi∩
WQq,s be an intersection rectangle. rs is represented by
its center (cxrs , cyrs) and its extensions (dxrs , dyrs). We
extend then (dxrs , dyrs) with 2dxiavg, 2dy

i
avg in both dimen-

sions with a constraint that the extended sides cannot cross
the boundaries ofMBRhi (see Figure 1). Then ni· Area(rs)

Area(MBRhi
)

is the estimated number of rectangles intersecting WQq,s [1].

4. R-TREE FRAMEWORK
In order to obtain a high-quality histogram H, the data

should be partitioned in such way that the data within each
histogram bucket is near-uniformly distributed. Computing
such partitionings is a non-trivial task and in general NP-
hard [12]. Furthermore, the way how data is partitioned
also influences the quality of the R-tree. Partitionings mini-
mizing sum of MBR volumes yield better R-trees according
to the cost model [19]. In order to obtain a partitioning in
polynomial time, we use a heuristic method based on SFC.
Our approach can be summarized as follows: reduce the com-
plexity of multidimensional partitioning by sorting the data
according to a SFC, and solve the partitioning problem opti-
mally for the sorted set. In the following, we present a high
level description of the building blocks of our framework:

Sort-Partitioning: Sort the rectangles with respect to a
SFC. Partition the sorted sequence optimally according to a
cost function C into subsequences of size between b and B.

Bulk-Loading R-tree: Step 1. Node Generation: Run
Sort-Partitioning with parameter settings for b and B ac-
cording to a given page size. Step 2. Generation of Index
Entries: For each page, compute the bounding box of its
partitions and create the corresponding index entry. Step 3.
Recursion: If the total number of index entries is less than



Figure 2: Example of storage bounded partitioning
b = 2, B = 4 and m = 4.

B, store them in a newly allocated root. Otherwise, start
the algorithm with the index entries (bounding boxes) from
Step 2.

Construction of Histogram H: Run step Node Gener-
ation of bulk-loading. Collect and store statics. Run Sort-
Partitioning on generated leaf nodes.

Sort-Partitioning is the crucial step in the algorithm for
bulk-loading indexes and generating histograms. The first
step uses SFC to sort the data. The second step partitions
the sorted sequence of rectangles in optimal way according
to a cost function C. Note that our approach is a heuris-
tic and rely on the specific sorting order. The difference
between loading indexes and generating histograms is that
histograms do not require a recursive processing.

4.1 Details of Sort-Partitioning
In the following, we review the problem of optimal parti-

tioning of a sorted set of rectangles r1, . . . , rN according to a
cost function C. Every bucket corresponds to a contiguous
subsequence pi,j = ri, . . . , rj such that b ≤ j − i+ 1 ≤ B is
satisfied. A valid partition P consists of the subsequences
pi,j such that each rectangle belongs to exactly one of them.
Let SN denote the set of all valid partitions and let SN,m

be the partitions that consist of exactly m buckets, where
N/b ≤ m ≤ N/B is satisfied. While the standard sort-based
bulk-loading strategy stores Θ(B) rectangles per page (to
guarantee that the minimum fan-out is Θ(B)), we do not
require such a strict lower bound in the histogram buckets.
This increases the flexibility to optimize the partition accord-
ing to a given cost function. Let MBR(p) be the bounding
box of a contiguous sequence p of rectangles. The basic cost
function is equal to the sum of volumes of MBR. We refer
to this function as CV .

Figure 2 depicts two possible partitioning with different
CV . Data rectangles are processed according to Hilbert-
Curve with b = 2, B = 4 and m = 4. The center point
of rectangle is used for mapping to the Hilbert key. The
partitioning on the right has lower CV costs than the parti-
tioning on the left.

This cost function can be extended to another cost func-
tion CQP according to the R-tree cost model, if the average
size of queries is known in advance.
CQP =

∑
p∈S area

+(MBR(p), QP ) be the sum of areas ex-
tended by the average side length of the queries. More for-
mally, area+(r,QP ) = (dx + sx) · (dy + sy) for a rectangle
r = (cx, cy, dx, dy).

