
Sort-based Query-adaptive Loading of R-trees

Technical Report

Daniar Achakeev
Department of Mathematics

and Computer Science
Phillips-Universität Marburg

Marburg, Germany
achakeye@mathematik.uni-

marburg.de

Bernhard Seeger
Department of Mathematics

and Computer Science
Phillips-Universität Marburg

Marburg, Germany
seeger@mathematik.uni-

marburg.de

Peter Widmayer
Institut für Theoretische

Informatik
ETH Zürich

Zürich, Switzerland
widmayer@inf.ethz.ch

ABSTRACT
Bulk-loading of R-trees has been an important problem in
academia and industry for more than twenty years. Current
algorithms create R-trees without any information about
the expected query profile. However, query profiles are ex-
tremely useful for the design of efficient indexes. In this pa-
per, we address this deficiency and present query-adaptive al-
gorithms for building R-trees optimally designed for a given
query profile. Since optimal R-tree loading is NP-hard (even
without tuning the structure to a query profile), we provide
efficient, easy to implement heuristics. Our sort-based algo-
rithms for query-adaptive loading consist of two steps: First,
sorting orders are identified resulting in better R-trees than
those obtained from standard space-filling curves. Second,
for a given sorting order, we propose a dynamic program-
ming algorithm for generating R-trees in linear runtime. Our
experimental results confirm that our algorithms generally
create significantly better R-trees than the ones obtained
from standard sort-based loading algorithms, even when the
query profile is unknown.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access methods

General Terms
Algorithms, Performance

Keywords
R-tree, Bulk-loading, Dynamic Programming, Z-Curve

1. INTRODUCTION
Index bulk-loading of very large data sets has been an im-
portant problem in database research. Loading is necessary
when an index has to be built up for the first time. Moreover,
clustered indexes also require periodical reload to reestablish
the clustering of records. It is well known that loading in-
dexes by inserting tuples one by one is less efficient than
specially designed bulk-algorithms that run with the same
complexity as external sorting. Bulk-loading is therefore
an interesting option for supporting updates on indexes by
buffering updates and reloading the index after the buffer is
sufficiently filled up.

While there is a standard approach for loading of B-trees,
many different techniques [14, 12, 11, 3, 18, 24, 17] were pro-

posed for multidimensional indexes like R-trees. For loading
R-trees, there is always a tradeoff between loading efficiency
and index quality, i.e., how efficient an R-tree can support
queries (and updates). Despite the large number of loading
strategies, none appear to be ideal:

First, current loading strategies for R-trees do not (similar
to B-trees) consider the query profile. Ignoring the query
profile has only a minor impact on the quality of B-trees, but
might result in poorly loaded R-trees. Consider the example
of two extreme query profiles for a two-dimensional data set:
One profile only contains partial exact match queries (pemq)
with an exact match in the first dimension, while the other
contains pemq with exact matches in the second dimension.
Note that the ideal R-tree would actually be a B+-tree on
the first and second dimension, respectively. All loading
algorithms for R-trees ignore the query profile and would
build the same R-tree although neither is designed for these
extreme cases.

Second, many of the sophisticated loading algorithms seem
to be quite complicated to implement. While these algo-
rithms create R-trees with excellent worst-case performance
(see [2]), integration into a system turns out to be quite dif-
ficult. It is therefore not surprising that less complex load-
ing algorithms for R-trees are used in commercial systems
like STR [18] and popular sort-based loading strategies [17].
However, the resulting R-trees are not optimized for specific
queries. So far, a theoretical foundation of these methods
does not exist.

In this paper, we revise the problem of loading R-trees. We
aim to design algorithms for query-adaptive loading R-trees
optimized in respect to a given query profile. Here, we focus
on sort-based techniques because of their conceptual simplic-
ity. This makes these techniques very appealing for commer-
cial systems where other approaches are difficult to use due
to their implementation complexity.

In this paper we:

1. Design a novel (sort-based) algorithm that takes the
underlying query profile into account.

2. Show NP-hardness of the optimal R-tree loading.

3. Propose algorithms based on dynamic programming
(DP) for generating optimal R-trees given a specific
sort order. One of them requires linear runtime and
space.

4. Present a new approach to determine sorting orders
that improve the index for non-square windows.

5. Demonstrate the practical performance of our algo-
rithms. Our resulting R-trees provide a better quality
than competitors, even in the case of unknown query
profile.

In Section 2, we provide a detailed discussion of related work
and the major differences to our work. In Section 3, 4 and 5,
our algorithmic framework is presented. We present first the
NP-hardness of the optimal R-tree loading problem and a
new sort-based heuristic before we discuss the computation
of appropriate sorting orders. An extensive experimental
evaluation on a standardized test framework is presented in
Section 6. Last but not least, we provide a conclusion and
an outlook to future work.

2. RELATED WORK
This section reviews previous bulk-loading methods for R-
trees under the assumptions that a set of N d-dimensional
rectangles is given and that the performance is measured by
the number of accesses to nodes of fixed size. Each of the
nodes is able to keep at most B rectangles. Note that B
decreases linear in d.

The most generic method for loading R-trees is to apply
standard insertion algorithms to each of the input rectan-
gles. The loading time is then O(N logB N), while the query
performance solely depends on the underlying insertion al-
gorithm. Insertion algorithms are designed in such a way
that a goal function should be optimized for a split. In [21,
17], a cost model was introduced revealing that the perime-
ter and the area are the two crucial performance indicators.
However, [6] shows that an optimal split of a node does not
lead to globally optimal R-trees. This cost model provides
the basis for our investigations.

Roussopoulos and Leifker [24] introduced the problem of
loading a R-tree from scratch and presented a sort-based
loading technique with complexity O(N

B
logM/B

N
B

), where
M denotes the available main memory. After sorting the
rectangles according to a one-dimensional criterion, an R-
tree can be built bottom-up like it is known from B+-trees.
Because the sorting order has a considerable impact on the
search efficiency, Kamel and Faloutsos [17] proposed a double-
transformation: first a rectangle is mapped to a multidimen-
sional point and then a space-filling curve like the Hilbert-
curve is used to generate a one-dimensional value. In order
to improve query performance, heuristics like the one pro-
posed in [13] can be used for local data reorganization.

STR [18] is also a sort-based loading algorithm that is con-
ceptually different from the simple sort-based algorithms
mentioned above. d different sort and partitioning phases
are used, one for each dimension. The partitions after the
last sort correspond to the leaf pages of the target R-tree.

The advantages of sort-based loading strategies are their
simplicity of implementation yet a good query performance.
Therefore, they are the only methods currently used in DBMS
and GIS. However none of these methods can guarantee the
quality of the generated R-tree regarding a cost model.

