Dr. sc. Helga Baum

Born in 1954 in Berlin. Studied Mathematics at the Humboldt Uni-
versity Berlin. Since 1980 at the Humboldt University. Receiveq Dr
rer. nat. in 1981, Dr. sc. in 1989. N

Prof. Dr. sc. Thomas Friedrich

Born in 1949 in Leipzig. Studied at the University of Wroclaw from
1968 to 1973. Since 1973 at the Humboldt University Berlin. Receiv-
ed Dr. rer. nat. in 1974, Dr. sc. nat. in 1979. Currently full Professor
at the Humboldt University since 1987.

Dr. Ralf Grunewald

Born in 1961 in Leipzig. Studied Mathematics in Torun and Berlin,
Since 1986 at the Humboldt University Berlin. Received Dr. rer. nat.
in 1986.

Dr. Inas Kath

Born in 1964 in Dresden. Studied Mathematics at the Humboldt
Univorsity Berlin from 1982 to 1987, Received Dr. rer. nat. in 1990.
Working since 1986 at the Humboldt University.

CIP-Titelaufnahme der Deutschen Bibliothek

Twistors and Killing spinors on Riemannian manifolds /
Helga Baum ... ~ Stuttgart ; Leipzig : Teubner, 1991

(Teubner-Texte zur Mathematik ; Bd. 124)

ISBN 3-8154-2014-8
NE: Baum, Helga ; GT
TEUBNER-TEXTE zur Mathematik - Band 124
ISSN 0138-502X
Das Werk einschlieflich aller seiner Teile ist urheberrechtlich geschiitzt. Jede Ver-
wertung aullerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zu-
stimmung des Verlages unzulassig und strafbar. Das gilt besonders fiir Verviel-
faltigungen, Ubersetzungen, Mikroverfilmungen und die Einspeicherung und
Verarbeitung in elektronischen Systermnen.
v B. G. Teubner Verlagsgeselischaft mbH, Stuttgart . Leipzig 1991
Printed in Germany
Gesamtherstellung: Druckerei ,G. W. Leibniz” GmbH, Grafenhainichen




TEUBNER-TEXTE zur Mathematik - Band 124

Herausgeber/Editors: Beratende Herausgeber/Advisory Editors:
Herbert Rurke, Berlin Ruben Ambartzumian, Jerevan

Joseph Mecke, Jena David E. Edmunds, Brighton

Ridiger Thiele, Leipzig Alois Kufner, Prag

Hans Triebel, Jena Burkhard Monien, Paderborn

Gerd Wechsung, Jena Rolf J. Nessel, Aachen

Claudio Procesi, Rom
Kenji Ueno, Kyoto

“Helga Baum - Thomas Friedrich
Ralf Grunewald - Ines Kath

Twistors and Killing Spinors
on
Riemannian Manifolds

B. G. Teubner Verlagsgesellschaft
Stuttgart - Leipzig 1991



In this book we investigate, after an introductory section to
Clifford algebras, spinors on manifolds etc., in particular solu-
tions of the twistor equation as well as Killing spinors. New
results on the construction and classification of Riemannian
manifolds with real and imaginary Killing spinors, respectively,
are the main subject of this book. Moreover, we consider the
relations between solutions of the general twistor equation and

Killing spinors.

In diesem Buch werden nach einem einleitenden Abschnitt Gber
Clifford-Algebren, Spinoren auf Mannigfaltigkeiten etc. , ins-
besondere Losungen der Twistor-Gleichung sowie Killing-Spinoren
studiert.. Den Hauptinhalt des Buches bilden neue Resultate zur
Konstruktion und Klassifikation Riemannscher Mannigfaltigkeiten
mit reellen bzw. imagindren Killing-Spinoren.

Desweiteren werden die Beziehungen zwischen LOsungen der allge-
meinen Twistor-Gleichung und Killing-Spinoren untersucht.

Dans ce livre on etudie, apres a un paragraphe introduisant
dédié a des algebres de Clifford, des spineurs sur des variétés
etc., des solutions de 1‘'équation twisteur ainsi que des
spineurs de Killing.

Le contenue essentiel du livre est formé par des résultats
nouveaux concernant la construction et 1la classification des
variétés riemanniennes admettant des spineurs de Killing réels
ou imaginaires. De plus on analyse les relations entre des
solutions de 1'équation twisteur générale et des spineurs de

Killing.

B aTOM TOMe mOCJe BCTYIHMTENBHOX YacTH, HNOCBAMERHOR airedpam
Xomppopna, cmuHOpam Ha MEOroodpasmax HT. I., DPacCMATDEBAKNTCA
eMEeHNA TBACTOPHOI'O YPABHEHMA KaK X CIUHODH a.

JIaBHOE COLEDKAHHEe TOMA COCTOMT B HOBHX PE3yJlbTaTaxX O IOCTDPOSHIH
¥ Klaccmfukalmy pEMAHOBHX MHOI'0OCpasEifl ¢ BelleCTBEHHHMHA ILIX

MHEMHME CIEHOpDaME KwitzHra.
Kpome Toro, HCCIENOBAnTCA CBABE MERLY DENEHHAME OGWEeroc TBECTODHOTO

YPaBHEHWs B CIMHOpaM: a.



Preface

This book is devoted to the so-called Killing and twistor spinors,
special kinds of spinors on Riemannian manifolds appearing in
Mathematical Physics as well as in a purely mathematical context.

In the first chapter we give an introduction to Clifford algebras,
spin-representation and the spinor calculus on Riemannian manifolds.
Furthermore, we investigate the two natural first order differ-
ential operators on spinors, the Dirac and the Twistor operator.

The main subject of the present book is the construction and

the classification of Riemannian manifolds with real and

imaginary Killing spinors. The results described here were obtained
during the last 5 years and are presented in a systematical and
complete manner in this book for the first time.

Berlin, May 1990 Helga Baum
Thomas Friedrich
Ralf Grunewald
Ines Kath
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Introduction

This book is devoted to the so-called Killing and twistor spinors,
special kinds of spinors on Riemannian manifolds appearing in Mathe-
matical Physics as well as in a purely mathematical context.

A Killing spinor is a spinor field ) on a Riemannian spin mani-
fold satisfying the linear differential equation

Vyf=8 X @

for a complex number B and all vector fields X. Killing spinors
were first introduced in General Relativity (see [22], [26]) as a
technical tool to construct integrals of the free geodesic motion.
More recently, they occurred in 10- and 11- dimensional supergravity
theories (see [2,6,7,8,12,25]). When studying classical solutions
without fermionic fields with a °"residual supersymmetry® it was ob-
served that this residual supersymmetry could give rise to a Killing
spinor (see (51, (13], (14]). On the other hand, Killing spinors also
played an important role in the construction of exact solutions by
providing useful “Ansdétze" for the matter field (see [3,4,17,27]).

In Geometry, Killing spinors appeared in 1980 in connection with
eigenvalue problems of the Dirac operator D. If (Mn,g) is a compact
Riemannian manifold with positive scalar curvature R >0 and if Ro
denotes the minimum of R, Th. Friedrich proved (see [32]) the in-
equality for the first eigenvalue ‘11 of the Dirac operator D

n R

APy iy -

1 n Ro

Moreover, if X = & 3 {—pz is an eigenvalue of 0O with the eigen-

spinor iP, then \p satisfies the stronger equation

1 [ R
Vy®= 3 zj;rf—r;"“?

i.e. the eigenspinors to the smallest possible eigenvalue are



Killing spinors (see[32]). The existence of Killing spinor imposes
algebraic conditions on the Weyl tensor of the space and on the
covariant derivative of the curvature tensor; in particular, M"  has
to be an Einstein space (see [32],(34]). Furthermore, in 1980 Th.
Friedrich constructed an Einstein metric on the 5-dimensional Stiefel
manifold V4 2 admitting Killing spinors. Compact 7-dimensional
Einstein spaces with Killing spinors were constructed by M. Duff,
B. Nilsson and C. Pope (see [26],[27]) as well as by P. van Nieuwen-
huizen and N. Warner (see [89]) in 1983. Using the twistor construc-
tion, Th. Friedrich and R. Grunewald obtained (see [40]) the first
even-dimensional examples in 1985; they constructed Einstein metrics
Pa(c) and on the flag manifold F(1,2) with Killing spinors.
In 1986 0. Hijazi proved (see [57]) the inequality

2 1 n
LY & = 42T
where Hq is the first eigenvalue of the Yamabe operator

L=4 2:% D + R (see also [82] for a general approach). However, if

this lower bound is an eigenvalue of the Dirac operator, then the
scalar curvature R 1is constant and the eigenspinor is a Killing
spinor. A Kéhler manifold does not admit Killing spinors (see [57]).
Consequently, in case of a compact Kéhler manifold there exists a
better estimation for the first eigenvalue of the Dirac operator;
this case has been investigated in a series of papers by K.D.
Kirchberg (see [68],[69],(70]). Moreover, O. Hijazi proved that if

a compact 8-dimensional manifold admits a Killing spinor, then it

is isometric to the sphere s8 (see [587).

During the last years we investigated the relation between Killing
spinors and other geometric structures on the underlying manifold.
It has turned out that, in case of a compact odd-dimensional mani-
fold, there is a link between Killing spinors and special contact
structures; this observation yields a general construction principle
of compact odd-dimensional Riemannian manifolds with Killing spinors
as well as classification results in dimension n = 5,7 (see [41],
(427,437, [44D).

Furthermore, on compact even-dimensional manifolds - at least in
dimension n = 6 ~ there exists a relation between Killing spinors
and certain non-integrable almost complex structures (see [55]).

The complete non-compact Riemannian manifolds with Killlng spinors
were classified by H. Baum (see [5]1,(61,[7]) in 1988.

Killing spinors are special solutions of the conformally invariant



field equation

YUy @+ XV P = % g(X,Y)D ¢,
the so-called twistor equation (see (89],[92]).
In mathematics, the twistor equation appeared as an integrability
condition for the complex structure on the twistor space of a 4-
dimensional Riemannian manifold (see (2]). A. Lichnerowicz (see [89])
started a systematical geometrical investigation of the solutions
of the twistor equation in 1987. In particular, using the solution of
the Yamabe problem he proved that on a compact manifold the space of
all twistor spinors coincides - up to a conformal change of the metric-
with the space of all Killing spinors (see [84]).
Th. Friedrich (see [38]) studied the zeros and "first integrals"® of
twistor spinors and their relation to Killing spinors in case of an
arbitrary Riemannian manifold.
In the first chapter of the book we give a short introduction to the
spinor calculus on Riemannian manifolds and the Dirac equation. We
define the notion of Killing and twistor spinors, prove some elementary
geometrical facts of manifolds admitting these kinds of spinors and
investigate the relation between Killing spinors, twistor spinors and
solutions of the Dirac equation. In Chapter 2 we investigate the
properties of twistor spinors in detail. We study special twistor
spinors satisfying the equation

U+ Exg =0
for a complex function f and the so-called equation (E), introduced
by A. Lichnerowicz.
In Chapter 3 we give an interpretation of twistor spinors as a holo-
morphic linear section on a certain line bundle over the twistor space
of a Riemannian 4-manifold.
The existence of a non-trivial Killing spinor on a Riemannian spin
manifold (M",g) implies in particular that (M",g) is anEinstein space
with constant scalar curvature R = 4n(n-1)8 2. Hence, the number B
is real or purely imaginary and there are different types of Killing
spinors:

real Killing spinors (BelR \{o})
imaginary Killing spinors (peiRN{O]
parallel spinors (p = 0).

Assuming the completeness of (M,g), real Killing spinors occur only
on compact manifolds and imaginary Killing spinors only on non-compact
manifolds. In the Chapters 4 and 5 compact manifolds with real Killing
spinors are studied.



If the dimension of M is odd, then Killing spinors are related to
Einstein-Sasaki-structures (Chap. 4), in even dimension Killing
spinors are related to non-integrable almost complex structures
(Chap. 5). In Chapter 6 we present an overview on results about
parallel spinors and Chapter 7 is devoted to the description of

the structure of non-compact complete manifolds with imaginary
Killing spinors.

10



Chapter 1: An Introduction to Killing and Twistor Spinors

In this Chapter we give a short introduction to the spinor calculus
on Riemannian manifolds and the Dirac and twistor equation. In the
first three parts we fix the notations and sum up basic facts
concerning spinors and the Dirac operator on Riemannian manifolds.
For proofs of the stated properties we refer to [4].

In the last two parts we introduce the notion of twistor and
Killings spinors and prove some elementary geometric properties of
manifolds admitting these kinds of spinors.

1.1. The Spin-Group and the Spinor Representation

Let us denote by (el,...,en) the canonical basis of the Euclidean
space ®R". < ,>) and by Cliff(R") the Clifford algebra of R" with
the bilinear form -<,>. Cliff(R") 1is an algebra over IR that
is multlpllcatlvely'generated by the vectors €1s-000€p with the
relations

el-ej + ej-ei = =2 éij i,j=1,...,n.

In case n = 2m, the complexification Cliff®(R") of the Clifford
algebra is isomorphic to the algebra M(2";¢) of all complex
matrices of rank 2". In case n = 2m+1, CLiffS(R") is isomorphic
to M(2";¢) (® M(2";€). In this book we use the foliowing identifi-
cation of CLiff°(R") with the matrix algebras mentioned above:
Denote

i 0 o i 10 0 -i
91’(0 -i) '92‘<1 o)'E’ o1>'T‘<1 o)

oA(j) = 1 if j 1is odd
2 if j 1is even.

and

Then an isomorphism
¢2m

is given by the Kronecker product
Pone) =E@D-..@ EQ gyp@ T @ .- @ T (1.1)

[(j-1)72]-t1mes
j=1,...,2m.

: ClifFCRE™) —> M(2";¢)

An isomorphism

¢2m+1 ¢ clireCRI™ Dy —me2";0) @ M2";0)

11
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is given by

d:.2|||+1(ej) = (¢2m(ej)' ¢2m(ej)) j=1,...,2m

(1.2)
Pone1(C2me)= 1 T@ .. @T-i T ...

The group Spin(n) 1is a double covering of the special orthogonal
group SO0(n), which is universal iff n23. Spin(n) can be
realized as a subgroup in Cliff(R™)

- n -
Spin(n) :a{xl-... Xo | xjeRT It lel- 1, kenj .
Its Lie algebra is the vector space
spin (n) = spanR(ei-ej| 11 < j4n) < Cliff(R™)

with the commutator [v,w] = v-w - w-v.
The map

A : Spin(n) —> so(n)

u —> A (u) , A(u)x := uxu™!

for xeR"
is a double covering of SO0(n) with the differential
Az spin(n) —— so(n)
el'ej —_ 2 Elj’

where
1 1
‘-} R X |
[ 14]
ceetl ciiiieendoa ]

[

1 )

J

is the basis of the Lie algebra so(n) of SO(n). If we restrict
the map ¢2m to Spin(2m), we obtain a 2M-dimensional representa-
tion of Spln(Z-), the so-called spinor representation

DY

Elj =

m
¢2n'$p1n(2m) : Spin(2m) — GL((Z2 )

We denote this representation as well as its representation

space by AZ.: The modul A2m splits into two irreducible unitary
representations A, = L\;. @ A, given by the eigensubspaces
of the endomorphism ¢2m(e1- ...'ezﬂ) to the eigenvalues + i,

2
Let us denote by u(£)ed™ the vector

I --l 1 . E = 1
we) - 2 (—zi) :
and let



u(él,...,ém) = u(61)®...® u(ém) , E,j =+ 1.

m
(u(&. ,...,Em)l T 5j = + 1) is an ON-basis of /A;m with respect
=1

m
to the standard scalar product of ¢2 . In case n = 2m+1, we
obtain two 2m'-\d1mensiona1 irreducible unitary representations
Dypyq and DL, of Spin(2ms1) if we restrict ¢2m+1 to
Spin(2m+1) and project onto the first and second component of

M(2";¢) ® M(2";c), respectively.

The isomorphism cpn also gives rise to a multiplication of vectors

and spinors, the so-called Clifford multiplication

(8] ()
p: R" ® A n > 4,
cpn(x)u n even
x ® ur— p(x X u)=x-u ={ p,.ojj-dyn(x)u n odd ;

p is invariant under the Spin(n)-action, where Spin(n) acts on
R™ by the covering A .
Using (1.1) and (1.2) the following properties are easy to verify:

1) For an element ueA2m+1 let u = u+® u~ denote the
decomposition of u with respect to the (non-invariant) sub-

spaces span(u(él,...,é.)l ;llln_ éj = :1).
jar 4

The map

A
- A -
u=ut ® ueA —> u:= ut - uTe A

2m+1 2m+1

is an isomorphism of the Spin(2m+l)-representations.
The Clifford multiplication satisfies x/-\u = =x-U.

2) The map A —_ AZm

2m+1ISp1n(2n)
u —_— u

is an isomorphism of the Spin(2m) representations. By this

identification Fhe vector acts on A, -A;n ®A '2'-

by

€2m+1

e2m+1-(u+ ® u) = (D" (u* - u).

3) The map A
_— s A VAN
A2-+2| Spin(lm+1) ? 2m+1 @ 2m+1

($)®u+(g)®0t——> u@l\\/

is an isomorphism of the Spin(2m+1)-representations.

13



Due to this identification the vector €ome2 acts on
A2|||+1 @ A2m+1 by

Cogez " (UOW = (D1 (VEW.

1.2. The Spinor Calculus on Riemannian Spin Manifolds

Let (M",g) be an n-dimensional oriented Riemannian manifold and
let P = (P,p,M;S0(n)) be the bundle of all SO0(n)-frames of
(Mn,g). A spinor structure of (Mn,g) is a pair (Q,f) of a
spin(n)-principal bundle Q = (Q,q,M;Spin(n)) and a continuous
surjective map f: Q—>P such that the diagramme

Q x spin(n) ——> @
q
l f x2A l‘E::::;; M

PxsSo(n) —> P

commutes. An oriented Riemannian manifold (M,g) admits a spinor
structure iff the second Stiefel-Whitney class w (M) vanishes..
In case w (M) = 0, the isomorphy classes of splnor structures are
classlfled by the first cohomology group H (M I ). An oriented
Riemannian manifold with a spinor structure (Q, F) is called a
spin manifold. The complex vector bundle

S:= Q Xspin(n) An
associated with the Spin(n)-principal bundle Q by means of the
spinor representation Lln is called a spinor bundle of (M",g).
By <£-,:) we denote the complex scalar product on S defined by
the canonical hermitian product on [kn and by
(.,.) := Re<{.,.» the corresponding real scalar product on S.
A smooth section e i7(S) of S 1is called a spinor field on
M, 9).
In case of even dimension n = 2m, the spinor bundle S splits
into two subbundles S = s* (3 s~

. *
§T = Q xSpln(2m) AN 2m’

which we call the positive and negative part of S.
A ~ A
In odd dimension n we denote by S the bundle S:= Q x5p1n(n)13n‘
which is isomorphic to the spinor bundle S by
~

s —25§
[q:U]H[QIG] .

14



By p:TM ® s —> s
X @@ — X+
we denote the Clifford multiplication on the bundle level, which is
the bundle morphism defined by the Clifford multiplications on the
fibres. In case of even n, P exchanges the positive and negative
part of S. In case of odd dimension we have XQ(? = = X+ .
The Clifford multiplication can be extended to k-forms. Each k-form
we QXM), 15kén, acts as a bundle morphism on the spinor bundle
S, which is defined by the local formula
w . = > w (s veesB; )8 L..08;°
? 1617 . <1, én 177y A
where (31,...,sn) is a local ON-basis of (M,g). In this book we

often identify the tangent bundle TM with the cotangent bundle T*M
by means of the metric g

™ = T*M
X —> g(X,.).

In particular, the Clifford multiplication by a vector is the same
as that by the dual covector . Now, we list some properties of the
Clifford multiplication which are easy to verify by the definition.

1) If Qe M(s) 1is a spinor field without zeros and X€ E(M) a
vector field on M, then an equation of the form X-‘P =0
provides X = 0.

2) For the Clifford multiplication,

XY + ¥-X = -2g(X,Y) idg (1.3)

X-w =(xAw) =(Xa W)

We X = (-1)"{x/u.o + Xdwl .9

are satisfied, where X,Y are vector fields and W 1is a k-form
on M.

3) with respect to the scalar product in S we have

X, ¥> = =P, X* WD, xe EM (1.5)
Cor @ogy = ((DRE2L4Q 10w > e O k) (1.6)
X9, Y@ d= g(x,v) ]2 1.7)

The Levi-Civita connection V™ on (M,g) defines a covariant
derivative Vs :7(8) —>(T™M (%) S) in S, the so-called spinor
derivative. Locally, S is given by

Sua 1 (1.8)
Vx‘P X(p) + 3 1% wkl(x)sk' s;°¢

15
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where W, = g(VMsk,sl) are the connection forms of Y M with
respect to a local ON-basis (’sl,...,sn). For even n the spinor
derivative respects the positive and nsggtive g\a}:t of the spinor
bundle S. In odd dimension we have ch[?= VXLP . The spinor
derivative satisfies the following rules:

X<E N> = (T3P +LQ, VYD (1.9)
VSve) =@ + v U5 (1.10)
V,s((w-t(’) -vﬂwaﬁw-VicP . (1.11)

where X,Y are vector fields, w a k-form, and (P,w splnor'
fields on M.
Let us denote the curvature tensor in (S,Vs) by ’lQS: /\2M —> End(S)
R50u0 +7508 9393 -0 -

The endomorphism ’Q_S(X,Y) on S can be expressed by the curvature
of (M,g). Let us consider the curvature tensor of (M,g) to be
a bundle morphism W : A?M—3\?M on the bundle of 2-forms /\2M

LGRS w NAN

k<1

where lekl = ﬂ(’ZQM(sl,s )sk,sl) ari the components of the curva-
ture tensor R of (M,g) and (&",...,®") 1is the dual basis
to the ON-basis (sl,...,sn). Furthermore, we consider the Ricci-
tensor of (M,g) to be a bundle map Ric: TM—TM of the tangent
bundle n

Ric(X) := kz Rlc(X,sk)sk .

=1

Then, using the local formula (1.8) for the spinor derivative Vs
we obtain

RIXYIP = FRXAY) - (1.12)

After applying the first Bianci-identity for the curvature tensor
'QM of (M,g), this relation yields
n

2 8" TQS(Xlek)CP = - % Ric(X) ¢ . (1.13)
k=1

Now we recall the behaviour of the spinor calculus by conformal change
of the metric g (comp. [4], 3.2.4.). Let (M,g) be a spin mani-
fold and let §:=6‘g, G e €M), be a conformally equivalent
metric. Then there is an identification ~ of the spinor bundle S
of (M,g) and S of (M,J) such that



G o= Ry (1.14)
{{3:6'1/2v x9* 3 X-grad(e'l/z)'kP
+ % X(6-1/2)L§ ' )

-1/2

>unt xU

v (1.15)

where §=6 X for Xe TM.

Finally, we collect some formulas for the spinor calculus on sub-
manifolds of codimension one and on warped products with intervals.

Let (Mn,g) be a spin manifold with spinor structure (Q,f) and
spinor bundle S and let F""lcM be an oriented submanifold of
codimension one with induced metric. We denote by € the normal
vector field on gh-1 given by the orientation of F and M.

The reduction of QIF with respect to € induces a spinor struc~
ture (QF FF) on (F"" l,g g)- Let Sp:= Qg Spln(n—l) denote
the spinor bundle of (F,g|F) Applying the algebraic properties of
the spinor representation restricted to a Spin group of codimension
one (Chapter 1.1) and formula (1.8) for the spinor derivative, one
obtains

1.) If n = 2m+1, the restriction of the spinor bundle S to gn-1
is isomorphic to the bundle SF, where g acts on SF by

O = D it -9 (1.16)
and the spinor derivative of e (S) 1is given by
T ETMIC IR B B (1.17)

for all Xe TxF'

2.,) If n = 2m+2, the restriction of the spinor bundle S to Fh-t
is isomorphic to the bundle SF @ SF, where f acts on

sg ® S¢ by

ACHO) @2) = D" ,E P (1.18)
and the spinor derixative of @el(s) is given by
Vyd=V Fcpl@ Vx P, - 3vMe-€- @ (1.19)

A
for all X T F  (with the denotation (P'F =q>1® P,).

Now, let (F"'l,h) be a spin manifold with the spinor structure
(QF,f‘F), I = (a,b) SIR be an open interval and & € ¢°(I,(0, 0))
be a smooth positive function. We consider the warped product

Mg = F"L X 1= (Fx I, o (n® dtD).
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(M",g) admits a spinor structure (Q,f) which reduces 1tse1f with
respect to S(x,t) = "T to a Spin(n-1)-structure (Q,f) realizing,
over each fibre Fx[t}, the spinor structure of (F,g(t):h) that
is conformally equivalent to the spinor structure (QF,f‘F) of

(F,h). Let T: F x I —>F be the projection. For a section

Qe (a*s.) we denote by ¢f,€& M(Sc) the spinor field

@ () =q>(x t). For a vector field X on F let X be the

vector field X(x,t) :=6 (t) 2 X(x) on M. On the warped product
M =F ¢x I the Levi-Civita connection satisfies

1
-2

g(V% '§'°L, 8p) =6 h(V§ s, +8p)

g(V% 5.8 =- —6'16‘ h(s,,X)
Q(V% ;ol.l g) = Q(Vg sOL'sB) = 0,

where (sl,...,sn_l) denotes a local ON-basis on (F,h) and

XeT F. Applying the formulas (1.14) and (1.15) for the spinor

calculus on conformally equivalent manifolds we obtain the following

relations between the spinor bundles of (F"~ 1.h) and

(M ,q) := F & I:

1.) If n = 2m+1, the spinor bundle S of (M,g) can be identified
with the bundle l1!"“'8F by

~ ~
T* S¢ > 8 = Q Xgpin(2m) AP

Le=[qﬂ-|(xlt)] ? (?::[EIU(xlt)] .

~ n
where q denotes the element of Q( t) corresponding to
quF x with respect to the conf‘ormal equivalence of QF and
Q]F x {tl° .By this identification the Clifford multiplication

satisfies
~ ~ —
X(x,t) s P(x,t) = X(x)- LPt(x), X(x)eTxF
— n. (1.20)
Y Oe) = 1" ~(>-q>)
and the spinor derivative is given by
/s\/
v e =612 Vg, - 3076 X-¢3 ) X eTF
(1.21)

s 5‘\_/

V.gc? = st .

2.) If n = 2m+2, the spinor bundle S \of (M,g) can be identi-
fied with the bundle T* s (HT* Sg by
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TS ®r* Sg >8 =Q *spin(n-1) o)

~ X
= ‘P1®‘?2 _ “?‘=‘?1 OX
=[a.ulx, IOV, 0] = [E QD@ ux,+(DH@Vx, 0] .
By this identification the Clifford multiplication satisfies

o ~ o~ —_——————
XD (Ox8) = X000 @ X0 9,00, XeT,F 1
3 ~ % 1.22
Y0 (P,O¢)
and the spinor derivative is given by
S S
") F F& - ' .
Uxg=¢ {Vx P ®Vx P25 %6 rx- 2%, xeT,F

s...
(F' ,:E((P) .

(1.23)

In the following chapters we will often omit the symbols S and M
in the covariant derivatives vs and VM for simplicity and denote

all covariant derivatives by V.

1.3. The Dirac Operator of a Riemannian Spin Manifold

Let (M",g) be a Riemannian spin manifold with the spinor bundle S.
The Dirac_operator of (Mn,g) is the first order differential
operator defined by

S
0: M(s) YL — [(ME)S)—EL—I(s).
Locally D can be expressed by

n
S
D =2 8 (1.24)
1 % Ve

where (s;,...,8, ) 1is a local ON-basis of 7, 9.

Let f be a function, X a vector field and w a k-form on M.
Using (1.24), (1.3), (1.4), (1.10) and (1.11) the following commuting
rules are easy to verify

D(Fcf) = f DY + grad f- (P (1.25)
DIX'¢) = =X-DP - 2Ty P+ Z j Ve x P (1.26)
D(w )=(-1)*w- D¢ +(d+c$)w cP—ZZ(s _lw) Vs cP (1.27)

where d is the exterior dlff‘erential and ¢5 its adjoint.
The Dirac operator is elliptic and formally selfadjoint on the space
l"c(s) of smooth sections with compact support with respect to the

scalar product
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L= z{<ap(_x),\{)(x)> M.

1f (M",g) 1is complete, D 1is essentially selfadjoint in the space
of L2-sections L,(s) defined by the completion of ( Fc(s),<,> ).
If M 1is compact, the spectrum of D (as an elliptic and formally
selfadjoint operator) contains only discrete real ekigenvalues of
finite multiplicity (see [91], Chap. 11). In case of even dimension
n, D exchanges the positive and negative part of S. Hence, for an
eigenspinor ¢ =t.P+ ®9 e res* (® s7) to an eigenvalue 2A€R
we have

D@t =~ and 09~ =g "
and, therefore,

D(@*-@™) = (=) (f*-¢7).
Hence, the spectrum of D on a compact manifold in case of even
dimension is symmetric to zero.

In 1963 A. Lichnerowicz ([81]) proved the following Weitzenbdck
formula for the square of the Dirac operator

p2=%r+n%,
where R denotes the scalar curvature of (M,g) and A s the
Bochner-Laplace operator of ¢ S,

AS:.gS*eUS . - L\l‘;(vg v+ aiv(s )73 ).
k=1 = % % K

Let fe CM?M) be a smooth real-valued function and
Vf: r(s) —(T™ C) S) the metric covariant derivative on S
defined by
f

VYR =V + £ X o
Then we have the following generalization of Lichnerowicz®' formula:
Theorem 1 ([32]):

(0-p% = AF 4 1R+ (1-n) £2, (1.28)

where A f denotes the Bochner-Laplace operator of the covariant
derivative Vf.

Proof: From (1.25) it follows that

(0-£)2 = p2

- 2fD - grad f- + f2.
Using the Lichnerowicz formula for p? we obtain

(0-7)2 =05 + IR - 2FD - grad £+ £2.
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Applying the rules (1.9) and (1.10) it follows for the Bochner-
Laplace operators As and Af

Af =nS - 2¢D - grad £- + nf2.

Hence

-2 = AF 4+ 1R+ (1-n)f2,

Theorem 1 implies the following Corollary for the spectrum of the
Dirac operator on compact manifolds.

Corollary 1 ([32]): Let (M",g) be a compact Riemannian spin
manifold of positive scalar curvature R >0. Then .
1) The first positive and negative eigenvalue A, and A_ of D
satisfy the estimates
R_n

1 )
EREE A=

where Ro is the minimum of the scalar curvature R.
R _n R_n
2) If the lowest bound + % n_‘-)l' or - % n_(—’T is an eigenvalue of
D and c() a corresponding eigenspinor, then @ satisfies the
differential equation

1
v&‘?* 3 ;?;§I; X'\Pn 0
resp. ) -
o
- x. =
Vx¥ ,"Vn(n-n p=0

for all vector fields X on M.

Proof: Assume that N\ is an eigenvalue of D with A% % R, n_r-‘I
and @ ¥ O is an eigenspinor to A . By integration of (1.28) with
the function f = n we obtain

2
f<-22p,0>am = | {(Ir + 1222|912 4|V P|2] au
M e wF LT

and because of DY =AP

A
o-é{(in + 2505 2 91 24 9 P 912) au. *
In case ‘>\2<% R0 n_r-‘I , equation (*) requires q?-‘- 0 , which is a

coitradiction. In case )\2 = % R, n_'-“.l" (*) particularly yields

vn‘{’; 0. This proves the second statement.

Let (M",g), n¥3, be a compact connected spin manifold. In [57]
0. Hijazi proved a lower estimate for the eigenvalues A _.of the
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Dirac operator of (Mn,g) using a conformal invariant bound:

2 n n
22 e M T AT R

where i, is the first eigenvalue of the conformal scalar Laplacian

L:4£—E§A+R.

If 1.1 is an eigenvalue of D satisfying Ai = zTﬁgIT'”].>o’ then
(M,g) has constant scalar curvature R = By i.e. the two bounds
are equal.

A compact spin manifold with positive scalar curvature has no
harmonic spinors (by a harmonic spinor we mean a non-trivial

element of ® := ‘Sq?t:r'(s)IDL?i 0})-

In general, the dimension of X depends on the metric as well as
on the chosen spinor structure (see [ 61]).
If §g=6g is a conformally equivalent metric, the Dirac operator
D of (M,g) satisfies
Y YS ™ ug
=6 * o ‘¢ (1.29)

(cf. (611 or [4] Chap. 3.2.4).
Thus, the dimension of the space of harmonic spinors is a conformal
invariant. .

1.4. The Twistor Operator of a Riemannian Spin Manifold

Let (Mn,g) be a Riemannian spin manifold with the spinor bundle
S and let p: ™ G@ S —> S be the Clifford multiplication.

Then ker p 1is a subbundle of TM C) S and there exists a pro-
jection p: ™ () S—> ker p onto ker p given by the formula

p(X@c{D)-X@?t% g:_ls'(@sk-x-? '

where (sl,...,sn) is a local ON-basis.

Definition 1: The twistor operator & of (M,g) is the composition
of the spinor derivative Vs and the projection p

S
Dimpe ¥5: M(8)—L MM @) S)—L> M (Ker p).
Locally we have
n
SGP- pvs(_? = p (k/r_l Qk ®v3k(P ) =
1
'él-i 8k ®S_Vak"F’ 7% 0P}

(1.30)

22



Definition _2: A spinor field el(S) is called a twistor spinor
if « lies in the kernel of the twistor operator O .

Theorem 2: Let e (S). The following conditions are equivalent:
1) ¢ is a twistor spinor
2) «psatisfies the so-called twistor equation

Vy§ + 2 X-0¢9 =0 (1.31)

for all vector fields X.
3) For all vector fields X,Y it holds

XTyf + Y+ Vyd = 3 g(X,V)DQP . (1.32)
4) The spinor field
X Uy

does not depend on the unit vector field X.

Proof: Equation (1.30) shows that the condition DY = 0 is equi-
valent to the twistor equation

Vyd+ 2 x0p=0 For all XxeX(M).
Multiplying this by a vector field we have
Y-UyP + £ V-X-Df=0  and
1
X-Vyg + §
Using condition (1.3), the sum of these equations provides (1.32).
Conversely, let (1.32) be valid. We multiply (1.32) for Y = 85 by

'j and sum up over j = 1,...,n. Then
2

n
£ XDyP= 3 8.°X- -ny
n "p jll j vsj‘P Xq>
= - XDP=-2Vyp-nVyq
= - XD~ (n+2)vxq’ .
This shows (1.31). Finally, from (1.32) it follows that
. 1
XUyf= =0
for all unit vector fields X. Conversely, if X- VXLP do not
depend on the unit vector field X, we obtain, by setting

yi= XUy
DP=ny and Vyf= - XX-Vyf= = Xy .
This provides (1.31).

X-Y-DP = 0.
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Let @el(S) be an arbitrary spinor field on (M,g). By
up € (M) we denote the function

ucp(x) =2 P(x), g (x)> ,

which we call the length function of ¢ . By Tpe X (M) we under-
stand the vector field

n
T‘? = jg_-:l(‘P ,Sj‘ DIP )Sjl

where (sl,...,sn) is a local ON-basis.
The following formulas are convenient for the calculus with twistor
spinors.