While we have different options for cost functions, we use
C(S) to denote to one of them. We consider the following
optimization problems:

1. Storage-bounded partitioning: Compute a parti-
tion Smopt ∈ SN,m that minimizes the cost function
for the set {MBR(p)|p ∈ S, S ∈ SN,m}.

2. Bounded partitioning: Compute a partition Sopt ∈
SN that minimizes the cost function for the set
{MBR(p)|p ∈ S, S ∈ SN}.

Storage-bounded partitioning allows to choose the desired
storage utilization in advance by setting m, while the num-
ber of buckets for a bounded-partitioning only satisfiesN/B ≤
m ≤ N/b. The first method is very appealing for histograms
as generally a space budget is given. Bounding partitioning
is interesting for generating optimal R-trees for a cost func-
tion C that consist of a sum of positive summands, each
corresponds to the partial cost of a rectangle. This allows
for the design of efficient algorithms to compute the opti-
mum for both partitioning problems. The basic idea is to
use the paradigm of dynamic programming in a similar way
as it has been applied to computing optimal one-dimensional
histograms [9].

For partitioning the first i rectangles into k contiguous
sequences, the computation of the minimum cost opt∗(i, k)
can be expressed by the following recursion:

opt∗(i, k) = min
b≤j≤B

{opt∗(i− j, k − 1) + C(pi−j+1,i)} (1)

In general, the opt∗(i, k) function corresponds to the opti-
mal one-dimensional histograms computation proposed by
[9] if we use set b = 1 and B = N − m − 1. In order to
compute opt∗(N,m), we apply the recursive formula for all
1 ≤ i ≤ N and 1 ≤ k ≤ m, in increasing order of k, and
for any fixed k, in increasing order of i. We store all com-
puted values of the opt∗(i, k) in a table (see Alg. 2). Thus,
when a new opt∗(i′, k′) is calculated using Equation 1, any
opt∗(i, k) that may be needed can be read from the table.
After computation of the optimal cost, we can read the con-
tiguous sequences of the input rectangles out from the dy-
namic programming table. From this procedure, we obtain
the following result.

Theorem 1. The optimal partition SN,m of N rectangles
into m buckets, each of them containing between b and B
contiguous rectangles, can be computed in O(N ·m ·B) time
and O(N ·m) space.

Next, let us consider the problem of bounded partitioning
without user-defined storage utilization. At first glance, the
problem appears to be harder because the solution space is
larger. However, the opposite is true because the parame-
ter m has no effect on the optimal solution anymore. This
results in the following simplified recursion:

gopt∗(i) = min
b≤j≤B

{gopt∗(i− j) + C(pi−j+1,i)} (2)

In order to compute gopt∗(N), we compute the recursive
formula for all 1 ≤ i ≤ N in increasing order of i. We store
all computed values of the gopt∗(i) in a table (see Alg. 2).

Thus, when a new gopt∗(́i) is calculated using Equation 2,
any opt∗(i) that may be needed can be read from the table.
As in case opt∗ we obtain the result sequence from the table.
Thus,

Theorem 2. The optimal partition SN of N rectangles
into buckets, each of them containing between b and B con-
tiguous rectangles, can be computed in O(N · B) time and
O(N) space.



Algorithm 1: opt∗(i, k)

Input: N rectangles, C cost function, m, b, B
Output: cost[1 . . . N ][1 . . .m] cost array

allocate cost array, and initialize for one node;
cost[ ][ ] ;
for i = b to B do

cost[i][1] = C(1, i);

compute best costs for m nodes starting from 2 ;
for y = 2 to m do

assignment to y pages ;
for x = y · b to min (y ·B,N) do

s[b . . . B] = 0;
max number of entries per node;
maxB = (x−B > 0)?B : x−B + 1 ;
for l = b to maxB do

s[l] = cost[x− l][y − 1] + C(x− l, l);
cost[x][y] = min(s);

return cost[ ][ ];

The result of Theorem 2 shows that loading the optimal
leaf level of an R-tree is possible in as little as linear time.
The required CPU-time of the method is much lower com-
pared to the optimal solution of storage-bounded loading.