The Top-down Greedy Splitting(TGS) bulk-loading method
[14] constructs the tree in a top down manner by applying
cost-optimized binary splits in a greedy manner. The cost
function with the best experimental results [14] minimizes
the area of the bounding boxes. The partitioning is per-
formed by iterative binary steps where in each step multiple
sorting orders are examined to detect the split with mini-
mum area. In [2], it has been confirmed in experiments that
the average search performance of R-trees generated by TGS
are almost always better than the ones generated by other
loading methods. Only for artifical data sets with highly
varying aspect ratio, the priority R-tree has been superior
to TGS. A main disadvantage of TGS is its high loading
cost (due to the binary partitioning) that can be substan-
tially higher than the cost for external sorting. Due to its
binary steps, it is difficult to parallelize TGS in a scalable
manner. Other top-down partitioning techniques like Quick-
Load [11] avoid expensive binary partitioning steps, but the
design of an efficient parallel version is still an open problem.

Loading techniques based on buffer-trees [12, 3] can be con-
sidered as a hybrid of top-down and bottom-up strategies.
The basic idea is to delay insertions by temporarily storing
input rectangles in buffers attached to the nodes. If buffers
are filled up, the batch of insertions is reactivated and the
rectangles continue their traversal down to the leaves. In
order to achieve better search quality it is suggested using
a sort-based loading strategy for buffer emptying above the
leaves. While the loading efficiency is the same as for exter-
nal sorting, the underlying split algorithm (except for the
leaf level) determines the query performance.

The priority R-tree (PR-tree) [2] is the first loading method,
whose target R-trees provide worst-case guarantees for win-
dow queries, while the loading can be performed with the
same complexity as external sorting. It also has been shown
[2] that the practical performance of the PR-tree is also good
for two-dimensional data. However, in most cases it is not
as good as for the R-trees of TGS, which is the only cost-
model sensitive loading technique so far. In fact, the PR-
tree is not primarily designed for improving the average-case
performance according to a cost model and a query profile.
Moreover, its high implementation complexity might prevent
it from being considered in a real system.

The theoretical foundations of the loading problem has been
addressed in [22] where the NP-hardness of the bucket opti-
mization problem has been proven, but only for a specific ar-
tificial cost function that substantially differs from the ones
that are commonly used for R-trees [21, 17, 27]. This is con-
trary to our work where NP-hardness is shown for the cost
function [21, 17] minimizing the area of bounding boxes.

None of the previous methods have been designed for query-
adaptive loading of R-trees. Query-adaptive loading refers
to the problem of generating R-trees whose average perfor-
mance is minimized regarding a given static profile. This is

in contrast to adaptive indexing techniques like splay-trees
[25] and database cracking [15], which apply structure adap-
tations during runtime of the queries. Different adaptive
R-trees have been proposed in the literature [7, 26, 8], but
all of them require a mix of queries and insertions to obtain
the full benefits of adaptivity.

One of our approaches to query-adaptive loading relies on
space-filling curves (SFCs) to obtain an one-dimensional or-
dering of the rectangles and on an optimal assignment of
rectangles to pages. Most of the other approaches to us-
ing SFCs for sorting multidimensional data like [17] shuf-
fle the bits in a symmetric manner, which is most suitable
when every dimension provides the same selectivity. Oren-
stein and Merett presented a more flexible framework for
shuffling bits that allows the definition of different sorting
orders [20]. Based on their framework, we present shuffling
strategies that adapt to the underlying query profile. A the-
oretical foundation for generation of query-adaptive space-
filling curves was developed in [5], but without considering
the specific problem of bulk-loading. In addition to sort-
ing, we also address the problem of data partitioning over
a set of pages. The common packing strategy [17] to fill
up pages to the maximum leads to suboptimal query perfor-
mance. In contrast, our new partitioning strategy relies on
the dynamic programming framework used for generating
optimal histograms [16].

The dynamic programming scheme proposed in [16] is also
used in [28] for computing a set of k minimal bounding rect-
angles (MBR) from a 2-dimensional point set. The goal
was to reduce communication costs for mobile devices by ap-
proximating the spatial query result by a set of MBRs with
a minimal information loss fi. The authors showed that
computing such representations is NP-hard even for d=2.
One of their heuristics first sorts the query output using
the Hilbert order and then apply the partitioning method
of [16]. In contrast to bulk-loading, space constraints are
disregarded. In this work, we show that these constraints
allow for the design of more efficient algorithms.

3. QUERY-ADAPTIVE LOADING
3.1 Preliminaries
In this paper, we address the problem of R-tree loading for
a d-dimensional set of N rectangles {r1, . . . , rN}. R-trees
consist of pages with maximum capacity B and minimum
occupation b ≤ dB/2e. We consider the case d = 2, the
generalized case for d > 2 is only discussed when necessary.

For query-adaptive loading, we assume that a query pro-
file QP for range queries is given. QP provides a (statisti-
cal) model that is derived from a collection of representative
queries. For the sake of simplicity, we consider the query pro-
file for range queries that is given by the average size of the
range in each dimension. For d = 2, QP = (sx, sy), where
sx and sy is the average size of the range query in the first
and second dimension, respectively. We assume that queries,
more precisely their centers, are uniformly distributed in the
underlying domain. This assumption is obviously not satis-
fied in a real application. The standard approach to over-
come this deficiency is to use multidimensional histograms
and to maintain these parameters for each histogram cell

independently [1, 23]. This approach has already been used
successfully for the analysis of R-trees [27].

3.2 Basic Idea
For a given query profile QP = (sx, sy), our goal is to gen-
erate R-trees whose average number of leaf accesses is min-
imized for queries derived from QP , as they dominate the
overall cost for sufficiently large range queries. Moreover,
upper levels of the trees are often located in memory, while
leaf pages are generally not.

Our goal is to create optimal R-trees level by level, bottom-
up. However, as we show in Section 3, the problem of gener-
ating optimal R-trees is NP-hard and, therefore, sort-based
heuristics are examined traversing the following five steps:

1. Determination of Sort Order: For a given QP
determine a sort order that minimizes the cost.

2. Sorting: Sort the rectangles with respect to the de-
termined order.

3. Partitioning: Partition the sorted sequence into sub-
sequences of size between b and B and store each of
them in a page.

4. Generation of Index Entries: For each page, com-
pute the bounding box of its partitions and create the
corresponding index entry.

5. Recursion: If the total number of index entries is less
than B, store them in a newly allocated root. Oth-
erwise, start the algorithm with the generated index
entries (bounding boxes) from Step 4.

Step 2 and Step 4 are very similar to the traditional sort-
based loading of R-trees [24]. The crucial optimization oc-
curs in the first and third step. Step 1 computes a sort order
from the query profile. We exploit the fact that a space-
filling curve (SFC) does not require a symmetric treatment
of dimension, but allows more flexibility. As an example,
consider that only partial exact match queries orthogonal to
the x-axis should be supported. Thus, the sort order should
be only influenced by the x-value, which corresponds to a
SFC where all bits of the x-axis should precede the bits of
the y-axis. The problem we address in Section 5 is therefore
to compute the shuffle order from the query profile. In step
4, the rectangles are then assigned to pages such that the
capacity constraints of the R-tree are met. Filling up pages
to the maximum (or as generally suggested to a constant
degree) does not lead to R-trees optimized with respect to
the given query profile. High storage utilization is only use-
ful for fairly large queries, while the performance of smaller
queries suffer. In Section 4, we present a heuristic partition-
ing algorithm that is optimized according to the underlying
query profile. Both steps make use of a cost model that is
derived from our query profile. The cost model is presented
in detail in section 3.3.