Theorem 3 ([83)): Let ¢el(S) be a twistor spinor.
Then the following conditions are satisfied:

Q= F R 2 ¢ (1.33)
Ux(09) = yratyy (R* gri—yy X-R1C(X))+ ¢ (1.34)
Bug = gracyy up = & < 090D (1.35)
grad up = - Z 14 (1.36)
AV(Tp) = =<DP,0P>+ § 72 R ug (1.37)

Here R denotes the scalar curvature and Ric: TM—TM the _Rlcci
curvature of (M",g).

Proof: Let x&M. In the following calculations we use an ON-basis
(sl,...,sn) arising from one in TxM by parallel displacement

along geodesics. Then
dlv(sj)(x) =0, [si,sj](x) =0 and (V sj)(x) = 0.
If we differentiate the twistor equation (1.31) and use rule (1.10),

we obtain in xeM
n
1
0=2_¢ + 2V (8,°D9)
j=1 sj Vsjq) n sj j
S 1.2
= —A (? + ﬁ D ‘«P .
Applying the Weitzenbdck formula 02 =S & % R it follows
2 1 n
D ‘-? =3 R =T (P .
Furthermore, let X be a local vector field arising from a vector

in TxM by parallel displacement along geodesics. Then, the twistor
equation implies in xe&M
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Vsij‘? + 1 X'Vsj('"f’)’ 0 and

Ux Vsj“?a, z 5 %0¢) =0 j=1,....n.
Hence,
(Rs(x,sj)@ - -3 85 Ux(Dp) + : x-vsj(o:?).
Using condition (1.13) we obtain
RIC(O-Q = =2 3 8, R S(X,8p) ¢ =
j=1

n

= -29,(0¢) - ’2—_ TRIAA (DLP)

3SIN

= -2V,00) + 2 x-0%p + an(W)~
Applying 024(>= igr ﬁ%.[q) it follows

U, (D) = ﬂ{m X-Ric(X) {- ¢

For the Laplacian of the length-function u"P =<, ¢> formula
(1.9) provides

Auq-,- - j->__i sjsj(u?)

{aSe 9> K, a8¢]- 2 ;Zl<vsjcp ,v,jcp .

Using the twistor equation (1.31), the Lichnerowicz-formula
2 .AS8., % R and (1.33) we obtain

P’l=

"j < Vsj‘:P"P> <K, Vsjq»j

=]

—

Auy= zrﬁ'-zn'“C?’;% j% <8570 .8y D92

R 2
" 2D U T R <0¢ 09D -
Furthermore, the twistor equation yields

grad up= é sj(u(?)s:I = ;{(Vsjcf,?>+<‘{7:vsj’~?>} 8y

1
-23 (@,9, ReKY
1-1
"51‘“ (485709 ) o
--%Tce.

The last two equations give
le(Tcp) = - g dlv(grad ug) = g dup
- 3 R a5r up -<0Q.0Q>
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Now we can prove a further condition for { being a twistor spinor.
Let K: T™ —>TM denote the bundle map

K(X)" { 27——1-)- X - RIC(X)}
We conslder the bundle E:= S @ S and the covariant derivative
v E in E defined by
s 1,,
Vx n
Ux =
n S
K00 vy

Theorem 4 ([38]): For any twistor spinor @el’ (S) it holds that
v ( ) 0. Conversely, if (i)e [(E) is ¢ -parallel, then

is a twistor spinor and Y= D¢ .

Proof: Let @efl(S) be a twistor spinor. Then
sz,s XD
Uy (‘P >. N
0y Uy D = ZKO)-@

The twistor iauation and formula (1.34) provide Vx (CP > J.

Now, let <'\4) e "(E) bea y E.parallel section :
VE :z % 0. Then, in particular, by definition of VE we have,

Ux@+ ﬁ X*¢ = 0 for all vector fields X.

Multiplying this by X and using (1.3) and (1.24) this shows that
D =Y and thct zpls a solution of the twistor equation (1.31).

By Theorem 4 the twistor spinors correspond to the VE-parallel
sections of the bundle E. Hence, a twistor spinor ({1 is defined

by ite values @(m.), DP(m,) at some points m &M. In particular,
we obtain

Corollary 2: The dimension of the space of twistor spinors on a

connecked, n-dimensional Riemannian manifold is less than or equal
+1
to 2[2] .

Corollary 3: Let ¢ be a twistor spinor on a connected Riemannian
manifold such that ¢ and D‘P vanish at some point m,cM. Then
the twistor ‘P is trivial, i.e. @= 0.
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Let us denote the components of the tensor K introduced above by

1 R
Kij = 72 {ETE:TT 94 - le} . The Weyl-tensor W 1is given by the
formula

wous'xé" R otsxcf = Spd KO(’X“-QO('(' Kpg *
+ gB""KolJ" goLJKB'x"

We understand the curvature tensor R as well as the Weyl-tensor W
as endomorphisms of AzMn by the rule

i Jy=S— K, 1
R(s Ao )kt—], RinIG AnG

weleh = > LR kngl,
kel

Using this notation a straightforward calculation provides for the
curvature tensor zR.E of the covariant derivative VE in the
bundle E:

I WXAV)Q

&E(x,v)(ff,) =\, N
z W(X;\Y)LP + 2((VYK)(X)’(VXK)(Y))"P PR

Theorem 5: Let ¥ € Ker® be a twistor spinor on a Riemannian
manifold Mn, then, for any 2-form m= YAZ and any vector X, we
have

W(m)-@=0 (1.38)
W(M) Do+ 2n{(7 KI(Y)=(V(KI(D)y¢= O (1.39)

O ()@ = =2X L (7 ZK)(YV)=(7 KI(D)}~ ¢

2 (1.40)
+ 2(XaW(m)) Dy

Proof: The equations (1.38) and (1.30) follow directly from the
formula for the curvature tensor 6{E and Theorem 4. We differentiate
the equation

WM )>P=o0
with respect to X and obtain - using (1.38) and (1.39) -
WM ¢ = V(W) P~ WU § =
= Vy(W(m))f -0
=V, (W) ) - W)V
= WMV ¢
=} wmrxog .

From formula (1.4) we obtain the following commuting rule for a
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2-form w and a vector X
w-X =(X- W+ 2(X = w),
Hence
(T, (M) P = 2w 0 + E(XW(n ) Dg
= 2X[ (T ZKIN=(T D]+ ZX_W(m)- 0@ .
We derive now a well-known relation between the covariant derivatives

of the Weyl-tensor W and the tensor K. Consider the Bianchi

identity

UiRgkon * V5 Riciwn * Vi Rijep = O

Contracting this equation with respect to i = B we obtain
Vg RjkocB -Vj Rieo * Vk Riw = 0.

Contracting again with respect to j = it follows
VK(R) L 2VBRK8.

Now we calculate

1 Vo (R
V. Kas = 7=z ( 21%7-'1'} S = VxRup) =

1 Y (R) 1o -
= w2 ((z;%‘frr Sup = 3 Vp(R)
AG

Using the latter formula as well as the definition of the Weyl-
tensor W a direct computation yields

VDLWBTJO( = (3-n)( VBKT-é"‘ VT Kﬂd- ) .

A Riemannian manifold (M",g) is called conformally symmetric if

VW = 0
(compare [107]1). The above formula particularly proves that
(VKICY) - (VYK)()?) =0

holds in any conformally symmetric space.

Theorem 6:

1) Let (M",g) be a conformally symmetric Riemannian manifold with
a non-trivial twistor spinor ¢ and suppose that D¢ vanishes
on a discrete set only. Then M is a conformally flat space, i.e.
W s 0.

2) A connected three-dimensional Riemannian manifold with a non-
trivial twistor is conformally flat.
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Proof: Suppose UW = O. By Theorem 5, formula (1.40), and the
previous calculation we have

(x s W(n?).0p =0
for any vector X and any 2-form 'q . Since D¢ vanishes only on
a discrete set, this yields that the 1-form X _ w(rrz ) equals zero
for any vector X, i.e. W(*Tl ) = 0 for any 2-form ’q
In case M is a 3-dimensional manifold, we have W = 0 and,
consequently, the integrability condition (1.39) of Theorem S
implies

(WK () = (TR0 = 0

for all vector fields X,Y on the set {meM3|c?(m) # 0}. This set

is dense in M3 (see Chapter 2 of this book) and therefore this
equation holds in all points of M3. on the other hand, the last
equation in case of a 3-dimensional Riemannian. manifold is equivalent
to the conformal flatness of the space ([94]).

Example 1: Let us consider the Euclidean space M?" = R" and a
twistor spinor ¢ : R —> An on it. According to Theorem 3,
formula (1.34), we have V(D) = 0, i.e. DP=: (P, 1is constant.
Now we integrate the twistor equation
1. 1.,.
Ux®@+ § X'Dp= Uy P+ 5 X €4
along the line {sx| 065513 and obtain
1

A(.P(x) - @) = - 5 x ‘\01'

Consequently, the set of all twistor spinors on R" is given by
1.

Q00 =@y - x ¢y (3]

with ¢, @,&4 . In particular, we have dim Ker D = 2 .

Moreover, any twistor spinor on IR vanishes at most at one point,
since x-f, = 0 implies x = 0 or ¢, = O.

The twistor equation is conformally invariant in the following
sense: Let § =gg be a conformally equivalent metric to g and
let © be the twistor operator of (M,3). Then we have

Theorem 7: For each spinor field ¢el(s),
~ o ——
DGaeV4 Do "V4y).

In particular, <gel'(s) is a twistor spinor on (M,g) iff
61/4<? € " (s) is a twistor spinor on (M,3).
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Proof: Using (1.14), (1.15) and (1.29) we obtain by a straight-
forward calculation

G+ X 0F - V4 {03 V4. L xne Vi)Y .

with (1.30) the statement follows.

1.5. Killing Spinors on Riemannian Spin Manifolds

A special example of twistor spinors are the so-called Killing
spinors.

Definition 3: A spinor field {e[(S) is called a Killing spinor
to the Killing number Be € if the differential equation

Vi = BX - (1.41)
is satisfied for all vector fields X on M.

By 'J{(Mn,g)B we denote the space of all Killing spinors of

(M",g) to the Killing number B. Obviously, each Killing spinor is

a twistor spinor satisfying formally the eigenvalue equation
D:?:—nﬂ@ for the Dirac operator. Since Killing spinors are parallel
with respect to the covariant derivative Vx = BX* on the spinor
bundle, & non-trivial Killing spinor ‘¥ on & connected manifold has
no zeros. In particular, its length function is positive.

If @ is a Killing spinor to a real Killing number B, the real
vector field

n
Xy = i< ,s,-
¢ EE% sy >ey
is a Killing vector field (if it is not identically zero):
From

Vy(xg) = 1%{<vyce,sj-ce>+<cp,sj-qu>j y

= m{ i(q,(sj-Y-Y'aj)'q» sj}
j=1
it follows for the Lie derivative that
= 1B{LP,(ZY-Y-2) P> o, (Y+Z-Z-Y) @ > ]
= 0,
This is the origin of the name Killing spinor.

There is a fundamental geometric condition for (M",g) admitting
Killing spinors:
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Theorem 8 [32]: Let (M",g) be a connected spin manifold with a
non-trivial Killing spinor e X (M,g)B. Then (M",g) is an
Einstein space with the scalar curvature R = 4n(n-1)82,

Proof: Let peX(M,g); be a non-trivial Killing spinor. Then the
Killing equation (1.41) yields for the curvature tensor in S
REK P= W@ = Ty P -7 (x,v1 @
=Ty (BY ) -V (BX-¢) - B[ X,Y] ¢
= B(Y Y- VYX =[X, Y1) + BONVy P=XTy %)
= B2(Y-X-X-Y) P
= 282(Y- X+g(X,Y))- ¢ .
Using (1.13) we obtain for the Ricci tensor
Ric(X)' ¥ = -2 ,%1 8- R (X, 8 )¢

k=
n
= -482 8, (s, X+g(X,8)) P
k=l
= 482(n=1)X * ¢ .

Since Q has no zeros,
Ric(X) = 482(n-1)X.

Therefore, (M",g) 1is an Einstein space of constant scalar
curvature R = 482n(n-1).

Let cye:k(M,g)B be a non-trivial Killing spinor. In particular,
Theorem 8 shows that the Killing number B 1is either real or
imaginary. In case BE€|R» {09, we call ¢ a real Killing spinor;
in case BEiR: {0}, we call ¥ an imaginary Killing spinor;

in case B = 0, ¢ is of course a V"~ -parallel spinor field.

There is an important difference between the real and the imaginary
case.

Theorem 9: Let (N",g) be a complete connected spin manifold with
a non-trivial Killing spinor ¢ . If ¢ 1is real, (Mn,g) is a
compact Einstein space of positive scalar curvature. If ¢ is

imaginary, (M",g) is a non-compact Einstein space of negative
scalar curvature.

Proof: Let ¢ be real. Then, on account of Theorem 8, (M",g) is
a complete Einstein space of positive scalar curvature and the
Theorem of Myers ([74], Chap. VIII.5) provides the compactness of M.
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Let Qe .R(,M,g)pi be imaginary and assume that M is compact. Then

¢ satisfies the eigenvalue equation qu? = -nzngp and
0 % §<D@.Dg> aM = | (D%, P> oM = -nZp? '£<cp D dM
M M
implies ¢ = 0.

Theorem 9 and Corollary 1 show that the compact manifolds admitting
non-trivial Killing spinors are just those compact manifolds of

positive scalar curvature R that have the smallest possible first
eigenvalue X or A_ of the Dirac operator D: ¢ & ' (S) {is an

eigenspinor of D to the eigenvalue
R n
+ %1}-,—31- iff ¢ is a non-trivial Killing spinor to the Killing

R
1 o
number 7 3\n s .

Moreover, in the compact case all twistor spinors can be obtained
by Killing spinors using a conformal deformation of the metric.

Theorem 10 ((83]): Let (M",g) be a compact Riemannian manifold.
Then there exists a conformal equivalent Riemannian metric § =G-g
of constant scalar curvature R such that ’

1/4 —— - _ o _
6" KerD = R MY, R HOREJUA- DI [R__ -
Z2inTn=- “Z2Ihln=

Proof: From the solution of the Yamabe-problem one knows that there
exists a conformal change § =G-g of the metric g such that the
Riemannian manifold (M,g) has constant scalar curvature R. By
Theorem 7 we have for the twistor spinors on (M,g) and (M,'§)

- vl
Ker Q= 1/4 Ker,D.

According to Theorem 3, formulae (1.33), each twistor spinor {'P' of
(M,ﬁ) is an eigenspinor of D2 to the eigenvalue % R 'n—r-lI Since

Ker(02-% %) = Ker(Bs 1) (DKer(B-2 )

holds on a compact manifold for all & IR, the statement follows
from the above mentioned connection between Killing spinors and
eigenvalues of the Dirac operator on compact manifolds.

Theorem 11 ([831,([571): Let (M",g) be a connected spin manifold
admitting a non-trivial Killing spinor ¢ to the Killing number

B # 0. Then, there are no non-trivial parallel k-forms, k # O,n,
on M". In particular, such a manifold is non-Kéhlerian. If w is
a harmonic k-form and M is compact, then w-¢ & O.
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Proof: Let ‘P" 0 be a Killing spinor to the Killing number B # O

and let w be a parallel k-form, k # O,n.
In particular, w is harmonic and the application of formula
(1.27) provides ~

D(w-@) = (-1)kw~D¢? + (_d+cf)w-<?-§nzl(sj_,w).vsjqz

= (-1)k+1nl3w-<€— 28 ;:(sj_, w)sj'~P
=1
= (-1¥*1p(n-2k)w . . (i)

This shows that Dz(wu{)) = l!uz(n-Zk)2 w-@ for each harmonic k-form

w . If M is compact, the smallest eigenvalue of 02 is n2p2

(Corollary 1, Theorem 8). Hence, in this case w.p= 0 follows
for each harmonic form w.

Using p? = % R+ A% and R = 4n(n-1)82, (1) yields
A (w-) = 82{(n-2k)%-n(n-1)} w- . (i)
On the other hand, by (1.11) we have for each parallel form
VW) =gw-r+ w750 = w.yp
and, hence,
AS(w-¢) = waSg=w.0%p - 3 Re)
= Bz(nz—n(n-l))w~cf’ (iii)

since k # O,n, (ii) and (iii)provide w-¢ = O.
Differentiating w-¢= 0 we obtain

Vyw @) = wUyf=BwX-¢ = 0.
Using (1.4) it follows

0= wXx@ = (-1X[x-wp+2(x_w) ¢}
= 2-DF (X w9} .

Hence, (X~ w)-{ = 0 for all vector fields X on M. Using
VY(X_,w) -VYX_.W + X_.VYw and differentiating again, we obtain

D -sz((xl_..w)«e) =V, Xp =W+ (X W) vxz(()
= (szxl_- w)'k? + B(Xl_:w)'xz-t()
= 2(-1) ¥ {x,m (= w)-@} .

Consequently, (X2_. (Xl_..w))“f’ = 0 for all vector fields X,,X,
on M. By further differentiation in the same way one obtains
W(Xg, 0o X ) P= 0

for all vector fields xl,...,xk on M.

3 Baum, Twistors and Killing Spinors
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This implies w = O. A Kéhler form is parallel, hence (M,g) cannot
be Kéhlerian.

Remark: In [681,[69] and (70] , K.-D. Kirchberg studied the eigen-
values of the Dirac operator on compact Kéhler manifolds (M",g)

of positive scalar curvature R. He proved the following lower
bound for the eigenvalues:

fala 3 22e *

n o
. 2 1 n+2
where Ro is the minimum of R. If X\ = 3 -%— Ro is an eigen-

value of Dz, the complex dimension m (n=2m) of M is odd and
(M,g) 1is Kéhler-Einstein. In case of even complex dimension m,
the eigenvalues are bounded by

1l 2 ;Z.JFI-IT R, - (%)

The estimations (*) and (**) are sharp in the sense that there are
Kéhler manifolds with equality in (*) and (**), In case m = 1 and
m = 3, the only Kdhler manifolds with equality in (*) are the
sphere S2 = cPl, the complex projective space cP3 and the flag
manifold F(ca). For the 4-dimensional Grassmannian manifold

G& 4" s2 x s2 the equality in (**) is valid.
’

Finally we prove further geometric conditions for a manifold (M,g)
admitting Killing spinors.

Theorem 12: Let q>e'.7{(Mn,g)B be a Killing spinor on (M",g).
Then, for the curvature tensor TR and the Weyl tensor W the
foliowing conditions are satisfied:

Wim )¢ =0 (1.42)
(VW (m)q = -28x=w(m)}- ¢ (1.43)
fRen) + a3 od e 0 o
(TR P = =28[X— (R () +482m)]-p (1.45)

for all 2-forms n and all vectors X.

Proof: Each Killing spinor is a twistor spinor. Hence equation
(1.42) follows from formula (1.38) of Theorem 6. Since the Killing
spinor @ satisfies D¢ = -nB:¢ , the formulas (1.39) and (1.30)
from Theorem 5 show that

(VK0 - (VK@) $=0

34



for all vectors Y and Z. Thus, (1.43) follows from (1.40).
According to Theorem 8 (M",g) is an Einstein space of scalar
curvature R = 4n(n-1)52. Therefore, the components of the Weyl
tensor with respect to an ON-basis are '

2
Wik = Rygen * 4879 1 S5y Iy

Hence, the Weyl-tensor and the curvature tensor considered to be
bundle maps on /\2M are connected by

W(m) =R(7) + 4870
Furthermore, we obtain

=

(VW) =VyW(m)) - w(Uym)
= Uy (R ())+482V - R(TV y7)-4827 7
= (VyR().
Thus, the equations (1.42) and (1.43) provide (1.44) and (1.45).

Theorem 13: Let (M",g) be a connected spin manifold with a non-
trivial Killing spinor to the Killing number B # 0. Then (M,g)

is locally irreducible. If (M,g) 1is locally symmetric or the
dimension of M is not greater than 4, then (M,g) is a space of
constant sectional curvature 452.

Proof: Let L?&X(Mn,g)s be a non-trivial Killing spinor. Let us
assume that (M,g) 1is locally reducible in x€&M. Then there exists
an open neighbourhood U of x, which is isometric to a Riemannian
product U1 X U2' For the 1-forms 61 and 62 on U1 and U2,
respectively, we have R(&,AG,) = 0 and (ZyR) (B 4146,) =0
for all vectors X tangent to U; or U, . Formula (1.45) implies
-BBS(X__,(GIAGZ)).C{?i O on U. Hence, Z'¥& 0 for all vector
fields Z on U, which provides ¢ = 0 on U - a contradiction.

Now we assume (M,g) to be locally symmetric, i.e. VR = 0. Then
(1.45) implies
(Xa (R + 482 =0

for all vectors X and all 2-forms m . Since ¢ has no zeros, we
even obtain

R (M) + 48%m = 0

for all 2-forms M - Hence, (Mn,g) is a space of constant sectional
curvature 462.

Now, suppose for the dimension n of M: n€4.An Einstein space of
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dimension n£é3 has constant sectional curvature. It remains to
prove the statement in case n=4. In dimension 4 the Weyl tensor splits
into a positive and a negative part

W, o

0 w

W=

with respect to the decomposition of AZM in the subspace of self-
dual and anti-selfdual 2-forms

2, 2 2,
AM =AM O AN
For a 4-dimensional Einstein space there exists an ON-basis

(s reeei8y ) in each tangent space T M such that the Weyl tensor
w(x) /\ZM—->/\2M is, with respect to the basis

(311\32,311\83181/\ 84183/ 84:8,n8,,8, Asa), of the form

o <52 L (3 2)

where N
120 1
A=| "9 2 O , B=| O W, O ' ijljelR,
0 0 2 0 0
By + By + g =0 and A +A, + Ay = - Béél
(cf. [97]). Furthermore,
1
W+(x) =0 iff Xk A o} R(x), k=1,2,3
1
W_(x) =0 Iiff Kk LR o] R(x), k=1,2,3

(cf. [33], § 1). An even form respects the positive and negative part
of the spinor bundle. Hence, from (1.42) it follows for the Killing

spinor @ =¢* (D¢ that

sy 8y W (8yn8y) - PE(x) = 0 (1,§) = (1,2),(1,3),(1,4).
Applying formula (1.1) for the Clifford-multiplication, in case
¢?+(x) # 0 these equations give the algebraic condition

det((- B%l - (X 4y IE) = 0 k=1,2,3

and, in case ¢ (x) ¥ 0, the condition
det((- 5{-’2‘-)- = (L - IIE) = 0 k=1,2,3.

This implies W+(x) =0 |if q>i(x) # 0. Now, from the Killing
equation one concludes

Vi@t = g and Vy®~ =8 X"
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Since ¢ is non-trivial and B £ 0, this shows that c(l’+ as well
as ¢~ are non-trivial spinor fields on M.

Both spinors, ¢+ and ¢ ~, are twistor spinors on (M,g), hence
their zero-set in M 1is discrete (see Chapter 2.1. of this book).
Hence both, the positive part W_ and the negative part W_ of
the Weyl-tensor are identically zero. Because of

0= W) = (M) + 4827 ,

(M4,g) is a space of constant sectional curvature 452.

Corollary 4: Let (M4,g) be a 4-dimensional compact, connected
spin manifold with a non-trivial real Killing spinor to the
Killing number B # O. Then (M4,g) is isometric to the standard
sphere of radius ?%FT .

Proof: According to Theorem 13, (M4,g) is a space of constant
sectional curvature 482. Hence, (M4,g) is isometric to the
projective space IRP4 or to the sphere 54 (with suitable normation
of the metric) (see [106], Th. 2.5.1). However, Rp4
orientable and therefore no spin manifold.

is non-

The proof Theorem 13 also entails that W_= O is valid on a 4-
dimensional manifold with a non-trivial parallel spinor #/3e.r‘(si).

Example 2: Let us consider the standard sphere (S",go). We
identify s™ {north pole} via stereographic projection with the
Euclidean space R". Then we have

4
% (1 x152 iy

for the metric.
According to Theorem 7 and Example 1 the twistor spinors on
n ~
S\ {north pole} are all spinors ¢ u,v given by
g, (x) = =0
usv 1+ x||
where u,veAn are constants.

By formula (1.15) we have for the spinor derivative of the twistor
i F =
W'mgq ?%nﬁ — L — L
5o 1rix ex- o)
Ve,ar =2 P v 3 ey xP + 3,8
S
mma— |
V1+lx 12

L
e, (x u+v).
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Now, suppose that CP: Eéu,v is a Killing spinor on s" \{north pole}.
Then we have

ve§ - +3 8¢,
which is equivalent to the condition
x'u + v =+ (usxev) for all xeR".

Setting x = 0, this implies v = + u .
Hence, each Killing spinor of s” \ {north pole} is of the form

q)ult u , where uecl_~ is a constant. The functions (P“/t u

extend to 1nf-‘1nity.
Consequently, the set of all Killing spinors on s" to the Killing
number + % are the spdnors ‘?u’ which, on s“\énorth pole} ,

are given by

‘-() (x) = -Q—t—]':)'—u , ué/_ln constant.
‘ VielxllZ'

Example 3: Let H" be the hyperbolic space realized as an open
unit ball in R" with the metric

4
g% =——23 9,
a-Ix1* "wr"
As in example 2 we obtain:

The twistor spinors on H" are all spinors (.Fu v given by
’

u+x*v
‘-eu'v(x) B e
INE

where u,veAn are constants.

The Killing spinors on H"  are

KM, ={ ) = =2 (us1xuw, "t
TR Tz sl ued”
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Chapter 2: The Properties of Twistor Spinors

2.1. The Zeros of a Twistor Spinor

We turn now to investlgate the zeros of a solution ¥ of the twistor
equation qu’+ X:D@= 0. First of all we shall prove that the
zeros are isolated points.

Theorem 1 ([38]): Let (M",g) be a connected Riemannian manifold
and ¢ ¥ 0 a twistor splnor. Then N‘? ={meM P (m) = 0} is a
discrete subset of M"

Proof: Suppose @(m) = 0. Using formula (1.34) we have
V(@ ¢)(m) = 0.

Concerning

(YX u)(m) = 2(Y(V 9, P ))(n) =

= - FOCDQ @) () = =5 (X*DY Y- D@ ) (m)

= -§ g(x,Y)[ 0 (m)| 2
we see that the Hessian of the function ug —lcflz at the point
neM" is given by

Hess ucP(X,Y) = -;% g(X,Y)| oy (m)|2.

In case D (m) # O, m is a non-degenerate critical point of u
and consequently an isolated zero point of ¢ . In case D¢ (m) = O,
we obtain ¢ & O by Corollary 3 of Chapter 1.

We consider now a geodesic T(t) in M" and a twistor spinor ¢ .
Denote by u(t), v(t) the functions u¢P('X'(t)) | oyl 2( FE).
Moreover, we introduce the functions

£ (L) = g(K(Y(t)) X(t))
£(t) = |K(fx(t))|2
From the twistor equation (1.31) as well as formula (1.34) we obtain
u“(t)=f1(t)u(t)+2n‘2v(t)
and in the case that V?.K(q‘r) is parallel to =) (2.1)
V) = £, (0ulede 3 nZe)(E)ut (£)+F, (E)V(E)

Theorem 2 ([38]): Let ¢ # O be a twistor spinor and denote by
T [o,T] —>M" geodesic joining of two zeros of ¢ . Then
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a) Ric(y) is parallel to
b) grad ug is parallel to ¥

2 .
o) = gk(P.P) T

2
0 u-v = B (§H2

Proof: Using the notation introduced above we have

u(0) = g (0) = F (0) = o, v(0) > 0
um = F (M = F (M=o, v(T)> 0.

Since u(t) and v(t) satisf‘y the equations (2.1), we obtain
d 2
(G- %5ty g0 = (Fpm ° 7 Du.
2
If £, -1y f‘l # 0 on the interval [0,T] , we have
du
0= M - _2 £, (M) =
[ (e,- 25 62
= f - fSlu>0
o _2 1

2 . .
because f, - 22 f‘l = 12 (IK('? )]z-g(K(-j(),’;f )2 3 o,

a contradiction. In case —2 f 0, Ric(_?) is parallel to
X and H'E —2 g(K(X) 'x)
Moreover, we calculate
:%%v+£2f‘1u%% nza-f(fu+u72v)-0,
i.e. uv = ﬁ (g%)z. Since ¢ is a twistor spinor vanishing at some

point, we have uv-th- g grad(u\P):tP (see formula (2.3)). This
implies u-v = n_‘ |grad u‘_i;l 2 and, consequently,

| grad u‘f:I2 = (g%)z

, i.e. the gradient of u‘e is parallel to y .

Corollary 1: Let (Mn,g) be a complete connected Rlemannian
manifold and suppose that the (1,1)-tensor K: n- (?T—D'- Ric) is
non-negative. Then any twistor spinor @ # O vanishes at most at
one point.

Proof: Suppose up (m ) =0= ug (mz), m, # m,, and consider a
geodesic o : [0, T]>M" from m; to m,. Then
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d®u 2
= f,ru + v20
a2 1 2

since K is non-negative. With respect to
u(0) = u(T) =0 and (O =F (M =0

we conclude u(t) = 0 on [0,T], i.e. ¢ vanishes on the curve v,
a contradiction to Theorem 1.

Remark: The condition K 3 O is satisfied in particular if (M",g)
is an Einstein space with scalar curvature R £ O. On the Euclidean
space R” and on the hyperbolic space H" there exist twistor
spinors vanishing at some point. Solving the twistor equation on

certain warped products m" 2X Rl we shall construct examples of
f

Riemannian manifolds admitting twistor spinors with an arbitrary
number of zeros.

2.2. The Solutions of the Twistor Equation on Warped Products
w2 xR,
f

Let (Mzm,g) be an even-dimensional Einstein space with scalar
curvature R ¥ 0. The decomposition of the spinor bundle
S = S’C)S' yields a decomposition of the kernel of the twistor
operator

ker(D) = ker* (D) @ ker (D)

kerf(D) =[pel(s*): D¢ = 0].

Since M2 is an Einstein space, it follows from the formulas

(1.33) and (1.34) that the Dirac operator D maps ker¥(9) 1into
ker (D). In particular, if IPI,...,C{J; is a basis of ker'(2),
then D w;,...,ncp; is a basis of ker (D).

We fix a function f: Rl —> (0,00) and consider the warped product
m2m X Rl with the Riemannian metric f2(t) g C) at2. Spinor
flelgg on M2m .

fields on Mz. We solve the twistor equation on M

2x|R1 are t-parametric families ¢ (x,t) of spinor

zmleR1 and obtain:
f

Theorem 3 ([87]): Let (Mzm,g) be an Einstein space with scalar
curvature R # 0 and denote by cp;,...,q); a basis of ker'(H).
The twistor spinors @(x,t) on the warped product

™ x Y, £2(t) g ® dt?) are given by
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K
Q(x,t) =AFf j‘{_l{ajhl(t)wjhz(t)’gcf?;(x) +
+(1F )3 (-1)" H2n-1) é{ajﬁl(t)-vbjﬁz(t)ﬁbt{?;(x)

where aj,bj are complex numbers and the functions hl(t),hz(t)
are equal

t
hy(8) = oinG ey [ FET )

t 4o
hy(t) = cos(} {m-d%:ﬁ égm )

in case R <0, or

t e
hy(&) = sinn(z «Jm‘?%ﬁ:ﬁ [ Fer)

t 4o
ng(t) = cosn(} {mrtemry | )

in case R>O0.

Proof: We recall that cP(x,t) is a twistor spg\nor with respect
to the metric £2(t) g (® dt? 1f and only if ) := 1 ¢ 1s a

twistor spinor with respect to the metric g = g @(-q-f_.)z (see
Theorem 7 of Chapter 1). The vector field Some1 ‘= F a-af is a unit
vector field on (M2™ x R},§). Using the identification of the

spin bundle of M2® x Rl with the spin bundle S = s* @ s™ of
2m =l

M the Clifford multiplication by s, ., = f 5% is given by

f % = 1(-1)" on s*

m -
fﬁ--i(-l) on S

(see formula (1.16)). We apply now the last condition of Theorem 2,
Chapter 1, characterizing twistor spinors. It follows easily that

/ 2m 1 dty2
if @ is a twistor spinor on (M*" x R', g (® (59)%), then any

restriction c’@ 2 (t is a twistor spinor on (Mzn,g), too.
X
Hence, c’i) has the following form

P(x,t) = i C;(t)‘-P;(X) + EJ: C'j'(t)ncp;(x).
j=1 j=1

Consequently, we have only one condition for @ resulting from the

N
twistor equation, namely 32m+1V82m+1q’2 has to coincide with

8y Vs :f\' for i¢2m. Since M?™ is an Einstein space, we obtain
from i (1.32) and (1.34)
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sivsi‘e; i} '2% D"P;

1,2 R
4V O] = 75 0°4Y = qrmmp ¢
Thus the condition
equations
. 1(-1)"R 1 -
cj = - 1{2-'-3'17 7 Cj

- 1= 1
cj._(.zl.nl_ 1q=_c‘j’ .

N "
8 =8,V yields the differential
2m+1 vszl"].q’ i siﬂP

In particular, we obtain

[ . 1ot fet

j - Bm2m-I) 32 7 FUj

and the fundamental solutions of this differential equation are the
functions hl(t), hz(t) given above.

This provides

k
Gix,t) = ?21 R ORNOITMON

m k
p 2200101 jS: fajhy (£)4b R (0] o 0
as well as the general solution cF = '{?((7 of the twistor equation

on the warped product (Mz"' X lRl, fz(t)g. @ dtz).

Remark: Consider an Einstein space (Mzm,g) with negative scalar

curvature and a basis £?1,...,q>k in ker*(D ). Suppose that there
exists a point m, eu®® such that the spinors

Qim), e, @ pm))
as well as DLP;(mo),...,DqD:(_mo)

are linearly dependent. Hence, there exist non-trivial linear
combinations

k
j=1 jﬁF](m )=0 %:_—1' ajDCP;(mo) = 0.

We fix an integer 1€ N and a function f: R—> (0,00) such that

w Crond
21,1/2m£2m-1)f“—‘ ({) dTL <2(1+1) ./Zm(fm-l) T

K
Then (x,t) = If ;‘:1 {ajhl(t)+bjh2(t)3cp MEII

(2m-1 fa.i ;
+(F )3 (-D)" .4_»_3._). ji.l {ajhl(t)-rbjhz(t)} Dc(?;(x)
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is a twistor spinor on the warped product (M2m X lRl, fz(t)g @dtz)
vanishing at 1 points. For example, the hyperbolic space H2m
adnits 2™*1 = 2-dim(S) independent twistor spinors (see example
1.3). Consequently, the warped products H2m

2% R? are spaces
with twistor spinors. f

2.3. The First Integrals C‘P and Q‘P on ker(D).

The kernel ker(Q) of the twistor operator 2 on a connected
Riemannian manifold (Mn,g) is a vector space and its dimension

(21

is bounded by 2 . On this vector space, there exist a
quadratic form C and a form Q of order four defined by

Co= (D, = Re< 0P, P>
. n
ag =I912loPl 2 = (@ ¢,¢)? - S 09 )2,
oL:
where 81se00s8) is an orthonormal frame on Mn. We prove that for
any solution of the twistor equation the functions C and
Y ¢

QQ are constant on the manifold M" and, consequeéntly, we obtain
well-defined first integrals C,Q: ker(o9)-—>lR1 on ker(d).