In the following, we give some details that should be taken
into account in case of processing a large set of rectangles.
Because of the quadratic space required for computing opt∗,
it is unlikely that the whole intermediate data sets can be
processed in memory. In this case, the data set is processed
as follows: we cut the data in sufficient big equi-sized chunks,
which can be processed in memory and apply opt∗ on each of
them independently. In our experiments, we observed that
B2 (where B is equal the number of rectangles in a page)
is already sufficient to produce a nearly optimal histogram.
For the computation of gopt∗, the same strategy can be ap-
plied. However, since only the last B entires are required
by gopt∗, a buffer of B entries is sufficient for processing.
If necessary, the partitioning information can be written to
external storage. Hence, the overall I/O time is dominated
by external sorting.

Algorithm 2: gopt∗(i)

Input: N rectangles, C cost function, b, B
Output: cost[1 . . . N ] cost array

cost[ ] allocate cost array, precompute costs for 1 to B
elements ;
for t = 2b to N do

cost[t]←∞, R[ ]← precompute MBRs for t-B to
t-b ;
for l = B to b do

compute cost for last b to B elements if t-l > b;
cp ← compute MBR costs C(R[l − b]);
cp ← cost[t− l] + cp ;
if cp < cost[t] then

cost[t] = cp;

return cost[ ];

4.2 R-tree Histogram
The histogram Hv of our framework is constructed as fol-

lows:
Micro-Clustering Step:(we use the same terminology

as in [2]) First, the leaf pages of an R-tree are generated
using bounded partitioning gopt∗. The following parameter
are applied: space-filling curve, bucket capacity parameters
b and B and cost function C. As a default, we use the Hilbert
ordering and the default cost function CV (minimizing the
volume of the bounding boxes). The parameters B and b of
the initial step are adjusted to the system physical page size.
Additionally, we compute values needed for estimation such
as number of elements per leaf, average extents length dx, dy
of rectangles inside the leaf (in case of rectangles data) and
a sum of their volumes.

Histogram-Generation Step: This step has only one
parameter number of buckets m. We apply storage-bounded
partitioning opt∗ to generate the final m buckets of his-
togram Hv on the leaf pages (buckets) produced from the
first step. The minimal and maximal bucket capacity b
and B are depending on parameter m. Therefore, only pa-
rameter m has to be set by the user. We compute values
ni, dx

i
avg, dy

i
avg, si based on the information provided from

the first step (in case of point data si is obtained based on
leafs MBR). If there is not enough memory to apply storage-
bounded partitioning, we first generate chunks of equal size
and apply opt∗ to every chunk.

We process the Micro-Clustering step for the following
reasons: first, it reduces the time complexity of the final
histogram construction. Second, the histogram is generated
simultaneously with R-tree index. Third, it can be imple-
mented within same bulk-loading routine.

Since m is an only user parameter for the Histogram-
Generation step, the processing time depends also on bucket
capacity values b,B for opt∗ algorithm. In particular, the in-
ner loop execution time of opt∗ (see Alg. 1) algorithm is
defined by B − b value. Let N1 be a number of leaf pages
generated by the Micro-Clustering step. Let us consider two
extreme cases: fixed sized partitioning b = B = N1/m and
setting b = 1, B = N1 −m− 1 (this corresponds to the orig-
inal method proposed in [9]). The first setting can be pro-
cessed in linear time with no quality guarantee. The second
needs O(N2

1 ·m) steps to find a minimal cost partitioning.
Since there is the general trade-off between quality and

time complexity, we set the bucket capacity parameter b
and B for the Histogram-Generation Step as follows: N1/m
is the average number of pages referenced by a bucket for
m-bucket histogram. Then we set b = max(bN1/2mc , 1),
B = dN1/me+ b. Thus, the inner loop has time complexity
O(N1/m) and allows some degree of freedom to find a better
partitioning according to the cost function.