3.3 Cost Model
Our work is based on cost models proposed by [17, 21]. As
given in [21], range queries are classified according to aspect
ratio, location and size. If the aspect ratio is set to 1:1, there

are two possibilities for each location and size property. For
location property, query rectangles follow either data or uni-
form distribution. The size of queries can be defined either
as area or number of objects. Combining these two proper-
ties results in 4 different range query models (WQM1−4 as
defined in [21]). The simplest WQM1 models the uniform
distribution of query rectangles with a equal area and aspect
ratio 1:1. In the following, we illustrate the case for d = 2.

Assume that the domain corresponds to the two-dimensional
unit square [0, 1)2. A rectangle ri = (cxi, cyi, dxi, dyi) is rep-
resented by its center (cxi, cyi) and its extension (dxi, dyi).
For a window query WQq,s given by its center q = (qx, qy)
and its extension s = (sx, sy), the probability of a rectangle
ri intersecting the window is (dxi + sx) · (dyi + sy). The
average number of rectangles intersecting the query window
is then given by:

N∑
i=1

(dxi + sx) · (dyi + sy) (1)

Note that for point queries with s = (0, 0), the equation com-
putes the sum of MBR volumes. We obtain the expected
number of leaf accesses, which is a typical performance in-
dicator for R-trees, by applying the formula to the set of
bounding boxes of the leaves.

4. OPTIMAL PARTITIONING
In this section, we show that the problem of partitioning a
set of rectangles R is NP-hard, given that each bucket pi
from partition Pb,B := p1, . . . , pn has b ≤ |pi| ≤ B rectan-
gles, so that for a given weight function w : pi → R+, the
sum of weights is minimized. Let MBB(p) be a minimal
bounding box of bucket p. According to the cost model, the
weight function w := area(MBB(p)) is an MBB(p)’s area.
Based on these results, we develop a heuristic approach that
optimally solves the partitioning problem for a given sorting
order and area(MBB(p)). The justification for a heuristic
approach lies in the NP-hardness of the problem.

Theorem 1. The problem of partitioning Pb,B for N given
rectangles that minimizes the sum of minimum bounding
boxes areas of the buckets is NP-hard.

To prove the theorem, it suffices to consider the special case
of B = 3, b = 2 (as b = dB/2e) and a 2-dimensional space.
The proof uses a polynomial time reduction from the ver-
sion of planar 3SAT [19, 28] in which for each variable, also
an edge can be embedded in the plain. The edge is suited
between the positive and the negative literal of a variable.
We start by turning a given planar embedding (that is, a
planar graph G) of a planar 3SAT formula into a rectangle
set. Roughly speaking, we create for each variable a gadget
of three rectangles that serves to select a truth value (item
1 below). For each clause, we create a rectangle (item 2).
For each edge in the planar 3SAT graph, we create a chain
of large and small rectangles that propagates the choice of
truth value (item 2). Whenever a literal appears in more
than one clause, we create a docker gadget to let the cho-
sen truth value propagate to all clauses in which it appears
(item 3). All gadgets use rectangles of two sizes, big and
small ones. For concreteness, a big rectangle can be 2 by 2
units, and a small 1 by 1.

Figure 1: Left: Variable and clause gadget; Right:
Edge chain gadget

1. For both the positive and the negative literal of each
variable, we create a big rectangle. We make both
rectangles of a variable appear almost next to each
other, with a single big rectangle (we call this a xor) in
between and touching them, positioned as in Fig. 1 left.
The existence of a connecting edge in G between both
literals makes sure we can put these three rectangles
next to each other, and nothing else interferes. For
each clause cj a big rectangle will be placed in the
plane at a location to be described.

2. For each edge in G between a literal li and a clause
cj (recall that this reflects that a literal appears in
a clause) an alternating sequence of one big and two
small rectangles will be placed to connect them (see
Fig. 1 right, rectangle borders are meant to touch and
be shared in all figures). It is important to note that
such a rectangle chain starts and ends with a pair of
small rectangles. Further, note that the chain can bend
so that it can follow any embedded 3SAT edge.

3. Whenever a literal is contained in more than one clause,
i.e. whenever more than one edge attaches to the
literal, then docker rectangles for these edges are at-
tached as is shown in Fig. 2 (”long” shaded rectangles).
Furthermore, the construction makes sure that edge
chains and clauses are spread nicely apart, so that in
particular none of them intersect a bounding box of a
variable gadget and these bounding boxes do not inter-
sect each other.

The number of rectangles in the construction can be made
polynomial in the 3SAT instance size with k variables and
m clauses. The decision version of the partitioning problem
now asks for a partition P2,3 with bound A on the sum of
bounding box areas that equals the sum of all rectangle areas
in the construction, plus a certain amount of ”unavoidable
wasted space” that arises because each xor-rectangle needs
to be boxed together with another rectangle (since b = 2),
and an adjacent literal is the only cost effective option. For
the concrete rectangle sizes above, the wasted space is 4
units per variable. Close inspection of the construction now
reveals that partitioning within the given bound is possible
if and only if the given formula is satisfiable. In more detail:

”⇒” If the given 3SAT-formula is satisfiable, we immediately
get a rectangle partition with total area A as follows, based
on a satisfying assignment:

1. We associate xi with xori if the satisfying assignment
sets xi to TRUE, and x̄i with xori otherwise.

2. We associate triples of rectangles in the edge chain gad-
get from each true literal towards its clause, i.e. until

Figure 2: Ripple effect with TRUE/FALSE assign-
ment. Shaded rectangles are dockers and serve to
branch from the variable to multiple clauses.

only two small rectangles remain next to the clause
rectangle. Each triple consists of two small rectan-
gles towards the literal and a big rectangle towards
the clause(see Fig. 2). For reasons of space, we do not
discuss dockers in detail in this proof sketch. In this
way, the clause rectangle is provided with two small
rectangles for boxing together without waste of area.

3. We associate each FALSE literal with its adjacent two
small rectangles in the chain, and continue along the
chain by associating triples of rectangles, with the big
rectangle towards the false literal and both small to-
wards the clause (Fig. 2). This leaves no pair of small
rectangles for associating with the clause rectangle, cor-
responding to the fact that the literal cannot make the
clause true. Note that we can assume that each literal
appears in some clause, because otherwise we could
just simplify the 3SAT formula accordingly.

4. The construction guarantees that at each clause, there
is at least one pair of small rectangles that can be
associated with the clause rectangle (since we started
from a satisfying assignment). We take an arbitrary
one of the pairs and associate it with the clause. Each
other such pair forms a box by itself.

This partition achieves area A because none of its bound-
ing boxes contains ”wasted space”, i.e., area with no input
rectangle, except for wasted space at each true literal.

”⇐” A close inspection of the construction reveals that area
A can be reached only if there exists a satisfying assignment
for the given 3SAT formula. In particular:

1. xori needs to be associated either with xi or x̄i. It
cannot stay alone, due to the lower bound b = 2, and
it cannot be packed together with both without ex-
ceeding the allowable wasted space. Whenever xori is
associated with li, we set li to true (and l̄i to false).