Theorem 4 ([387,(83]): Let ¢ be a twistor spinor on a connected
Riemannian manifold M". Then C¢ and Q"P are constant.

Proof: We differentiate C¢ with respect to the vector field X
Uy(Cep) = (vx(ocp),cp) + (0g, Vy9).

Using the twistor equation Vx:{» = - I-];‘ X:-D¢ as well as formula

(1.34) we obtain Vx(c¢) = 0 since (X-W,W)=RedX'Y,¥D= 0

for any spinor ~p e S and vector X. In the same way we prove
V4(Qg ) = O.We have

Uy (@p) = 207y, )]0l 2+2(912(T (D) ,0¢)
D
- 2;@_1 (0@ .89 IV yO§), 8, )
n
PE S 0950209 0, X 0p).
Using formula (1.7) we obtain

;4"_'1 (8,9 0@ ) (g~ X-DQ,09) = ~(x-,0 )l opl 2
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n
Sale,® D d 2= 0@ 2

and the twistor equation and formula (1.34) yield
vx(Q‘_P) = 0.

Remark: Denote by V¢ the real subspace of S given by
Vp = {X:¢ : XeTM}.
Then we have
Qg=11? dist?(d¢ ,Ling (¢ V).
The vector field Tq defined by
T = i_ (@ ,8, *Dg s,
=1
satisfies equation (1.36)
Ty = - % grad(uc{;)
and an elementary calculation provides the formula
IC4P~L?-U({,-DQ-T¢?-‘~P|2-UQ?QCP. (2.2)
In particular, if @ is a twistor spinor such that CQ =0 = Q@ ,
then
uc?-DcP- 2 grad(uep ) (2.3)

holds. This occurs for example in case the twistor spinor @ has
zeros.

Theorem 5 ([87]): Let (M",g) be an Einstein space with scalar
curvature R # 0. Then any twistor spinor @®cker(,0) is the sum
of two real (in case R>0) or imaginary (in case R< 0) Killing
spinors.

Proof: Assume Ric = g g. Then we have

1 R R
K = == (mﬂ- - Ric) = - =D 9
and, consequently, the twistor equation and formula (1.34) provide

. 1

Vx~(> = - =XD¢

WOP) = - iy X -
We consider the spinor fields ~y = 7 %J%&q) + DP. Since R ¥ 0,
we have -
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P ARE - v

On the other hand, \p+ are Killing spinors with Killing numbers

A

p

V('\y)

-243'(?-17

IR Wt T0) -

3 e X0 - ey ¢ 9 -
;

1

3

+1

n
"+

1 (R .
ni: T X-(z 3 nSICP + D@)
R
Ry X%,

"
1+

b4

Theorem 6 ([381,(87)): Let (M",g) be a Riemannian spin manifold
with a twistor spinor ¢ such that |P] = 1. Then (Mn,g) is an
Einstein space with scalar curvature

R =4—(-$ll (cfp»,ocp).

Proof: Suppose || =1, i.e. ug ® 1. Because of T‘P =- grad(u,_P)
we obtain T\P = 0 and, consequently,

for

(X-¢ ,0p) = 0

any vector field X. Now we have

5 gK(X),Y) = (7 (0f),Y-P) =
=V, (0@ ,Y-®) - (0@, Vy(v-$)) =

0- (P, (7 Y)) - OQ,Y VyP) =
0-0 + 2P,y x09) = - 2 g(x, V)| D[ 2.

This implies g(K(X),Y) = - =5 g(x,Y) | 0¢|?,

and with respect to K = (n - Ric) we conclude that (M",g)

is an Einstein space. Moreoxer,

°$+°ce-l¢|zln¢tz -3 0fug @7 -

. (K(X) X
1-10q1? - 0« - 2 200 .
- n? 1 ( R - ) - DR
2 n=2 Eln-Ii n ITn-1)°

Consider a twistor spinor ¢# O on a connected Riemannian manifold
(M",g). The set Ng of zeros of § is a discrete set. Outside

Ne
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~ 1

AT
Then Y := Cé is a solution of the twistor equation on the
Riemannian manifold (M"\ Ne 9) with length one, || = 1 (see

Theorem 7, Chapter 1).
Therefore we obtain

Corollary 2 ((38],(87]): Let (M",g) be a Riemannian spin manifold
with a non-trivial twistor spinor ¢ . Then (M"\N(P, -'E'-rz g) 1is an
Einstein space with non-negative scalar curvature ¢
~ _ 4(n-1) 2
R = ——= (Cq; + Q(_P)-
In case C‘ZP + QCP>0, —I‘-Pll (.'P' is the sum of two real Killing spinors

1 CP‘ is a parallel

on. (MW@, 2g ). Tf cfp+ Qp = 0, then
spinor. Iq")l !

Remark: We say that a twistor spinor @ 1is conformally equivalent
to a Killing spinor if there exists a conformal change of the metric
'§' =6 g such that 61/4{? is a Killing spinor with respect to

the metric Y. We introduce the function f = %G']‘/z. Then the
Killing equation

vx(gl/4€é) +* g X'(G 1/4('1'7) = 0
becomes equivalent to
ag - 2fDP+ n grad(f‘)«c? = 0.

The integrability conditions of the latter equation have been
investigated in the paper [38]. For example it turns out that a
twistor spinor ‘? is conformally equivalent to a real Killing
spinor if and only if C(P/ 0 and Qq;s 0.

2.4. A Characterization of Spaces of Constant Curvature

Theorem 7 ([71,(871): Let (M",g) be a connected, complete Einstein
space with spinor structure and non-positive scalar curvature R£0.
Suppose that @ ¥ O is a non-parallel twistor spinor such that the
length function wugp = l el 2 attains a minimum. Then (M7,g) s
isometric to the hyperbolic space H" (in case R<0) or to the
Euclidean space R" (R=0).

We shall divide the proof of this theorem into several steps.
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Let @ ¥ 0 be a twistor spinor on an Einstein space M". A point
meM” is a critical point of the length function ugp if and only
if (D ,X:9Q) = 0 for all vectors Xe,TmM". Moreover, the Hessian
of ug at this critical point is given by

Hess ug (X,Y) -{;% [0g1 2 - gy 141 23 90X,Y).

In case R<O, Hessmu‘(’ is positive~definite. Suppose that the
scalar curvature vanishes, R = O. With respect to formula (1.34)
it turns out that D‘? is a parallel spinor field and thus IDCPI 2
is constant. Since <« 1is a non-parallel twistor spinor, we conclude
(Dcfl 2 = const >0 and we obtain again that Hessmu(p is positive~
definite. Consequently, in case R 20 any critical point of the
length function ug is a non-degenerate minimum. Suppose now
that uq; has two different critical points My mze M" and
consider a geodesic Y(t) (0€t£T) from m; to m,.
For the functions u(t) = uyg (Y (t)) and v(t) =[pDepl 2(.»K/(t,)) we
obtain the following differential equations
2 R
ul = V- ey Y
n? nn= (2.4)
! 2 - Rn "
! =D u

from formula (2.1) as well as the conditions u'(0) = u'¢T) = 0
and v'(0) = v\(T) = 0. In case R = 0, it follows that

C

1.2
u(t) --Et + C,yt + Cg

n
for some constants C,, C,, C5. With respect to (o) = u'(T) =0

we conclude C; = O, i.e. Dy vanishes on T(t)' Since M" is an
Einstein space, O is a twistor spinor. According to Theorem 1 we
have D@ = O and, consequently, ¢ is a parallel spinor, which
contradicts the assumption. In case R<0O, we obtain in particular

v(t) = 01,

the equation

U“S-F(—::-:nu-ici

and the conditions u'(0) = u*(T) = 0 imply u = 0, also a
contradiction. In order to summarize, we proved that if M7 is g
connected, complete Einstein manifold with scalar curvature R € 0,
then the length function ucP of a non-parallel twistor spinor has
at most one critical point. Moreover, if this critical point
actually appears, then it is a non-degenerate minimum. Suppose now
that this is the case and denote the unique critical point by

m,e M. Let d(m,mo) be the distance from an arbitrary point
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meM" to m, and denote by (t) (Oét£T=d(m,mo)) a shorted

geodesic from m, to m.

We integrate the equations (2.4) along qp(t) and obtain the
following relations between the length function up and the
distance function d(m,m ) (R¢0):

u¢(m) ={"<P(mo) 4‘"'1) (m )} sinh (2 4

- d(m,m_)) ug (mg)

|ogg (m)|2 = vy (m) = {vtp(m )- 1%;§1’ Uq)(mo)}coshz(% JET%§TT .
-d(m,mo)) + z?—gIT uLP(m ).

+

If the scalar curvature R vanishes, we get

(my)
up m = L5 a(m,m)? + ucp(ny)
n

(0@ (m)[ 2% = vep (m) = vep (m ) > 0.
Since we already know that ug has only one critical point, we
conclude that the distance function d(m,mo) is smooth on M \{mo}
and has no critical points in this set. In particular, the exponential
map

n n
exp : T M —>M
o Mo

is a diffeomorphism and the geodesic spheres Sn-l(mo,r) around

m, coincide with the level surfaces of the function ugp . They are
smooth submanifolds of M". We denote by “§ the normal vector field
to the geodesic spheres,

grad(uqﬂ
| grad(up)il
We differentiate equation (1.36)
n
grad(ug) = - Z Tp= - & 5_ (@.8;:0)s,

with respect to the vector field X and apply the twistor equation
as well as formula (1.34). Then we obtain

2 R
Vx(grad(ug)) ={—3 Vo - zra=1y UP}X
for any vector XeT™M". The last formula yields
2 R
{ 2 Y T -1y uep }
v, € = o IX - g(Xx,8) .
X Il gradCug ) { 9(x, 3

In particular, we have
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VEE = 0. (2.5)
Suppose for a moment that the scalar curvature is negative, R< O
A simple calculation provides the formula

v‘?(m)-mu({;(m){ Vo (M) = zrp=ry ugp (mg)

. cosh(]’-ﬁrﬁ—fn— d(m,m, ».
4

Moreover, starting with |grad ucp\ —-2- lT‘P' _.2. jz_(m?s k{7)2 =
= %(U‘PW;F -C?P- Qtf) and recall that C‘_P + Q@ Is constant,  we
obtain C$+ Qp = ug (mo) . V(P(mo) and therefore
2 4
lgrad ug|® = = (up v - ugp (mo)v? (m)).

Now we calculate V g and come to the result

Vy&m) = "_ coth( ,]f oty 9m.m))X (2.6)

for all vectors XeTmM" orthogonal to E(m).
A similar discussion in case R = O proves the formula

VySm) = Hﬁ%‘ﬂ'f X (2.7)

for all vectors XG«TmMn orthogonal to E(m).

Let n('t(m) denote the integral curves of the vector field %
normalized by the condition To(m) = m. Consider the diffeomorphism

LUK Sn"l(m ,1) x (0,00) —> [VIARN {m03

given by ~p(m,t) ='¥E 1(m) The f‘ormulas (2.5), (2.6) and (2.7)
allow us to calculate the pull back ) (g) of the metric g:

v (@) = = 9o ® dt° if R<oO
sinh%ﬁﬂijry)
Vi = t¥g, @ at? 1f R= 0,

where g = gl

ne-1 is the restriction of the metric g to

(moyl)
the geodesic sphere s" (mo,l). We introduce the polar coordinates
on R" =T M

o
d: 8" x (0,0)—>T, M" =R"
o

$(v,t) = t-v. Because of

expy dtv,t) =y (expy (v),t)
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we see that the metric §:= exp.. on R" =T _M" in polar
g Pp 9 n P
o

o
coordinates has the form

'@ = ston®(rrily O b @ at?  if Rco (2.8)

@ =t2nh @ at? if R =0, (2.9)
where h is a metric on S""1 defined by (in case R <0)

1 *
h = exp, (g' n-1 ).
sinh?( ;Rn_ ) o IS (mo'l)

If we transform @*(g) back into Euclidean coordinates
“P: R"\{o}-—>sn'1 x (0,00) ¢ (x) = (ﬁ-:—" , IIxll), we obtain for the

coordinates of a with respect to the canonical basis of R":

. sinh?(| sriyy I xH) X, X%
(o = hy (o oz ey T )
8 Pk X CTLE T T

Xy ]
+ .
i
For wes"™ 1 we denote by a;(w) the tangent vector
ai(w):- e -<w,el> weTwS"' . § 1is continuous on R".
Therefore, for all wesh” we obtain

8@ = Lm Gyt W -

-R
= G hw(ag (W .ayw) -
-(ai(w) ,aj(w)>Rn + dij

Using w = e,, al(el) = 0 implies that
935(0) = Jyy-

n-1_ Hence, the metric

The vectors al(w),...,a (w) generate T S
n o n-1
of the sphere S .

is a multiple of the standard metric g n-1
S

Finally, $*(§) 1is the metric of the hyperbolic space (R<0) or
the Euclidean space (R=0) in polar coordinates, i.e. (M",g) 1is

isometric to the hyperbolic space or to the Euclidean space. This
proves Theorem 7.

h
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2.5. The Equation V <-f’+-XCP= 0

If f: M—>C is a complex-valued function on a connected
Riemannian spin manifold (M",g), we consider sections ¢ of the
spinor bundle satisfying, for any vector X €TM", the differential
equation

V~(’+-xc{> 0. (2.10)
n

—

This equation implies D= 2__ sj \_/s ¢ =f-¢ and, hence

Vx“?+ =X DP=10, i.e. any solution of equation (2.10) is a twistor
spinor. Since equation (2.10) - restricted to a curve in the mani-
fold - is an ordinary differential equation of first order, any
non-trivial solution of equation (2.10) has no zeros. The first
integrals of such a special twistor spinor are given by

C o= Re(F) 4 Qo= (In(F)2[uB- 5= (i )2
$= e( uc(; an Q‘P_ (Im( {U‘P_OL=1 Aq?,squ .

Theorem 8 ([83]): On a connected Riemannian spin manifold (M",g)
of dlmension n23 let LP# 0 be a spinor such that

VXLP+ £ X-p = 0, where f is a complex-valued function with the
real part Re(f) # 0. Then f is constant and ¢ is a real Killing
spinor.

Proof:  is a twistor spinor and we can apply formula (1.34)
V(D) = 3 K(X) P
2
Vy(£)ep - —- X Q= 3 K(X)+p (2.11)
Denote the real and the imaginary part of f by a and b,

f = a+ib. Using the real part ( , ) = Re<,> of the inner product
for spinors we multiply by cp:

Vy(augp - 282 (1x ¢, ) = (2.12)
Multiplying equation (2.11) by X = s, we have

"' Vg (Fls, @ + (¢? =0 (2.13)

25 Vs, (o d - )<

Z 2 *R

o1 v o.(f)sbsoz“f’* (- atr%e =
. ‘R 2 1

Vo (P4 + Gatimyy - Fop@v 3 20, (P

. (sd 85838 )"P = 0. (2.14)
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We multiply again by the spinor ¢
(a)u‘{)— 2ab(i sBCP P) +

(2.15)
r"‘ P =
+2 ‘;SIV o (b)(l(s&sb-ssso() ¥,9) = 0.
From the equations (2.12) and (2.14) we obtain
n
A-m Vg (ugpe %oﬁv“a(b)(i(’d 85-8p8, )¢ P) = 0. (2.16)

The latter equation we multiply by V%(‘b) and take the sum over B8:

(1-n)g(_grad(a),grad(b))uk@: 0.
Consequently we obtain g(grad(a),grad(b)) = 0. (2.17)
Since C¢P= a up is constant, and non-zero by the assumption
Re(f) * O we conclude
g(grad(ug()) grad(b)) = 0 = lz \7 (b)(V «.P,q/) =0 =

Vs (b)((a+ib)s, *<f, (p) = o—> b(i grad(b) ¢, ) = 0 (2.18)

The inner product £grad(b) ¢,®> is an imaginary number and there-
fore (2.18) is equivalent to ’

b grad(b).¢ , > = 0. (2.19)
Equation (2.13) can be written in the form

grad(P)p+ (¢2 - AR e 0.
We multiply by b-¢ a.nd obtain with respect to (2.19)

b Lgrad(a)-P, &>+ b(fz - Tr"%‘-'i—n-)ucfi 0.

From the real part of the latter equation we conclude

2 .2 n-R s
b(ﬂ -b u—-n (2.20)

Denote by ucM™ the set of all points meM” such that

2

(m)=b2(m) T(_TJ' R(m) # 0. U is an open subset of M" and
(2.20) yields that b vanishes on U. From equation (2.12) we see
that a is constant on U, i.e. ‘PIU is a Killing spinor with
Killing number B = -~ g Theorem 8 of Chapter 1 provides

R = 4n(n--1)[52 = 4—(-:-:-'1—) fz = 4—(-2:}-)- (az-bz) on the set U, which

is a contradiction to the definition of this set. Thus, we have

2 2 n.R
a® - b° - o

on the whole manifold M". We multiply equation (2.16) by Vs (a)

=0 (2.21)

and take the sum over B. Furthermore, we apply (2.17), i.e.
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grad(a)-grad(b) = -grad(b)-grad(a). Then we obtain

54

(1-n)|gr‘ad(a)|2 ug + (i-grad(b)-grad(a)-¢ ,¢) = o, (2.22)
We consider again the equation
grad(F)-¢ + (¢2 - Rg= 0
and multiply it by i-grad(b):
i grad()- grad(a) ¢ +|grad®)| @ +(+* = 2Ryt grad(n).¢ . o,
We take the real part of the inner product of the last‘equauon "

Q:
(i-grad(b) grad(a)-<p ,9) +[grad(b)| zu‘f"

+ (a b2 T?-;‘—E-D—)(i-grad(b)-u(’ ,<P) = 0.
Equation (2.21) yields now )
(i-grad(b) grad(a):¢ ,P) = -[grad(b)| 2Uq;
and from (2.22) we conclude

(n-l)lgrad(a)|2 +lgrad(b)|2 = 0.

Now we have grad(a) = grad(b) = 0, i.e. f 1is constant. This means

that @ is a Killing spinor and the assumption Re(f) = a 4 0 implies

now b = 0. This proves Theorem 8.

Next we consider the case that the spinor field q’ is a solution of
the equation V, ¢+ -- X'®= 0 with some real-valued function
b: M ~——>1R1. For any twlstor spinor ‘P we introduce the real sub-
space
V= {X-P: xem"}cs

as well as the function

Hp= distz(ic(; V)
defined on the set {meM": ®(m) # 0} .

Theorem 9 ([38]) If‘ v x P+ -— X® = 0 with a real-valued
function b: M -—>|R , then

a) uep HQ is constant.

b) Qq;— b uc{)H?

Pr~oof’:2 Suppose V °P+ — X- = 0. Then D@ = ibp and we obtain
Qp=1b ug HY by deflnitlon of Qe¢. Since



uH=u2-#(1uPs )2
QRe= U™ 8y P
we calculate

Vy(ugpHp) = 4 upglVy P, ¢) -
(iqls$"P (1 Vx‘{’:so‘(? ) -
(ic?,soL*P)(icQ,sd'th?) =

-2
=
n

\/|
l:

?
(=Y

M

-2

[y

n
- - R @) B UG X P ey @) v

?

c B S Qe PIUG e, X1 P) =
ne‘c—’ ol ol

2 up (1 ,X- )= B .xPuy - 2 (1g x P ug= o,

i.e. U‘PH‘P is constant.

Corollary 3: If ¢ is a solution of the equation Vyp+ i—g X-P=0
and Qq);‘ 0, then b is constant and ¢ is an imaginary Killing
spinor.

Corollary 4: If ¢ is a solution of the equation VX‘P'" iv X.<p= 0
and QQ = 0, then 1 kP is a parallel spinor with respect to

the metric § = —12—1:?

Since c?- (D(P, Q) = (ibY,4p) = 0, Corollary 4 is a special case
of Corollary 2. In Chapter 7 we shall classify Riemannian manifolds
with a non~trivial solution of the equation VXP"' -i—z X-ffs 0 and
Q¢ = 0. Moreover, we shall prove that a complete Riemannian mani-
fold admitting an imaginary Killing spinor @ such that Q‘P>0 is
isometric to the hyperbolic space H".

2.6. The Equation E

A. Lichnerowicz (see [841) introduced the so-called equation (E)
for a spinor field:

VX(DL?) + T(-I'TR-'T)' X'\P = 0. (2.23)

We denote by ker(E) the space of all spinor fields (€ r(s)
solving this equation. The existence of a non-trivial solution of
the equation (E) implies that the scalar curvature of the manifold
is constant.
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Theorem 10 ( [ 841): Suppose that a connected Riemannian spin mani-
fold (M",g) of dimension n ® 3 admits a non-trivial solution of
the equation (E). Then the scalar curvature R is constant.

Proof: Let ¢ # O be a solution of the equation

R
Vx(09) + qramy X € = O
Then

2p . & n-R
e ‘-‘1 Vs (OF) = g5oyy ¢

D‘P= D<P+3-(—1-)—grad(R)q>
and, consequently
{o? - TE%D’?JD‘P = Jrh=y 9rad(R) P (2.24)

on the other hand, differentiating the equation (E) we obtain
R
Vg Vg (OF) + grimry %t Vg (P +
s, Us, F(n-1J ot Vs, ¢

camn Ve M =0

and, furthermore,

-AMY + iy 0P+ T("T)' grad(R)-¢ =
We apply now the formula p? = 4+ Z R and obtain
{o? - ﬁ'&gnl"‘?’ z'(%_"r)’ grad(R)-¢ . (2.25)
The equations (2.24) and (2.25) vyield
grad(R)-@ =0 ' (2.26)

If @(m) # 0, then grad R(m) = 0 by (2.26). Suppose now @P(m) =
Since ¢ 1is a solution of the elliptic differential equation
0 = sty ¢
there exists a sequence of points my converging to m such that
Q(mi) # 0 (see [20]). Then we have grad R(mi) = 0 and with
respect to the continuity of grad (R) we obtain again grad R(m) =
Consequently, the gradient of the scalar curvature vanishes identically.

Any Killing spinor is a solution of the equation (E). Indeed, if
Vy®=8X-¢ , then DP=- nBP and R = 4n(n-1)BZ. This implies

Vx(DP) + Tfll:—-'ﬂ' X¢P=-nBV, P+ nBZ x-f =
= nrs{ -ch(?+ ex-cp} =
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In case of a compact manifold the kernel of the twistor operator,
ker(E), and the Killing spinors coincide:

Corollary 5: Let (_Mn,g) be a compact connected Riemannian spin
manifold such that ker(E) # {0}. Then

ker(E) = ker( D) = Killing-spinors.

Proof: Since ker(E) is non-trivial, the scalar curvature R is
constant and we already know (Theorem 10 of Chapter 1) that the
kernel of the twistor operator is the space of all Killing spinors
X . Moreover, we have

ker( Q) = X < ker(E).
n-R

Suppose now that < € ker(E). Then 02 ®= Fr-y @ + 8nd ¢ is the
sum of two Killing spinors (see Corollary 1 of Chapter 1). This
proves ker(E) ¢ X .

Theorem 11 ([46]):

ker(E) = ker(D? - z-'r'r‘l—'fn)r\ D™ L(ker( D)).

Proof: If ¢eker(E) we have
R

Vy(0®) + gra—y X" ¥ =0

and
Do

2 n-R

R L w09 " A €
In particular, ker(E) 1is contained in the kernel of the operator
2 n:R
D* - m. Moreover,
Ix(0Q) + 2 X0(DP) = V(D @) + qrp—gy X-f= 0,

i.e. D(() belongs to the kernel of the twistor operator. Conversely,

suppose that D2 ®= -1y P and D € ker(D).
Then we get

V(0@) + % x0(Dp) = 0

WO + gri=py X §= O
and ¢ is a solution of the equation (E).

Theorem 12 ([46]): Let (M",g) be a connected Riemannian spin
manifold with constant scalar curvature R # O. The map

> Dpe ker(Q)

ker(E)2 ¢
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is an isomorphism between ker(E) and ker($).

Proof: Suppose e ker(E) and Dcp: 0. Then we have
0=D%p= z.m"_;%.;p and, consequently ¢= 0. This proves that the
given map ker(E) —> ker(£) 1is injective. Suppose now

®e ker(D) and consider = i:—,ﬂﬁ-g D@ . Then we have
DQ*=§T’(,2'E_12DZ¢=LF and

* * -
Vx(®) + gray X & = Ux(9) + § X D= 0.
Thus (p* belongs to the kernel of (E) and is an inverse image

of ¢ .

Corollary 6: If (M",g) is a connected Riemannian spin manifold
with constant scalar curvature R #¥ 0, then

dim ker(E) = dim ker(,9).

Theorem 13 ([467]):
a) If (M",g) is an Einstein space with scalar curvature R # O,
then
ker(E) = ker(9).
b) Let (M",g) be a connected Riemannian spin manifold such that

ker(E)n ker( D) # {0} Then M" is an Einstein space.

Proof: Suppose first that M" is an Einstein space, Ric(X) = % X.
If ¢e ker(E), we obtain from Theorem 12 and formula (1.34)
2 n

VX(D ®) = 3 K(X) ‘D¢

1 n-R n R

3T V= 3 K(X):Dg = - ZTn-1) X-P
and ¢ is a twistor spinor. Conversely, if P e ker(D) we use
again formula (1.34)

VX(DLP) = 2 K(X)"P ’

which reduces in an Einstein space to

V,(0@) + T(‘E‘-T)’ X-¢@ = 0.

This means that, in an Einstein space, every twistor spinor is a
solution of the equation (E). We consider now an arbitrary Riemannian
manifold as well as a non-trivial solution e ker(E)nker(D).
Using the formulas (1.34) and (2.23) we obtain the condition

- AmD X@= KOO
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and, finally,
. R
Rlc(X) (-P = ﬁ. X-‘-F -

Since ¢ is a twistor spinor, the zeros of ¢ are isolated points
and we conclude

Ric(X) = 8 x,

i.e. M" is an Einstein space.

Chapter 3: A survey of Twistor Theory

3.1. Two-dimensional Conformal Geometry

Let M2 be a 2-dimensional manifold with a fixed orientation. Two
Riemannian metrics g4, 9, oOn M2 are conformally equivalent if

there exists a function A : M2-—4>m1 such that

9, = e2)'92-
The set of all conformal structures Conf(Mz) is the set of all
equivalence classes of Riemannian metrics. On the other hand, we
consider the set Complex(Mz) of all complex structures

J: TMZ———>TM2 with the properties

a) 3= -1d
b) for any vector 0 # X&TM
orientation.

2 the pair {X,JX} defines the given

Since the Nijenhuis tensor
[ax,avl-Ix,v]- 3[x,3av]l- 3[ax,Y]

vanishes identically in dimension two, any operator

JeComplex(Mz) defines a complex structure on M2 (see (105]).

If [g]eConF(Mz) is & class of conformally equivalent metrics, we
consider the operator 39 being the rotation in positive direction
around the angle g . The link between two-dimensional conformal
geometry and one-dimensional complex analysis is now given by the
following

Theorem 1: The map
®: Conf‘(Mz) 'ﬁComplex(Mz), P (g]):= 39

is bijective.
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Proof: Suppose that $lg 1= (g,]. If XeT M

g g
tangent vector, then {X, J 1 X} = {X, 3J 2 X} is a basis in TmMz.

An arbitrary vector YemeM decomposes into

is a non-trivial

g 9
Y = AX + BJ IX = AX + B3 2X
and consequently we obtain
g, (v, Y) = (a%48%)g, (X, %)
g,(v.Y) = (A28 g,(x,%).
94 (X,X)

This means that the function -_TY—YT does not depend on the vector

X sT M . but only on the point m eMz. Hence, we have a positive
function a2 : M2—9Ri such that, for any vector Xc,TmM2
*

g,(%, %) = 2" (m)g, (X,
holds, i.e. the Riemannian metrics g, and g, are conformally
equivalent.
Finally, given a complex structure J: ™2—> TM% we fix an
arbitrary Riemannian metric h on M2 and consider the metric

g(X,Y) = h(X,Y) + h(3X,3v).

Then we have g(3IX,JY) = g(X,Y) and, in particular, g(X,3X) = O.
This implies J = 39, i.e. the map & : Conf M2—> Complex (Mz)
is also surjective.

2 2

Denote by * : T*M R T*M the Hodge operator on 1-forms with
respect to the metric g. Using the identification of the tangent
bundle with the cotangent bundle given by the Riemannian metric g
we obtain the commutative diagramme

™M —2 57"
] g ls
g
™2 J >TMZ .

Indeed, if Xl,x2 is an orthonormal basis of the fixed orientation

in TmM2 and 61,62 is the dual basis, we have
*61 =62 ngl = X2
*62 = gl 3%, = -X;.

Fix a covector Loe,T;M2 as well as a vector XeTmMz. The
commutative diagramme immediately yields the relation



(D (X) = —(39%)

between the complex structure 39 and the *-operator.
*
The complexification T M2 @ ¢ of the cotangent bundle splits

into
W ® ¢ =Al0 @ A%l
with
A0z femT™2 @ €: *w= -iw}
N1 s weTME ® c: *w= 4] .

Proposition 1: A smooth function f: M2—c is holomorphic if and

only if its differential df is a section in the bundle /\1'0.

Proof: Since the differential df splits, according to the

_— *

decomposition T m2 @ C = /\1’0 @ /\0’1 , into

df + i*df | df - i*df
2 2

we see that df € M( /\1’0) is equivalent to df = isdf. This equa-
tion means .

df =

,

(i*df)(X) = - 1df(IIX) = df(X),
f.e. df(39X) = 1dfF(X) for any vector X eTMZ.

Denote by pr , .: T'M?2 ® ¢c— A0
A ’

. T2 —_ 0,1

pr,\oll. TM @ C— A

the projections of the complexified cotangent bundle onto /\1’0
and /\0'1, respectively.
We introduce the opeators
. 0 %0n2y—s 1,0
Qy: c®MH— (AT, 3, =pr ; ed

2 0,1y I A
aO: c¥®m)— (AP, ao = perll od
: N @ o—T(AM @ ©, 9, - a°pr o,
3: Na™ @ oO—>TAM @ ©, 5 =d- Pry1,0°

Then we have B, O f = do pr cdf = (22120 . 2 jaxar.
2

1,0
,\ ’
On the other hand, the Laplace operator A on functions is defined
by Af = - *d*df. Now we obtain
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219 Of = -dxaf = A(F)-au?,
where dM? 1is the volume form of (M2,g).

A 1-form (O is a holomorphic form if locally wW is the differential
of a holomorphic function,

W= df = aof.

Proposition 2: A 1-form (3 is a holomorphic form if and only if
dw= 0 and *w= -iW.

Proof: Suppose that w is a holomorphic form. Then we have (locally)
w = 3bf = df. Hence, we obtain dw = ddf = O and

*0 = *@OF = -i EOf = -1D. Conversely, if dw= 0 and *W= -iw,
then there exists locally a smooth function f: Mz—# ¢ such that

df = (Poincaré Lemma). Moreover, since *W= -iw , we conclude

by Proposition 1 that f is a holomorphic function.
Corollary 1: A holomorphic 1-form on m2 is a harmonic 1-form.

Corollary 2: A 1-form (o is a holomorphic form if and only if
W=+ 1 *¥o(,

where o{ is a harmonic form.

Proof: Suppose that o« is a harmonic form and consider W= +i%*cc.
Then

dw= do+ 1 d*t= 0

*W= *ol~ in= ~iw ,

i.e. 0 is a holomorphic form. Conversely, if (0 is a holomorphic
form, then we have

and ol := é’ is a harmonic form.

To summarize, in real dimension n=2 there exists a one-to-one
correspondence between Conformal Geometry and Complex Analysis.
Moreover, solutions of certain real partial differential equations
(harmonic forms) correspond to holomorphic objects on the under-
1ying complex manifold (holomorphic forms). The algebraic back-
ground is the isomorphism of the groups S0(2) v U(1). This
isomorphism means that an Euclidean structure (conformal structure)
in dimension two determines a unique complex structure, namely the
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rotation aroundtg. The main idea of Penrose's twistor theory is the
generalization of this point of view to the dimension n = 4. In

this case the situation is more complicated since the group

U(2) ¢ S0(4) does not coincide with S0(4). The homogeneous space
S0(4)/U(2) 1is a two-dimensional sphere. Consequently, given an
Euclidean vector space (E4,<;,> , 8 with a fixed orientation

there is a s? = CPl-parameter family J'(E4) of complex structures

compatible with the Euclidean structure and the orientation. Starting
with an oriented 4-dimensional Riemannian manifold M* we consider
in any tangent space TmM4 the family J-(TmM4)
6~dimensional manifold

z= /), amcruh.

meM

Z is called the twistor space of M4. In Section 3.3. we will
describe the (almost-) complex structure of the twistor space and
some of the links between tbe four~dimensional conformal geometry
of M4 and the complex analysis on the twistor space Z.

as well as the

3.2. The Curvature Tensor of a 4-dimensional Manifold

We describe now the decomposition of the curvature tensor of a
4-dimensional Riemannian manifold. A general reference is for
example [331. Let (M4,g) be an oriented Riemannian manifold of
dimension four. The Hodge operator * :/\2—9/\2 on 2-forms is an
involution, ** = 1. Consequently, we obtain a decomposition of the
bundle Az into

2 2 2
A =A+ ®/\_:
where Af is the (+ 1)-eigen-subspace of *. We understand the

curvature tensor R as well as the Weyl tensor W as bundle
morphisms

R : AZ— N2, W A2 A2,
Since the contraction of the Weyl tensor is zero, W maps /\f

into /\f. Consequently, the Weyl tensor splits into

- w 0
+ . 2 2
(o w> ¢ W PNy N

Moreover, the curvature tensor (2] decomposes into

w 0 0 B
R’ + + - Rl
(o w_> <B* ) 12

W
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where R is the scalar curvature and B:/\E - /\3 is a bundle
morphism. It is well known (see [33]) that B = O if and only if
(M4,g) is an Einstein space. A Riemannian manifold M* is said
to be self-dual if W_ = O. The 4-dimensional sphere 34, the
complex projective space EPZ and the Riemannian product s2 x H
of the two-dimensional sphere by the hyperbolic plane are examples
of self-dual Riemannian manifolds. In case of a compact manifold

2

M4, its signature 6(M4) is given by
4 1 12 2
G(MY) = —= Aw 1c - 1w 19
125¢ é; *

and the GauB-Bonnet formula can be written in the form

Xt = Ly j; AW, 12+ 1w_1% +
M
1 2 s 12
+ (R“-3|Ric|“).
2

In particular, if (M4,g) is a compact Einstein manifold it holds
that

2 4
Y - REvol(MD) 3 5 g4y
X 19202 2

3.3. The Twistor Space of a 4~dimensional Manifold

Denote by (E4,<, > ,6) the 4-dimensional Euclidean vector space
with inner product ¢ ,)> and given orientation 0. Consider the set
I°(EYH  of all endomorphisms J: g4—> g4 satisfying the following
conditions:

(1) 9% = -id

(11) <3IX,I¥> = <X,Y> for all vectors X,Y cE*

(iii) det(3) = 1, i.e. J preserves the orientation o

(iv) Setting QJ(X,Y) :=<£3JIX,Y> , then the given orientation O
equals - QIa Q9 - (02,

By definition, J'(E4) describes a connected set of complex struc-
tures on E4, compatible with the inner product as well as the
given orientation.