5. EXPERIMENTS
In this section, we present summarized results obtained

from a set of experiments under different query workloads.
First, we describe the underlying query models, and then we
provide details about our data sets and query files. Finally,
we present a detailed discussion of the results.

5.1 Query Models
For experimental settings we followed a methodology for

generating workloads based on query models originally pro-
posed in [14] for the design of multidimensional index struc-



tures. The authors classified range queries according to the
indicators aspect ratio, location and size. The query size is
defined by either area (relative to the entire data space) or
the number of qualified objects. Query location can follow
either a uniform distribution or the distribution of the under-
lying data. The aspect ratio equals the width-to-height ratio
of the query rectangle, which we assume to be 1 (quadratic
windows) in the following. This yields in four different query
models:

• M1: size = area, location = uniform distribution,

• M2: size = area, location = data distribution,

• M3: size = number of answers, location = uniform
distribution,

• M4: size = number of answers, location = data distri-
bution.

5.1.1 Data and Query Sets
In our experiments, we adapted the test framework devel-

oped for RR*-tree evaluation [3]. The framework consists
of 28 different data sets, either points or rectangles, that
belong to eight groups abs, bit, dia, par, ped, pha, uni, rea.
Each of the first seven groups contain three artificially gener-
ated data sets with 2,3, and 9-dimensional data following the
same distribution in each dimension. Each of the artificial
data sets contains at least 1 million objects from [0, 1]d. For
example, the group uni consists of 3 files of 1’000’000 two-
, three- and nine-dimensional uniformly distributed points.
We give a brief overview about the data sets; 2-dimensional
data sets can be roughly grouped in two groups point sets
and rectangular sets. Data set abs consists of equal sized
squares generated from equidistant distribution. Data set
bit is a point distribution generated according the power
low and closely related to Zipf-distribution. Data set dia
consists of rectangles distributed along the main diagonal.
Data set par represents a rectangular distribution with a
high variance of the size and the shape of rectangles. ped is
a point distribution of a thin stripped clusters obtained from
a data set par. Data set pha is a set of a ellipse shaped clus-
ters of points generated from data set par. Data set uni is
a uniform point distribution. The eighth group rea contains
seven real data sets with 2,3,5,9,16,22, and 26 dimensions, re-
spectively. For example, the 2-dimensional data set consists
of 1’888’012 bounding boxes of streets of California. The
3-dimensional data set is contains 11’958’999 points from a
biological application. The data sources as well as a full
description of the data sets are available from [3].

We present in this paper only the results of the 2- and 3-
dimensional data sets. According to query modelsM1, . . . ,M4,
we generated two workloads for each data set and each query
model. Two query sets are generated from model M1. The
first one consists of 10’000 uniformly distributed quadratic
query rectangles with average volume V = 0.01% (so that
under uniform distribution approximatly 100 objects qualify
for a data set with 1′000′000 objects). The side length of the

rectangles are uniformly distributed in range
[
1
2
V 1/d, 3

2
V 1/d

]
.

The second query set is generated in the same way with an
average volume of 0.1% and consists of 3’164 query rectan-
gles.

The location of the queries from model M2 follow the un-
derlying data distribution. Again the average volume of the

Cost Func. Description

CV volume of MBR
CQP CV extended by avg. query side lengths
CRK k-Uniformity metric
CSK spatial skew of MBR
Histograms Description

MinSkew minSkew, fixed grid
MinSkewProg minSkew, prog. refinement
rkHist rK-Hist with α = 0.1
R-tree fixed sized partitioning, Hilbert Curve
R-V CV , Hilbert Curve
R-VQP CQP , Hilbert Curve
R-RK CRK , Hilbert Curve
R-SK CSK , Hilbert Curve
FST STHist forest

Table 1: Studied Methods

query sets were set to 0.01% and 0.1%, respectively. For
the production of queries of model M3 we first generated
uniformaly distributed points and used them for issuing k-
nearest neighbor queries with the maximum norm L∞. The
bounding boxes of these k-NN queries, k = 100 and k =
1’000, are used for two sets of window queries with 100 and
1’000 answers per query, respectively. For model M4, we
used the underlying data distribution for producing the ref-
erence points for the nearest neighbor queries. Thus, the
location of the window queries also follows the data distri-
bution. Again two query sets are generated with 100 and
1’000 answers per query.