2. Along an edge chain, a FALSE literal needs both adja-
cent small rectangles, or else it would violate the lower
bound or create wasted space. This effect ripples along
the edge chain , ending with no pair of small rectan-
gles next to the clause and therefore it does not allow
the clause to be grouped without wasted space to it,
in line with the fact that the literal cannot make the
clause true.

3. We just mention that a docker propagates this ripple
effect or else it creates wasted space, without explain-
ing the details.

To summarize, the given planar 3SAT formula is satisfiable
if and only if we can partition the rectangle set with bound
A on the sum of areas.

4.1 Sorted Set Partitioning
In this section we consider the problem of query-adaptive
partitioning a sorted sequence r1, . . . , rN of rectangles such
that each bucket of the partition corresponds to a page of
the R-tree. This approach is a heuristic that is based on the
specific sorting order, since the computation of an optimal
partition is NP-hard for area(MBB(p)). Every bucket cor-
responds to a contiguous subsequence pi,j = ri, . . . , rj such
that b ≤ j − i + 1 ≤ B is satisfied. A valid partition P
consists of the subsequences pi,j such that each rectangle
belongs to exactly one of them. Let SN denote the set of all
valid partitions and let SN,m be the partitions that consist
of exactly m buckets. While the standard sort-based load-
ing strategy stores a fixed number of rectangles per page,
we do not require equal numbers of objects per pages in our
approach. This gives us flexibility to optimize the partition
according to a given query profile QP again. Let MBB(p)
be the bounding box of a contiguous sequence p of rectan-
gles. Based on the cost model (see Equation 1) we consider
the following optimization problems:

1. Storage-bounded Loading: Compute a partition
Smopt ∈ SN,m that minimizes the cost function for the
set {MBB(p)|p ∈ S, S ∈ SN,m}.

2. Query-optimal Loading: Compute a partition
Sopt ∈ SN that minimizes the cost function for the
set {MBB(p)|p ∈ S, S ∈ SN}.

Note that query-optimal loading results in better partition,
but the worst-case, storage utilization of the resulting R-
trees can be as low as b/B. Storage-optimal loading allows to
choose the desired storage utilization (N/(m·B)) in advance
by setting m.

Let QP = (sx, sy) be a given query profile and CQP (S) =∑
p∈S area+(MBB(p), QP) be the sum of areas extended

with average side length from query profile QP . More for-
mally, area+(r,QP) = (dx + sx) · (dy + sy) for a rectangle
r = (cx, cy, dx, dy). CQP (S) denotes denotes the cost of a
partition S ∈ SN for a given query profile QP . This func-
tion has a nice property that allows the design of an efficient
algorithm to compute the optimum. Consider a split of a
partition S into two arbitrary partitions Sl and Sr. Then,
the following property holds for our cost function:

CQP (S) = CQP (Sl) + CQP (Sr)

In particular, equality is satisfied for the optimal partition
Sopt. Note that, Sl and Sr must also be optimal partitions of
their associated rectangles. In fact, this observation allows
us to use the paradigm of dynamic programming in a similar
way as for computing optimal histograms [16, 28]. For the
first i rectangles and k contiguous sequences, computation

of the minimum cost opt∗(i, k) is geiven by the following
recursion:

opt∗(i, k) = min
b≤j≤B

{opt∗(i− j, k − 1) + CQP (pi−j+1,i)}

(2)
In order to compute opt∗(N,m), we apply the recursive for-
mula for all 1 ≤ i ≤ N and 1 ≤ k ≤ m, in increasing order of
k, and for any fixed k in increasing order of i. We store all
computed values of opt∗(i, k) in a table. Thus, when a new
opt∗(i′, k′) is calculated using Equation 2, any opt∗(i, k) that
may be needed can be read from the table. After computing
the optimal cost, we can read out the contiguous sequences
of the input rectangles from the dynamic programming table.
Thus, the following theorem holds:

Theorem 2. The optimal partition SN,m of N rectangles
into m buckets, each of them containing between b and B
contiguous rectangles, can be computed in O(N2 · B) time
and O(N ·m) space.

Next, we consider query-optimal loading, the problem of
computing the optimal partition without user-defined stor-
age utilization. At first glance, the problem appears to be
harder because the solution space is larger. However, the
opposite is true because the parameter m has no effect on
the optimal solution anymore. This results in the following
simplified recursion:

gopt∗(i) = min
b≤j≤B

{gopt∗(i− j) + CQP (pi−j+1,i)} (3)

In order to compute gopt∗(N), we compute the recursive
formula for all 1 ≤ i ≤ N in increasing order of i. We
store all computed values of gopt∗(i) in a table. Thus, when

a new gopt∗(́i) is calculated using Equation 3, any opt∗(i)
that may be needed can be read from the table. As in the
case for opt∗, we obtain the result sequences from the table.
Thus, the following theorem holds:

Theorem 3. The optimal partition SN of N rectangles
into buckets, each of them containing between b and B con-
tiguous rectangles, can be computed in O(N · B) time and
O(N) space.

Theorem 3 shows that optimal loading is possible in as lit-
tle as linear time. The required CPU-time is much lower
compared to the optimal solution of space-bounded loading.
Note that storage utilization of R-trees generated by query-
optimal loading largely depends on the underlying query pro-
file. If the query size is large, the optimal partitioning also
causes high storage utilization.

Note, that opt∗ and gopt∗ compute only the best partition
for a given sequence for one level at time. To build an opti-
mal R-tree that include all levels, we can generalize gopt∗ for
k−levels. As for gopt we compute the best partitioning for
subsequences of size Θ(Bl) for levels l = 1, To limit the
processing time, we adapt the approach known from weight
balanced B-trees[4]. We define parameter a as a branching
parameter. Let b = 1/3B, a = 1/4B and l = 1 . . . then

following function computes partitioning: if l > 0

g∗(i, j, l) = min
1
3
Bal≤k≤ 4

3
Bal
{g∗(i, j − k, l)+

g∗(j − k + 1, j, l − 1) + CQP (pj−k+1,j) }

else

g∗(i, j, 0) = min
1
3
B≤k≤B

{g∗(i, j − k, 0) + CQP (pj−k+1,j)}

As for gopt∗ and opt∗ we use a table to hold intermediate
costs. Thus, the following theorem holds:

Theorem 4. The optimal weight-balanced R-tree with ca-
pacity parameters B, b and branching parameter a = 1

4
B

can be computed from a sorted sequence of rectangles in
O(N3 · 1

4
B2 · (1

4
)logB(N)) time and O(N2 · logB(N)) space.

As a result, a subtree on level l > 0 holds
[
1
3
B(B

4
)l, 4

3
B(B

4
)l
]

elements in its leaf nodes and
[
B
16
, B
]

entries per index node.
However, we need at least a quadratic space and time for a
computation , since all possible subsequences should be con-
sidered. Consequently, the solution is not practical anymore.
In our experiments we observed only a marginal improve-
ment in comparison to gopt∗, since only a small subset of a
data can be processed efficiently at time.