For JeJ'(E4) and a matrix AeS0(4), the composition AIA"Ll s
again in I°(E"); the mapping I—>AIA™l for AE€SO0(4) defines
a transitive S0(4)-action of 3 (E*) whose isotropy subgroup at
a point J e ITEY s equal to U(2)< S0(4). In this way,
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3'(E4) = 80(4)/U(2) is a symmetric space and isomorphic to the
complex projective line cpl (cp. (331).

Now, let (M4,g,0) be a four-dimensional oriented Riemannian mani-
fold, and denote by P = (P,p,M4;SO(4)) the principal bundle of all
orthonormal frames of M4. Then the associated bundle

Z = P X g5(4) S0(H) syc2) = Pruc2)  is called the Twister space

of (M4,g,00. Using the notion introduced above, the fibre Zx of
the Twistor space Z at a point x €M can be written as

Zx = J'(TxM4); theref‘ore4 the Twistor space parametrizes the almost
complex structures on M', which are compatible with the metric and
the orientation.

The Levi-Civita connection of (M4,g) decomposes the tangent bundle
TZ into horizontal and vertical subbundles, TZ = ™z + TVzZ.
Denoting the twistor-projection by U : Z — M4, we get an almost
complex structure I on Z preserving this decomposition and
coinciding with the canonical complex structure on the fibres
80(4)/y(2) = ¢Pl. At the point JEZ the action of I on the
horizontal part ™z of the tangent space at J 1is given by

I =Tyleodem,: ng — 1z,

Theorem 2 (see (2]): (Z,I) is a complex manifold if and only if
(Ml,g) is a self-dual Riemannian manifold.

Consider now two conformally equivalent metrics g, = e? >‘gl on
M4, The corresponding twistor spaces Z(gl), Z(gz) coincide since
the conditions (i)-(iv) defining the twistor space are conformally
invariant. Moreover, an elementary calculation yields that the
almost complex structures I(g,), I(g,) coincide, too (see [9s51).
Hence, the (almost-) complex manifold (Z,I) depends only on the
conformal structure of the underlying space M4. Moreover, using the
complex manifold (Z,I) as well as the family of projective lines
given by the fibres of the projection T: Z —M* one can re-
construct the conformal structure of M4 from the holomorphic
structure of (Z,I) (see [2]),[95]).

The twistor space Z can also be described by the projective spin
bundle P(S”). Consider the negative spin representation

Spin(4) -—-’>GL(A;). The group SO0(4) acts on the complex projective
space P(A;) and, consequently, the bundle

P(S-) 1= P x S0(4) P(A;)

is well-defined over any 4~dimensional Riemannian manifold. If
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4
{w~} is a projective spinor at the point meM", we define the

operator Jmihf}= TmM4——+ TmM4 by the formula

'am{w-}(x)-w’ = i-X-y .

4

Then mew-} is a point in the twistor space Z over meM™ and we

obtain another interpretation of the twistor space (see [33]):

Z = P(s7).
The decomposition of the tangent bundle of Z into horizontal and
vertical parts also yields a one-parameter-family of Riemannian

metrics on Z. .
Therefore, on the Lie algebra 44(2) we consider the positive-definite,

Ad(U(2))-invariant inner product
B(X,Y) := - § Re(Tr(Xo Y)), X,YEA(2)

and denote by ds2 the standard Riemannian metric on
epl = U(2)/[U(1) x U(1)] 1induced by B.

For a fixed positive real number t, a Riemannian metric gy on Z

is defined by taking the pull-back of the metric g to the horizontal
part, and adding the t-fold of the fibre metric ds2 in the vertical
part of the tangent space of Z at an arbitrary point JcZ, i.e.

g =T"g + t-ds?, t > 0.

The study of the Kéhler condition for g, vyields the following
result, proved by Th. Friedrich/H. Kurke and N. Hitchin independently.

Theorem 3 (see[45] or [63]): Let (M4,g) be a self-dual Einstein
space with positive scalar curvature R. Then the corresponding
twistor space (Z,I,gt) is a Kdhler manifold if and only if

t = 2% holds. In this situation, 9 is also an Einstein metric
with the same scalar curvature as (M4,g). a

Examples of this situation are provided by the 4-dimensional sphere
84 with twistor space Z = CP3, and the complex projective space

ep? with the complex flag manifold F(1,2) as its twistor space.
However, under the additional. assumption. of compactness (or, with
respect to Myer's theorem, also completeness) of the four-dimensional
manifold, they already exhaust the list of all possible examples,

as the following proposition shows.

Theorem 4 (see[457] or [63]): A compact four-dimensional self-dual
Einstein space with positive scalar curvature is isometric either
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to the sphere S4 or to the complex projective plane ¢P2, both

endowed with their standard metric. a

By construction of the metric 9y the projection

T: (Z,gt) ——>(M4,g) is a Riemannian submersion. In this situation
there are standard formulas to establish a relation between the
curvature tensors of Z and M4, and assertions about Einstein
metrics on Z can be made.

Theorem 5 (see [397):

(1) Let (M4,g) be a self-dual Einstein space with positive
scalar curvature R>0. If t = 48R or t = 24/R, then the
metric g, is an Einstein metric on the twistor space Z.

(2) Let (M4,g) be a 4-dimensional Riemannian manifold. If its
twistor space (Z,gt) is an Einstein space for some t> O,
then (M4,g) is a self-dual Einstein space with positive
scalar curvature R>:9, and either t = 48/R or t = 24/R holds.

The above theorem is also valid for non-compact manifolds. However,
we restrict our further considerations to the compact case: applying
the twistor construction to S4 and ch, by Theorem 5 a further
Einstein metric on CP° and F(1,2) will be obtained in addition

to the standard Kdhler-Einstein one. This second Einstein metric
turns out to be non-Kéhler in both cases, but it is still homogeneous
under the action of S0(5) and U(3), respectively. We briefly
describe these metrics, since they will be needed later in 8 4 of
Chapter 5.

a) The case vt - s?

We decompose the Lie algebra 8o(5) into
80(5) = 50(4) ® W = [H(DOW] G W,

with gt = Lin{E 5, Epq B0 E ],

M= Lln{E13 + E24, E14 - Eza} a?d

4 (D = Lin {E),,E5,,E =By By +Epg ],

where the matrices {Eij}l <j are the standard basis elements of
8o(n) introduced in Chapter 1.
Using the inner product on 80(5) given by

By(X,Y) := - 3 Tr(X°Y), X,Y & 80(5),

4

the metric g on S” = so(5)/80(4) induced by Blr¢",x‘ww is the
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standard Einstein metric on s* and has scalar curvature R = 12.
Denoting by o: S0(4) —>S0(44) the isotropy representation of s4,
the frame bundle P— s* s given by P = S0(5) Xy so(m) ® 80(5),

and the twistor space Z equals
Z = 30(5) x go(4) S0(4) fy(2) = 80(8) fy(2),

The projection Z—> s* then corresponds to the imbedding
U(2) < s0(4), and the family {gt}t >0 of Riemannian metrics on
Z 1is expressed by Blfm”m+ t-ds?, t>o.

Since the Riemannian metric on €Pl = S0(4) y(2) induced by

A- Bll‘Mx% is isometric to t- vds? 1ff A= It the Riemannian metric
gy on Z induced by the bilinear form 1lmxm )'BlerxMr is
an Einstein metric for 11 =2 and A, =1 (see Theorem 5). The
second parameter consequently yields the normal homogeneous metric
on so(5)/U(2). To describe the Einstein metric corresponding to

the parameter A, = 2, we use the isomorphism

$: 0B y2) —> ep® given in ([33], p.86):
If we regard erd = U(4)/[U(3)x U(1)] with é_(4) -['i(S) @E(l)] @_A_g,
where 0 _;t 3}~ 3

/E = ; ACC = C,
A 0

the differential d®:m+ M —> R 1is given by

Eys —(0,3.0" Eps —>(0,5,00°

Egg —(0,0,5)" Egs —(0,0,5)"

Ys —(-1,0,00" Yg —>(1,0,00"
Here Yg = E13+E24, Y = -E23 denote: the basls of M . Since
the vectors 15, E25, E35, 45 and HYS ‘12}‘ Y6 are ortho-

normal with respect to B1|mxm +l81!%)(44r , for A= 2 this
bilinear form corresponds under d@ to
<A,BY = 2(A%B + BYA) ; ABe R ,

and this scalar product on i@_ describes the usual Kéhler-Einstein
metric on CP3.

b) The case M* = cp?
We represent the complex projective plane ch = / U(1) x U(2))
as a homogeneous space and decompose the Lie algebra /£(3) into
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43 =[ADE A@D] @ . with
0]

a b
M:J -a 0 o> ,a,be@} 2 ¢2.
b 0 o0

As an Ad-invariant, positive-definite inner product in 4_7»(_3) we
take

B,(X,Y) = - 3 Re(Tr(X oY) ; X,Y € 41(3).

Then lemxm yields the homogeneous standard metric on tl:Pz;

with this metric, cr? is a self-dual Einstein space of scalar
curvature R = 24 (see [33]). Denoting by o :[U(1) x U(2)] —>S0(4m)
the isotropy representation of CPZ,‘the frame bundle of CP2 1is -
given by P = U(3) xy SO(M), and since I (m) = $0(‘4’)/U(2) is
isomorphic to erl = U('2)/ (uU(1) x U(1)] , the twistor space Z of
¢P? s obtained by

2= 0@ x @ * D0y vy x v
Here the projection 7 : z—cpP? is given by the imbedding
u(1) x u(1) x u(1)] <——>[u(1) x U(2)] . Geometrically, Z is
the manifold F(1,2) of (1,2)-flags in C°.
Using the additional notation

0o 0 O
#Ho= 0 0 ¢ ;cec}'ﬁ'ﬂ:,
0 -c O

ve obtain 4 (3) =[4 (1) @41 @4WIEO M@ 4 ;

now remark that the metric dsz on CP coincides with the metric
induced by BZ[&*M and the corresponding imbedding U(2)— (1(3).
Thus, the family {gt}t>0 of Riemannian metrics on Z is deter-
mined by 82 o x 't t'BZMv.xM , and according to Theorem 5,
Einstein metrics are obtained for tl = 2 and t, = 1. The second
parameter corresponds to the normal homogeneous metric on F(1,2);

on the other hand, t; = 2 yields a Kdhler-Einstein metric on

F(1,2) with the corresponding complex structure I:ﬂ@/t_&—»/jt_i @/_yp
' given at the end of example (a) in § 4, Chapter 5.

3.4. A Holomorphic Interpretation of the Twistor Equation

We consider a four-dimensional Riemannian spin manifold m4 as well

as a non-trivial solution ‘\V; e M (87) of the twistor equation
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Dv, = 0.
The integrability condition
W(n 3o = 0
(see Chapter 1, Theorem 12) and the fact that the zero points of
y, are isolated yield
W_ =0,

i.e. M* is a self-dual Riemannian manifold. The twistor space

Z = P(S”) 1is a complex manifold. Moreover, the manifolds S~ \ 0
and (S")*\ 0 are complex manifolds , too. We recall that a spinor
0 £V -e;S; at the point m eM4 defines a complex structure on
TmM4 by the formula
IV (x)-p "= f XwT.
Furthermore, by the rule
XED(Di=E (X7
we introduce a Clifford multiplication of a vector Xe;TmM4 by a
dual spinor ‘g'e(s;)*. If 0 fﬁ'e,(s;)* is a dual spinor, it
defines a complex structure Jg : TmM4-——>TmM4:
3 X)rET=1x-g.
Suppose that €~ is given by the Hermitian product on S; and by
a spinor 0 # @ esS,:
ET(WT) =7, @7
Then we obtain for any spinor VY~ € s;:
w3 0 @T> v, 1 xgT>.
= 1KXYT, 97> = 1Eg7(XpT) =
= 1(X € (") = A8 e -
@Y 0 v =<8 0w, 97> .
= (v 3 0>
and, consequently,

L B

The tangent spaces T _(S™\0), T __((s7)*\0) split into a
g

vertical and a horizontal part. Since the vertical partsare
canonically isomorphic to the complex vector spaces which are the
fibres of the corresponding bundle they admit complex structures.
On the horizontal subspaces we define the complex structures by
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pulling back the operators J\P- ' Jg from TmM4.

Finally, S~ \0 and (s™)*\ 0 have universal almost complex
structures, and they are integrable if and only if M4 is a self-
dual Riemannian manifold (see [2],[337). We obtain the diagramme

SN0 —P 5 7 2P(57) Q57O

==

where (ST)*\ 0, Z and S”\0 are holomorphic manifolds. The
projection p: (s \0 =7z is given by p(E ") = Ker(€7). This
map is the projection of a holomorphic c*-prinicpal fibre bundle
over the twistor space Z. We introduce the associated bundle

H=[sH*\vol LR

H 1is a holomorphic 1-dimensional vector bundle over Z.

Consider now an arbitrary section f\y'e, F(M4;S'). We define a
function )~ : ¢ \0o—=c¢ by

P TCET) =€ ).
For any number Ae G* we have

L - - -

WTASET) =AY T(ED.
The latter equation means that '\’.\y' is a section in the associated
bundle H over the twistor space. Conversely, if fel (Z;H) 1is a
section, it is given by a function f: (S')*\ 0O —>C with the
property

fFA*ET) = A FCET).
We say that f is a linear section of the bundle H if f satis-
fies
F(S T +53) = F(S]) + FCEL).

A linear section is an element of (S')** 2 87, and consequently th
space of all sections r4;s™) is isomorphic to the space
l"un(Z;H) of all linear sections:

4 -
CM*;87) = I““n

The space 2°%Z;H) of all holomorphic sections is contained in
T in(Zin):

> 0 .
RO(Z;H) € [} (ZiH).

(Z;H).

e
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Indeed, if f 1is a holomorphic section, then the restriction to any
fibre f: (S;)*\ 0 —>C 1is a holomorphic function with the property

fA~€7) = A FOET).

The power series expansion of this function contains only linear
terms, i.e. f 1is linear on any fibre. Next we prove that a spinor
field ‘q)_ el (s7) 1is a solution of the twistor equation if and
only if the section Q)- € (Z;H) 1is holomorphic. We need the
following algebraic lemma:

Lemma 1: Let A:lR{—Q A ; be a map satisfying the following
conditions:

(i) A 1is IR-linear

(ii) For any algebraic spinor Q'eA; and any vector XelR4,

<" AT 0> = 1< ¢ a00>
holds, i.e. the functional R*sX—> <P ,A(X)>E T is

¥ -complex linear.
(iii) The trace éL e, " Ale, ) vanishes in A ;,
P

ol=1

4
=

s e, ~A(e_ ) = 0.
=1 o« [,

Then A is trivial, A 2 0.

Proof: In A; and Az we fix the basis wu(1,-1), u(-1,1)
and u(1,1), u(-171), respectively. The Clifford multiplication is
given by

el-u(l,-l) =i u(1,1) el-u(-l,l) =i ul(-1,-1)
ez-u(l,—l) = -u(1,1) eyru(-1,1) = u(-1,-1)
es.u(l,-l) = i u(-1,-1) eg.ul-1,1) = -i u(1,1)
e4-u(1,-1) = u(~-1,-1) e4.u(-1,1) = u(1,1).

Using these formulas we can calculate the complex structure

3V L R*—R* for any spinor 0 # @ "¢ A;. Suppose now that

A ¥ 0 is a map with the properties (i) ~ (iii). Without loss of
generality we may assume that A(e;) = u(1,-1). Consider the spinor
c?' = u(l,-1) = A(el). Then Jq (el) = e, and we obtain

<Aley), ACep)> =< ,a¥ (e))>=
= 1P IACe)) D= .

Next we consider the spinor W]' = u(-1,1). The corresponding complex
structure is given by
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M (eg) = -e, Jn-(es) = e4.
Thus, we have
<M. Al = ~<m AT e)) = ~idn .Ale,)> = 0.
since < @ 7,A(e,)>= i and <M ,A(e,)> = 0, we conclude
A(e2) = -i u(1,-1).
We write A(eg) and A(e,) in the form
A(es) =o{u(l,-1) + B u(-1,1)
Aley) =rxu(1,—1) + S u(-1,1).
With respect to 39 (e;) = -e, it follows that
<P Ale> = - LAY e)> = 1<y Aley) >

i.e.
-x-- iot &

Moreover, using the complex structure an we deduce

<n”, ACe) > = <M TAGETN eg))> = 1 M7 ,ACey) >
and
S = - iB.

4
Consequently, the map A: R™ —> A,

is defined by
A(el) = U(ll-l)
A(ez) = =i u(1,-1)
A(_e3) = oL u(l,-1) + B u(-1,1)
A(e4) = itu(l,-1) - iB u(-1,1) .
Finally, we: consider the spinor 'g_ = u(1,~1) + i u(-1,1). An

elementary calculation provides the formulas

J-g_ (el) = -eg, Jg—(ez) = -e,.

Then we have
<E7, Alel)> = -1 <X 7,ACe,) >
and<E",A(e,)> = -1 <E,A(e,)> .
We calculate the products and obtain
K~-1iB=1i
~Kk=-18=1i
and consequently o = 0, B = -1,
The map A: |R4—>A; is therefore given by
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A(el) = u(1,-1), A(ez) = =i u(1,-1)
Aleg) = -u(-1,1), ACey) = 1 u(-1,1).

This yields

f__ed-A(ea) =21iu(1,1) #0,
=1

a contradiction.

Lemma 2: Let A: lR4—~>A; be a map with the properties:

(i) A 1is R-linear.

(ii) For any spinor @~ €A, and any vector x e rR*,
<97, AY 0> = 149700
holds.

Then there exists a spinor cp+eA ; such that A(X) = X-¢*.

Proof: Consider ¢* = —%- s e, - Ale,

A* R A7, A0 = AX) - X+ €*. We calculate the trace

) as well as the map

4. * Qi. .

N

> e, Ale,) =2_e, Ale, ) + 49~ = 0.
el & *7 e ¢

Moreover, if M~ €A ,, we have
N 0@ = <@V YT, et
= -1 @7, @ > = Ik TX >

A* satisfies the conditions (i)-(iii) of Lemma 1 and we conclude
A¥ 50, f.e. AX) = X-9*.

Theorem 6 (see [63]): A section -~ €l (S7) 1is a twistor

spinor, Oy~ = 0, if and only if the section ) "e& I (Z;H) 1is

holomorphic.

Proof: Since Q) “ is linear on any fibre, the function
-{‘Y': (s)*\ 0 —> € 1s holomorphic if and only if
d§ T(IY) = i dp(Y) 1)

holds for any horizontal vector Ye Th(_(s")*\ 0). Fix a point
mye M4 and locally an orthonormal frame in the tangent bundle
such that Vsl( m,) = 0. The section np ~ 1is locally given by
a function " : U—-)A; and @': U x (A;\ 0)*-6' € has the

74



form
(g =€y T(m)).
The equation (1) is equivalent to
€Ty (3% X)) = 1ET(dWT())
for any vector Xe,Tmc.M4 and any dual spinor g‘e(s;)*. Since

Vsi(mo) = 0, we see that \'I)- is a holomorphic function if and only
if

g'(va.g- P ) = 1ET(V WD) L2

holds for any X e™* and T e(sT)*. we represent the dual spinor
<" by a spinor @7, ET(p7) =<, P> .
Then J = - 3% and the equation <2> can be written as

- <va¢-xw LT = KKV T, {3)

Suppose now that "y~ 1is a twistor spinor, D~ = 0. Then we have,
for any vector xeT™* and any spinor ¢esS”,

- T DI
<V3q;-x\v SPT D= X DT, @7

= -(% nw‘,(aq’ X)ep~D= -<§ Dp~, i X@TD>=
1 - - - -
A< XDVTO TS <Py >
Consequently, if P~ is a twistor spinor, the corresponding
section \,p' is holomorphic. Conversely, if \pA— is holomorphic,

the map

™4

3ax—> Vv~ es”

satisfies the assumptions of Lemma 2.

We conclude that there exists an spinor field q)*e r¢s*) such that
V@ = x-*,

i.e. @~ 1is a twistor spinor.
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Chapter 4: Odd-dimensional Riemannian Manifolds with Real Killing
Spinors

In odd dimensions real Killing spinors are related to special
contact structures (in addition to the Einstein condition).
After explaining some special properties of contact forms and
Sasakian manifolds we will discuss this relationship.
First we will prove a general existence theorem: Any simply
connected Einstein-Sasakian manifold with spin structure admits two
linearly independent Killing spinors. In every odd dimension we
have a series of examples for such manifolds, namely starting with
an arbitrary compact Kédhler-Einstein manifold X2 of positive
scalar curvature we find a certain principal sl-bundle u2n+1
over X2 which has an Einstein-Sasakian and a spin structure. This
yields a construction method for manifolds admitting Killing spinors
in any odd dimension.
It turns out that in the dimensions 5 and 7 the converse of the
above mentioned fact is true. Roughly speaking, there is a one~to-
one correspondence between Killing spin6r9 and Einstein-Sasakian
structures on spin manifolds of these dimensions. In dimension 5§
one can verify that under an additional regularity assumption on
the associated Sasakian structure our construction method yields
all possible manifolds admitting a Killing spinor. Well-known
classification results concerning 4-dimensional Kéhler-Einstein
manifolds with positive scalar curvature now imply a classifiaction
of 5-dimensional manifolds admitting one Killing spinor with a
regular associated Sasakian structure. 5-Manifolds with two real
Killing spinors with the same Killing number are conformally flat.
Analogously we can describe 7-dimensional manifolds admitting
two real Killing spinors with regular structure. All of them, in
particular the well-known homogeneous spaces with a Killing spiror
as described in [26] can be obtained by our construction method.
The existence of three independent Killing spinors on a simply
connected 7-dimensional spin manifold M s equivalent to a
Sasakian 3-structure on M’. This structure induces a Spin(3)-action
on M7. If the corresponding orbit space is a smooth closed manifold
X4, one can verify that M7 is the manifold obtained by the construc-
tion method starting with the twistor space of x*. Results of
twistor theory now imply a classification of 7-manifolds with three
“regular® Killing spinors. 7-Manifolds with more than three
independent Killing spinors are conformally flat. Finally, we discuss
some properties of 7-dimensional manifolds with one Killing spinor
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and give examples of such manifolds.

4.1. Contact Structures, Sasakian Manifolds

(M2m+1

Let ,4) be a Riemannian manifold of dimension 2m+1.

Definition 1: A contact metric structure on M2m+1 consists of

a tensor field ¢ of type (1,1), a vector field € and a 1-form n

on Mz""'1 such that
(1) Maldm™ # 0
(2) m(§) =1

(3) 4’2 =-Id +m ® %
(4)  g(RX) YD = g(X,Y) ~m(xX)m (Y)
(5) d«l(x,v)=29(x,&9m), where dm (X,Y)= XM (Y)-Ym (X)-n ([X,¥YD).

We call m a contact form and $ the characteristic vector field.
In particular, we have

yi6)= o 1o ¢= 0
ql(X) = g(¢ ,X) d’rl (X,g) = 0.,

in such a structure.

Definition 2: A contact metric structure (¢, f,”'[ ,9) 1is called
a K-contact structure if ¥ is a Killing vector field.

Lemma 1 ([15)): A contact metric structure (¢,€,m.,g) is a
K-contact structure if and only if

Vx’i- - ‘P(X)

holds.

Lemma 2 ([15]): If (<{>,‘§,"q .g) is a K-contact structure, then

1) ofsg =0
2) ‘fg"l =0
3) Z.gd'rl- 0
4) ‘zg‘f = 0,

Definition 3: A manifold M?™?1 with K-contact structure
(q?,‘g,'q ,g) 1is called a Sasakian manifold if
f pJ(X.¥) + dM(x,Y) §= o,

where [‘?'V] (x,Y) :s\pz[x,Y]+ [\p(x).\f’(v)] -\f’[\o(x),Y] -\P[X:\P (Y)] .
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Then (cp,‘g ,qz,g) is called a Sasakian structure.

Lemma 3 ([15]): A K-contact structure (¢31§,01,g) is a Sasakian
structure if and only if

(Vy P = g(X,)E - m(V)X.

Corollary 1: A tensor field ¢ of type (1,1), a vector field €
and a 1-form 7 on (M2m+1,g) constitute a Sasakian structure if
and only if € is a Killing vector field of length 1 and

a) M(x) = g(€,x)
b) 'ng = L?(X)

c) \p"'= - Id ml@g
d) (Vy@)Y) = g(X,Y)‘S'—-“q(Y)X
hold.
On Sasakian manifolds we have curvature conditions (661]:

Lemma 4: If EQ is the curvature tensor on a Sasakian manifold,
then

RX,YIE =M (YIX =M(X)Y.

In particular, the scalar curvature R on an Einstein-Sasakian
manifold of dimension 2m+1 equals R = 2m(2m+1).
If (M2m+1;Q,'§,”),g) is a Sasakian manifold and

8 8
1/°°°'"2m+1
M2m+1, then

is an orthonormal frame on
2m+1
Rlc(si,ﬂF(sj)) - Ek::l'ﬁ.(si:sklsj, (P(sk)) = (1"2"')9(. (P(si)'sj) (4.1)

for the Ricci curvature.
In particular, on an Einstein-Sasakian manifold we have
2m+1
Zg(si,cp(sj)) = ;-Tl— “Q(s‘,sj,sk,cp(sk)). (4.2)

Remark 1: Let (M2m+1,g) be an Einstein-Sasakian manifold.
The curvature tensor R is a map

-KQ :A 2(m2m+1) _)AZ(m2m+1) .

Let Th denote the bundle of all vectors that are orthogonal to '§.
R maps A%(Th) into Az(Th). On the orthogonal complement of
A%(th) in A2%(TM®™*1), N is equal to the (-1)-identity. Since
W=+ 575:17 holds for the Weyl tensor on an n-dimensional

s 2 2
Einstein manifold, W(A“(Th)) is contained in A“(Th), and W
vanishes on the orthogonal complement of /\Z(Th). Hence, we may



consider R and W to be maps

R, W : A2(Th)—> A 2(Th).

Definition 4: A triple (¥,,§,,S3) of Killing vector fields
consists of three orthogonal Killing vector fields El’ ‘22, ’33 of
length 1 satisfying

(8.8, =2%,, [€, §)-2¢, (5, §l=2%,

Every integral manifold of a triple (fl, 'Sz, fa) of Killing
vector fields is totally geodesic and of constant sectional curva-
ture K = 1.

Definition 5: Three Sasakian structures (cPi,‘gi,'Y)i,g) on a
Riemannian manifold (Mzm*l,g) constitute a Sasakian-3-structure

if (fl,fz,fa) is a triple of Killing vector fields and if the
relations

L?34)2"“(’1“')72 ®"13 ‘92*73"?1“73@?2

Q19 =-FP+M3 ®F, P3P =@, +M; ®F;

P = -3+ ® %, PrP2=93+M, ®F,
are satisfied.

Using equation (4.1) one proves

Lemma 5: Any n-dimensional Riemannian manifold with Sasakian 3-
structure is an Einstein manifold of scalar curvature n(n-1).
Furthermore, one can show the following

Lemma 6: Let two Sasakian structures (t?l,‘fi,’rli,g) (i=1,2)

with orthogonal characteristic vector fields frgz be given on

(Mz'“l,g). Then we have Vsz 51 = -Vgl"fz, and by

§3 :-Vgl %, Ng = g('§3,.), Ps = -V E.?
we can define a third Sasakian structure such that (¢, 'gi,’T)i,g)
(i=1,2,3) constitute a Sasakian 3-structure.
Proof: First we show Vg %, = -Vg ‘€,. For any vector field Z
it holds 2 1
g(ng'gl,Z) = g(-Vz‘ 1,~"52)- -Zg(s 1 fz) + g('gl,vzfz)
b —g(LVglfz)/
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since '51 and *§2 are orthogonal Killing vector fields.
In particular, we have  $;(§,) = - 9,(€,) = $5.
Furthermore, one deduces [€;, §,l= Vg %, -Vg §, = 28;-

Thus, €, is a Killing vector field, too The length of f equals
one, since

908 5. 8 )= gl (€, P10 €,0)=0CE 5, € )= (€)1 (8 5)
= 9(32132) = 1.
Using @2 = - 1d +M; ®§; and (V)N = g(X,¥) 8- % (VX

we obtain
[fllgs] =V~§1 33-v33§1 =V-g1(_ ‘-Pl(.g 2)) +‘Pl("§3)

= (vg P8 +q>1(Vg E) + 9,83
= g(‘§1, €)%,- fql(*gz)f +24>1(~§3)
=2¢9,(8, ) = -2c(>1(v£ €4 2@?1(‘5 )

= 2(-%, +M (€T, = -28,.

Analogously one verifies [fz' §3] = 2§1
Using again (?1 = - Id +m, (O &, we deduce

Qux) = =Vy By = = V(@ 0 0) = ~(UyPD(E) ~P (VT
= -g(X, 8,08, - (T )X -, (V€
= =m0 ®E, + Py P00
and, in the same way,
G €y = -3+ ®F,-
Furthermore, one calculates

=@ 5(-V = = (¢,C5,))
- gz, 90CSD) + €y (-V_VX§2 5

= 9(Vy 5, $€ -1, (E DU E, +¢ 9200
=3 P 300= @y (X H(X) € )
= -9 %) +m () 5,

f.e. o, ‘F = -9, +M, P, and analogously

PPy =%, +M, ®§3 Because of ), ,(X) =g(§,,-V, ‘fz) =
= g(X \73 § ) = g(X,83) =M 5(X) it holds
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P1 DX = Py (= VyEg) = f1(-Vy £,(€)
= C(’l(-(vx ‘4;1)(?2) -, (Vy €5))
= (-g(X, 8 €+ M (€ ,0X- (T €,))
Q@) = - €, + M (@, E
= -0 +My) S,
From 7, ‘(71(X) = -Y5(X) it follows in the same way that
9y € =2 +¥5 ® S,
In order to prove that (~P3, fs,"'la,g) is a Sasakian structure it
remains to show that

g3 =-1d +M; @€, and  (Uy Pd(V) = 9OX, YIS - @ (VX.
Because of ¢ ,(€,) = - &, and N, = -N; we have
@5 = (PP, -M, @I, 8, -1, ® ¥
=My @ @1083) +M3®, ®Ty + PP P1 €
From @, ¢ = -@ €, +M, D&, +M; ®F, it follows now that
9% =N, @€+ N3P, @ €1-P1 @1 F292 +7 @2 @ (T ).
Finally, the equations ¢, (€3)=f, CPs(fs)—‘Q 3(8 ) ®§2= - Sz'
M3%2 =M3P391 =M1 ® MN3(Ey) = =My and 1, ¢, =75 imply
FGeomy @€, M @ Fy ¢ e, @F, +My @S+ BF;
= -1d + N, £,
The Sasakian condition for <P3 is a consequence of the corresponding
ones for @, and @,:
(Vy @x)(V) =V (P @) -Vyl(n, & §(Y)
= (Vy @@+ 1 (VyPI(V)=XN) ,(V)F, +
+M(VNE -,V F, .
= g(X, @ ,(Y))=1 4 (@ ,(Y))X+ @, (g(X,V)E , =
=N oY) X)=Xg(Y,§ ) E +g(V Y, TF, +
+M oY) P, (X)
= =N (@YX + g(X,¥) £,(E,).

Since we have already proved 7, ¢, =%, and CPl("'E 2) =§3: we
obtain (Vy@)(Y) = g(X,)E 5 =M, (V)X.

Remark 2: If (cPl,'fi,‘qi,g) (i=1,2,3) 1is a Sasakian-3-struc-
ture, then the volume forms 7, /\(d”')i)m induce the same orientation.
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4.2. An Existence Theorem for Killing Spinors on 0dd-dimensional
Manifolds

Theorem 1 ([44]): Let (H2m+1;¢ fg,'ﬁlg) be a simply connected
Einstein-Sasakian manifold with spin structure.

a) If m = 0 mod 2, then M2™1  admits at least one Killing spinor

for each of the values A= + %

2m+1

b) If m =1 mod 2, then M admits at least two Killing spinors
1

for one of the values A= + 3.

Proof: We define two subbundles E, of the spinor bundle S by
E, = {wes: (+ 2¢(X) +'§X-X_’§)Lp'= oj.

Further;ore, we introduce the covariant derivatives
VR W = Vyy s 3 XV

First of all we show that V*, V™ are connections in E, and E_,
respectively. We differentiate the equations

(+ 2(X) +E€X-XE)P= 0 with respect to V:
(+ 2V y @I 0= XX P (M W+ { 129X+ EX-XEJ T yy = 0.
This equation is equivalent to
{£ 200y PIO-EOIXX Q-G (VY 3 FExXV: 3 XEViw +
+ {-_«: 2@(X) +§X-Xf}V$¢= 0
and we have to show that the first term of the last equation vanishes.

A direct calculation yields this result by using the properties of
the Sasakian manifold and the equation defining the bundle E.:

[£ 207y @IO-P (NXX R(YV)= POV 7 3EXY & 5 XEV)yp =
=]+ 2000,V)E 7 2m (OY= PONX+X PYI-@ ()Y 7 3 Exve 3 XEYv
= {1+ 29(X, )87 2MOOY+2X @ (N+Y P (X) 3 FEXY & 3 XY}y
= [+ 2g(x,V) €z 2MOOY £ XY & xrE- 3 YEX & § vxE- 1Exva} xTVRY
= {+ 20X, V€; 2MOOY ; 5 XEY +XYEgC(€ 0¥+ F¥X€s 3 VX €
+ gx, €)Y + xEYjyp = o0.
The curvature R¥ of the connections Vi is given by
REXYIV=VZ Viv- V5TV - Uik, ¥
=V VW e 3 XV 0t 3V, (VW) + 3 XYV -V, V, Y
7 3 YV Vs 3V (W) - 3 X =Yg (¥; 3 YTV
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= ROGYVIY + § (XY=YX)y .
where (R denotes the curvature of v -
Now we prove that R* vanishes on E,, i.e. (E“V-*') are flat
bundles. Fix locally an orthonormal frame
81,8, =P(8,), 85, 84 =Q(83),....8,, =P(s, ), E.

In particular, this fixes an orientation of m2m+l
This frame has the following properties.

a) If ye E: and s; # sj,(P(sj), then 8;8;\ is orthogonal to
E
+.
Indeed, suppose V,,V ,&E_ . Then we obtain
<oy 1t o> = 7L ey @ls W 1, W, = 10, (s)) 8, TV >
= +P 1:'§°P(sj)sixp 2= 7<%, ‘gsicp(sj)\t)z)
S IUILIRPYARC LI T PP
= -<sisj \-Pl,w2>
b) If Ye E , then 1‘5'\', is orthogonal to E_ since
<’1g"’1"'“"2> = +<slsj¢(sj)w1,w2>= -<w1,CP(s )s s P

= t<w1lsisj(?(sj)w2> '<w1181€N)2>
= -< 91?“’ 11\P2>
holds for \pl,\pzeet.
c) If peE, , then s, P(s;)y= ;8.
Now we can calculate QR *. Let we E,. R *(X,Y¢ equals the
E -part of REX, YV =R (X, V)P + z(x?—YX)‘\p . Because of the
mentioned properties of the frame, the *-part of

R X, Yy = 3 1 2__1@ (x,Y, si,sj)s 8V is given by

2m !
Z Z R (x,Y si,q)(si))s PV = z(Z.R(X Y si,cP(sl))fw .