5.2 Studied Methods
In our experiments, we study the performance of different

histograms. As a reference method we used MinSkew. His-
tograms produced by MinSkew perform well [7, 1, 16]. We
implemented both MinSkew with fixed grid and progressive
refinement strategy respectively, as described in [1]. We re-
fer to the first as MinSkew and the second as MinSkewProg.
For each data and query set we always used the best parame-
ter setting for the grid size. For d=2, we used a grid with 214

cells. This was the the best setting according to accuracy
and build-up time in our experiments. For a MinSkewProg
we used four grids with 214, 212, 210, 28 cells; again this was
the best setting. For d=3, we used 215 cells for MinSkew and
four grids with 215, 212, 29, 26 cells for MinSkewProg. Other
examined methods are listed in Table 1.

5.2.1 R-tree Methods
Methods with prefix R (R-V, R-VQP, R-RK, R-SK) are

derived from R-trees and our Sort-Partition algorithms. For
R-tree methods we set B = 100 and b = 40 for d = 2 and
B = 72 and b = 28 for d = 3. Recall that B denotes the leaf
capacity and b the minimum leaf occupation. Leaf nodes are
generated using gopt∗ algorithm. In general, this results in
more buckets than m (the desired number of buckets). In
a second step, we apply opt∗ to the leaf bounding boxes to
yield exactly m buckets. The chunk size was set to 20’000
rectangles; larger chunk sizes did not yield significantly bet-
ter histograms. The methods R-V, R-VQP, R-RK, R-SK
only differ in their cost function used in gopt∗ and opt∗ (see
Table 1). For example, CV refers to the cost function mini-
mizing the volume of the bounding boxes. Additionally, we



Figure 3: k-Uniformity metric and spatial skew of
MBR

implemented rKHist as described in [5] using an underflow
rate with α = 0.1 (again this was the best setting in our
experiments).

We also studied the quality of other cost functions (R-RK,
R-SK). CRK is a k-Uniformity metric proposed in [5]. CSK

minimizes the skew within a bucket. For a detailed descrip-
tion, see [5, 1]. Figure 3 illustrates how these functions are
computed. The left figure shows a bucket region with five
rectangles.

The k-Uniformity function CRK is based on a rectangular
subdivision of a bucket region. The last is built using the as-
sociated point objects [5]. For rectangles we only considered
their centers. This subdivision is computed in kd-tree man-
ner. This representation is constructed using the recursive
binary splits of a point set. Each dimension of the rectan-
gular bucket split into two in a round-robin fashion. The
median is used as the spit point, see center plot of Figure
3. The CRK returns the standard deviation of areas of the
resulting rectangles. Note that, the processing cost for a
bucket with n elements is O(n logn). This is a drawback in
comparison to other cost functions discussed above.

The function CSK is based on a regular grid[1]. First, the
regular grid is computed for a bucket region (see left side of
Figure 3). Then, the frequency of objects intersecting a cell
is computed for each cell (see right side of Figure 3). The
function then returns the standard squared error (SSE) of
frequencies. The drawback of the last method is that the
grid resolution has to be set as an additional parameter.

We also implemented STHist method [16]. We call it FST,
because we used the so-called forest-strategy. The build-up
cost for FST is very high, particularly for data sets with
skewed data distributions. For example, the build-up time
was a factor 100 higher for the rea data set than for other
methods, due to its O(n2) runtime. In order to conduct
all the experiments for FST, we applied FST to a random
sample of 10%.