4.2 Practical Considerations
In the following, we provide some useful informations for
processing a large set of rectangles. Because computing opt∗

requires quadratic space,it is unlikely that the whole inter-
mediate data sets can be processed in memory. In this case,
the data set is processed as follows: we cut the data in suffi-
cient big equi-sized chunks and apply opt∗ on each of them
independently. In our experiments, we observed that B2

(where B is equal the number of rectangles in a page) is suf-
ficient to obtain near-optimal results. For the computation
of gopt∗, the same strategy can be applied. However, since
only the last B entires are required by gopt∗, a buffer of B
entries is sufficient for processing.

After the first level has been constructed, the index entries
of the next level can be re-sorted again. However, we no-
ticed that for a given query profile, the produced sequence
of MBRs already preserves the order of the input rectangles
so that we skip the extra sorting step to reduce the total
build-up time.

5. OPTIMIZATION OF SORT ORDER
The quality of our partitioning algorithms depends on the
chosen sorting order. Our experiments show that traditional
Hilbert and Z-Curve perform very well in combination with
the proposed partitioning for square query rectangles. In
this section we provide an algorithm for determining the sort-
ing order of our bulk-loading framework for the cases where
the average query shape is non-square. The sorting order is
defined by a SFC whose input corresponds to an appropriate
shuffling of d bit sequences, where each of them of constant
length L represents a dimension of the d-dimensional unit
cube [0, 1)d. As before, we assume two-dimensional data

(a) (b) (c)

Figure 3: Impact of Sorting Orders

Figure 4: Left a grid with GR = 8, right a grid with
GR = 4.

and discuss the general case only if necessary. Due to its
flexibility, we use the Z-curve as our SFC in the following.

Our goal is to adapt to the underlying query profile QP =
(sx, sy). In order to model non-square window queries, we
introduce here the aspect ratio given by a = sy/sx. The
effect of the aspect ratio is illustrated in Fig. 3(a) where a
set of range queries with a high aspect ratio is plotted. The
bounding boxes of the R*-tree leaves are plotted in Fig. 3(b),
while the plot of the boxes obtained from our sort-order op-
timized algorithm is given in Fig. 3(c). The R*-tree does
not take any query profile into account and attempts to gen-
erate boxes with a quadratic shape, while our new loading
algorithm adapts its boxes to the shape of the query. This
query-adaptive partition causes an substantial improvement
in performance compared to the standard R*-tree.

The basic idea is to introduce a two-part SFC. The first
part corresponds to a SFC being defined on a non-symmetric
binary grid. Each dimension of a grid is partitioned in binary
manner into equi-sized intervals. The grid resolution GR is
given by the total number of bits required for determining
whether a point belongs to a cell. Note that the volume of
the cell is 2−GR. The second part combines the remaining
d · L − GR bits in lexicographic order (see Fig 4). Note
that this design of the two-part SFC allows adapting to the
common cases discussed previously. In case of a = 1, we fully
exploit the first part of our SFC, i.e., GR = d · L, while for
partial match queries, we only use the second part with an
appropriate lexicographic order (given priority to the most
selective dimensions). The fundamental questions are how
the asymmetry of the grid is determined and how GR has
to be set for a given query profile. Our goal is to design a
grid such that the number of grid cells is minimized given
that the volume V = x · y = 2−GR is fixed. Here, x and y
denotes the size of bounding intervals of the cell. Let a query
profile be Q = (sx, sy), with sy = a · sx. These simplified
assumptions allows us to use Equation 1 for estimating the
average number of cells intersecting a window query. The
LC2(x, y) expresses the number of cells as a function of x

and y.

LC2(x, y) = 2GR · (x · y + x · sy + y · sx + sx · sy) (4)

Equation 4 can be rewritten by substituting x by V/y, sx
by sy

a
and x · y by the constant V . Note that the average

utilization is constant for different sort orders. This provides
the following cost function:

LC(y) = 2GR · (V + sy · (V
y

+
y

a
) + sy2 · a) (5)

LC
′
(y) = 2GR · sy · (1

a
− V

y2
) (6)

Computing the root of the derivative of equation 5 yields the
minimum. It directly follows that yopt =

√
V · a minimizes

LC(y). In addition, we obtain xopt =
√

V
a

and that the

aspect ratio of the optimal cells is also equal to a again.
Note that we ignore here that our optimum is not realized
on the grid and some rounding is actually necessary.

In case of d > 2, we introduce d−1 aspect ratios a1, . . . , ad−1

with ai =
si+1

si
. Let V =

∏
1≤i≤d xi be the average volume

of a page region and xi be the length of the i-th side of the
page region. Then, LC is minimized for xd = (V · ad−1)1/d,

xi = (V · ai−1

ai
)1/d for 1 < i < d and x1 = (V

a1
)1/d.

Let us now discuss how to set the parameter GR or equiv-
alently the concrete size of a grid cell. There are at least
two intuitive options. One is to set the average query vol-
ume equal to the average query size. Then a query hits at
most four cells. As shown in [5], this minimizes the number
of contiguous pieces of the SFC that intersect the query re-
gion. However, our goal is to minimize node accesses, thus
we use the average size of the optimal bounding boxes of
R-tree leaves (which means the optimal one obtained from
the cost function 1) to determine the grid cell. The results
of our experiments indicate that this option is superior to
the first option. Note that the optimal bounding box of-
fers the same aspect ratio as the window query. We use
this property to initialize our algorithm with this box rather
than using d − 1 aspect ratios and the parameter GR (see
Alg. 1 for details). The input of AdaptiveShuffle consists

Algorithm 1: Algorithm AdaptiveShuffle

Input: Average edge lengths of the boxes of the leaves
(len1, . . . , lend) with leni ≤ leni+1, d-dimensional
array A of bitstrings with L bits per bitstring

Output: bitstring of length L · d
from = L, resString = ∅;
for k = d, . . . , 1 do

to = L−
⌈
log2

1
lenk

⌉
;

resString = +SymShuffle(A, k, from− 1, to);
from = to;

for k = 1, . . . , d do

resString = +SuffixString(Ak, L−
⌈
log2

1
lenk

⌉
);

return resString ;

of a d-dimensional array A of bit sequences of fixed length

L and a d-dimensional array len representing the shape of
the optimized boxes. Ai denotes the value of the i-th dimen-
sion. In order to simplify the description of the algorithm,
we assume that leni < leni+1 is satisfied, 1 ≤ i < d, without
loss of generality. Each part of the two-step SFC consists
of a for-loop. In the first for-loop, the routine SymShuffle
shuffles a certain number of bits of the first k dimensions in
a symmetric manner until the selectivity of the k-th dimen-
sion is fully exploited. The symbol ”=+” denotes appending
the right string to the result string. This loop is iteratively
performed for k = d, d − 1, . . . , 1. Note that the param-

eter GR can be computed by GR =
∑

1≤k≤d

⌈
log2

1
lenk

⌉
.