Since MZ"""1 is an Elnstein-Sasakian manifold, formula (4.2)

implies that this equals T 2 g(x, (Y))¥» .

Oon the other hand, + 2 g(X,Q(Y))f\p is precisely the E_-part
of § (YX=-XY)y . -

It remains to calculate the dimension of the bundles E_. Let
peS beequal to ueh, . relative to our frame. \y is an
element of E_ 1f and only if it satisfies the equation

$XP ()Y =$¥ "~ for all vectors X orthogonal to €, i.e. if and
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only if 7 epj_1€pju = €pp,q U holds for all j £ m. Relative to
the basis u(&(1),..., € (m)) of 2m+1‘ e2j-1 2j is given by

(190003 Yo(ie( 90 e 9

((3-1)/2] x

(-1 o> ® . ®<-1 o> .

Consequently, _ (1) .n..Em) u(& (1),...£m)) 1is an element of

and €on+l by

Kj 1= Ker(; er-lezj'e2m+1) if and only if u(&(l),...,&(mDe;Kj
for all €(1),..., £(m) such that Ce(1)...&m) # 0. On the other

hand, u(£(1),..., £(m)) 1is an element of K; if and only if
3 ©2j-1%2j u(e(1), .o E(m))-eyp u(€Q), ... ,E(m)) =

i(; €5 u(€E(1), ..., E&m))=(~1)"e(1) ... E(m)u(E(D), ... ,E))
i(; £CJ)-(-1)"E() ... E(m)) u(E),..., E(m))

1.:. -D"e ). .€(m) = s€(j) holds,

One obtains

0 if m 1is odd
dim E_ =

1 if m is even

"

{ 2 if m 1is odd

dim E+ 1 if m 1is even .

This result is interesting since we can construct such Einstein-
Sasakian manifolds as certain Sl-bundles over Kahler-Einstein mani-
folds of positive scalar curvature.

Example 1: Let (X ,§ J) be a Kahler~Einstein manifold of scalar
curvature R = 4m(m+1) and cl(XZm) denote its first Chern class.
Let A be the maximal integer such that K c (sz) is an integral
cohomology class. Consider the Sl-bundle (M2 +1,ﬁr, sz;sl) with
the Chern class (M2m+1‘__>X2m) = 1 c (sz) as well as the
connection form_m‘ in this bundle, whose curvature form equals

d"? = 31;112 ifl , where .fl denotes the Kéhler form of sz If

we define a metric g on Mby g =*'g - -——2-'7)' ® m'. then

(m+1)
M2™1 g an Einstein-Sasakian manifold.
m2n+1 is simply connected and admits a spin structure.



Proof: With the aid of the O'Neill formulas (s. {16]) one proves
that g' is the unique Einstein metric on m2m+1 naturally defined
by g and ', i.e. horizontally determined by g and vertically
by the length of Sl.

Now we prove that M2™*1

is a Sasakian manifold. We define the
contact form % , the characteristic vector field ¥ and the endomor-

phism field ¢ by
T~
J(TX), if XL1E

= A ' = =
']‘l.— mm 'Yl ’ Q(E,.) Yll (?(X) { o , if x“*g

where ~~ denotes the horizontal 1lift relative to m'.
Then g =19 + "1® "M . Obviously, M (€) = 1 holds.
Relative to an orthonormal frame 8110004850 satisfying
Ta8y = 'sl, 321 =J 321_1 we have

A" g8, -00u8y )s'q(‘i)z QM5 .85, 000,8,,)
= 2™m!
The relations (3) and (4) of definition 1 hold because of the
corresponding properties of J. Furthermore, we have

AN XY = gy 4N (X2 2820,V)= 25(X,5Y) = 2g(X, ¢Y),

i.e. (5) 1is satisfied. The vector field € is a Killing vector field
since, because of f a* =0 and sfgfrl = i(Pda+ d {(i(E)'Yl )}
=dm(¥§,.) = 0, the equation fg g = .f.gfzrg +K’§(”'l®"?) = 0 holds.
The Sasakian integrability condition is satisfied since X?" s a
complex manifold (s. [15]).

The K&hler-Einstein manifold X2" is simply connected (s. [71]) and
therefore the exact sequence

—> T, —25>T (1) —> T, W™ —>a (2™ = 0 yields
that . (M ""'1) is trivial or a cyclic group. In particular, we
conclude (M2m+1) = H (M2m+1 ;Z).

Using the exact Thom—Gysin sequence of the sl-bundle
W™, q x5ty
uc]_(MZ"'+1 > X2™) *

ves —>HZR=2Z(x2m. 5y > W2 (x2m. 7y —

_QT_*_7 H2|n (M2m+1;2) > H2m-—1(x2m;z) —_

and the Poincaré duality for Hzm-l(xzm;l) = Hl(sz;l) = 0 we obtain

HZI(MZIMI,Z) -Hz'“(xz“';z)/cl(uz"'*l —_— sz)u H2n-2(x2m;z).

Since cy m2m+1 2"') is not a multiple of an integral cohomology

Cclass 1t turns out that the homomorphism

85



cl(M2m+1 XZm) U HZN-Z(XZM,Z)_>HZN(XZN,Z)

is surjective. Finally we obtain T (M2m+1) = 0.
It remains to prove that M2m+l g a spin manifold. In case
w,(X 2my = 0, this is obvious. Consider now the case (sz) # 0.
Then 1(X 2my = uk(x 2™) £ 1 mod 2 and, consequently,
e, W™ x2M) = ¢ (x*") mod 2. We obtain

wz(MZmd»l) = QZ(XZm) =1T*c1(X2m)=’ﬂ'*cl(M2m+L"> sz) mod 2.

On the other hand, from the exact Thom-Gysin sequence

2m+1 2m a*
HO(x2M;z) WO (M =2 XT ), 2(y2m gy T 52212y ...
it follows that T c (MMl x2") = o,
We will now discuss what this construction method provides in
dimension 5 and 7. There arises the question on which 4-dimensional
manifolds Kéhler-Einstein metrics of positive scalar curvature R
exist. First we note that such a manifold must have a positive
first Chern class, since this class is represented by the Ricci form,
which equals %Lo)-o on 4-dimensional Kéhler-Einstein manifolds,
where (O denotes the Kéhler form. A compact 4-dimensional Kéhler
manifold admits a positive first Chern class if and only if it is
analytically equivalent to 82 X 82, ¢P2 or to one of the del Pezzo
surfaces P, (Pk is the surface obtained by blowing up k points
in a general position in cP2, see [11]), where 1£k€8 (see [11]).
Using a theorem of Matsushima (see(73]) we prove in Section 4.3
that if g 1is a Kéhler-Einstein metric on s2 x 82, then the
isometry group acts transitively on this space and, consequently,
g 1is the standard metric. On cp? the same is true. On P1 and
P,, there do not exist any Kahler-Einstein metrics ([17]). The
existence of families of Kéhler-Einstein metrics on Pk (34k%8) was
shown by Tian and Yau ([101], (102]).
We obtain the following possibilities for x* and M5, respectively.

x4 uS
2 2
S“ xS V4_’2
cp? g3
, 5
P, (3¢ké8) My

4 2 denotes the Stiefel manifold of oriented orthonormal 2-frames
tn’ iR*. M: is diffeomorphic to the k-fold connected sum
(52 x $2) # ... # (5% x 8%) (see Section 4.3).



On Mf, there exists a family of Einstein metrics with a Killing

spinor. Let us discuss now examples in dimension 7. If we apply the
construction method to the Kahler manifolds X% = ¢P3, the flag
manifold F(1,2), % x s2 x s2, €P? x 52 or to the Gradmann mani-
fold 76512§ we obtain metrics with two independent Killing spinors
on M" =87,

su(3)/s = N(1,1),[sU(2) x su(2) x su(2)1/u(1) x u(1) =
= Q(1,1,1),[SU(3) x SU(2) x U(1)]/su(2) x u(1) x U(1) = M(3,2)

and the Stiefel manifold V5’2, respectively. These examples are
well-known (see [26]). Let now X  be P X 32, where P, is one
of the del Pezzo surfaces P, (34k48). Then our method yields a
family of Einstein metrics with two Killing spinors on the corre-
sponding 7-dimensional manifold MZ. Summing up we get the following
examples

x& M’
cp s’
F(1,2) N(1,1)
s2 x s2 x g2 Q(1,1,1)
er? x s2 M(3,2)
65,2 Vs, 2

2 7

Pk x S< (3¢k€8) Mk

Some of these examples can be generalized for arbitrary odd dimension.
Consider the Klein quadric Qn~1(c)’ i.e. the hypersurface in ¢€pP"
given by the equation

@2+ D24+ ...+ (22 = 0.

-

The restriction of the Fubini metric of €P" to Q,_4(¢ a
Kéhler-Einstein metric of positive scalar curvature.

On the other hand, the Klein quadric Q,_,(€) is diffeomorphic to
the oriented GraBmann manifold Gn—1,2’ Applying now our construc-
tion method we obtain the Stiefel manifold Vn-1,2 and a metric with

two independent Killing spinors on it.

c) i

4.3. Compact 5-dimensional Riemannian Manifolds with Killing Spinors

There are some special properties of the Spin(5)-representation
based on the classical group isomorphisms

spin(5) = sp(2) and SU(2) = Sp(1).
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We have Sp(z)/Sp(l) =87, i.e. . Spln(s)/su(z) =s’.

We discuss now carefully how these isomorphisms are realized by the
spin(5)-representation.

Relative to the basis wu(1,1), u(1,-1), u(-1,1), u(-1,-1) the
Clifford multiplication is given by

0o i o0 o 0-1 0 O 0 0-i O
e.= i 0 0O o= 1 0 0 O o= 0O 0 0 i
1 0O 0 0 i 2 0O 0 0 -1 3 -i0 0 O
0o 0 i o 0O 01 0 0 i oo
0O 0 1 0 i oo0oo0
e.= 0 0 0-1 e = 0o-i 0 O
4 -10 0 O 5 0O 0-i O
01 0 0 0O 0 o0 i
From this we conclude
Lemma 7:
(1) {u2e N2@%): wZu(1,1) = 0]=
={Lwij',e1/\ej:(.112+w34= 0 ©y4 =Wy,

01y #+Wp3 =0 =0 (1-1,...,4)'5
(ii) Let )‘1’ 12, :\3 be complex numbers. Then we have
dim {F e A2R®):02u(1,1)=0, 0Z(X Ju(1,-1)+ Ju(-1,1) +
+Agu(-1,-1) = 03
N 0 if 11 £#0 or 22 £O0
3 if ’Al=12=o and A5 £ O.
Spin(5) acts on the 7-sphere s7(A5):= {\PEAS: ] = 13. We denote

the isotropy group of u(1,1) relative to this action by H°.

H° projects one-to-one onto a subgroup HCSO(5). The Lie algebra
of H equals

h = {;% 0yjEgy: Tygeqeq u(1,1) = 0,
-4 1)\-;
where {Elj = E 0 : , 141 Ajﬁs}'is the standard basis of
~el= - = _; —j
80(5). { i

By Lemma 7 we have h = su(2).

Lemma 8: Spin(5) acts transitively on 57(435). The isotropy group
H® is isomorphic to SU(2).
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Proof: The first assertion follows from
dim Spin(5) = 10, dim §7(A) = 7, dim H® = 3,
i.e. dim Spin(5) = dim 37(A5) + dim HO.

Now we have to show that H® is simply connected. Consider the
exact homotopy sequence of the fibration

s7(Ag) = SPIN(S)/ o,

e ’ﬂ"z(s7) _9 -7{'-'-1(H°)-->‘W1(Spin(5)) —->’1r1(s7)—§—>
S @ (W) —> T (spin(5)) —>ar (s7).

From T,(s”) = T,(s7) =@ (s7)=0 it follows now that

WFO(H°) =@, (spin(5)) = 0 and qu(Ho) <y (sp1n(5)) = 0.

Corollary 2: If # 0 1is an element of 05, then there is a
unique vector € of length one such that

=iy .

Proof: We may assume WY& 57(115). Since Spin(5) acts transitively
on S:(sz), let without loss of generality % be u(1,1). The
equation €u(1,1) = i u(1,1) has obviously the unique solution
€= .

Corollary 3: Let M5 be a compact 5-dimensional Riemannian spin

manifold, P its frame bundle and f: Q—>P, T: Q—>M a fixed spin
structure. Then any section W of length 1 in the spinor bundle
s = Q xSpin(S)sz defines SU(2)-reductions Q(y), P(y) of Q
and P Dby

Q(y) = {qeQ:y (7 (q)) ={q,u(1,1]}

PCW) = fQ(y)).

We will now give estimates for the maximal number of Killing spinors.
Let (Ms,g) be a compact 5-dimensional Einstein manifold of positive
scalar curvature R with spin structure. We denote by m_ and m_
the dimensions of the spaces of Killing spinors:

n, = din{yeT(s) : Vyy= 31 X} -

Theorem 2: ([417]) If the Weyl tensor W of M
identically, then

5 does not vanish

m €1 and m_ £ 1.
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Proof: Let m, ¢ M3 be fixed such that W # 0 1in a neighbourhood
V of m_. Assume that m, 2 2. Then we can choose orthonormal
o + 1 ;

Killing spinors wj,w, with Uyy; = 3 {28 Xy (i=1,2). Let
81s+..,85 be a local section VDU->P(\V1). Relative to this frame
we have WV, =2, u(1,-1) +12u(-1,1)+ lsu(-l,-l). Because of
formula (1.38) and Lemma 7, W # O in U implies 11 = 5\2 = 0.
Hence,

1

W, . (X e. u(1,1
vx I‘PZ = X(ks) U(-11—1)+ -% 1>:j wij(x)eiej U('ll'l)
L

relative to 811+++485, where Dijg(vsi’sj)' For_x'-sl

, 1 R _1/R
noting vslwl = 3 yog € u(1,1) and Vslxpz- 2% L u(-1,-1)

we obtain,

- ©15(8y) + 10y5(s89) = .’12{2% i
Az(=log5(84)- 1oy5(8,)) = 1A 5.

On account of R # O and 13 # 0 this is a contradiction.

Later on we will prove:

Theorem 3 ([41]): If M° 1is simply connected, then m, = m_ holds.

We will now see that in the 5-dimensional compact case a Killing
spinor defines an Einstein-Sasakian structure. Consider a compact
5-dimensional Riemannian spin manifold M with a Killing spinor

of length I\i)l = 1. Since M° 1is an Einstein space, let the scalar
curvature R be R = 20. Furthermore, we may assume Vxxy- % Xy.
With the aid of \p we define now a Sasakian structure on M“. The
real 1-form M let be given by qu(x):: -1{ Xy, Y>> The vector field
“"5 we define by the equation *gqu ip . This is correct, since in
a local section 817444485 of Q(\p) the equation is written as
Cu(1,1) =i u(1,1) and admits therefore a unique solution (g-ss).

Lemma 9: ¢ is a Killing vector field of length [§[ = 1.

Proof: “gis a Killing vector field if and only if the equation
0=g(Vy€,2) + g(Y,V,€) holds for all vector fields Y,Z.
We will prove <(g(Vy€,2) + g(¥,V,E))y ,y>= 0. Since

9(Vy$.2) = - 3V, $)Z + 2V, 8 and
g(y, VZ‘E) = - %(Y V;8+(V;¥)Y), it suffices to show
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0= <((VY§)2 + YV, )%, v (4.3)
From the differential equation for Y it follows that
Lvpa 10yw=Vy(Fp) = (TyEIW+STy v+ 3 €Yy
and, analogously,
L zwa (V) 352V
Consequently we obtain
Lve 290 = LUy W 2w+ L3SV 29>
SV, zWm KV (D)W <Yy, 32D
=YWL (VDU 3TV 2y .
Addition yields the equation (4.3).

Remark 3: Lemma 9 means g(<f(X)Y) + g(X, ) = oO.

Lemma 10: (Q,E,'YI ,9) 1is a Sasakian structure on Mo,

Proof: We have to show a) - d) of Corollary 1.
ad a) It holds 27 (X) = =i <Xy ,y>+ 1<P,X P>
= XY, ) +<LEY,XU>
= 29(X7®) 1W|? = 29(x,¢).
ad b) Differentiating the equation E\W= i\p relative to X one

obtains (Vg + -§VX\P= iVyy. Using the differential
equation for 1 and the definition of LP we see that this is
equivalent to

- QY+ Xy § Xy (4.4)
In particular, we have

-QRO0w+ 3EPOOW = 3ROV .
Hence, q)z(x)\p + %‘§X\P+ % Xy = 0.
If x,-g are orthogonal, it follows

upz(x) W= % X(1y) + % X¢=0,
t.e. @2(X) = - x.
In case X ="§ , we obtain

GZOY - Fu+ 3w = 0,
hence LPZ(X) = 0.
On the other hand, we know
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-X , if x1Z
(-1d +m®EIX) = { o ,if xI§

This proves b).

Remark: In case § and X are orthogonal, (4.4) implies

QX y= - iXy .
c) follows directly from the construction.

ad d) Differentiating equation (4.4) with respect to Y one obtains
(Vy @)(XIW =(= @7 yX)= FRXOY= T X- § XY= FQ (V)X
- 3EUX + 3EXVY .
Thus '
(T y )XY = 5= @OOY= QX + F(~IXY+EXV) )y
= FOY@ ()+29(@ (X),Y)+X P(Y)+2g(X, PY)
+ F(-1XV+EXV))V
= 3O (- ExeF B 4x(= Jv+3EV)
+ FC-1XY +8XV))w
= %(1g(x,v)-g(x,‘£)v+ %(v‘fx-xxv))w
= 3(g(X, ) E -g(X, $)IV+¥(-g(X,§ )~ 3X ©)-3 XYy
= (g(X,V)E-g(x, €IV,

which yields (V ,¥)(x) = g(X,YYg - (X)Y for all vector
fields X,Y.

Together with Theorem 1 we obtain

Theorem 4 ([41]): Let (Ms,g) be a 5-dimensional Einstein manifold
of scalar.curvature R = 20 with a Killing spinor y# 0. Then mS
is an Einstein-Sasaki manifold.

Conversely, any 5-dimensional simply connected Einstein-Sasaki
manifold (Ms,g) with spin structure admits a Killing spinor.

As a corollary one obtains Theorem 3.

We now make an additional regularity assumption. We suppose that
the constructed Sasakian structure is regular, i.e. that all integral
curves of § are closed and have the same length L. Then the trans-

formation group {q)fjo‘tézﬂ’ of the vector field €' := E%I’E induces

1 5

a free Sl-action on M> , where sl = {eit, oétézw} . The orbit
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space x* is a 4-dimensional smooth manifold. Thus, the projection
aT: M5—> x"' is a principal sl-bundle. We identify the Lie algebra

§1 of s with iR. Then the exponential map is given by
exp(it) = eit. Obviously, the 1-form m' := -2-E-‘q 1s a connectlon in
T: M®—>x*. Its curvature form is DM*' =dm' + 2[01 M'] = Td’q

We study now geometrical and analytical properties of the orbit

space and the topological type of the fibration. Because of fg g=
we can project g onto X and obtain a Riemannian metric g.

In _s_1 we choose the unique inner product k such that

2 * -

k(i,i) = L . Then g =49 g + k'rl' holds and we can make use of the
4;|i2

0'Neill formulas [16].

Lemma 11: The orbit space (X4,§) is an Einstein manifold of scalar
curvature 5 R = 24,

The endomorphism field ¢ maps the horizontal bundle Tth onto it-

self, where c? h 5= - Id. Furthermore, we consider the 2-form (L

on M5 defined by Q(x,Y) := g(X,c.PY) = % dm . Because of ffgcp= 0

and f-g d'q: 0, c.? and .Q define an almost complex structure J
and a_2-form Q1 on X%, respectively. Obviously, £ = g( .,J3 ) holds,
i.e. S 1is the Kahler form of J.

Lemma 12: (x4,3,§) is a Kahler manifold.

Proof: () is closed since () = dm is closed. Furthermore, the
Nijenhuis tensor (3,31 of 3J vanishes because of the integrability
condition [,p] + dn®”§= 0 for @ .

Now we can make use of the classification of 4-dimensional compact
Kéhler-Einstein manifolds of positive scalar curvature ([117, [17],
see Section 4.2). X4 has to be analytically isomorphic to S2 X 32,
¢P? or to one of the del Pezzo surfaces Py (34k£8). Pk is the
surface obtained by blowing up k points in general position in
CPZ. Next we study the topological type of the Sl—fibratlon

o3, ,x*shy.

Lemma 13: Let cl(Ms——>X4) and 1(X ) denote the f‘irst Chern
class of (Ms,*‘ﬂ‘, X4;Sl) and the first Chern class of X , respec-
tively.

Then the relations
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(i) cl(X4) = %% cl(M5—45x4)

(ii) cl(x4) = A" cl(Ms-—9X4) for a certain integer A hold.

Proof: We have the connection M‘ in (Ms,ﬂr,x4;sl) with the
curvature form dm"' = 3%1 dm . Hence, cl(Ms—-§x4)

5 WA _[_ 1. . _a

oy P x®) =[ - phz am'] =] T+ an] .
On the other hand, since X4 is an Einstein-Kéhler manifold of
scalar curvature 24, its Chern class is given by the Ricci form

ﬁRic = Ric(.,3) =60 :

o, XH <[ - E ﬁRic]=['2%r d"l] :

which proves (i).

is given by

Furthermore, we have an isomorphism Tt Tcx*sThM5 = QC¢)XSU(2) c?
of 2-dimensional complex vector bundles. This isomorphism yields
ﬂ‘*cl(x4) = 0 because the first chern class of any SU(2)-bundle
vanishes. Assertion (ii) follows now from the exact Thom-Gysin
sequence of w3, T, x4 sy

5
. HOOXY; D) 1 — XD

qr*
>H2(x*;2) —— w2 —> ...
Lenma 14: H (M%;2) = H*(x*;2)/c, WP xH) Uit D)

The fundamental group of mS

is cyclic.
. 4 3,4, 4
Proof: Since ﬁfl(x Yy =0 [71], v2(x%;2) = Hl(x ;Z) = 0 follows
from the Poincaré duality. The exact Thom~-Gysin sequence
4
c,(M"™—> *
sty A St T ntdn—
— W3(x*2) = 0—> ...

yields W(M%;2) = w*(x*;2)/c, P— xH v W2 (x*i2) .

Using the Poincaré duality we obtain the first assertion. The
second one follows from the exact homotopy sequence of the Sl-fibr&
tion and ﬂfl(x4) = 0.

We want to classify all possible Einstein spaces now.

4 2

First case: X* = ch. If X is analytically isomorphic to CP
and admits a Kdhler-Einstein metric, then X4 is isometric to CP2
with the Fubini metric [80].

The cohomology algebra H'(eP?) s isomorphic to Z[a] /ox? and

the first Chern class is given by c1(¢P2) = 30, xeH2(cP?;z).

94



Using Lemma 12 we see that there are two possibilities for the first
Chern class of the sl-fibration:
cl(M5—°CP2) = or cl(Ms—v ch) = 3.

In the first case we have ‘I’rl(Ms) = 0, L = 2w, and in the second
one 'rrl(Hs) =Z;, L= 3%‘- (see Lemma 13). Since we know the curva-
ture tensor of CP as well as the curvature form dm!= 5-'“']-_-1- Q

of the Riemannian submersion T : MS — X4, we can apply the O'Neill

formulas again and conclude that "
5

is conformally flat. Conse-
quently, M5 is isometric to S in case °1(M5_> X4) = ,and iso~
metric to ss/l3 in case cl(M5—>X4) = 3« . The group of analytical
isometries of CPZ acts transitively on cp2. Each of these iso-
metries can be lifted to an isometry of Ms. Hence, M5 = 85/13 is
the homogeneous space of curvature one and the fundamental group

T, %) = Z5.

Second case: Suppose that the orbit space x4 is analytically
isomorphic to s2 x s2. we will show that x* 1s isometric to the
product of 2-spheres. We use a result due to L. Berard Bergery,
stating that any compact 4-dimensional Einstein manifold whose iso-
metry group is at least 4-dimensional is either symmetric or iso-
metric to €P2 # P2 with the Page metric (s. [81]).

The Lie algebra of the isometry group is the Lie algebra i of
Killing vector fields. Since x* is a Kéhler-Einstein manifold of
positive scalar curvature, the Lie algebra h of all holomorphic
vector fields on x* s the complexification of the Lie algebra of
all Killing vector fields ([73]). As s? x s 1is analytically
isomorphic to the Klein quadric Q, in CP3, we conclude that the
dimension of the isometry group of x4 equals the dimension of the
isometry group of Q, in the standard metric, which is S0(4).
since 2 x s is not homeomorphic to cp? # ch, x* is a symmetric
space. The de Rham decomposition yields now that x* is isometric
to the product of 2-spheres with radius -—1_-, . The cohomology algebra
of s%x s? is ACa,b), i.e. a commutati?e algebra with generators
a,b and relations a? = b2 = 0. The first Chern class of s2 x s?
is c1(52 X 52) = 2a + 2b. Using Lemma 13 again we see that there
are two possibilities for cl(Ms—’: s2 x Sz), namely a + b or 2a+2b.
In the first case we obtain -’5\’1(M5) =0, L =47 /3 and in the
second one frrl(Ms) =Z,, L= 27 /3.

On the other hand, we have the following two examples of 81—f‘ibra-
tions over 2 x S?. First consider the Stiefel manifold Vg oo

V4[2 admits an Einstein metric of scalar curvature 20 (see 632]).
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The calculation in [32] shows that nontrivial Killing spinors
\P+”~P-(-Vx“*’+ = + % X+ ) defining regular Sasakian structures

exist on this space. The integral curves of the chabacteristic vector
field are the usual fibres of AqU: V4 2 >S x s? 4,2 where

G4 2 denotes the GraBmann manifold. The length of the fibres in

this metric is —3

The second example we get from the first one. V4,2 13 the manifold
of all oriented orthonormal 2-frames (vl,vz) of IR". Consider

the fixed-point-free involution

I: V4,2 =>V,2
(vavp) > (mvgv, ).

which maps all fibres onto itself. I 1is an orientation preserving
isometry. V412/I = V4’2/1éadmits two spin structures (see [32]),
which are defined by the two possible lifts of I into the spin
bundle P of V412. Relative to one of these lifts, «vl and 1y2
are invariant. Hence, they define Killing spinors with a regular
Sasakian structure on V4'2/22.

Hence, the Sl-bundle Ms——é X is lsomorphic to V4 —e»sz X S2
in case 'T M%) = 0, and isomorphic to /2, —>s? S2 in case
’Tl(M ) = 12. Furthermore, the metric on S2 X 52 and the length

of the fibres define uniquely the metric of Mo

Consequently, m3 is isometric to V4l2 or to V4'2/l2 in the
mentioned metric.

Third case: x4 = P, .. Now let X4 be one of the del Pezzo surfaces
with 3£k£8. The cohomology algebra H*(Pk) is generated by the
elements o , El""'Ek 6H2(Pk) with the relations o(3 = 0,<>(E1 =0,
€2 = -1. The first Chern class of P, 1is 3o+ Ej+...+E, (s. [11]).
Consequently, there is only one possibilitiy for the Chern class of
the fibration M°—>P_, namely c (M —>P,) = 3t +E +...+E . From

H (P iZ) = and Ef = -1 1t follows that H, (M ;) =

4(P z)/(aa +E +..+E DU HA(P, 5Z) = 0. Thus, W s diffeomorphic
to a simply connected prlncipal Sl-bundle over one of the del Pezzo
surfaces Pk (34k€8). On the other hand, on Pk there exists a
family of Kéhler-Einstein metrics with positive scalar curvature.
Consequently, by Theorem 1 we obtain a family of Einstein metrics
with a Killing spinor on each of these Sl-bundles.

There is a result due to S. Smale on the structure of 5-manifolds,
(s.[987) which states that a simply connected closed spin manifold
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of dimension 5 whose second homology group Hz(Ms;l) is free and
abelian is diffeomorphic to s #\(82 X 33) #...# (82 X 83)

.

e
k x

Therefore, we obtain a one-to-one-correspondence between metrics

with Killing spinors defining a regular Sasakian structure on the

k-fold connected sum (82 x s3) #...4 (Sz X 33) and Kahler-Einstein

metrics on P, .

Summing up, we have proved the following

_Theorem 5 ([41]): Let (M5,g) be an Einstein space with a Killing
spinor v and the scalar curvature R = 20. Suppose in addition
that the associated Sasakian structure is regular. Then there are
three possibilities:

(1) M® is isometric to s or 55/23 with the homogeneous metric
of constant curvature.

(2) M5 is isometric to the Stiefel manifold V4,2 or to V412/12
with the Einstein metric considered in [32],[67].

(3) M® is diffeomorphic to the simply connected sl-pundle with the
Chern class cl(Ms-—>Pk) = cl(Pk) over a del Pezzo surface P,
(34k£8).

4.4, Compact 7-dimensional Riemannian Manifolds with Killing Spinors

The complex Spin(7)-representation A, is the complexification of

a real representation, since the real Clifford algebra Cliff(7) is
isomorphic to MR(8) (:) MR(S). In all calculations we use the reali-
zation of that real spin representation which we obtain from

€ = Ejg + Exy - B35 = Eys
ey =-Ey7 + Exg + E35 ~ Ege
e3 =-Ejg * Ep5 ~ E3g + Eyy
ey =15 ~ Ez6 = E37 - Eug
€5 =-Ej3 = Ep4 *+ E5y + Egg
eg = Eyq ~ Ez3 - Egg + Egy
ey = Ejp ~ E3z4 - Ege + Eyg 4

where Eij is the standard basis of the Lie algebra 22(8):
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v

We denote this real representation also by [.\7.
Let uy,...,ug be the standard basis of A7 ~ RrE. Spin(7) acts
‘transitively on the Stiefel manifolds

Vk(A 7) = {(_vl,...,vk) : Vi6A7l<vi'Vj> =d1j }.

We consider now the isotropy groups H°(u1,...,uk) Cspin(7):
Ho(ul,...,uk) = ggeSpin(7) toguy = ud.,léo(ék}

and their Lie algebras ﬂ(ul'“"uk)' It is well-known (see [267)

that _tl(ul), Q(ul,uz), ﬂ(ul'UZ'uE}) are isomorphic to the Lie
algebras g,, _3_1_1_(3), su(2), respectively.

More precisely, we have

Lemma 15: n(ul) ={ E_jwij eiej: ), +L.>34 +L356 =0,

mggt Wy ~logy = 0y =Ry 4m W3- 05, = 0

- Wi6™ o5 + W37 = 0 W15 g6~ @47 = 0
Lig+ Lgg + 145 = 0 L7+ Lgg= g = O ¥
h(uy,u,) ={ E bij ejey Wy, 05, + 56 = 0,
"o b = =
W13 = Opgs P1p + W3 = 0, L5 =0y
Wig * Va5 = 04 W35 = Wyg Wag + 45 = 0,

Wiy =0 (=1,...,7)}

= LW =
ﬂ(ul,uz,ua) —{ % Loij €1€5 * ™13 Rag1 P14 *+ W23 = O,

[ + W,

12 +Way = 0, W5 =0 =0, = 0 (14147)].

Lemma 16: The Spin(7)-actions on s’, V,(A5) and Vi(A 4) are
transitive. The isotropy groups H°(u1), H°(u1,u2), HO(ug,uy,ug)
are isomorphic to Gz, SU(3) and SU(2), respectively.

Proof: The first assertion follows from
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dim vl(A 7) =7 = dim Spin(7) - dim H(u,)
dim V2(A 7) = 13 = dim Spin(7)- dim H(ul,uz)
dim Va(A 7) = 18 = dim Spin(7)- dim H(ul,uz,us).

The exact homotopy sequence of the fibration
V() = spin(7M°Cuy,...,u) (k=1,2,3) implies the second
assertion because of fﬂ"l(Vk(A 29 =‘7r2(Vk(A7)) = 0 (k=1,2,3).

Lemma 17: For any orthogonal elements <, # 0 and W, # 0 of
A.7 = IR there exists a unique vector € ele such that

A3 Z B 7Y

Proof: For any vector XeIR8 it holds that (X«yl,ﬂyl) = 0. There-
fore we have a linear map from iR7 into the orthogonal complement
of Yq defined by

7 o +
IR > Wy
X —> X1, -
since dim R’ = 7 = dim\pi, this is an isomorphism.

Consider now a 7-dimensional Riemannian spin manifold with a real
spinor bundle S. As a corollary of Lemma 16 we obtain:

Lemma 18: If \Vl""‘”’k (k=1,2,3) are orthonormal sections in S,
then we can define topological reductions of the spin structure Q
and the frame bundle P by
0('\01,---:’Wk) = U 7 Qm(wll---lwk)
meM
Qm(‘\ul,...,’wk) = {qeOm:\yl(m) =[q.,uy], 1=1,...,k}

and P(y 5,..09,) = FOQ(W .0, P D).

Further, we consider only sections in the real spinor bundle.

The spaces of all real Killing spinors in the complex bundle are
the complexification of the corresponding spaces in the real spinor
bundle.

We now give estimates for the maximal number of independent Killing
spinors.
Let (M7,g) be a compact Einstein spin manifold with scalar cur-
vature R and spinor bundle S. We denote by m_ the dimension of
the spaces of Killing spinors:

m, = dinfyen (s) :Vyv=s 3{g8 Xwi.

99



7

Theorem 6 (see [897] or [58]): If m, >0 and m_>0, then M’ is

isometric to the sphere s’.

Proof: Given two Killing spinors Yoo w_ satisfying
VW, = ¢ %’JTZ Xy, , we consider the function f = (b , ¥ ).

An obvious calculation yields Af = g- f. In case f # 0, M/ must
be isometric to the sphere s’ by Obata's Theorem (see [9]).

In case f =0, il.e. y,  and y_ are orthogonal, we consider the
1-form defined by

wX) = (Xy ).
Because of dim {nes: (M. v )= 0}: 7 = dim ™M’ the 1-form W
vanishes nowhere. On the other hand, (> is a parallel form:

(Vyw)() = XO¢,,w ) - (UMY, ¥)
(YO W, N )+ (Y, VW)

B2 {00y, ) s (v, v )

-J—gg(x,v)(w+,w_) = - 7/;% g(Xx,Y)-f
o,

since we have f = 0 in the situation considered. Now the Weitzen-
bdck formula for 1-forms yields Ric(w) = 57w= 0. This is a
contradiction.

Theorem 7 ([43],[44]): Let (M7,g) be a compact connected Riemannim
spin manifold. If m >3 or m_2>3, then M’ is a space of constant
sectional curvature.

Proof: Let W,, W, Y3 be three orthonormal Killing spinors with
the same Killing number and sl,...,s., a local section in
P(’wl,\.pz,wa). For the Weyl tensor

W A2y — A2y
Wisjas)) = %i—__l Wi k1S )
we obtain from

WM W, = WMV, = WMDY, = 0 for all me AZW

the relations
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Wija3 = Yij24 Yij1e * Wij23 = 1
- = - £
Wijks = Yijke = Wijk7 =0 1f L.k £7
(see Lemma 15)

We consider again the real Spin(7)-representation A7=~lR8. The Lie
algebra E(ul,uz,us) of the isotropy group Ho(ul,uz,u3) is a
subgroup of so(A.) = so(8) and given by

nCuyup,ug) ={Cay ) 1sq,j2g) 235 = O (1£14, 14j€7)

a56 78 957 = ~9sg

858 = 87 }'

This follows immediately from Lemma 15. Hence Ho(ul,uz,us) acts
triviallyon u, and coincides with the usual SU(2)-action on
span {us,ue,u7,u83 =R* = ¢2.