5.2.2 Space Allocation
Recall that each bucket hi maintains the MBR and the

following statistical values: ni, dx
i
avg, dy

i
avg, si. Let w be a

size of machine word in bytes. Thus, storage amount of a
bucket is d · w + 2 · w + d · 2 · w (d · w bytes are average
length information, 2 ·w byte for number of objects and spa-
tial density and d · 2 · w for MBR). This storage scheme is
also used in the original MinSkew approach [1]. It is possi-
ble to save storage for MinSkew bucket MBR. Because the
MinSkew histogram can be stored as a kd-tree. We assume
that the leaf node of kd-tree stores statistical information.
We implemented MinSkew using a grid with resolution of
power 2. For 2dk cells we need log k bits to decode the split
position. Additionally we store information about the split
dimension dlog de bits and one bit to decode whether a node
is a leaf [6].

Thus, for d=2 and d=3, the MinSkew Histogram can keep

Method Time ms std.

MinSkew 34089 6781
MinSkewProg 24648 3504
rKHist 23950 2408
R-V 27434 685
FST 41321 56370

Table 2: Build time d=2 data sets for 1’000 buckets

almost twice as many buckets as R-tree histograms. This is
reflected in our experiments. If an R-tree histogram consists
of m buckets, we allow MinSkew to use 2 ·m buckets. In our
experiments, space allocation is expressed by the number of
buckets m for R-tree Histogram.

All methods are implemented within the XXL-java library
1. The experiments are conducted with a 64 bit Intel i7-2600
(2 x 3.4 Ghz), 8 Gb memory machine running Windows
7. For external sort we used 10 MB memory buffer. We
examined histograms with m = 500, 1000, 2000, 3000, 4000
and m = 5000 buckets. Note that previous experiments
considered only a small number of buckets. Due to large
main memories available, we see the necessity to investigate
large histograms.

5.2.3 Error Metrics
Performance quality of the proposed methods was evalu-

ated using different error metrics. We use workload error
Ew as default metric. Ew is defined as follows:

Ew =
∑
i

|acti − esti| /
∑
i

acti

Here, acti is the actual number of answers of the i-th query,
and esti is the estimated number. Note that this measure
is commonly used in other experiments [1]. We also consid-
ered the average absolute error Eabs = |acti − esti| and the

average relative error Erel = |acti−esti|
max(1,acti)

(as in [16]). They

are considered for workloads derived from models M3 and
M4, because all queries offer the same selectivity.

5.2.4 Build and Estimation Time
All methods except FST were able to build a 1’000 bucket

histogram for 1’000’000 data objects for all data sets in less
than 1 minute. Average build time in milliseconds is given
in table 2 for d=2 data sets for 1’000 bucket histograms.
The cardinality of the data sets was limited to 1’000’000 ob-
jects. The column std. shows the standard deviation. In
general, the rKHist and R-V method are less sensitive to a
data distribution compared to MinSkew and MinSkewProg
counterparts. Recall that we construct FST histogram us-
ing random sampling of 10%. The FST method is very sen-
sitive to data distribution, especially for non-uniform data
sets. The build time for a rKhist and R-V method was dom-
inated by external sort. The MinSkew and MinSkewProg
were CPU dominated.

The estimation time may become an issue if the number
of histogram buckets is too high. The resulting histogram
in a simple variant is represented as an array of buckets. To
decrease the estimation time, histograms can be represented
as main memory R-trees. Figure 4 depicts the function of
bucket size and total workload time for different representa-

1http://xxl.googlecode.com



Figure 4: Total estimation time as a function of his-
togram size for the California data and M4 query
set

Figure 5: Function of Ew and capacity parameter
b = {1, 8, 15, 23} and B for the Histogram-Generation
Step (California data, M4)

tion of a histogram. The first two are R-trees. The third one
is an array of buckets. For R-tree, we used main memory
setting and set the fan-out to 12 entries per node (again it
was the best setting in our experiments). Additionally, we
build an R-tree using histogram buckets with a opt∗ parti-
tioning method and CV as a cost function. We constructed
histograms on California data set and measured the overall
estimation time of 10’000 queries from M4 query set with
selectivity 100. We observed that if the bucket number ex-
ceeds 100, the R-tree organization displays better results.