The second for-loop simply calls SuffixString to append
the unused bits of the k-th dimension to the result string,
k = 1, . . . , d. Let us consider an example for d = 3, L = 6,
A1 = (x5, . . . , x0), A2 = (y5, . . . y0), A3 = (z5, . . . , z0) and
len = (1

16
, 1
8
, 1
2
). From these settings, we obtain the follow-

ing result string:

x5, y5, z5, x4, y4, x3, y3, x2, x1, x0, y2, y1, y0, z4, z3, z2, z1, z0

Note that we first interleave bits from all dimensions. After
the first cycle, the z-dimension is not involved anymore. Af-
ter three cycles, the asymmetric grid with resolution GR = 8
is generated and the remaining bits are then simply ap-
pended to the result.

6. EXPERIMENTS
In this section, we compare different sort-based loading algo-
rithms in a set of experiments and show the improvements
of our query-adaptive technique. We first describe data files
and query sets used in our experiments. Then, we present
improvements achieved by our algorithms and compare the
influence of order optimization and the partitioning strate-
gies on both our and also related loading algorithms. In
addition, we discuss the validity of our assumptions, which
have influenced the design of our loading algorithms.

6.1 Data file and Query Profiles
In our experiments, we used an adaptation of the test frame-
work developed for the evaluation of the RR*-tree [10]. The
framework consists of 28 different data sets, either points
or rectangles. They belong to eight groups abs, bit, dia,
par, ped, pha, uni, rea. Each of the first seven groups
contain three artificially generated data sets with 2,3, and
9-dimensional data following the same distribution in ev-
ery dimension. Each of the artificial data sets contains at
least 1 million objects from [0, 1]d. For example, the group
uni consists of 3 files of 1′000′000 two-, three- and nine-
dimensional uniformly distributed points. The eighth group
consist of seven real data sets with 2,3,5,9,16,22, and 26
dimensions. For example, the 2-dimensional rea data set
consists of 1′888′012 bounding boxes of streets of California.
A full description of data generation and sources is given in
[10].

In the original test framework, three range-query sets qr1,
qr2 and qr3 were considered for each data set. Except for
the group ped, the query sets were generated as follows: The
queries of qr1, qr2 and qr3 refer to square-shaped windows
and deliver 1, 100 and 1000 results on average, respectively.
Note that in difference to previous performance comparisons,
the cardinality of the response sets is limited (at most twice

the average) to avoid the dominating influence of a few
queries with very large response sets. All queries followed
the underlying data distributions. According to the query
taxonomy [21], these query sets are of type WQM4 (queries
follow data distribution and query size is based on answer
number). For group ped, queries were generated in a more
traditional way. The square-shaped range of qr1, qr2 and
qr3 cover k/1′000′000 of the entire data space, k = 1, 100,
1000. In addition, ped queries were uniformly distributed
(type WQM1).

In order to examine the query-adaptivity of our techniques,
we modified the generation of 2-dimensional query profiles
qr2 and qr3 by introducing the aspect ratio a as a new pa-
rameter. There are now qr2a and qr3a, a = 1, . . . , 20, where
a = 1 refers to the original profiles. We retain the origi-
nal methodology for generating query profiles qr2a and qr3a

limiting the response set cardinality to 100 and 1000, respec-
tively.

Except for ped, the generation process is based on posing
nearest neighbor queries with the weighted distance mea-
sure L∞(p1, p2) = max(|p1x− p2x| , 1

a
|p1y − p2y|), p1, p2 ∈

[0, 1]2. For ped, we considered range queries with query pro-

file (
√

(k/(a · 1′000′000)),
√

(a · k/1′000′000)).

6.2 Examined Algorithms
Table 1 provides a summary all methods used. As a reference
method, we used the traditional sort-based loading termed
Z-loading and H-loading using Z-ordering and H-ordering,
respectively. Both of the loading techniques are parameter-
ized with storage utilization set to 80%. Note that in our
experiments, higher storage utilization did not improve the
query performance. ZAS-loading refers to Z-ordering com-
bined with our adaptive shuffling technique. Z-GO stands
for globally optimized partitioning technique applied to Z-
ordered input, whereas H-GO is based on H-ordering. H-SO
uses our partitioning with a guaranteed storage utilization
of 80%.

We also examined STR [18] and TGS [14] because of their
popularity. Storage utilization was again set to 80%. In ad-
dition, we also present an improved version of STR, termed
STR-GO, which combines STR with our globally optimized
partitioning method. STR-GO performs as STR for the first
d−1 dimensions, but uses our partitioning technique for the
last dimension. This is directly applicable because the data
objects are distributed among the leaf pages regarding the
d-the dimension. The performance of bulk loaded R-trees
and tuple-by-tuple loaded R*-trees[9] is also compared.

All algorithms are implemented in Java. Experiments were
conducted on a 64 bit Intel Core2Duo (2 x 3.33 Ghz) ma-
chine with 8 Gb memory running Windows 7. In order to
illustrate the performance on several different storage de-
vices, we conducted experiments on a magnetic disk (Seagte
ST35000418As), SSD (Intel X25) and in main memory. For
experiments on disk and SSD, we used 4KB pages with a
capacity B = 128 and minimum occupation b = 42 for d=2.
For sorting, we used 10 MB of main memory. The raw I/O
device interface is used to avoid the interference with other
system buffers. For our in-memory experiments, we used
different settings for the page capacity that was found to be

Shortcut Sorting Order Partitioning

Z symmetric Z-order naive
H H-order naive
ZAS adaptive Z-order naive
Z-GO symmetric Z-Order gopt∗(i)
ZAS-GO adaptive Z-order gopt∗(i)
H-GO H-order gopt∗(i)
H-SO Hilbert-Order opt∗(i, k)
STR not applicable naive
STR-GO not applicable gopt∗(i)
TGS not applicable n/a

Table 1: Algorithms

Figure 5: Query performance of partitioning algo-
rithms for varying the chunk size

the overall optimum: B= 12 and b = 4.

Algorithm efficiency is measured by I/O and CPU time. We
consider the number of leafs touched during query traversal
as a default I/O metric, however, we do not count repeated
accesses to the same leaf. As confirmed in our experiments,
this is a good performance indicator, since index nodes are
located in large main memories.

In Section 4.2 we introduced a simple approximation scheme
for our partitioning algorithms. Rather than running the al-
gorithm on the entire data set, we prepartition the data into
equi-sized chunks and apply the algorithms to each of the
chunks. Figure 5 depicts quality of the approximation as a
function of chunk size for the California data set using qr2.
We observed that a chunk size of B2 (= 16384) is sufficient
to obtain near-optimal results. Similar results are achieved
for other data sets. Note that the function is not decreasing
strictly monotonically because the queries do not obey the
uniform assumption of the query model. This also explains
that for a chunk size of 1K the SO strategy is slightly supe-
rior to GO. For the rest of the experiments, we use chunks
of size B2 for our partitioning methods.