Suppose now that M7

admits four orthonormal Killing spinors
Waseees Wy In the reduction P(\Vl,\&z,\ya) of the frame bundle
we may choose a section s,,...,s, such that V, =2, u,+ 15u5 holds.
1f 'ks # 0, then, because of the above mentioned relations for the

Weyl tensor,
W(X'Y)“’4‘% A5((yy1p = Wxy3gadls
+ (Wyy1s = Wxy2aduy

+ (Wyyq4 = Wyyz3)ug)

=0

implies W = 0. Thus we still have to prove that ls does not vanish
on an open set UCM’. Assume that W, = u, on UM’ . Without

loss of generality let the scalar curvature be R = 42. We denote

by ”1] the connection forms of the Levi-Civita connection relative
to 847004485, The equations

, _ 1

Ve, Y1 %3 %1V (1£144)
provide the conditions
> Loij(sl)eieju1 = ejuy =u

izy
uoij(si)eieju2 = eyu, = U,

MEM

wu(sl)eieju3 = ejuz = -ug

ME

wij(’l)eiej"4 = eju, = -ug.

"
2
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Thus, we get

Wop(81) +W55(81) - Wyglsy) = 1
Wop(s1) = lagg(sy) +O4e(81) = 1
Woy(81) = tog5(s;) - W8] = -1

Woy(81) +L235(8)) +1946(8y) = -1,
which is a contradiction.

In dimension 7 we can also prove the converse of Theorem 1.

Let (M7,g) be a compact Einstein manifold of scalar curvature

R = 42 with spin structure. Furthermore, let ¢, and y, be tw
orthonormal Killing spinors with the Killing number A= 3. We
define a vector field g by the equation gwl =Yy,

This is correct, see Lemma 17. If 81se-2484 is a local section
in P(q’zl,wz), then €= s, holds. Moreover, we introduce the 1-
form mM(X):= (XW¥,,y,) as well as the (1,1)-tensor ¢ := - Vs.

Lemma 19: (&,§,M.,9) 1is a Sasakian structure on m’.

Proof: First we prove that § is a Killing vector field, i.e.
Q(V Y%IX) + Q(YIVX‘i) = 0.

We differentiate the equation 'gxpl =Y, with respect to Y and
multiply it by X !

((Vy8IWy Xp) + 3CEVW,.X9,) = 5(Yy,.X%,).
Analogously we have
((Ty OV Y% ) + 3CEXW,,YW,) = 3(X¥,,Y ).

Adding both equations and taking into account (X ,Yy) =
= g(x,")|w] 2 we obtain

9(V € X)+g(Y,V §) = é((vwz,xwl) + (XY ,,Yy,))
- i(fg“h:xwlh(% XY 9y))
= g(X.Y)(wyipp)
+ é((wz,xwl) + (XW,,YV,)) +

gV €W 1 X W) + g(X, B (W 1, YY)
= 0.

Moreover, we have N (X) = (Xw,,y,) = (XW¥ ¥y, )= g(X,"E). By our
definition, = -V§ holds. Now we verify the condition

(_Qz = -Id +'Yl®i Suppose that X 1is orthogonal to § - the
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remaining case is obvious. From (vxg)\pl + ¥V v, =Uyy, it
follows that L?(X)wl ='§X‘~\J1 and, therefore,

920w, = Ee(O W, = ~EE Xy, = X,, i.e.
¢ = -X.

It remains to prove (V xPY) = g(X,¥)g -q)(Y)X. We use the equa-
tion 2@y, = (“EX-X‘g)'\yl, which we obtain by covariant
differentiation of ¥, =v,.

we start with UV (@ (Y)y ) =V (@p(YDV; + @IV v,
=V (@MY, + 3 @XY
and V(@MY ) =Ty(- 3 Y, + 3 €Yy, =
= -3V, - Y9, - 3Q00YY, +
FECW D%, + FEVXY,.

+

Now we obtain
@ DW= (T @y - PT Dy =
= = 30 Dpom § X FROOYY 1+ FET 0w,
+ 3By, - T QXY - P(Y W,
= -3 YXp,m 3OO0V, + FEYXp - PNy,

(YQ QO+X P (YIIW 4+ 3M OV g 1= FVIXp,
(YEX-YXE+X SY-XYEDIP 1+ 3N (OVW,~ 37 (X,
= (g(X, V) - (VXY ;.

Thus calculation provides (UXLP)(Y) = g(X,Y)‘E-'fl(Y)X.
Theorem 1 and Lemma 19 yield the following

INTEW O

7

TYXG, ¢ 3 (YP OO+ XQY,- § YEXW =57 (VXv,

Theorem 8 ([44]): Let M’ be a simply connected 7-dimensional spin

manifold. Then there is a one-to-one correspondence between pairs
of Killing spinors and Einstein-Sasakian structures on M7.

Suppose now that the constructed Sasakian structure (t(J .8 ,'Yl ,g)
on M7 is regular, i.e. all integral curves of ‘g are closed and
have the same length L. We use again the method described in case
of dimension 5 (Lemmas 11, 12, 13) and obtain

Theorem 9 ([43],[44]): Let (M7,g) be a compact Einstein manifold
of scalar curvature R = 42 with two Killing spinors such that the
induced Sasakian structure is regular. Then M’ is a principal sl-
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bundle over a Kahler-Einstein manifold of scalar curvature R = 48.
For the first Chern class cl(XG) of x® and the first Chern class
cl(M7—A>X5) of the Sl-bundle the relations

6y _ 2L 7 6
1) ¢ (X°) = = e, (M= X7)
(i1) cl(XG) = A~c1(M7—>X6) for a certain A€Z
hold.

Analogously to Lemma 14 one verifies
Lemma_20: H,(M;2) = HO(x®;2)/c, (W' —>x®) u*(x%;2).
From the exact homotopy sequence of the fibration sl-—>M7F47x5

it follows that qfl(M7) is a cyclic group. Because of Myers'
Theorem ﬂ&(M7) is finite.

Our next aim is the classification of 7-dimensional manifolds with
three independent Killing spinors.

Let (M7,g) be a compact 7-dimensional Einstein manifold of scalar
curvature R = 42 admitting three orthonormal real Killing spinors
\bl,ﬂyz,1p3 with the Killing number %. Solving the equations

XpWg =¥ae  XpWy =g Xa¥2 =¥3
we obtain three orthogonal Killing vector fields of length one, for
instance g(X;,X;) = (X;% 4, X% 1) = (W,,p,) = O.
Defining 7 = g(Xi,.), Y =--VX1 we obtain three Sasakian struc-
tures ( @1,X1,411,g), i=1,2,3.

Lemma 21: ( qi,xi,/qi,g) (i=1,2,3) constitute a Sasakian 3-struc-
ture.
Proof: We differentiate the equation defining Xq relative to X
= 1 1
(szx1)”’1 * 3 XXy = 3 Xa Vo
i.e. (szxl)wl == X;yg.

2:

On the other hand, X1 and VX X1 are orthogonal to each other,
2

since X1 is a Killing vector field of length one. Consequently,
we have

(Vx2X1)Wz = (szxl)xlw1 = 'X1(Vx2x1)\l’1 = -y,

Hence, Vx X1 = —X3. The assertion follows now from Lemma 6.
2
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Conversely, given a simply connected Riemannian spin manifold
(M7,g) with a Sasakian 3-structure (¢f;,%;, M4.9), i=1,2,3. Then
(M7,g) is automatically an Einstein manifold and we can apply the
method used in Section 4.2.

We consider the bundles

Ef = [wes: (+ €;() +EX-XEDy=0} (i=1,2).

Let M’ be not isometric to the sphere S’. EI as well as E;, or

E; as well as E; have the dimension 2. Assume, for example, the
first case. Theorem 7 implies EIO E; # 0 since each of the bundles
EI and E; yields two Killing spinors. Therefore, we may choose

a spinor ¢y # 0 in EII\E;. Then, by the definition of E; the
spinors ‘§I\y and 'gzxp are elements of EI and E;, respectively.
These spinors are orthogonal to each other, since

(&%, Sp¥) = g( ‘gl,gz)l \plz = 0. Hence EI # E; and, consequent-
ly, M’ admits three independent Killing spinors with the Killing
number é. On the other hand, if M° is isometric to the sphere,
then there exist four independent Killing spinors for each of the
values %, - %.

Finally, we obtain:

Theorem 10 ([43],(44)): Let (M7,g) be a compact Riemannian spin
manifold with three independent Killing spinors. Then (M7,g) admits
a Sasakian 3-structure. Conversely, every simply connected spin
manifold with Sasakian 3-structure admits at least three independent
Killing spinors.

We consider now again the Killing vector fields Xl, X2, X3 con-
structed by means of three Killing spinors with

[X1:Xp1= 2Xg, [xz,xa’] = 2Xq, [x3,x1] = 2X,.
By the Frobenius theorem these vector fields define a foliation of
M’. The leaves ﬁi are totally geodesic (s. Section 4.1.) and
have constant sectional curvature K = 1, i.e. they are isometric
to s/f, .
We consider the induced Spin(3)-action on M7.

Now we want to classify all 7-dimensional compact Riemannian mani-
folds with three Killing spinors under a certain regularity assump-
tion on this action. We suppose that M is a simply connected
compact spin manifold admitting three Killing spinors with the
Killing number % such that M7/Sp1n(3) =: x* 1is a smooth closed
manifold. In this case M’ is an Sl-fibration over the twistor
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space Z* of X4. Indeed, let p: M7-—->X4 be the projection and

identify the tangent space Tp(m)x4'WIth the orthogonal complement
of span(xi 21 3) in T M7. We define the projection

T: M ——92 by the Formula
w(m) = dp wl(m)dp' .

Then the kernel of the differential dW : T M —T. {m 7t is genera-
ted by X1 and, consequently, T : M7-—>Z is an S”~-fibration.

This projection coincides with the corresponding projection for two
Killing spinors Wi Wpe Theorem 9 provides now

Lemma 22: T : M7-->Z+ is an sl-fibration and z* is a compact
Kdhler-Einstein manifold of scalar curvature R = 48. The canonical
complex structure of z* is given by 4&.

Since the only Kéhlerian twistor spaces are cP3 and the flag
manifold F(1,2) (see [451,[63], see also Section 3), z* is
analytically equivalent to one of these spaces. Moreover, on CP
and F(1,2) there exists only one Kdéhler-Einstein structure (see
[69]) and, consequently, Z* is analytically isometric to cp3
or F(1,2). By q we denote the fibration q: t—>x4,

Now we carefully investigate the action of Spin(3) on M7. For a
given pointlneM7 we denote by

H(m) -{YCSpin(3):Xm 2 m}
the isotropy group of this point.

3

Lemma 23: For any point meM’

or isomorphic to 12.

the isotropy group H(m) 1is trivial

Proof: We consider the orbit M, = p'l(x) relative to the Spin(3)-
action of x = p(m). For the map

Spin(3) —>M,
¥ —gm
¥m =~'m holds if and only if there is an hm¢:H(m) such that
¢*' =y’hm. Thus, we have M = Spln(3)/H(-), where H(m) acts on
Spin(3) from the right.
Let H be the subgroup of Spin(3) generated by X
of H on Spin(3)/H(m) is given by

1° The action

HXS/H() >S/H(m)
(h,[¢D +—>[npl .
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Denote by 3)2( the sphere S;‘: = q-l(x). Then the diagramme

T

spin(3) —> Spin(3) ;cpy = My ———> s \(s /H(m)?
_ i
H\Spin(3) v____’W___) (H\Spin(l‘l)) / H(m)

is commutative. Since T is a submersion and s3—s3 /H(m) is a
covering, T is a submersion, too, and therefore a covering.

Since (H\Spin(S))/H(m) = 82 = 52, we deduce that @ is one-to-one,
i.e. H(m) acts trivially on H\Spin(:*l). Identifying
Spin(3) = SU(2) we may assume that

H .{(; 2) , zes'l}

holds. Then, the action of H on Spin(3) is given by

z O X B zA 2B

= s

o)y ¥ ot
Hence, the projection SU(2) <& Spin(3) —> H\Spin(s) = 52 maps

o "
4+ ) ontoFes (Iu{oa} and the action of H(m) €SU(2) on

Xspin(3) = s 1is given by

2 o
=

s? x H(m) ——> s?
A B WA + C
@ (8 ) ——+5 -
Since H(m) acts trivially on 32, we obtain H(m) = {e} or 12.
Lemma 24: The orbit type of the Spin(3)-action on M is constant,
i.e. there are two possible cases: either H(m) ={e} or H(m) =Z,
for all points mc—,M7.

Proof: Consider Y= (-1)€Spin(3) and the corresponding isometric
involution o = (-1): M’—>M’. The fixed point set of - is the
union of closed totally geodesic submanifolds N, - The manifolds

Ny are Spin(3) invariant and S0(3) = Spin(3)/{+ 1} acts freely

on it. Since - preserves the orientation, the dimension of Ng
is odd. Hence, dim Ny = 3, dim Ny=5 or Ny= M .

Next we show that the case dim Ny =5 1is impossible. We assume
that the fixed point set of <~ has a component N, of dimension §
and consider the images of N, in x* and z*. Then
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Zz := p(No()CX4 is a surface and T(N )< Z* is a complex sub-
manifold of the twistor space z*. In fact, the tangent space of Noc
contains all vectors Y invariant under the differential dy of Y.
Let Y be in TNy . Then do (Y) = ~dp-WX,; = "Vd 97X
since iy is an isometry. On the other hand, Y and X are invariant
under d-y and therefore dT q?l(Y) = -VY 1 :<{>1(Y) holds, i.e.
TN, is f-? ~invariant. Now we regard the twistor projection

q: Z—»X . Then we have q 1(Zz) =@ (Ny ). Since T (N, ) is a
complex submanifold, the latter equation means, by definition of

the twistor space, that Ty Zz is invariant under all algebraic
complex structures of T*X4, a contradiction.

Finally, we prove that the fixed point set of Y cannot contain a
component of dimension 3. Assume dim Ny = 3 and take a tubular
neighbourhood U = Spin(3) x z, 0%, The Z,-action on Spin(3) is
given by T on D4, (-1) €Z, 1is an involution with the unique
fixed point Oe D4. U is homotopy equivalent to N, , therefore
’lrl(U) =T,(N, ) = T(Spin(S)/ ) = Z,. On the other hand, U\WNy

is a principal Spin(3)-bund1e over p(U\N, ). U\N is diffeomorphic
to Spin(3) x (R* \{o}) for small U. Since

a, (u (\(M A\ N, ) =T (U\N ) = 0, the van Kampen Theorem implies
now that T,(M") is the free product of T, (U) and 7. (M7\N¢ ).
Because of T (U) =Z, and T, (M7) =0 thls is a contradlction.

Consequently, the fixed point set of < is g or M7. In the
first case we obtain H(m) = 0, and in the second one H(M) = z,
for all meM7.

We explain now the classification of simply-connected Riemannian
manifolds with three Killing spinors. First of all we remark that
two such spaces are known, namely the 7-dimensional sphere s7 and
the space SU(3)/Si'1 = N(1,1) described in [267] (see also Section
4.5). We prove that under the regularity assumption on the Spin(3)-
action, these are the only possible spaces with three Killing spinors.
Theorem 11 (see [43],(44]): Let M be a compact simply connected
Riemannian spin manifold of scalar curvature R = 42 with three
Killing spinors such that M7/Sp1n(3) becomes a smooth closed
manifold for the induced Spin(3)-action.

Then M’ is isometric to the sphere S7 or to the space
SU(3)/s7 ; = N(1,1).
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Proof: We consider the map T : M7——?Z*. Since the isotropy group

H(m) is constant, this is a principal Sl-bundle. On the other
hand, z* is a Kdhler-Einstein twistor space and, therefore,
isometric to the complex projective spaceCP3 or to the flag mani-
fold F(1,2) ([45], [63], [69], see also Section 3.). In case

z* = ¢P?, we have c,(eP%) = 4x , where o€ nZ(eP;Z) is the
generator of the second cohomology group. Since W{M7) = 0, the
Chern class of the fibration T : M7-—9 ¢P3 has to be equal to

cl(M — mPs) =« and because of the relation

cl(cPs) = EL cl(M — ¢P3) we obtain L = 2T for the length L of
the circles of this fibration (see Theorem 9). These data determine
M7 up to an isometry and it turns out that M’ is isometric to the
sphere 37.
We handle the second case similarly. Let zZ* be analytically iso-
metric to F(1,2). It holds Hl(F(l,z);Z) = H3(F(1,2);Z) =
= H2(F(1,2),Z) = 0. The group H 2(F(1,2);Z) has two generators,
oh . H4(F(1 2);Z) 1is generated by o2 and xy-, H6(F(1,2);I)
by f& . The first Chern class of F(1,2) is ¢ (F(1,2)) = 2y~
Thus, the Chern class of the fibration equals cl(M7——bF(1,2))= b
and the length of the fibres is L =T. Again, these data describe

M’ uniquely and we obtain M = SU(3)/Si 1°
]

Corollary 4: Every compact simply connected 7-dimensional spln
manlfold with regular Sasakian 3-structure is isometric to s’ or
SU(3)/8} | = N(1,1).

,

4.5. An_Example

Now we investigate in particular metrlcs with Killing spinors on

homogeneous spaces N(k,1) = SU(3)/S where the inclusion

1 k.1'
Sk 1 SU(3) 1is given by
elkO o 0
o —> 0 elile 0
0 o e-(k+1)9

We can assume k=21 >0. The Lie algebra 22(3) of SU(3) splits as
8u(3) = §1 + m, where the Lie algebra of sl is given by

ki 0 0
sl = epan { o 1 O }ng_(s)
0 0 -(k+1)i
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and m 1is the following subset of su(3):

m=Ppo*PRy *PBo* B3

where (21+k)1i 0 0
2, :=span{|. = 0 ~(2k+1)i O }
0 0 (k=-1)1
0 1 o 0 i o
~
py =spanfA,=( -1 0 0 |, A,={1 o0 o {
0 0 o 0 0 o
o o0 1 o o0 i
22 :=span{A13 = 0 0 0 , A13 = 0 0 0 }
-1 0 o0 i 0 o
o 0 o . 0 0o o
P3 :=span {Aza = o 0 1 1 Ay = 0 0 i }
0 -1 o0 6 i o

With the aid of the Killing form B(X,Y) = % Re(tr(XY» we define a
family g, of inner products on m:

1 1 1
g5 (-0) = M'B)Igo + 3 (-B)'Bl .35 (-B)]_pz + 3 (-B)I_Ea

\,x,y,z> 0).

Let « denote the number K= (k2+12+k1), furthermore let s =-1é5.
We fix the following orthonormal basis of m: 12
Xp = WA, 0 Xy =X A, X3 =AY Aggs X, =9y Ay,
— =~ 8
Xg =12 Ay, Xg = VzZ Ayg, Xy = T L.

Relative to this basis we identify m and IR7.

The isotropy representation Ad: sl——aso(ﬂ) is, with respect to this
basis, given by

Ad(Q) =
cos(k-1)0 -sin(k-1)€ 0 0 ] ] 0
sin(k~-1)0 cos(k-1)0 0 0 0 0 0
0 0 cos(2k+1)0 -sin(2k+1)e 0 0 0
0 0 8in(2k+1)0 cos(2k+1)0 0 0 0
0 0 0 0 cos(k+21)0 ~sin(k+21)8 0
(0] o] 0 0 sin(k+21)@ cos(k+21)8 ©
o] (0] 0 0 0 0 1
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For Ad: s1—> spin(m) = Spin(7) this implies
k-1 2k+1 2k+1

Ad(8) = (cos —5~ @ + sin Eil e elez)(cos S5— 6 +sin==0e e4).

3
- (cos -'35-2-1- 0 + sin _‘%_2_1 e eses).

Consequently, relative to the basis Ujseesilgs

8242 -2aB O 0 0 0 0 0
2a8  B%-A% o0 0 0 0 0 0
0 0  AC-BO BC+AD O 0 0 0
0 D  AD-BC AC+BD O 0 0 0
Ad(@)=] o 0 ) 0 B82:A2 0o 0 0
0 0 0 0 o A%B?2 o 0
0 0 0 0 0 0  BD-AC  BC+AD
0 0 0 0 0 0 -BC-AD  -BD-AC

k+1

where A:= sin -2-!—9 , B 2kl

= COSs —-—2—9 , C:= sin%e,

.

i= cos -?-’é e.
A section in the spinor bundle S = SU(3) xpy 4, is a map
Wt SU(3)—> A, which satisfies
y (ge) = Ad(e™ 1)y (g) for all gesu(3), eesl.

Thus, u5 and ug and, for k=l=1, also
maps are sections in S.

ug and u, as constant

The Levi-Civita connection of the homogeneous space is described by

the map
A :m—>so(m)
AGOO) = 10X, ¥]m + UCX,Y),

where [X'Y]m is the m-component of [X,Y] and U: mxm—>m is
given by

2g(u(x,Y),2) = g(x,[z,Y]) + g((z,x],.Y)
(see[65). - -

One calculates

;\\(Xl) = 20~E27 = c( Egg + Eug)
(Xp) = =26y, =~ c(Eyq - Egg)
A(Xg) = 2dE,, =~ d(Eyg = E;g)
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A(X) = -2d Egy + d(Egq + Epg)
A(Xg) = -28 B, = e(Ejq + Ep,)
A(Xg) = 28 Egy - e(E;, - Epg)
X y z
A = T (=1 (5 ~0E; pmelgy ~9)E5, + k(zg -)Esg)

where c:-%({z—f--/_x—éwl—x-—-?), e z—-(k+1)1}_.
a3 Y EES, G o T
e:= % ('{z§1+vﬁé;ejggw), T:= —%—k 3 ,

Consequently, the lift }i :m —>spin(7) of A is given by

¥ ~ c
A(Xl) =¢C eye, - 3 (ese5 + e4e6)
N(Xp) ==C eje; = 5 (ese5 = egeq)
~ -~ d
A(Xs) =dese; -3 (e2e6 - eles)
R(xy) =-3 ege, + § (ejeq + epeq)
A(xg) ==& ege; - § (ejeq + eme,)
~ ~ e
N(Xg) = & ege; - 5 (eye, - eyeq)

R(X,) = z'Lz (~(1+1) (% -8)e e ~1(xf ~s)ege, +k(xE ~s)egey) .
We obtain for the maps K(Xi)-pxi relative to the basis u1,...,u8:
AX DX, = (G-pIE; g+ (B-pIE,, + (Trcep)Egg + (G-cp)E g
7\(X2)-px2 = (-E+p)E17+ (E-p)E28 + ('84°‘P)E35 + (E+c+p)E46
K(Xs)-px3 = (—8¥d+p)E16 + (3+d-p)E25 + (a;p)ESB + (-3—p)E47
A(XD=pX, = (-ald+p)E15 + (-5+d+p)E26 + (d+p)Eg, + (alp)E48
A(Xs)-pxs = (3+p)E13 + (5;p)E24 + (g+e-p)E57 + (gLe-p)Eﬁs
7\(X6)-px6 = (-3-p)E14 + (B+p)Eyg + (~B-e+p)Egg + (E-e-p)Eg,

A 1 37 =(lsk)x-ly+kz
AO-px, = G {2¢ = +2 18) -E,,

+(%{§1(:£l:525:11:55 + 2(1+k)s)+p)E34
+( J =(1+k)x+1y+kz “Egg
2s

1{3 (-(1l+k ly~k.
+(§{£“(_S—:—2§§—X-—£ +2ks)-p)E78

Let us first consider the homogeneous space N(1,1), i.e. k=l=1.
On N(1,1) we have the metrics g; and g,, which are given by

112



21 _ = = .1 _ _ 1 _
X) =30 ¥p =2 =1,2; =2 and x, E,yz-zz-m,lz-ls,
respectively.

For g, we obtain

/\(X)*;‘lﬁr 1=jl%v"(518*527)

A(Xy) + .zlé\xz = ]'%' (-Ejy + Epg)

A(Xg) + 2‘?—‘2%"3 = {27Eyg

Axg) ‘2"15«"4 = -2 Ey5

Rixg) + ’ZL'E\Xs = {2k

A(xg) + ;ﬁ?xe = -ﬁ'E

/A((X7) + 2].}_‘ X7 = {2 (E + E78)’
We see that Ug, Uy and ug are in the kernel of each of these

operators. Thus, Uz, Uygs Uge n(s) are Killing spinors. Hence 9,
is an Einstein metric on N(1,1) with three linear independent
Killing spinors.

For 9, it holds

A% = 35 X1 = 75 g + Exp) + § Egg
RO) = 35 Xz = 25 CEyEpg) + § Egg
AX3) = 35 X3 = 15 (Eyq + Eag = E4p)
A(X) = g5 Xy = 15 (Epg + Egy + Egg)
RiXs) = 78 X5 = 15 (€15 + Ez4 - Egg)
R = 35 X6 = 15 (14 * E2g = Ee7)
ROG) = 35 % = 25 (Egp + Ezg) + § Eaye

The intersection of all kernels of these operators contains Ugs
i.e. usef‘(s) is a Killing spinor. Thus, g, 1is an Einstein
metric with one Killing spinor.

Now we study the case of k> 1>0. We need the following fact.

Lemma 25: The system

0 = 3(1+k)A(1-B) + 1(3B-2)+kB(2B-3) (4.5)
0 = (1+k)A(2A-3B)+31(B-A)+kB(2B-3A) (4.6)
A>0 B >0

8 Baum. Twistors and Killing Spinors
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admits two solutions (Al,Bl), (AZ'BZ) such that
-3(1+k)A1 + 21 + 3k81} (o]
and -3(l+k)A2 + 21 + 3k32< 0.

Proof: Discussing the curves of the functions

1(3B-2) + kB(2B-3)

£(B) =
3(1+k)(B-1)
and
2,042 2 2 2!
¢ (B) = 381 + 6Bk + 31 B2(91%+20k“+20k1)+2B(-31°+6k1)+91
+ -

4(1+k)

we obtain the fdollowing diagramme

A

Since the equations (4.5) and (4.6) are equivalent to f(B) = A
and f_(B) = A, respectively, the intersections of the curves f_
and f~ as well as f, and f yield the solutions (A1'°1) and
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(ApsB,).

Using these solutions (A,,B;), (A,,B,) we define positive real
numbers \ 21 and Y2 by
pral
{% = (-31400a,8, + 318, + 2¢82) Jy;
= (-3(1+k)A,+2143kB,) {y;
2
= (-2(1+k)A1+3lA1+3kA181) {yl’

and

]

2
(3(1+k)AB, - 31B, - 2kB3) ,Iyz'
(3(1+k)A, - 21 - 3kB,) jy,

2 ~—
(2(14k)A5 - 31A, - 3kA,B,) [V,

respectively.
If we futhermore deffne x; = A;y;, z; = B;y; (i=1,2), each of the
tuples (xl,yl,zl) is a solution of one of the systems

,l.';é-’{xyz = - 3(1+k)xz + 3lyz & 3kz?
E{xyz = - 3(1+k)xy & 21y2 + 3kzy

JE Pz = ; 204052 & 31xy + 3kxaz.
Settin =2 (8= 1) and =J? ((1+k)x,-ly,-kz,) one
g s 3 My < ¢ i~1vy i
obtains a solution (l,xl,yl,zl) of
C = -C ~ g
d=4d -~ ¥y
e=¢~-p
hd 1
J‘é (=(1+k)x + ly + kz) + Hy =0
and a solution (2,x,,y,,z,) of
c=7C+ [
d= -; + By
e= € + ¥y
3
ch (-(1+k)x + 1y + kz) + B, =0.

For the metric defined by (2 ,xl,yl,zl) the spinor ug belongs to
the kernel of each of the operators K(Xj) - plxj (j=1,...,7), i.e.
it is & Killing spinor. For the metric defined by (2,X,,Y;,2Z5)

we calculate analogously that usc—,P(S) is a Killing spinor.
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Finally, we have

Theorem 12: For k21 >0, (k,1) = 1, there exist two Einstein metrics
with Killing spinors on N(k,1) = su(a)/sb. If k=l=l, then

N(k,1) admits three independent Killing spinors relative to one of
these metrics and one Killing spinor relative to the other one.

If 1 #1 or k # 1, then there exists only one Killing spinor for
each of these metrics.

4.6. 7-dimensional Riemannian Manifolds with one Real Killing Spinor

The above discussed example proves that there are 7-dimensional
manifolds with exactly one Killing spinor. Unfortunately, we can

not apply the methods described in Section 4.4 to these manifolds.
However, there is an equivalence between metrics with oneKilling
spinor and certain vector cross products on 7-dimensional spin
manifolds.

Let (M7,g) be a compact 7-dimensional Riemannian spin manifold with
a Killing spinor +# 0, i.e.

Uy W =Xy,
We define a (2,1)~-tensor A by
YXW= -g(Y,X)% + ACY,X)y .

This is correct because of Lemma 17.

Lemma 26: The above defined tensor A admits the following
properties

1) A(X,Y) = -A(Y,X)

2) g(Y,A(Y,X)) = 0

3) ACY,A(Y,X)) = -1 YI2X + g(Y,x)Y

4) (VA ,X) = Z'X{g(Y,Z)X = 9(X,2)Y + A(Z,A(Y,X))}.

Furthermore, we obtain by polarization
5) g(YllA(Yz,X)) + g(YZ,A(Yllx)) =0
6) A(Y4,A(Y5,X)) = =A(Y,,A(Y,,X)) = 2g(Y,,Y,)0X + g(¥,,X)Y,

+ g(Yz,X)Yl.

Proof: 1) 1is obvious,
From the definition of A it follows

116



A(Y,A(Y,X))’\Ps Y‘A(.le)'q)’ g(Y:A(Y:X))W
= Y- g+ gy, X)Yw+ g(Y,ACY,X))w
= = YIXy+ g(Y,X)Yp+ g(Y,ACY,X))p.

This implies A(Y,A(Y,X)) = -|¥i2 X + g(Y,X)Y and g(Y,A(Y,X)) = 0.

In order to verify 4) we differentiate the equation defining A
relative to Z:

(T XY+ YV O+ AYXZY = =g([ ;Y. XDy =g(Y, T, X)yp
=g(Y, X)X Zyp+ V2 (ACY XD+ ACY, X)X 2
= =g(V ;Y. Xy -g(Y,¥ X% = g(¥,X)AZp
+H(V LAY, XY + ACT,Y XD ¢ + ACY, T X))y
+ A(Y,X)AZy .
Thus we have
~g(Y, X)) XZy+ (V AV, XD+ ACY,XIA Zyy =
= AYXZp= A ZYXY+ 29(Y,Z)A X ~29(X,Z)A YO ,
i.e. NZA(Y, X)W = -2g(Y,Z)Q XP+29(X,Z) X Yp + A(Y,X)A Zy
+ (VLAY , X))y .
This implies
2A(Z,A(Y, X)) AW+ 22 g(Y,2)Xy -2g(X, )X Y= (T A (Y, X0y,
which is equivalent to 4).

Remark 4: Because of Property 3), A is non-degenerate. Further-
more, we have by 3) and 5)

JAGGYI2 = g ACX,Y), ACX,Y))
= |x12 1vI2 - g(x,Y)?
and by 1) and 2)

Q(A(Xllxz):xi) = 0 (131,2) .
From 4) it follows in particular
(inA)(Xllxz) =0 (1’112).

Thus A is a nearly parallel vector cross product in the sense of
A. Gray (see [51)).

Recall that a Cayley multiplication on a real 8-dimensional Euclidean
vector space (W, <,>) is a bilinear map * : W x W—>W such that
8) there exists an element e of W satisfying

X*e=e*x=Xx for all xcW.
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b) I x * yll =lxl-lyll , where Ix42 = <x,x).

Consider now the bundle TM’ ()'31, where €1 is the trivial line
bundle as well as the metric h on TM’ ()'gl defined by
h((x,8),(Y,t)) = g(X,Y) + st. Let m be a point of M’ and set

(X,8) * (Y,t) = (A(X,Y) + tX + sY, st - g(X,Y))

for X,Yé:TmM7; 8,teiR. Then, on account of the vector cross product
properties of A, * is a Cayley multiplication in each fibre of
(™ (@ €'.h) that depends smoothly on meM’.

Now we want to prove the converse, namely, if there exists a (2,1)-
tensor A with the above mentioned properties 1) - 4) on a simply
connected 7-dimensional spin manifold M7, then M7 admits a Killing
spinor. Let A be such a (2,1)-tensor. First we note that A defines
an orientation on M’ in a canonical way. Indeed, consider the 3-form
(la(X,Y,Z) = g(X,A(Y,Z)) and the following 4-form 534. Let
84/,00.,8, be an orthonormal frame and 7); defined by

'Yll(x,Y) = g(A(x:Y):81)~

7
Then 224 = }::_ﬂil\ni is an invariantly defined 4-form. In order
i=1 -

to show that fla A =, does not vanish we choose the following
local frame. We fix vector fields 8,48, of length one which are
orthogonal; let s, be a vector field of length one which is ortho-
gonal to s,,s, and A(sl,sz). Furthermore, let s,,...,8, be

84 = A(s5,A(8,,8,)), 85 = A(8,,8,), 85 = A(85,8,), 8,=A(s,,8,).

We obtain an orthonormal frame. One computes

A(sl,sz) = -8, A(sz,s4) = 8g A(83,87) = -8,
A(°1'°3) = 8, A(sz,ss) = -8, A(s,,85) = 8,
A(sl,s4) = 8g A(°2'°6) =8, A(s4,36) =8,
A(s,,85) = -84 A(s,,8,) = -8, A(s,,8,) = 84
A(sy,8g) = -8, A(sg,8,) = s, A(sg,8g) =-s,
A(sl,s7) = 8, A(s3,35) =8, A(ss,s7) = 8¢
A(sz,ss) = -8 A(sa,ss) = -3, A(ss,s7) = -85

Now it can be checked easily that I).s n 234_ is a positive multiple

of 8 A A8, Hence, it defines an orientation. Consider now
the subset

E={wlzxy= -g(z,x)0y + AZ, X)W}
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of the spinor bundle. Calculations in the above constructed special
frame show that a spinor Y& S belongs to T if Y= toug (telR)
relative to 8140004850 Consequently, E is a 1-dimensional sub-
bundle of S. With respect to the other orientation of M7, E has
the dimension O.

Next we show that we can define by
Vv = U0 -2 xy

a coveriant derivative in E:
Let ¢ be a local section in E; X,Y,ZETM

S IXy = -g(Z,X)W + A(Z,X) Y

7. Differenti ating

we obtain
(VYZ)X\IM (Vv YX)\V +ZX(V Y‘P )=-¥g(Z,X) ¢ ~g(Z,X)V Y‘P

+VY(A(zlx))+A(zlx)‘ VY\P .
i.e.
ZX(T W =2 YV)=-Yg(Z, X)W -g(Z,X) V W + V (A(Z, X)) W

AZ,X) VW =(V )XY ~Z(V X)W =X ZXY
=-g(V yZ,X)¥ -g(Z, VX -g(Z,X)V y ¥
+(U yAY(Z, X0 +A(Y yZ, X)W +A(Z, V XD ¥
A2,V ¢V =(Uy DX W =Z(V yXIV
< AIXY Y
since \yel"(E), this implies
ZX(Ty ¥ = XYW )==g(Z,X) Uy p +( VA (Z,X)y +A(Z,X)V Y= AZXY Y
= -g(Z,X)V yy +(22g(Z,Y)X-22 g(X,Y)Z +
+2XA(Y,A(Z, X))y +A(Z,X) V W = X ZXYY
= =AYZXY =g(Z,X) Uy +2X A(Y,A(Z, X))y +A(Z,X)V
= XQ(Z, VW =AYA(Z, X)W -g(Z,X) Uy +2) {YA(Z, XD
+ gULAGE XN+ A(Z,X) Wy
= = 9(Z,X(Vyy=-2AYY)+A(Z,X) V ¥ + AYA(Z, X) p+2 A g(Y,A(Z,X) )y
= - g(Z,x)(VYw-’AYq;) + A(z,x)(VYw -AYY).