5.2.5 Impact of Bucket Capacity Parameter
The bucket capacity parameters b = b = max(bN1/2mc , 1),

B = dN1/me + b in Histogram-Generation step are set de-
pending on desired bucket number m. We examine param-
eter sensitivity to show that this setting displays a good ac-
curacy. For each data set we run opt∗ with different bucket
capacities. Figure 5 shows four opt∗ configurations applied
on leaf nodes of the California data set generated after the
Micro-Clustering. There are N1 = 30′398 leaf nodes gen-
erated from 1’888’012 rectangles. We then generate his-
tograms for m = 1′000. On average, histogram buckets have
capacities about bN1/mc = 30 leafs. For each fixed b, we
computed a Ew under query model M4 with selectivity 100
as a function of parameter B. The values b = 15, B = 46
exhibit a good performance. We observed that increasing
the parameter B does not lead to better histograms espe-
cially for a non-uniform data sets. In general, high B − b
values do not significantly improve histogram quality and
even increase time complexity. In contrast, small B − b val-
ues exhibit poor results for uniform and near-uniform data
distributions.

5.3 Experimental Results
In this section we present a detailed discussion about ac-

curacies of different histograms. First we describe general
trends observed in our experiments. Further, we discuss re-
sults obtained for small sized queries (d=2,3). We focus on
M4 workload. Subsequently, we report results for large sized
queries. For the sake of brevity, we only present results of

Figure 6: Ew for rectangular data and query set M4

rKHist, R-V, MinSkew and MinSkewProg. Other method
accuracies are presented if necessary.

We observed several trends: first, although R-tree meth-
ods are build based on a M1 model, they exhibit also good
estimation results for other query workloads.

Second, R-tree based methods yield better accuracies for
non-uniform data distributions than MinSkew and MinSkew-
Prog for all data and query workloads. Their selectivity ac-
curacies increase more significantly with an increasing num-
ber of buckets than for MinSkew and MinsSkewProg. We
also observed that with increased number of buckets, the
quality of MinSkew improves marginally (as reported in [1]).
In contrast, the quality of MinSkewProg increases more sig-
nificantly. Using several different grid resolutions prevents
MinSkewProg from allocating many buckets in a single highly
skewed cluster, since the number of buckets produced per
grid is equally balanced[1]. For a large number of buckets,
MinSkewProg is the better choice than MinSkew.

Third, the general deficiency of R-tree methods for uni-
form and near-uniform data distribution is corrected using
our proposed partitioning methods. This can be explained
by the fact that the produced MBRs display almost no over-
lap, thus, this partitioning minimizes the estimation error.

5.3.1 Workload M4

In this section, we present result for query model M4

(query follow data distribution and query size is expressed
by the number of results). Since the workload M4 is more re-
alistic and more difficult to handle, we report results for this
model. Results for other models are discussed if necessary.

Figure 6 and 7 show results of rKhist, R-V, MinSkew and
MinSkewProg for a d=2 data sets and query workload M4

with selectivity 100. We bundle results for rectangular data
sets in Figure 6 and for point data in Figure 7. Best results
are achieved on ped data set. This data set consists of thin
shaped clusters of points. Minimizing the MBR volume us-
ing dynamic programming scheme leads also to a thin shapes
of MBRs, thus minimizing the estimation error. The rKHist
method as well as the simple R-tree method (fixed size parti-
tioning) have problems with uniform and near-uniform data
sets. The rKHist greedy split strategy does not lead to



Figure 7: Ew for point data and query set M4

Figure 8: Ew for d=3 data set rea and query set M4

a partitioning with small overlap introducing high estima-
tion error. In contrast, R-V method yields better parti-
tioning and its accuracy is comparable with MinSkew and
MinSkewProg accuracies. R-V and rKHist perform better
for non-uniform data sets bit, dia, par, ped and rea than
MinSkew and MinSkewProg with increasing number of buck-
ets. For par data set, we observed almost no difference be-
tween rKHist and R-V method. This data set has a high
variance in shapes and sizes of rectangles and is difficult to
handle either by R-tree histogram and index.