6.3 Sorted Set Partitioning
This section discusses the improvements achieved by our par-
titioning strategies. We consider square-shaped queries with
aspect ratio a = 1 only. In addition to the methods based
on space-filling curve, we also report the results of TGS,
STR and STR-GO. Figure 6 depicts the I/O performance
for eight 2-dimensional data sets and query files qr1, qr2 and
qr3. Note that all loading methods that use our partition-
ing strategies are superior to H-loading. Moreover, STR-GO
performs better than its original counterpart. For TGS we
observed similar effects as reported in [14]. TGS performs
well for point queries qr1, but its performance deteriorates
with an increasing query region. It is noteworthy that there
is no significant difference between H-GO and Z-GO except

Figure 6: Avg. number of leaf accesses per query
for d=2.

for dia, where Z-GO is clearly superior. The most significant
improvements over H-loading are achieved for point queries
on the 2-dimensional data set ped. This data set is the only
for which the queries are uniformly distributed. Note that
this is in full agreement with the goal function used in our
optimization. This also explains the large difference in per-
formance between STR and STR-GO. We observed that the
impact of the query size is marginal for storage bounded al-
gorithms H-SO and Z-SO in comparison to the H-GO and Z-
GO counterparts. Thus, minimizing the area (which is only
optimal for point queries) achieves already good results for
all query profiles qr1, qr2 and qr3.

The query size influences the relative R-tree performance.
This is not surprising, as for larger regions, the storage uti-
lization will have greater impact (than the clustering capabil-
ity of the loading techniques). This is also in agreement with
the analytical results obtained from the cost model. For ex-
ample, R-trees generated from H-GO-loading perform small
queries on the California data set (rea) with only 60% of
the disk accesses compared to H-loaded R-tree. For queries
qr3 with 1000 results the performance difference is only 20%.
We achieved similar results for the 3-dimensional data sets.
H-loading is superior to STR-GO for only some of the data
files, but inferior to Z-GO and H-GO in all cases. The av-
erage normalized results for two, three and nine dimensions
are reported in Table 2 (performance is expressed as the ra-
tio of average number of leaf accesses for the specific and the
H-loaded R-tree). The results indicate slight improvements
for higher dimensions.

As expected, the number of leaf pages occupied by our R-
trees generated from Z-GO and H-GO in relation to the num-
ber of leaves of H-loaded R-trees is higher for small queries.
For larger queries, it is typically below 100%, i.e., the stor-
age utilization is higher than 80% for the R-trees generated
by Z-GO and H-GO.

Figure 7: Avg. time per query for qr2 and d=2.

d=2 d=3 d=9 d=2,3,9
Z-GO 75.5 % 71.6 % 66.45 % 71.2 %
H-GO 76.2 % 73.3 % 68.3 % 72.6 %

Table 2: Avg. query performance of Z-GO and H-
GO-loaded R-trees over square-shaped queries for
different dimensionalities in leaf accesses (results are
normalized to H-loaded R-trees).

Further, we analyzed average query execution time for d=2
and query file qr2. Figure 7 shows the average time per query
for disk, SSD and main memory. Query time measured for
a disk includes the I/O time for leaf accesses, while the in-
dex nodes are likely to reside in memory or disk cache. In
particular, we observed a positive effect of sort-based load-
ing using H-loading combined with our partitioning on the
average dis access cost. The way how data is written to
disk exhibits high clustering within a level, since blocks are
written according to the SFC order. Therefore, there are
fewer random I/Os than for TGS and STR (see Fig. 7). In
order to illustrate the impact of physical clustering, we also
compared the query performance with the R*-tree (see Fig.
8). As illustrated, significant improvements of up to factor
of five can be achieved particularly because of the clustering
when indexes are bulk-loaded. Moreover, we observed also
similar effects for in memory R-trees. For SSDs, however,
there are no positive effects from sequential I/O patterns.
As a consequence, the average query time is highly corre-
lated to the number of node accesses, see the plots in the
mid of Figure 3 and 4.

In the following we discuss the effects of the uniformity as-
sumptions of our cost model. Recall that except for ped the
query distributions follow the data distribution. The ques-
tion is therefore how our simplified analytical cost model is
related to the real cost. In Fig. 6, the cost of our analytical
model is plotted as a function of the number of leaf accesses
required for processing the queries from profile qr1, qr2 and

Figure 8: Avg. time per query for R*-tree and H-
GO for California set (d=2).

Figure 9: Correlation between the number of leaf
accesses and the analytical costs

qr3 on the 2-dimensional data sets (both graph dimensions
are normalized to H-loading). The graph shows a clear cor-
relation between the cost measures . This supports that our
cost model is indeed a good predictor for the actual cost.
There are only three outliers corresponding to the extreme
dia dataset, for which the real cost of the queries is substan-
tially lower than the estimated costs model of our model.
Finally, the average total loading time of the algorithms for

d=2 is depicted in Table 3. The cardinality of the data sets
was limited to 1’000’000 rectangles. The total loading times
of H/Z-loading, STR, H-GO, H-SO exhibit low standard de-
viation (see column std), while TGS is sensitive to the data
distribution. H-GO loading time was clearly dominated by
the time of external sort while the partitioning step itself has
only little impact (see build time). This differs from H-SO,
where the time for the partitioning step dominates sorting,
also STR is more expensive as data has to be sorted twice
for d = 2.

6.4 Order Optimization
In this section, we primarily discuss the benefits of adaptive
shuffling for better adaptivity to the underlying query profile.
For the following discussion, we consider the results obtained
from R-trees generated for the 2-dimensional uniformly dis-
tributed data set and query sets qr2a, a = 1, . . . , 20. Fig. 10
shows the average number of leaf accesses for qr2a queries
as a function of the aspect ratio a. For each setting of a, we
present the performance of five loading techniques ZAS, Z-
GO, ZAS-GO, H-GO and H. Note that a = 1 represent the
case of square-shaped queries. For a = 1 the performance of

alg. sort time build time total time std

H 25,64 0.68 26.4 2.09
H-GO 25,64 7.40 33.12 2.03
H-SO 25,64 77.67 103.11 2.56
TGS n/a n/a 245.18 124.33
STR n/a n/a 55.47 7.76

Table 3: Avg. loading time (in sec.) of 1’000’000
2-dimensional rectangles.

Figure 10: Query results for uni set (d=2)

ZAS is identical to Z-loading. In agreement with previous
experiments found in the literature, H-ordering is superior
to Z-ordering. However, Z-GO and ZAS-GO are superior to
H-loading and only slightly inferior to H-GO. For a = 20, the
situation has changed dramatically. The performance of H-
ordering has slightly decreased to 75% of Z-ordering, while
ZAS-GO is clearly the most efficient technique. It is also
evident from the comparison of ZAS, Z-GO and ZAS-GO
that both of our techniques contribute to the substantial im-
provements that are observed for ZAS-GO. Moreover, GO in
combination with Z-ordering provides slightly better results
than H-ordering with GO.

The average volume V of leaf box is to be known in order to
design our two-part space-filling curve. Assuming a uniform
data distribution we can estimate the average leaf box vol-
ume by using the ratio of B and N . For qr28, the empirically
determined optimal global value GR is compared with the es-
timated one. Our cost model returns GR = 12 for uniformly
distributed data in all cases, which is in agreement with half
of our experimental results (abs, pha and uni). The optimal
value GR = 14 for bit slightly deviates from the estimated
one. For dia, GR = 0 is the best value as the data records
are located on the diagonal (it is sufficient to organize the
data according to one of the axes). For par, ped and rea, the
optimal value for GR was greater than 12 because the distri-
butions are clearly non-uniform. In particular, data sets par
and ped have a very high variance of volume and perimeter.
This kind of data distributions is difficult to deal with and
query adaptivity often yields no improvement.