Consequently, Vyy-XYy is a section in rd.

The curvature tensor (R of this covariant derivative is given by
R XY =R, ¢ + 22 (xy-yx)y (ye N (E)), where R is the
curvature tensor with respect to V . But



~ . 1 Z
®R (xX,Y)vy = 3 E_j R(X,Y,si,sj)slsj'\yd- A (XY=YX)

has to be parallel to W , and by means of (1.5) and (1.7) we get

(ROGYIY )= = i%R(X.Y.si.sJ)g(si.sJ)mzao . hence

- ~
ﬁi vanishes in E. Thus, there exists a V -parallel section in E
and we have proved

Theorem 13: Let (M7,g) be a simply connected 7~dimensional
Riemannian spin manifold and A a (2,1)-tensor on M7 such that

1) A(X,Y) = =A(Y,X)

2) g(Y,A(Y,X)) = 0

3) ACY,ACY,X)) = =1Y12 X + g(¥,X)Y

4) (Y A(,X) = 27\{g(Y,Z)X-g(X,Z)Y+A(Z,A(Y,X))3 Ae IR, A>0.

Then M’ admits a Killing spinor.

Chapter 5: Even-dimensional Riemannian Manifolds with Real Killing
Spinors

By Theorem 13 and Corollary 4 of Chapter 1 it follows that the
only complete, connected Riemannian Spin manifolds of dimension

n = 4 and admitting real Killing Spinors are the standard spheres.
An analogous result for n = 8 has been proved by 0. Hijazi [12].

However, the conjecture that in any even dimension the classifica-
tion of real Killing spinors leads to the standard spheres,fails
already in dimension n = 6.

The first examples of 6-dimensional Riemannian manifolds admitting
a real Killing spinor have been obtained by applying the twistor
construction to the 4-manifolds s* and CPZ. The corresponding
twistor spaces are CP3 and the complex flag manifold F(1,2),
respectively, and these manifolds , endowed with a non-standard
homogeneous Einstein metric, both have real Killing spinors [40].
Moreover, there is a series of other examples.

The main tool to describe the six-dimensional Riemannian spin mani-
folds (Ms,g) admitting real Killing spinors is an almost complex
structure J which may be defined on M6 by means of a non-
trivial real Killing spinor. Although J turns out to be non-
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integrable, it still satisfies (U ,J)(X) = O for all vector fields
X on Ms, hence the manifold is nearly Kéhler. This class of mani-
folds was considered first by J. Koto [77] and studied in detail

by A. Gray ([48]-[54)). The main result of this chapter is proved
in § 3: A connected, simply connected six-dimensional almost
hermitian manifold, which is nearly Kéhler non-Ké&hler, admits a real
Killing spinor.

However, the situation in higher even dimensions (n210) is widely
unknown. The results for n = 6 possibly may be used to clarify the
existence of real Killing spinors in the dimension n = 10, but also
a procedure to obtain a list of examples in an arbitrarily high

even dimension (similarly to that of the odd dimensional case) would
be useful.

5.1. Real Killing Spinors on Even~dimensional Riemannian Spin
Manifolds

Throughout this chapter, let (M",g) be a complete, connected Rie-
mannian spin manifold of even dimension n = 2m Suppose that there
exists a non-trivial real Killing spinor el(S) on M, i.e.

Vg = BxP _ (5.1)

holds with a real number B€|R\{0} and for any vector field X on
M. According to Theorem 9 of Chapter 1, (M",g) is then a compact
Einstein space of positive scalar curvature R = 482n(n-1).
In case of an even-dimensional manifold, the spinor bundle S splits
into two orthogonal subbundles S = s* (:) S~ corresponding to the
irreducible components of the Spin(2m)-representation. Since the
Clifford multiplication with vector fields exchanges the positive
and negative part of S, we deduce from (5.1) that, for any Killing
spinor @ =¢* + ¢~ € "(8),
Uyg* = sxe” (5.2)
T - xq’
holds for any vector field X on M. If ¢el(sS) 1is a Killing

spinor with (5.1), (4 is also an eigenspinor of the Dirac operator,
we have

D= -nB (5.3)
and by (5.2) we derive the equations
Dot = -nBep” (5.4)

Dte- = -nBL(’*
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For a spinor field W€ "(s), we consider the length function
uw(x) ={y(x), p(x)> and denote || -ﬂ—,\? . If ge r"(s) 1is a
real Killing spinor, it follows from the equations (1.5) and (1.9)
of Chapter 1,that [p| is a positive constant function on M.

Lemma 1: Let (Mzm,g) be not isometric to the standard sphere s2n
If ¢= ;,P" +qi" is a real Killing spinor on M, then
|g?*|= |¢ "I is constant on M.

.

Proof: Consider the real functions

£10x) =<q*(x), @*(x))> and FT(x) =< (x), @ T(x)>
with xe&M and let (sl,...,sn) be a local orthonormal frame on
M. Then, from (1.9), we obtain

n n
aft = - S V. V. ft -3 divs)) Y. £t
i=1 °1 Vs, i=1 17 Vay

n
=AY, P> ot AT - 2 121<V°1q)+' Ve ® >
Since the Killing number B of @ can be expressed by means of

the scalar curvature R of M, we conclude from (5.4) and the
Lichnerowicz formula Dz(.P- E)(P + A (see § 1.3) that

n
oaft = m%:n<¢+:"‘>+>' m-z—_n E(siqf, 911-?_>

R + -
'm(f—f).

Similar calculations lead to Af = -2-(!’:—_17 (F~-f%).

Now, the Obata Theorem says that if there exists a positive constant
¢ on an n-dimensional compact Riemannian manifold and a non-zero
function f such that Ric X ¢c:Id and Af = 'n%l' c.f, then the
maniiold is isometric to the standard sphere (see [9] ). Since in
our case the manifold is Einstein,we can apply this theorem with

c = 2 and f = f* - £7; the supposition MZ® £ g2M then implies

f = 0. With respect to ucP =ft 4 = constant, the assertion
follows. O

As a generalization of the above proof we obtain the following
result.

Lemma 2: Consider M2" # s2 as in Lemma 1, let @preen el ()

be real Killing spinors with Killing number B on M and set
@y =®] +@] for i=1,...,k. Then the functions
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fiy -(c?‘l',c?;)a(tfz,(-?;) are constant on M.

Proof: For 1%#i,jék define the functions +j -<¢PI, cP;} and
flj -(Qi cp > The same considerations as in the proof of Lemma 1
then yield fl = flj' In order to show that these functions are
constant, we take a unitary vector field X on M and derive the
equation

0= <cp;,¢p;>-<q>;,q>}> in the direction of X. By (1.9), we
obtain after some simplifications

0 =(XET @] WAPTXPT>=LX BT, PT> <P XG>
=XPT @ PHEPTXRT>HLPTXRT> + XL P>
- z<x<p'1',q>;>+ 2<q>;,xq>;> .
On the other hand, we have

X<P 1 P >= BIKXPL QI>+<PL.XPT>F = 0,

which completes the proof. O

As another application of the Obata Theorem, we still prove the
following result (which is also valid in arbitrary dimension, not
only for n even):

Lemma 3: Let (Mn,g) be a complete, connected Riemannian spin
manifold which is not isometric to the standard sphere. If
¢,p el (S) are two non-trivial Killing spinors with real Killing
numbers B and (-B), respectively, then W, >= 0.

Proof: By assumption, we have V,p= BX® and Vy\y = -BXy for any
vector field X on M. We consider the function f ={\p,®@> on M,
and similar calculations as in Lemma 1 then yield Af = 4an(’\.)),CP).
Since, by Theorem 9 of chapter 1, (M",g) 1is a compact Einstein space
of positive scalar curvature R = 4an(n-1), we obtain Af = ﬁ% f.
By the Obata Theorem and with respect to M" # s", it follows that

f 50 holds. ]

Next, for a spin manifold M2™  of constant positive scalar curva-

ture R>0, we set A\ = % m%—_-n- and introduce the following
subbundles of S: )

s {yer (8): Vi +Axw= 0 for all Xe (MY,
E_ :={per (s):Vyw-AXw= 0 for all XeTl (M.
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Clearly, if E, is non-empty, the manifold has a Killing spinor
with Killing number (-X). Since, for any @¢E_, the mapping

P =t s P oy =t - @~ provides a bijection between E_ and
E_ ,the complex ranks of these bundles are equal. Denote this
common value by k.

By Lemma 2, it always holds that k % dim (A,.") = 2™ g M s
for the standard spheres s2 we have k = 2" ., By this property,
the spheres are characterized uniquely (see [32]).

To conclude this section, we mention Hijazi's result concerning
8-dimensional spin manifolds with real Killing spinors [58].

Theorem 1: Let (Ms,g) be an 8-dimensional complete, connected
Riemannian spin manifold with a real Killing spinor ¢e€ [ (s). Then
(Ms,g) is isometric to the standard sphere 88.

Proof: Note that, in the dimension n = 8, there exists a natural
real structure in the spinor bundle S, i.e. an antilinear bundle
map j: S—=S with j2 = id, and having the properties

(i) V4=o0,

(11) Xj = JX for vector fields Xe& [" (™M),

(111) < .Jwr=<P, > for @,y €l(s).

(cp. [17). The corresponding real subbundle 2. :={wer'(s): O I= v}
also splits into a positive and a negative part under the real

Spin(8)-representation, Z = Xt @ Z- , with the fibre dimen-
sion dimR Z; = dlqRZ' = 8 at any point xe M. Given a real

Killing spinor @e['(S) with the Killing number B8e&R\({0},
corresponds, via CPR 1= 2(‘9" j¥ ), to an element qJRe F’(Z) which
is also a Killing spinor to the same Killing number. From (iii) and
the property that j(z<¢) = Zj(¢) for any ze G one easily sees
that <{¢,j¥> = 0 and, therefore, <"PR'(PR> = 2<q9 &> is also a
non-zero constant. erting "PR -(PR +L(>R according to the
decomposition & = T * @ ST , it follows from (5.2) that the
relations X"PR = BX @¥ hold for any vector field X on M.

Consequently, the same calculations as in the proof of Lemma 1
show that the real function

£ (@R, @r>- PR, P> satisfies Af = Bp.f.

Now, let X be a unit vector field on M. A simple calculation
involving (1.5) and (1.9) vyields
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X(F) = 28 [{XQp, P>+ PrXPg >] . hence
X(F) = 28 Re <X o, Pp o= 2B (XPp, PL).

Since the mapping p: T M= Z; given by p(X) = X-CP; is injec~
tive, and dimp T M = dimRZ; = 8,it follows that there exists
at least one unit vector XG,TXM for which X(f) # o.

Consequently f does not vanish identically, and from Obata's
Theorem (see proof of Lemma 1) the assertion follows. DI

5.2. The almost complex structure defined on a 6-dimensional manifold
by a real Killing spinor

We now turn to the study of 6~dimensional spin manifolds with real
Killing spinors. We start with a brief description of the Clifford
multiplication in this dimension.

Since CIiFf‘c(]RG) is multiplicatively generated by the vectors
el,...,esele, the C-algebra isomorphism 43 : CIif‘f‘c(lRG) —-’End(AG)
will be completely described by its value on each of these genera-
tors. The restriction of CID to Spin(6) splits into two irreducible
complex 4-dimensional representations, which we denote by

(@*,0% and (@ 7,A7). According to § 1 of Chapter 1, we have

Ag=Lin {u(1,1,1), u(1,-1,-1), u(-1,1,-19, u(-1,-1,1)J (5.5)
5.5

Ag = Lin { u(@1,1,-1), u(1,-1,1), u(-1,1,1), u(-1,-1,-D§

and the mapping @i(e JE End(A g) take each component to the
other, {72(_ej): AF —>bg, 1 £ j€6.

Evaluating the general formulas of § 1.1 in this special ordering
of :.he U(E,, €, E5) as the basis of A;,ag given above, the
@-(ej) are described by the matrices

i 000 1000

+ 0io0o0 + 0-1 0 0

D= 001 0 Q=+ | g 01 o

0 0 0 i 000 1

0100 0-1 0 0

R -i 000 . -1 00 0
()=t [ "5 o o -1 $rep=r {5 0 0 1 (5.6)

001i 0 0 0 1 0

0 0-i 0 . 0010

+ 0 0 0 -~i =(eg)=+ 0O 0 0 1

P3egd=x [ § o5 0 0 & (e 1000

0io00 010 0

In this way, we have also described the differential of QE acting
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on the Lie algebra spin(6), which we denote by & , too.

We remark that @ c1ier RO —> End(A g) induces a group
isomorphism Spln(6)-—->$U(A ) 2 su(4) (see [93]).

Now, recall the definition of the subbundles E_, E_CS given at
the end of Lemma 3.

Proposition 1: Suppose that M6 is a six-dimensional complete,
connected Riemannian spin manifold which is not isometric to the
standard sphere SG.

Then the complex rank of E_ and E_ 1is not greater than 1.

Proof: Suppose that there exist two linearly independent spinor
4 -

fields ‘-(31 and 492 in E, with @, =¢7] +@] (i=1,2) corre-

sponding to the decomposition of S. By Lemma 2, we may assume

that I(P;lz =|&P;lz £1, and {7 ,%;>= 0 holds on M. For any

vector field X on M, it follows by differentiating that

Re <xq>;,q>;>= 0 (5.7)
Re{ X, 0= 0 (5.8)
QI XL >+ LXPT, @ 53>= 0 (5.9)

Since SU(4) acts transitively on pairs of vectors € .8, ec4
with (el,ej)-cflj and since Spin(6) # SU(4), there exists an
element qe&Q, in the fibre of the Spin(6)-principal bundle

Q->M at xé&M, such that the spinors LP;(x),(P;(x)és; = g can

be expressed by
970 = [q,u(1,1,1)] = (1,0,0,0) and
@3(x) = [q, u(1,-1,-1)] = (0,1,0,0).

Representing here the spinors as 4-~tuples of complex numbers, we
have used the orderlng of the U (¢ 1/ 62,&,3) given in (5.5) to
identify Fig 6 = ¥ ¢*. with the same element qu and the basis of
Ag fixed in (5.5) we can also write

@100 =[q,e'u(1,1,-1+...] = («,8,¢,5) and

c()E(x) =[q, x*u(1,1,-1)+...71 = (x,y,z,w),

where « ,B, b ¢ ,x,y,z,w € C are complex numbers.

Denote by s = (sl,...,ss) the orthonormal frame in T M given by
f(q) = s and let (tl""'ts) c,lR be the components of’ a vector
teT M with respect to this frame. Then, in the above notation,
(5.6) implies that the Clifford multiplication with t 1is given by
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+
ttfl(x)l (t2+it1,-t4—it3,t6+it5,0) (5.10)
tp p(x) =(=tgsity,=torit,,0,tgrity). '
According to (5.7) we thus obtain

Ref(t w1t ) +(-t,=t3)B + (tgeit ) 1= 0,
and since teTM can be varied, we have o= B =7= 0. Similarly,
(5.8) yields x =y = w = 0, hence ¢ (x) = (0,0,0,d) and
"P;(X) = (ololzlo)-

Now, (5.9) implies d'(ts-lts) + (tg+itg)Z = 0 for any t,,t e,
so that d = z = 0 follows. Consequently, t()I(x) -cp;(x) = 0, and
since I(PII- (CP;l, also cpl = ?2 = 0, which is a contradiction. O
Combining (5.7), (5.8) and (5.10) we obtain the following remark.

Cm'-ollarx 1: On a 6-dimensional spin manifold M, a real Killing
spinor Qe[ (S) with the decomposition -CP" +@~ satisfies

<XCP+I "?—> '<X‘P-: (P+>' 0

for all vector fields X on M.

Now, suppose that (Mﬁ,g) is a complete, connected Riemannian spin
manifold not isometric to the standard sphere, and that there exists
a real Killing spinor @ :-q')+ +@~ e (sS) with the Killing number
B A 0.

Then, by Lemma 1, we may assume |¢@*|=1<¢"l= 1, and since

Spin(6) ¥ SU(4) acts transitively on c“, there exists such an
element q(x)G-Qx for any xeM that ¢*(x) 1is represented by
@*(x) = [q(x),u(1,1,1}].

Moreover, from the local triviality of the spinor bundle Q—M we
conclude that, for a sufficiently small open set UCM, there also
exists a smooth section q: U-—>Q[‘U such that

9*(y) = [q(y), u(1,1,1)] holds for all yeU.

By (5.10) and Corollary 1 we now obtain that, on Uc<CM, the spinor
@~ takes the form @ (y) = [q(y),z(y) u(-1,-1,-1)] , yeU,
with a complex-valued function z on U.

At the point x& M, consider the subspace

Le={x ¢ 0); XeT Myc s,

Since the mapping X>X'9@*(x) is injective, L, forms a 6-
dimensional real subspace of S FAg; by means of Corollary 1 we

obtain an orthogonal decomposition
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S =C 9T (x) ® L.
and, as the orthogonal complement of c- P (x), Lx is a complex
subspace of S_. Consequently, iX-9*(x)e L, for all XecTM, &
property that allows to define an almost complex structure J on
M® by the relation

IX). p* = 1X-P*,  xe T (M) (5.11)

From the injectivity of the Clifford multiplication we conclude

that J 1is well defined and satisfies 32 = -1; the equation

X-Y + Y-X = -2g(X,Y), which is valid for vector fields X,Y regarded
as endomorphisms of S, shows that J acts as an isometry.

Remark 1: Using the local description
@*(y) =Ca(y), u(1,1,1)] , yeucu®

and denoting by (tl,...,ts) the components of a tangent vector
field

t= > tys; € O (TW)
i=1

with respect to the orthonormal frame s = (sl,...,se) determined
by f(q) = s, we derive from (5.19) that

t-@* = (tyrity, =t =ity ,te+ity,0), hence

1ttt = (-tyeit,, ty-it,,~tg+itg,0),
both spinor fields regarded as linear combinations of the basic
sections M(E) = [q,u(e)e F(S'ru).

Then, in the frame s = (sl,...,ss) the local expression for J
takes the form

J(E) = (ty, =ty by, =ty tg,=tg) (5.12),

hence, J(t) is again a smooth vector field.

Remark 2: Analogously, if we represent
t-mM(-1,-1,-1) =[q,t-u(-1,-1,-1)]1 as a linear combination of the
corresponding basic sections M (&) =(q,u(é)]e r'(S+rU), the formulas
for Q (ej) yield
toM(-1,-1,-1) = (0,-tgritg,~t+ity, ~t +ity),
hence Remark 1 yields
J(t)- n(-l,-l,-l) = (0,t5+1t6,t34lt4,t1+it2)
-it q(-1,-1,-1).

"
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Because of ¢ = z-m(-1,-1,-1) =(q,z-u(-1,-1,-1)] we conclude
IX)PT = -iX @7, X & M(T™) (5.13)
Consequently, the decomposition s* = ¢.¢* ® L, with
L;( = {Xw.()-(x); XéTxM} for xe MG,

induces the almost complex structure (-J) on MG.

Lemma 4: Let (Me,g) be a complete, connected Riemannian spin
manifold and @ = ¢* + P~ " (S) a real Killing spinor with the
Killing number B # O. Suppose that (Ms,g) is not isometric to the
standard sphere.

Then the almost complex structure defined by (5.11) satisfies

(VD (Y)-@* = 2iBYX @~ + 2iBg(X,Y)¢ T+ 2Bg(X, V)@

for vector fields X,Y on M,

Proof: By definition, we have
(VDY =[V,(N]* - 3T ™
an application of (5.11) and (1.10) then yields
VDG * = V(I 9*) - V(T 9 H)-1(V NP *.
From (5.2) we now obtain
CUDMP T = 1V, (YP*) - BI-XP7 - 1(V,V)P*
= 1V, QY+ 1YV, @*)-BIV-X-9" -i(V,V)¢*
= iBYX P~ - BIY-X-¢".
Because of (1.3) and (5.13) we conclude
(VDM *= iBYX P~ + BX-JY¢~ + 28g(IY,X)¢p ~
= iBYXYQ ™ - iBXY QT + 2Bg(3IY,X)P "~
= 2iBYXQ " + 2iBg(X,Y)¢ "+ 2Bg(IV,X)p~. O

Corollar! 2: For vector fields X,Y on M, we have
(a) (VX)) =0

(d) (V,3) does not vanish identically.

(e) WY, Y% = 482[ UxI2 4 vI2 - g(x,¥)%-g(x,3V)?].

Proof: (a) and (b) are easy consequences of (c). To get (c), take

the inner product at both sides of the equation in Lemma 4 by itself,
and thenuse (1.7), (1.5) and (1.3) successively. O
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Corollary 3: The almost complex structure defined by (5.11) is non-
integrable.

Proof: We show that the Nijenhuis-Tensor of J defined by
N(X,Y) = {09x,3v 1-(x,¥] - 3[x,3v]- 3[3x,¥]}

does not vanish at any point xé&M. We have
N(X,Y) = (VXJ)JY = (UgydX + (V54Y= (VDK

by a simple calculation involving the definition of (77 J).

Now, Corollary 2(a) yields (VXJ)Y + (VYJ)X = 0 for vector fields
X and Y of M. On the other hand, since 32 = -1, we have
0 =V,(3% = (V,3)3 + 3(V,3), which implies (7)IV = -I(} ,I)V.

Then we obtain (V X:J):JY = -J(VXJ)Y = J(VY:J)X= -(\7YJ)JX=( VJXJ)Y,
hence N(X,Y) = 4(7 xJ):JY.
Now the assertion follows from Corollary 2(b). O

Remark 3: The almost complex structure under consideration has
been defined only for manifolds M6 # Ss. However, using the
algebraic properties of the Cayley numbers, an almost complex struc-
ture J can be defined also for the standard sphere S6 so that
56 is, in a canonical way, an almost hermitian manifold. Since the
automorphism group G, of the Cayley numbers acts transitively on
S6 and leaves J invariant, we get the homogeneous space
s8 =6,/

2/su(3)*
Although J 1is non-integrable, the same properties stated for the
manifolds M6 # S6 in Corollary 2 are fullfilled in this case,
too (cf. [50) and [74, ch. IX, § 2]).

5.3. Nearly Kdhler Manifolds in the Dimension n = 6

Let (Mn,g,J) be an almost hermitian manifold with the Riemannian
metric g and almost complex structure J, hence we have

g(3IXx,I¥) = g(X,Y) for all X,Y e "(T™) (5.14)

Denote by ¢ the Levi-Civita connection of (Mn,g), the covariant
derivative of the (1,1)-Tensor J is given by

(VD) = Ty () - I(V,Y) X, Ye [ (TM) (5.15)
(M",g,3) 1is called Kéhlerian iff V3J = O.
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Definition 1: An almost hermitian manifold (M",g,:l) is said to

be nearly Kéhlerian provided (V XJ)(X) = 0 for all vector fields
X on M.

Following [54], we introduce two additional notions. If M |is
nearly Kéhlerian, then M is called strict if we have (V,3) # 0
at any point xeM and for an arbitrary non-zero vector XeT’JA.
Secondly, M 1is said to be of (global) constant type if there is
a real constant o such that for all vector fields X,Y on M

1O, D2 ={ I xIZ Y12 - g(x,1)% - g(ax,V)2}.
In this case, the number o« is called the constant type of M. :

Thus, in the previous section we have shown (compare Corollary 2
snd Remark 3):

Corollary 4: Let (Mﬁ,g) be a 6-dimensional complete, connected
Riemannian spin manifold with a real Killing spinor. Then (Ms,g)
has a natural almost hermitiam structure, which is strictly nearly
Kéhlerian of positive constant type.

First of all, we summarize some of the known identities valid for
nearly Kéhler manifolds and properties of such manifolds in lower
dimensions. As usually, let © denote the cyclic sum and define the
iterated covariant derivative of the almost complex structure J

for vector fields X,Z€ M(TM) by

VI V2T =Yg 3 (5.16)

Lemma 5: Let (Mn,g,J) be a nearly Kéhler manifold. Then for vector
fields X,Y,Z on M we have

a) (VyDY + (VDX =0 (5.17)
b) (V433X = 0, hence

(V 3¢ DY = (V)Y (5.18)
e) IV Y) = =(V I = =(V 5, Y . (5.19)
d) g((V,d)¥,2) = -g((V,NZ,Y) (5.20)

Proof: The Properties (a) and (b) are direct consequences of (5.15)
and Definition 1. Further, since O st(Jz)t(VXJ)°3 + Jo(Vyd), we
have 0 = (VXJ)JY + I((y xJ)Y), hence (c).

Finally, (d) follows from a more general formula valid for any
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almost hermitian manifold (see(74], Chapter IX, § 4): Denote by
&H(x,Y) = g(X,3vY) the fundamental form of J and by N the
Nijenhuis Tensor as in Corollary 3, then

4g((V ,dY,2)= 6dB(X,I¥,32)-6d (X,Y,2)+ g(N(Y,2),3X). D

In particular, Lemma 5 implies that,for X,Y éTxM, the vector
(V‘XJ)Y is always perpendicular to X,JX,Y and JY.

Although the proof of the following lemma is elementary,it requires

more expense. The several parts are contained in [49], [52] and [53].
Notice that our sign convention for the curvature tensor is opposite
to that of the papers quoted here.

Lemma 6: Let (Mn,g,J) be a nearly Kéhler manifold. Then the
relations

R(U,X,3Y,32) - R(U,X,Y,Z) = g((yIX,(VI2) (5.21)
29((V5XJ)Y,Z) px?z 9((T X, (V) 3I2) (5.22)

hold for arbitrary vector fields X,Y,Z and U on M.

In addition to the ordinary Ricci curvature terisor, we consider still
another contraction of the curvature tensor on nearly Kdéhler mani-
folds. Let (31,...,sn) be a local frame field and choose two
vector fields X,Y on M. Then, by setting

n
g(R1c*(X),Y) = - 3 3 R(X,3Y,s;,3s,), (5.23)
=1

a (1,1)-Tensor field Ric* on M , which is called the Ricci #-cur-
vature, is defined.

In the lower dimensions, the nearly Kéhler manifolds are widely
determined. In case of the dimension n = 4, a nearly Kéhler mani-
fold is also Kéhler, since, for any vector XéTxM4 and a vector
YeTu* with g(v,X) = g(3v,X) = 0, we have that (V,3)Y is
orthogonal to Lin{X,JX,Y,JY}¥ T M, hence zero. Thus, (V,J)Y = 0
for all vector fields X,Y on M4, and the manifold is Kéhler [49].
For the dimension n = 6, A.Gray proved the following proposition
([54D):

Proposition 2: Let (M,g,J) be a 6-dimensional nearly Kéhler mani-
fold, and assume that M is not Kéhlerian. Then

(1) M 1is of constant type with a positive number « ;
(i1i) M is'a strict nearly Kéhler manifold;
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(iii) (M,g) is an Einstein manifold;

(iv) the first Chern class of M vanishes;
*

(v) Ric = 5 Ric = 5x1I on M.

Since (M,g) 1is Einstein, R:I = 6 Ric = 30 I for the scalar
curvature R of M, hence R = 30 -x>0.

Throughout the rest of this section we shall assume that (M,g,J)

is & connected 6-dimensional almost hermitian manifold which is
nearly Kédhler non-Kéhler. Since wz(M) = cl(M) (mod 2), by
Proposition 2(iv) also the second Stiefel-Whitney class vanishes,
hence (M,g) 1is known to be a spin manifold. Let «>0 be the
constant type of M and set A= %,& . For local calculations we
use an adapted orthonormal frame in general: Let s, 3(81)'83'3(33)
be orthonormal vector fields on an open subset V of M, then
define a vector field s on V by (Vsl:l)sa = 2Xsg -

Thus, L is orthogonal to the vector fields already chosen and
has constant length 1 so that fsl,a(sl),33,3(33),35,3(35)} is an
orthonormal frame on V. It satisfies (,Vsit.l)sj = 27usk if (ijk)

is an even permutation of (135). The other values of ¢J can easily
be obtained from (5.17) - (5.20).

Lemma 7: For the vector fields U,X,Y,Z € [M(TM), we have
(1) gV {IX,(VyI2) = ot {g(U,¥)g(X,2) - g(U,2)g(X,Y)
-g(U,3Y)g(X,32Z)+g(U,IZ)g(X,IV) }
(i1) if g(X,Y) = g(X,3JY) = 0, then
(VDT DX = =allYIZ x.

Proof: Because of the linearity in each of the components, (i) is
a direct checking on the elements of the local frame given above.
Then (ii) follows from (i) and (5.20) by setting U =Y. O

Let X,Y,Z,Vv be vector fields on M. Since M is a 6-dimensional
Einstein space and ol= 3-% , the definition of the conformally Weyl
tensor of M (compare § 1.4) reduces to

W(X,Y,Z,V) = R(X,Y,Z,V)+etfg(X,2)g(¥,V)-g(X,V)g(¥,D)} (5.24)

By W(X,Y,Z,v) = g(W(X,Y)Z,V) we regard W as a (1,3)-tensor
on M, too.
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Lemma 8: Let X,Y,Z be vector fields on M. Then

(i) W(X,Y)JZ = J(W(X,Y)Z)
(ii) Tr(w(x,Y)d) =

Proof: From (5.21) and (5.24), we have for Ue(TM)
g((V Y, (T D) =
= W(X,Y,3Z,30)-o{ g(Y,3U)g(3Z,X)-g(X, V) g(Y,32)}~
—W(X,Y,Z,U)+o({g(Y,U)g(Z,X)—g(X,U)g(Y,Z)}
= W(X,Y,3Z,3U0)-W(X,Y,Z,0)+g((V 4 IY, (T ;)W)

by Lemma 7 (i). Therefore, W(X,Y,Z,U) = W(X,Y,JZ,3U) or, equivalent-
ly, with v = Ju,

g(w(x,Y)3z,v) = -g(W(X,Y)Z,3V) = g(I(W(X,Y)Z),v).

This implies (i). For the proof of (ii) we notice that for a local
frame (sl,...,ss) in x€ M, (5.23) and Proposition 2(v) imply

S_Q_ R(X,Y,8;,38;) = 2g(Ric"(X),J¥) = 2o g(X,IY),
=1
thus, by (5.24), we obtain

6

6
g;i W(X,Y,8,38;)= zo(g(X,JY)+c&z:;fg(X,sl)g(Y,Jsl)-g(X,Jsl)g(Y,slﬂ

= 24g(X, JY)—oL/ {g(x 8,)g(3Y,8,)-g(IX,8,)g(Y,8,)]

= Zd.g(X,JY)-o(g(X,JY) +o¢g(IX,Y) =0 . O

Remark 4: Consider an adapted orthonormal frame (sl,...,ss) at
Xx& M with the properties (Y siJ)s = 228, for any even permuta-
tion (ijk) of (135), and 8y = -J(sz1 1) for i=1,2,3.
Then, by Lemma 8, the coefficients wljkl = g(w(si,ej)sk,sl) of
the Weyl tensor satisfy the equations
ij12 * "ijas * Yiys6 = O (5.25)
Wij24 “ Y1923 =0 Wija4 * Wiy23 = ©
Yij15 ~ Yij26 =0 Yij16 * Yij25 = © (5.26)
Wija6 ~ Y1435 =0 Yijae * Wijas = ©

Lemma 9: If X,Y are vector fields on M with lIxi=lyl= 1 and
g(X,Y) = g(X,3Y) = 0, then
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&g(V 2X, 30+l g(V5Y,3Y) + g(V ,[(V, Y], I[(T,DYD =0

for any vector field Z on M.

Proof: First remark that

WV V1) =V, [(V Y]~ (VD (T,Y),
thus, from (5.16), we obtain

2

(VZxD M=V, 4 DY]- (TN (V,¥)-(V w0 M-
To get simpler expressions, we write A(X,Y) = (VXJ)Y for the
moment; then the above equation changes into
U, [AX, V)] = [V3,3 1) 4ACX, T,0)4A(7 X, V). (5.27)
Then (5.22) yields

([T 5 XN, IAMX Y= = FG(AZ, X0, A A, X)) +
+ g(A(Z,3A(X,Y)),A(X,3Y))+g(A(Z,Y) ,ACIA(X,Y) ,IX)]
= - 3{9(AZ,%),ACY,ACY, X)) -
- g(A(Z,A(x,:JY)),A(x,aY))-g(A(z,Y),A(A(x,v),x))}.
Now recall that A(Y,A(Y,X)) = -o&X by Lemma 7; replacing
V = A(X,3JY) in the second term, we get
a(LV2,01Y, 3(AX,Y))) = § [ g(A(Z,X),X) +
+g(A(Z,V),V)+ og(A(Z,Y),V)}= O,

since A(Z,X) is orthogonal to X. Now, from Lemma 7 (i) and the
assumptions ||X|= |\Yl= 1, g(X,Y) = g(X,JY) = 0, it follows that

g(A(Y ZY,X),A(CJY,)()) -oag(VZY,JY) and
g(ACV 2X,Y) ,A(IX,Y)) = ot g( 7 X, IX).
Consequently, we conclude from (5.27) that
g(V Z[AX, V)] ,3(A(X,¥))) =
= g(A(X, T ¥),3(A(X,¥)))+g(A( U ,X,Y),I(A(X,Y)))
= -g(A(X,V ,¥),A(X,3Y))-g(A(V ,X,Y),A(3IX,Y))
= - g(V,Y,3Y) -0 g(V ,X,3X).

Hence the assertion follows. a

After these preparations, we are able to prove the central result
of this chapter. [55]
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Theorem 2: Let (M,g,J) be a 6-dimensional connected simply
connected almost hermitian manifold, and assume that M is nearly
Kéhler non-Kéhler. Then there exists a real Killing spinor on M.

Proof: Since cl(M) = 0, and M is simply connected, there exists
a unique spin structure Q—>M over M. Denote by S the associated
spinor bundle. Let o = 3§ be the positive constant type of M,
and set A= %-{—'. Consider locally an adapted orthonormal frame on
M consisting of elements {sl‘] ix1,...,6 satisfying (Vsia)sjz zlsk
for any even permutation (ijk) of (135), and

Isyy) = 855 4 for i=1,2,3.
Then we choose the orientation of M 8o that {81"“‘86} is
positively oriented.
Next, we form subbundles Vl,v2 of S by

V, ={wen(s) : 3y = ixy for all Xe I (M,

V, ={ye(s) : I(X)y = -iXy for all Xe " (TM)].