Figure 9 depicts results of R-tree methods compared with
a fixed size partitioning strategy (R-tree) for d=2 point
data. In general, we observed that all methods using our
optimized sort-partition framework display better accuracy
than R-tree. Estimation accuracies of R-V, R-VQP, R-RK
and R-SK do not differ significantly for non-uniform data
distributions. However, CV function exhibit better results
for uniform data sets than other cost functions.

For d=3 we obtain similar results as for d=2 for all data
and query sets. In general, estimation quality are slightly
better for non-uniform data sets than for d=2. Figure 8
reports results for d=3 rea data set.

In Figure 10, we report the Ew for FST method compared
with R-V and MinSkewProg for rea data set. FST Perfor-
mance was very poor for all data and query sets, as we used
random sampling for input data. Although applying this
method on whole data set does not display better results
than rKHist, R-V and MinSkewProg methods.

5.3.2 Results for Large Queries
Figure 11 shows results for the California (rea) data set

Figure 9: Ew for point data and query set M4

Figure 10: Ew for d=2 data set rea and query model
M4

for all query workloads. For large queries R-tree based meth-
ods yield even better accuracy then MinSkew counterparts in
comparison with small sized queries. Similar to small sized
queries best result are achieved for non-uniform data sets.
rKHist performs for two uniform uni, abs sets very poor
in comparison with R-V, MinSkew and MinSkewProg. Al-
though for large queries on the California data set accuracy
difference between rKHist and R-V was not that significant,
with a high number of buckets R-V method was superior to
other methods. Best results for R-V we achieve for synthetic
data setsabs, bit, dia, ped, pha. Again results for par data set
are comparable with a small sized query results. One possi-
ble solution is to partition such data distribution according
to the object size and shape and construct histograms or
index for each partition independently.

6. CONCLUSIONS
Spatial histograms are becoming increasingly important

for modern GIS applications. They provide a first inexpen-
sive view on large spatial data sets; and therefore are ideally
suited for visualization and approximate query processing.
In this paper, we introduce a novel histogram method de-
rived from a bulk-loading algorithm of R-trees. It largely
eliminates the cumbersome need for setting parameters; the
only ones (page capacity B and minimum occupation b) are
set in the same manner as it is known for R-trees. In general,
our histogram method is fairly easy to implement because
it combines elementary building blocks like sorting and dy-
namic programming. Our method also overcomes the weak
performance of R-tree histograms in case of uniformly dis-



Figure 11: Ew for the California data set; M1,M2

with volume 0.1 and M3,M4 with selectivity 1000

tributed records. Until now, it has been considered to be
an open problem whether accurate R-tree histograms can
be developed for uniformly distributed data. For real data
sets that are known to be highly non-uniform our method
generates histograms of high quality, generally much better
than the ones generated by other methods.

This paper also introduces a new kind of experimental
setup for spatial histograms. Inspired by cost models for spa-
tial indexes, we consider different kind of workload scenarios
rather than putting the focus only on uniformly distributed
queries. This gives a more meaningful interpretation of the
advantages and disadvantages of spatial histograms. In ad-
dition, we also examine the performance of histograms with
a rather large number of buckets. Despite the fact of the
availability of large main memories, there have been only
a very few results available for histograms with more than
1000 buckets. In fact, our experiments reveal that not all of
the state-of-the-art histograms can improve quality with an
increasing number of buckets.

While our focus is on two- and three-dimensional data,
we are currently interested in the design of histograms for
high-dimensional data. Similar to our design of accurate spa-
tial histograms, we expect that the design principles of high-
dimensional indexing can be reused again for high-dimensional
histograms.
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