To address this issue and verify our assumption, we used
histograms as an option for deriving the values for sorting
parameter GR. Histograms were also used for approximat-
ing dxi value distributions for non-uniform data and query
distributions. For each bucket pi, our sort-based two step
algorithm is processed independently with local parameters
GR as well as average dxi for pi. Data summaries are held in
memory and serve as a look-up function during the sorting
and partitioning steps. We used the MinSkew-Histogram[1]
with 100 buckets to represent the 2-dimensional data distri-
bution. We observed that using histograms improves sub-
stantially the performance over global estimated parameter
GR for qr28 profile (e.g. by 35% for par, by 15% for ped and
by 46% for rea), while the degree of improvement depends
not only on the chosen histogram method but also on a his-
togram parameter settings. Therefore, we want to study
more deeply the histogram and bulk-loading interaction in
our future work.

7. CONCLUSIONS
In this paper, we reconsidered the problem of sort-based
bulk-loading of R-trees. We demonstrate the importance

of query profiles for search efficiency of generated R-trees.
We designed new loading algorithms based on two innova-
tive techniques. The first consists of a new sorting tech-
nique of rectangles based on non-symmetric Z-order curve
design, while the second generates an optimal partitioning
for a given sequence of rectangles. Both techniques are op-
timized according to a commonly used cost model for range
queries. Our optimal partitioning techniques are broadly ap-
plicable and beneficial. They can be easily integrated into
other loading techniques like STR, which is a popular load-
ing method in commercial database systems. They can also
be combined with standard Hilbert-loading even when the
query profile is unknown. In this case, we suggest to use the
partitioning that minimizes the area of the bounding boxes
of the leaves.

Our experimental results obtained from a standardized test
framework clearly reveal the advantages of our techniques in
comparison to standard loading techniques (STR, Hilbert-
loading, Z-loading, TGS). Our techniques creates R-trees
with consistently better search efficiency than those created
by pure Hilbert-loading, while for some data files large im-
provements in query performance (about factor 5) were achieved.
Interestingly, due to our new partitioning methods, there is
no noticeable differences anymore in the performance of R-
trees build form rectangles sequences following either Hilbert-
ordering or Z-ordering. Thus, we suggest using Z-ordering
because of its conceptual simplicity.

In future work we aim to develop better cost models that are
more accurate for non-uniform query distributions. Based
on such cost models, we would be able to reorganize indexes
in a proactive way to adapt them to current and future work-
loads.

8. ACKNOWLEDGMENTS
We would like to thank Anne Sophie Knöller for insightful
feedback and reviewing this piece of work.

9. REFERENCES
[1] S. Acharya, V. Poosala, and S. Ramaswamy.

Selectivity estimation in spatial databases. In
SIGMOD ’99, pages 13–24, New York, NY, USA,
1999. ACM.

[2] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The
priority r-tree: A practically efficient and worst-case
optimal r-tree. ACM Trans. Algorithms, 4:9:1–9:30,
March 2008.

[3] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter.
Efficient bulk operations on dynamic r-trees.
Algorithmica, 33(1):104–128, 2002.

[4] L. Arge and J. S. Vitter. Optimal dynamic interval
management in external memory. In Proceedings of the
37th Annual Symposium on Foundations of Computer
Science, pages 560–, Washington, DC, USA, 1996.
IEEE Computer Society.

[5] T. Asano, D. Ranjan, T. Roos, E. Welzl, and
P. Widmayer. Space-filling curves and their use in the
design of geometric data structures. Theor. Comput.
Sci., 181:3–15, July 1997.

[6] B. Becker, P. G. Franciosa, S. Gschwind, T. Ohler,
G. Thiemt, and P. Widmayer. Enclosing many boxes

by an optimal pair of boxes. In Proceedings of the 9th
Annual Symposium on Theoretical Aspects of
Computer Science, pages 475–486, London, UK, 1992.
Springer-Verlag.

[7] B. Becker, H.-W. Six, and P. Widmayer. Spatial
priority search: An access technique for scaleless maps.
In J. Clifford and R. King, editors, SIGMOD ’91,
pages 128–137. ACM Press, 1991.

[8] L. Becker, H. Partzsch, and J. Vahrenhold. Query
responsive index structures. In GIScience ’08, pages
1–19, 2008.

[9] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: an efficient and robust access
method for points and rectangles. In SIGMOD ’90,
pages 322–331, New York, NY, USA, 1990. ACM.

[10] N. Beckmann and B. Seeger. A revised r*-tree in
comparison with related index structures. In SIGMOD
’09, pages 799–812, New York, NY, USA, 2009. ACM.

[11] J. V. d. Bercken and B. Seeger. An evaluation of
generic bulk loading techniques. In VLDB ’01, pages
461–470, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[12] J. V. d. Bercken, B. Seeger, and P. Widmayer. A
generic approach to bulk loading multidimensional
index structures. In VLDB ’97, pages 406–415, San
Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

[13] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J.-B.
Yu. Client-server paradise. In VLDB ’94, pages
558–569, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[14] Y. J. Garćıa R, M. A. López, and S. T. Leutenegger. A
greedy algorithm for bulk loading r-trees. In GIS ’98.

[15] S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR, pages 68–78, 2007.

[16] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
histograms with quality guarantees. In VLDB ’98.

[17] I. Kamel and C. Faloutsos. On packing r-trees. In
CIKM ’93, pages 490–499, New York, NY, USA, 1993.
ACM.

[18] S. Leutenegger, M. A. Lopez, and J. Edgington. Str:
A simple and efficient algorithm for r-tree packing. In
ICDE, pages 497–506, 1997.

[19] D. Lichtenstein. Planar formulae and their uses. SIAM
J. Comput., 11(2):329–343, 1982.

[20] J. A. Orenstein and T. H. Merrett. A class of data
structures for associative searching. In PODS ’84,
pages 181–190, New York, NY, USA, 1984. ACM.

[21] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer.
Towards an analysis of range query performance in
spatial data structures. In PODS ’93, pages 214–221,
New York, NY, USA, 1993. ACM.

[22] B.-U. Pagel, H.-W. Six, and M. Winter. Window
query-optimal clustering of spatial objects. In PODS
’95, pages 86–94, New York, NY, USA, 1995. ACM.

[23] V. Poosala and Y. E. Ioannidis. Selectivity estimation
without the attribute value independence assumption.
In VLDB, pages 486–495, 1997.

[24] N. Roussopoulos and D. Leifker. Direct spatial search
on pictorial databases using packed r-trees. In

SIGMOD Conference, pages 17–31, 1985.

[25] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[26] Y. Tao and D. Papadias. Adaptive index structures. In
VLDB ’02, pages 418–429, 2002.

[27] Y. Theodoridis and T. Sellis. A model for the
prediction of r-tree performance. In PODS ’96, pages
161–171, New York, NY, USA, 1996. ACM.

[28] K. Yi, X. Lian, F. Li, and L. Chen. The world in a
nutshell: Concise range queries. IEEE Trans. Knowl.
Data Eng., 23(1):139–154, 2011.