At a point x& M, an element wesx ‘E‘AG can be represented as a
linear combination of the basis elements u(€1,62,€3) of Ag, and
the evaluation of J(sZK)w- i-8, ¥ for k=1,2,3 by means of (5.6)
yields, by some algebraic calculations,

Vl(x) = c-[S:,u(l,l,l)] , and similarly

Vy(x) = € (s ,u(-1,-1,-1)],
where s* denotes a section in the spin structure Q corresponding
to the frame s = (s ,...,36).
Consequently, vlcs , V2C §~, and both are 1-dimensional complex
subbundles of S. Now, consider the direct sum V = V1 @ V2; for
any section we(V) we have the decomposition y=y"* +y”~

according to S = s* @ S$~. Then we can define a subbundle E
of V by

E ={weP(v)=(vxa)<v)w to=e2in YXWT-200g(X, V)W T - 22.g(X,3Y "

for all X,Ye MM(TM)].

Using again algebraic calculations with the u(€1,£2,£3) and the
matrices given in (5.6), and exploiting (V3 J):sj = 23\sk for
i

even permutations (ijk) of (135) at a point xe M it turns out
that we have

Ey =€ (8%,u(1,1,1) - u(-1,-1,-1)] .
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Thus, E 1is also a l-dimensignal complex subbundle of S. We intro-
*

duce a covariant derivative V:[(E)—> M (T'M (X) E) in E by the

formula

VW=V ¥+ Xw, xel(TM),yel(E).

First we show that § is well-defined: Starting with e ["(E), the
section V.V also belongs to ["(E).

For this purpose, denote by {WUS the family of local 1-forms on
M defined by the Riemannian connection V ; they are given by

w”(x) = g(szi,sj) for Xel'(TM).

Recall from Chapter 1 that, for a section '72 e "(S) of the form
'\7_5-[3 ,u(£1,€2. 3)], we locally have

Ty Me= 3 ij WX 8yt8y-Me (5.28)

Now, to investigate VX'QE for a fixed vector field X on M, let
us consider the local endomorphisms a(X), b(X), c(X) and q(X) of
S , which are defined by

a(X) = wla(x)slsa+w24(x)szs4+w14(x)s1s4+w23(X)3233
b(X) = wls(x)slss+w26(x)szss+w16(x)slss+w25(x)3285
c(X) = wss(x)33s5+w46(x)s4ss+w36(x)s3s6+w45(x)s435
q(X) = a(X) + b(X) + c(X).

We determine the value of a(X) on the local sections
* *
M, =(s,u(1,1,1)] and M_, =[s ,u(-1,-1,-1)].

We have
2} = g((Vsla)sa,ss) = 9((7353)81"’3)
= g(v 85(331)133) - 9(3( Vsssl)’a3)
= -g(V 35’2'93) + 9V s5’1'3°3) = —wyg(eg)-w;,4(s5).
Thus, w23(95) + w14(35) = -2 and, analogously
wza(sj) + w14(sj) =0 for j £ 5.
In the same way we obtain

w13(86) - w24(86) = -21 , and
wla(sj) - W24(8j) = 0 for j f 6.

Since 818,M; = 828371 = -85 M.y
and  8183M; = -828,M; = ~%7 -1~
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we obtain
a0)M 5 = [wyg(X)=wp, (X)] (~8gm _1)+[wy , (X)4wpa (X)] (=55 m_ ).
Thus, a(ss)“ll = 21857 4,

a(ss)"q1 = 2%s5m 4
and za(,sj)"‘[:l 0 for j = 5,6.

The same method provides
blsz)My = 283730 b8 )My = 2R 7y,

cls)My = 2283m 3. olsx)My = 2X8ym .
and b(_sj)’lr\1 0 for j # 3,4

0O for j#1,2.

°(-sj)”l 1

Summing up, we have q(sk)’ql = 2 Xsqu -1 for k=1,...,6, and
consequently q"‘)"ll = 2% Xq_, for any vector field X on M.

The same procedure also yields q(X)'V‘l -1 = 2% X’ql.
Now, we use formula (5.28) to determine the covariant derivative of
the local section ")1 and M _,;. A calculation shows that

8182M1 = 8384M1 = 85%M 1 = 17, and
8182M .1 = 83%4M .1 = 85%M .1 = 17 _3-
Therefore,
1 1
ViMy = 3 [wg (XD ewg (X)4wg e (X)] im; +3900m;,.
However, setting X = 31, Y = 33 in Lemma 9 entails
12(X) + W 4(X) + wss(x) = 0 so that VX’QI =)\X'rz_1 holds .
Analogously, we obtain V,m _, =XX7,.
Now it is easy to see that, for \yef‘(E), also Vx'q? is a section
in E. Let Y= 9‘0‘1:l - 0‘72_1 be the local form of a section in E,
where @ is a complex valued function. It follows that
Vs = Uy + XA Xp= Uy (8m -8 7 _;)+AX(87 ;-6 ;)
= de(X)M ,+8 VM (=de(X)m _; - 8V, M _; +AX(67;-67 _;)
= dO(X) (M 1= M_;)+ NOXY _ = 20X Y+ AX(8M =07 ;).

Hence, we obtain axxp- dG(X)(nl—"[_l) and this is a section
belonging to [ (E), too.

For the vector fields X,Y on M and a spinor field Y&l (S), the
curvature of the covariant derivative V in ['(S) is given by

5 ROGYXE = [V Ty -y Uy T ,y] 1% -

138



To get an expression for the curvature of 6 , we take a W€ '(E).
Then
~ o~
Fy Ty =V (Tyovr ax) =TV ) +7 (2 xw)
Ty Uy * AT )+ A 2Xp AT (X,
and similarly, '

aXGY\P' VXVY\P AX(V Y\P) +A 2XY'41+).VX(Y\{) ),

a[xly]l\y‘ V [lel\v" )‘-(\7 XY -VYX)\P .
An addition, taking into account (1.10), yields
%'E(X,Y) -[6X6Y —ﬁYﬁx -§[X'Y]‘]\p =
= 3 ROGW + AZ(XV-YX)p

since R(X,Y) = § 3 R(X,Y,s.,8,)-s,-8, holds (cf. Chapter 1),
we have k.1

~ R 2
2R(X,Y)y = }k__l R(X,Y,sk,sl)- 8, 8P + 47 (XY=YX)VY .
B .

Recall that 4').2 == 3% so that, by formula (5.24), which defines
the Weyl tensor on an Einstein space, we conclude

ZE(X,Y) = : '(XIYI : ) . . € (E).
V] ) 8,:8,)8, -8, yel

)
Now, using the local form = 6%, - 6m _, for a section e M(E)
together with (5.6) to compute the right-hand side of this equation,
Remark 4 shows that

i(x,y)‘ws 0 for wel'(E), X,ye"(m™).

Consequently, (E,a) is a flat 1-dimensional bundle over a simply
connected manifold M. Thus, there exists a ﬁ-parallel section
in E, i.e. a spinor field We['(E) with V,p +AXy= 0 for any
vector field X on M.

Obviously, \y is then a Killing spinor with the Killing number

B = ), and writing (p=yy" -~ we also obtain Vyf =2Xxp for
Xe O(TM). QO

Remark 5: As it was pointed out by A. Gray in [54], a nearly
Kéhler manifold (M",g,3) with

1V DYIZ =et { X121 V2 - g(x, )% - g(ax,¥)2}

for all vector fields X,Y on M and a positive constant o,
necessarily has the dimension n = 6. Therefore, the general method
of the above proof cannot work in higher dimensions.
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5.4. Examples

The examples of 6-dimensional nearly Ké&hler non-K&hler manifolds
which can be found in the literature are always reductive homogeneous
spaces G/K with a Riemannian metric induced by an Ad(G)-invariant
inner product on the Lie algebra ﬁp of G. Moreover, they carry

the structure of Riemannian 3-symmetric spaces, i.e. the almost
complex structure J comes from a Lie group automorphism ¢ on G
of order 3 and with fixed point set K (see [53]). In [50], the
following simply connected spaces are mentioned:

U3/ y1)x u(1)x u(1) + S0/ y(zy.  S0(6)/ 3y, SO8)/yy(1yy s0(3)"
SP(Z)/U(Z) and 36 = Gz/su(s).

Furthermore, given a compact, connected non-abelian Lie group G,
the structure of a Riemannian 3-symmetric space can be defined
according to a construction of Ledger and Obata (see[78]) also on
the product G x G. Therefore, if G = 83, we also obtain an almost
hermitian structure on $° x 33 = Spin(4), which is nearly Kéhler
and non-Kéhler.
In the sequel, we more explicitly discuss some of the examples
mentioned above. In particular, the existence of real Killing spinors
will be shown by calculating the smallest eigenvalue of the Dirac
operator.
First we consider the Levi-Civita connection of a homogeneous Rie-
mannian manifold.
Let G be a connected compact Lie group and H a closed, connected
subgroup of G. Consider the homogeneous space M" = G/H with the
isotropy representation o: H -—9SO(Tx M) # so(n) at the point

o

X, = eH and suppose that there is a lifting o : H—>spin(n) of
o« such that the following diagramme commutes:

Spin(n)
d s
R g
H - so(n)

The mapping o defines a natural spin structure Q = G xJ Spin(n)
over G/H, and the associated spinor bundle S = G x
homogeneous vector bundle on M = G/|,.

Now, suppose that an Ad(H)-invariant, positive-definite symmetric
bilinear form B is given on the Lie algebra 4% of G, and choose
a linear subspace ? in q_that is orthogonal to the Lie algebra

@gdnlsa
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_i of H and satisfies §= j_@g . Since *glj , we have

€
[il ] ?' and G/H is a reductive homogeneous space.

Let @’m@ 4 be a decomposition of 4 into linear subspaces
that are orthogonal with respect to B and satisfy the relations

Cfoml=m, Cm, wl= 4O m, } (5.29)
(g wlemw, (o] < Lo, m]smn.

Then, for an arbitrary t >0, the equation

By = Blygnaw * 2t a[ﬂx w (5.30)
defines an Ad(H)-invariant scalar product on /g , it yields a left
invariant Riemannian metric on G/, which we shall denote by g,.

Lemma 10: The Levi-Civita connection of 9t is given by the
mapping A,: ¥ %0 (;g) defined by
=1

ALY = 3,1y,

A (X)B = t[X,8]

ALY = (1-t)[A,Y]

A (A)B = 0
for X,YE M and A,Be AL .
(Here the index denotes the projection onto the corresponding
component) .

Proof: From Wang's Theorem it follows that the Levi-Civita
connection induced by By is uniquely determined by a linear map
/\t:%—>End(¥) satisfying the conditions

) ALY =AL (V)X = (x,v]:¥ .
(i1) Bt( /\t(X)Y,Z) + Bt(At(x)Z'Y) =0
for all vectors x,v,ze:x (see [74], vol. II, Chapter X). Hence,

it suffices to verify that the mapping defined in Lemma 10 satisfies
the two conditions (i) and (ii), which is ensured by (5.29). O

The differential Ay ¢ spin(n)—> 32(n) of N\ is a Lie algebra
isomorphism, hence (7\*)' exists, and we obtain a mapping

/\t = ('x*)-1° /\t: :x_/ —= spin(n).
To describe the action of the Dirac operator DY:['(s)—> I'(S)
corresponding to By, we identify the sections of the spinor bundle
S =6 X§S{An with the functions ¢: 6—> An satisfying the
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relation
Plgn =X (M (g) (5.31)
for all geG, heH.

For such a function tP: G—> An, the action of the Dirac operator
is then given by the formula

Dtgg-.-lz_@(ej)[_ej(c(}) cPRylepd] (5.32)
where {ej}j=1 ..on is a Bt-orthonormal basis of 1? , and ej(c?)

denotes the derivative of & in the direction of the vector field
generated by e (see[65]).
We now consider several examples.

a) The complex flag manifold F(1,2)

The flag manifold F(1,2) consists of pairs (1,v), where both

1 and v are linear subspaces of ¢3 of dimension 1 and 2,
respectively, and 1Cv holds. The U(3)-action in 03 is tran-
sitive on F(1,2) with the isotropy subgroup H= U(1) x U(1) x U(1),
hence F(1,2) = U(3)/U(1) x U(1) x U(1)* The Lie algebras of U(3)
and H are given by

4#(3) = JAaemy(e) : A + A =0},
d={rc@) : A is diagonal} .
We decompose ;1:&(_3) =£@_¥' with & = () W . where

a b 0 0 O
@z.{(_ 0 o) ; a,be& a:} ) 4_&:{(0 0 c) , cem},
6 0 O 0- O

and consider the inner product on 4@(3) given by
B(A,B) = - § Re(Tr(AB)), A,BE W (3).

ivio

ol
ol

Then M4 and M, are orthogonal with respect to B, and the relations
(5.29) are satisfied.

For t>0, (5.30) thus determines a U(3)-invariant Riemannian metric
gy on F(1,2). According to § 3 of Chapter 3, Einstein metrics are
obtained for t = % and t = 1; the parameter t = 1 corresponds to
the standard Kdhler-Einstein metric of F(1,2) with scalar curvature
R = 24, whereas t = % yields a biinvariant Einstein metric of
scalar curvature R = 30. :

Denote by D;; the n x n-matrix consisting of a single 1 in the
i-th row and j-th column, and zeros elsewhere. We set

Elj = Dlj - Djl for 1 # j, and sij = V-1 (Dij+Djl). The matrices
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Ey (1<j) then generate the Lie algebra so(n); notice that this
notion differs from that of Chapter 1 by a sign, hence the Lie
algebra isomorphism

Ax: 8pin(n)—> so(n) 1is given by
l’*(eiej)_ = -2 Eij (5.33)
To distinguish a basis of 1 =M @4{1_/ , consider the matrices

ey = Ejps € = 515,83 = E15, €, = S5 and eg = o T2

1
es B e—— 523.
Then My = Lln{el,ez,es,e4}, M = Lin {es,es} and the elements
el,...,e6 form an orthonormal basis of with respect to Bt which
we shall use to identify with R6. A basis of %_ is given by

1

{Hy My Mg with Hy = 3 84, For i=1,2,3.
Using the identification 4 =IR” we can also compute the isotropy
representation o : H—> So(g) = S0(6) of G/,. For an arbitrary
element hE€H with

eit’ 0 0
is
h={ 0 e~ 0 t,r,seR
o o "

cos t -sin t)

-1,
it is defined by oL(h)ej = h-e;-h™~; writing 6(t)= (sin t cos t

]
for te(0,2w], a calculation yields

e(t-s) 0 0
o (h)= 0 o(t-r) 0 € s0(6).
0 0 e(s-r)

It follows that the differential o(: _g ——>_s£(6) is given by the
formulas

%e(H)) = = Eyp - Egy

ox(Hy) = Ejp = Egg (5.34)
ax(Hy) = Egy + Egg

Lemma 11: There exists a 1ifting homomorphism & : H-—>Spin(6) of
o with Ao dd =ot .

Proof: It suffices to show that oc*(‘rr1(H))cx*(¢rl(5p1n(6))) =0,

or, equivalently, that each generator of ‘1\‘1(H) vanishes under the
superposition with ol . Taking,for instance,
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it

e (o] 0
A{(t). 0 1 0 , te(o,27],
(] o 1

as an element of (lrl(u), the composition with the isotropy re-
presentation o yields

e(t) o o©

ouxu(t)- o e(t)o ; now, since
(o] 0 0(0)

e(t) o 0 0(0) 0 0
o e(0) 0 and 0 e(t) 0 are
0 0 e(0) 0 0 e(0)

homotopically equivalent in S0(6) (they correspond to different
rotations of the basis vectors of le), we obtain for the homotopy
classes in T, (S0(6))

e(t) 0 0 ¥ e(0) 0 0
[_oLv'K(_t)]= 0 e(0) 0 + 0 o(t) 0o |=
'\ O 0 e(0) 0 0 e(0)
o(t) 0 0
2 2 0 e(0) 0 )
0 0 6(0)

hence ([ot® 'K(t)] = 0 since ’“'1(80(6)) = Z,. The other generating
elements of ’l‘l(H) are treated analogously. 4

The map :L : H —>Spin(6) gives rise to a homogeneous spin struc-
ture Q = U(3) xz Spin(6) over F(1,2). As Hl(F(l,Z);Zz) = {0_7],
this spin structure is the only possible one (see § 2 of Ch. 1).
Using the identification # !R6 and the commutator relations that
hold between the matrices €11:00.8g We obtain by Lemma 10 the
formulas for the Levi-Civita connection At corresponding to Bt'
A computation shows that, with respect to (5.33), the mapping

t ='X;1 /\t: IRG——-> spin(6) 1is given by

>

At(el) = - % (e3e5 + e4e6)
AiCep) = - -ZTE\ (eeq - egeg)

x it
Aeleg) = - -2_{—? (eyeq - ey€p)
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% 9t
/\t(e4) ey (ejeg + eyeg)
3 (t-1
At( s) = —_z—t(eles + e2e4)
(1-t)
/\t(ee) ey (eje, - eye5).

Since now the Dirac operator of (F(1,2),gt) is completely deter-
mined, we can state the following result. [4;0]

Proposition 3: Let 9 be the left-invariant Riemannian metric
on F(1,2) determined by (5.3D). Then:

(i) On the Einstein space (F(1, 2) 91/2) the Dirac operator has

the eigenvalues + 2 —nI = 3.

(ii) On the Kéhler- Elnstein space (F(1,2), g4) the Dirac operator has
the eigenvalues + 3 Vn*% R =+ ZE

Proof: From (5.33), (5.34) and the formulas given in (5.6) we note
that, for i=1,2,3, the homomorphism @&*(Hi)eEnd(AG) annihilates
both vectors Q" = u(-1,1,-1) and q)' = u(1,-1,1). Hence, for
arbitrary zl,zzec and all X 6£,

@;*(X)[zlq)’ + zzt.P'] =0

holds, and since H 1is connected, we conclude that, for any heH,
we have

Doz, ¢* + zzt.[>':|=[z:l @* + z,97].
Thus, the invariance property (5.31) is automatically satisfied for
the constant function @: U(3)—>Ag given by (g) = 21?+ + 2,97,
and  defines & section in the spinor bundle S = U(3) x@&'d
Oon this constant section ¢ the expression for the Dirac operator
ot corresponding to Bt’ which is given in (5.32), simplifies to

oty = j%q?(ej)t@f\t(ejw] .

For the particular terms we obtain

Ble (@R (@) = 74::— (1z,@* - 1z, 7),  J=1,...,4

(l-t) ( + -
==2s (iz - iz, ¢7), j=5,6,
{Zt 2‘? 1
and after summation
for t = %: 01/2(?: 3(_122 ¢t - izlkp-),
for t=1: 0'Q = 27 (12,9 - 12,9 7).
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Consequently, eigenspinors of o which realize the desired eigen-

values are obtained by zy = 1, z, = -i and zy = 1, z, = +i. O
Since in our calculations t?+ = u(-1,1,-1) and cp' =u(1,-1,1)
hold, we easily check that the almost complex structure on F(1,2),
defined in (5.11), is explicitly given by

J(ey) = e,, Iey) = -e, and J(eg) = egq.

Returning to our description of /g = _/M_/L«@_’M_/ , we identify an
element of

a b -
z: -a 0 ¢ ; a,b,cec}
b -c 0

with the corresponding triple (a,b,c)&e m3. In this notation, the
almost complex structure J becomes J(a,b,c)) = (ia,-ib,ic).
From this, it can also be checked directly that the manifold
(F(1,2),g1/2, J) 1is nearly Kdhler non-Kaéhler. Furthermore, we set
z= - % + %-{5‘1 and consider the diagonal matrix C = (¢, ) with

the entries ¢, = X S, (1%k,1€3), which defines a Lie group
automorphism A': U(3)—>U(3) by ~F(A):= cl.a-c for any
A€U(3). Then 0 is of order 3 with a fixed point set equal to H,
and the almost complex structure J 1is generated by A in the
following sense:

If we denote the natural projection by T : U(3)—>F(1,2) and define
a transformation & of F(1,2) by the equation Tod = G o ,
then the differential © vy —> is related to J by

Sy = - % id + '{3—‘3. x x

Therefore, (F(1,2),gl/2) is also equipped with the structure of a
3-symmetric space.

Finally, we remark that in our notation the complex structure

I: y—> corresponding to the Kéhler-Einstein structure of
(F(1,2),gl) is given by I((a,b,c)) = (ia,-ib,~ic).

b) The complex projective space cp?

According to example (a) of § 3 in Chapter 3, we choose the inner
product in so(5) given by

B,(X,Y) = = 3 Tr(X-Y) , X,Y €80(5),

decompose so(5) into so(5) = A_;L(Z) @Aﬂ + A as described in
§ 3.3, and, for t>» 0, consider the Ad(U(2))-invariant bilinear
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form By on gl () 4 defined by By = B . 4 + 2t Byl mxan -
If we denote 4 -A_i(z), the commutator relations (5.29) are satis-
fied between 4 , & and M , thus by Lemma 10 the Levi-Civita
connection At of the left-invariant metric gy on

ced « SO(S)/U(Z) corresponding to By can be determined. Moreover,
considerations similar to that of Lemma 11 show that there exists a
11fting homomorphism of: U(2) —> Spin(6) of the isotropy representa-
tion oL : U(2)—> s0(6) of G:Pa, and by calculating the kernel of
Q&,(X)eEnd(Ae) for arbitrary Xe&(2) we obtain a constant
function ¢ : S0(5)—> A g describing a section in the spinor bundle
S over cP3. ~

By analogous calculations as for the flag manifold F(1,2) in
example (a), the application of the Dirac operator pt corresponding
to g, on this spinor field ¢e "(S) can be determined.

According to § 3.3, the metric gy on cP3 is an Einstein metric
for the parameters t = % and t = 1. The metric 9, was shown to
be the Kdéhler standard metric of CP3 and it has scalar curvature

R = 12, whereas 91/, 18 normal homogeneous with respect to S0(5)
and has scalar curvature R = 15.

Similar to the case of F(1,2), we can state the following result:

Proposition 4: Let gy be the left-invariant Riemannian metric on
cP described above.

(i) On the Einstein space (¢P3, 91/2) the Dirac operator has the

eigenvalues + % an =+ g 12.

(ii) On the Kéhler-Einstein space (.cPa,gl) the Dirac operator

realizes the eigenvalues + %{ﬂ;‘ﬁ R =+ 2,

c) The Lie group Spin(4) = s3 x s3

We decompose the Lie algebra sEin(4) ¥ so(4) into

80(4) = @@ with R = span f 2'E13‘E23} and

A = span {E14,E24,E34'5 . where the matrices E;. (i< j) are the
standard generators of 8o(4) as described in example (a) of § 5.4.
Then, by B(X,Y) = - 3 Tr(X°Y), X,Ycso(4) and

Bt = B[ x - + 2t BF,‘Q A for t>g, weaget a family of left-
invariant Kiemannian metrf—s gy on S x S”. By Wang's Theorem,
the Levi-Civita connection of gy corresponds to a map

At: 80(4)—> so(@@ ;g) which is given by
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A (OY = 3[X,Y]
AL (XA = (1-t)X,A]
A (B)Y = t(B,Y]
Ag(A)B = 3(A,B]

for X,Y64_Q and A,Be :‘ .
With t = % and t = é we obtain Einstein metrics on G = 53 X 53
where t = 3 corresponds to the usual product metric. The para-
meter t = 1/6 yields an Einstein metric with scalar curvature
R = 10.

1, 4é
In the following, we fix t = gi an orthonormal basis of ——®:¥
with respect to B /618 given by e, = {3 E12' e, = {3 E13'

4

eg = ‘i_' E23, ey = E1 . &g = E24, eg = E 6and we use these vec-
tors {'e ,...,es} to identify so(4) wlth R™.

Consider the trivial spin structure Q = G x Spin(6) (which is the
only existing one, since G = S3 X S3 is simply connected); the
associated spinor bundle is then the trivial vector bundle

S =6 xAs,and hence [ (S) consists of all smooth functions

9 G—> As. Using the description of At given above and Ikeda's
formula (see example (a)) to express the Dirac operator D corre-
sponding to By /gi1¥e obtain several eigenspinors of D. They are
given by

Qf = u(1,1,1) 7 u(1,-1,1)

(?é = u(-1,1,-1) ; u(~1,-1,-1)

@3 = [u(1,-1,-1) + u(-1,-1,1)]; (u(-1,1,1) + u(1,1,-1)]
o= [u(1,-1,-1) - u(-1,-1,1)] 7 [u(-1,1,1) - u(1,1,-1)].

In particular, we state

Proposition 5: On the Einstein space (33 X 33, 91/6) the Dirac ope-
rator has the eigenvalues
t%§=:ﬁ and +4'J?.D
The eigenvalues + g“r are realized by the spinors q> (i=1,2,3),
whereas W" are eigenspinors for + f hence Killing spinors on
% x 8%, Writing p, = [u(1,-1,-1) - u(-1,-1,D] & [(s*) and
W, =[u(-1,1,1) - u(1 1,-1)7e M (s7), we have §pE ‘“’1 FV,,
and the almost complex structure J, which makes (S° x s3, 91/5)
a nearly Kahler non-Kéhler manifold, is then defined by
J(X)\pl = i1XW,;, X€80(4). In the above notation, it is described
by J(ea) =e,, :J(el) = eg, J(es) = e,

148



Chapter 6: Manifolds with Parallel Spinor Fields

Let M" be a Riemannian spin manifold. A spinor field 1we0(S)

is said to be parallel if {w = 0. If a Riemannian spin manifold
admits a parallel spinor field, its Ricci tensor vanishes, Ric ¥ 0.
(see Chapter 1, Theorem 8). Consequently, a 3-dimensional Riemannian
manifold with parallel spinor field is flat. We consider now the
four-dimensional case. The bundle /\2M4 decomposes into

Aot =I\f @/\EMA' and the curvature tensor R :AZM*— %%

is given by A

W, o0 o B ”
Q’(o w_> + 8* o -1z

Suppose now that M4 admits a parallel spinor @ . Then Ric =0

and, consequently, the curvature tensor R coincides with the Weyl

tensor,

¥, 0

R=lo v /-

Moreover, we have (see Chapter 1, Theorem 12)

wm?-y=o.
The spinor bundle S decomposes into S = s* @ S”. The condition

¥ AHyt=0, 0fyEer(sH)

implies W* = 0 by an algebraic computation (see Chapter 1,proof of
Theorem 137). Therefore, a 4-dimensional Riemannian spin manifold
M4 with parallel spinors '\y",xp' in s*, sT is flat. We consider
now the case that M4 admits a parallel spinor w+er‘(s+). In this
case we define an almost complex structure J: TM4——>TM4 by the
formula

IX) =i ox et
Since r\,p*' is parallel, J 1is parallel too. In particular,
(M%,9,3) 1is a Ricci flat K&hler manifold. In case M* is a compact
manifold, its first Chern class cl(M4) in the de-Rham-cohomology

is given by the Ricci-form (see [105]). With respect to Ric £ 0
we conclude

e, = 0.
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A compact, complex surface M4 satisfying cl(M4) =0 is said to
be a K3-surface (see [18]). It follows from the solution of the
Calabi conjecture that any K3-surface admits an (anti-)self-dual
Ricci-flat Kahler metric (see [17]). Thus, we obtain

Theorem 1 (see [60],(171): A compact, non-flat 4-dimensional Rie-
mannian spin manifold with a parallel spinor is isometric to a K3-
surface with an (anti-) self-dual Ricci-flat Kahler metric. Any K3-
surface admits two independent parallel spinors in s*.

We describe now all non-flat compact 5-dimensional Riemannian mani-
folds M3 with parallel spinors. In case of dimension 5 a parallel
spinor ¥ defines a 1-form 4 by M(X):= -i <Xy ,y>. M is parallel
and one obtaines a foliation of M5. We will prove that this folia-
tion is a fibration of M5 over sl. The fibres are totally geodesic

K3-~-surfaces.

Theorem 2 ( [42]): If (M5,g) is a non-flat compact Riemannian

spin manifold with parallel spinor,then there exist a K3-surface F

with an anti-selfdual Kéhler-Einstein metric and a holomorphic iso-

metry ‘b : F—F such that M5 is isometric to F<P = Fx1I/,

with the identification (f,0)~ (d(f),1).

The two spin structures of Mo correspond to the two possible 1lifts
@t of @ into the unique spin structure of F. The parallel spinors
4 of S with respect to the corresponding spin structure are

given by the <§+ ~invariant parallel spinors '\P* of F.

The bundle s* of a K3-surface is isomorphic to /\0'0 @ /\0‘2.

The lifts @t of a holomorphic isometry @ into S* are given by

Q:(f‘,w) = (+ f‘d)'l, t@*w). We call the spin structure of M5=FQ
defined by @+ a "positive spin structure®, the other one a "negative
spin structure®.

Theorem 3 ((42]): The space of parallel spinors of M = F@ with
respect to the positive spin-structure has dimension one or two. M5
admits two linearly independent parallel spinors if and only if the
holomorphic 2-form h? on the K3-surface is @-invariant.

The dimension of the space of all parallel spinors with respect to
the negative spin structure is at most 1. In this spin structure a
parallel spinor exists if and only if Q'(hz) = -h? holds.
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Proof of Theorem 2 and Theorem 3: Let (Ms,g) be a compact non-flat
Riemannian spin manifold with a parallel spinor field '\{/of‘ length
jwl= 1. In particular, M> is Ricci-flat, By

Ty = iy and ’Q(X):- -1 <Xy YD

the spinor “S defines a parallel vector field € and a parallel 1-
form m , respectively, i.e. V§= 0, V1 = 0. The 1-form m is closed
and vanishes nowhere. By the Frobenius Theorem m defines a folia-
tion of Mo , € is the normal vector field.

Because of Vg= 0, all leaves are totally geodesic submanifolds of
Ms. We will now prove that this foliation is a fibration over Sl.
Since M is closed, we can define a homomorphism

f/rl~qr M%) —Rr

by o> ! M . where e is a closed curve in MO,

This honomorphlsm is non trivial, since on account of Hom(‘ll‘ (M ),R)
Hom(l-l (M JZ)R) = 1 (M sR), it would follows from

0 = f‘rl € Hom(ar (Ms).IR) that 7 is the differential of a smooth func-
tion on MY, However, m vanishes nowhere.

since M° is a compact Ricci-flat, non-flat Riemannian manif‘old, we
have bl(Ms) € 1 for the first Betti number bl(Ms) of M2 (s.[104]).
Hence, the image of this homomorphism is a discrete subgroup of IR,
i.e. C*'Z for a positive number CelR.

We fix a point m e M5 and define a function

1

£: M°—> Rl/c.z = s
by f(m) := fqlmod 3

where /x’ is a curve from n, to m. Because of the above mentioned
properties of f'n_e Hom(qu(Ms);R) this definition is correct. Wwe
have df= m . Consequently f is a submersion and the leaves of
the foliation = 0 are the connected components of the fibres of
f. If each fibre consists of‘ k leaves, then f# qr (M ) is a sub-
group of index k in qu(s ) because of the exactness of the homo-
topy sequence of the fibration f. In this case we can lift f into
the k-fold covering of st and we obtain a fibration 'f\‘: M5-—>sl
with the property, that the fibres of f are the leaves of m= 0.
VE=0 implies that the flow of € maps the fibres isometrically
onto each other.

The fibres are anti-selfdual Ricci-flat Riemannian manifolds. This
can be proved in the following way. We choose a local section

in the SU(2)-reduction Q(vy) of the frame bundle (see [41]).

Let L\')iT (14i,j45) be the coefficients of the Levi-Civita connection
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with respect to this frame. From YW= 0, i.e.

> wijeieju(l,l) = 0, it follows that
i<

Wyp + P34 =0, W

= 0 (14€i¢5).

13 = Waqs 4 *+ W3 = 0

Wis
However, the W, (16i,j¢4) are the 1-forms of the Levi-Civita
connection of the fibres. Consequently, the Levi-Civita connection
in the principal SO(4)-bundle is anti-selfdual,This is equivalent to
the statement (s.[33]).
Thus each fibre is a compact, connected, anti-selfdual Ricci-flat
Riemannian manifold. Consequently, we have only the following
possibilities (s. [60]).
1) All fibres are flat.
2) All fibres are K3-surfaces,
3) The fibres are Enriques surfaces.
4) Each fibre is of the form N/T, where N 1is an Enriques surface

and T 1is an antiholomorphic involution on N.

Case 1) is impossible, since it would imply M5 to be flat. The

Cases 3) and 4) are also impossible, because the fibres are spin
manifolds, but Enriques surfaces do not admit a spin structure.

Consequently M® fibres into K3-surfaces being isometrical to each

other. Using the flow of § one can consider M® s the Riemannian

product F x I of the fibre F and the interval I= [0,1] , where

F x {0} and F x {1} are identified by an isometry &: F—>F. We

want to show that @ is also holomorphic. The restriction Y/F of
) to any fibre is a parallel spinor, too. On the other hand, v /F
is a section in S* since F 1is a K3-surface (see [60]). Hence, the
equation (j:)w = f?lp defines the complex structure J: TF—> TF
of the fibre F. Since Y /F 1is invariant with respect to one of the
lifts &3 of & , we obtain dd3JI = 3dd , i.e. P is holomorphic.
Finally, we see that the space of parallel spinors of M5 is equal
to the space of 5__>+— and Q_—invariant parallel spinors on the K3-
surface F, respectively. This proves Theorem 2.

Let h? denote the "unique" holomorphic 2-form of the K3-surface F
and let Y€ S* pe a parallel spinor. Because of the isomorphy

st = AO,O () Ao’z, \} corresponds to an element

(A,BR?)e A0/0 @ A%2 , where A,BEC are constant on F. Let

$: F=F bea holomorphic isometry. Then we have

B, (A,BF%) = (+A, 1B RD).

Consequently there exists at most one parallel spinor with respect
to the negative spin structure- of F@', namely (0,32). The spinor
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(0,i2) 1s d_-invariant if and only if &*h? = -n?. With respect

to @+ we have at least one parallel spinor, namely (1,0). Further-
- *
more, the spinor (O,hz) is invariant if and only if ‘I’ h2 = n2.

This proves Theorem 3.

The existence of parallel spinors implies topological conditionson
M5. We consider HZ(MPR). Let M° = Fg.
Using

W2 R) = [elewP(FR) : @ e? =2}

and the global Torelli Theorem [18] we obtain

Corollary 1: Let (_Ms,g) be a 5-dimensional compact non-flat
Riemannian manifold with parallel spinor. Then

2 ¢ dim H2(MO;R) € 22.

Moreover, dim H2(M5;IR) = 22 if and only if " is isometric to
the Riemannian product of a K3-surface by st.
Corollary 2: If there are two independent parallel spinors on M5,‘
then

4 £ gim H2(MS;R) £ 22,

Remark: Since the automorphism group of a K3-surface is finite all
integral curves of the vector field g are closed.

Examples may be found in [42].

With the same method we now classify all 7-dimensional compact
Riemannian manifolds with three or two parallel spinors.

Theorem 4 (see [44]): Let (_M7,g) be a non-flat compact 7-dimen-
sional Riemannian spin manifold with at least three parallel spinors.
Then there exists a K3-surface F with an anti-selfdual Ricci-flat
Riemannian metric, a lattice f"CJR3 and a representation

Q: M — Autiy (F) of M into the group of all automorphisms of F
preserving the unique holomorphic 2-form h? such that M7 is
isometric to R3 x F)/™ , where M acts on IR® x F by

Prxf) = (xrp, QUAPIF).

Conversely, a 7-dimensional Riemannian manifold of this type ad-
mits at least four parallel spinors.

Proof: Let 'Wl, ‘\Pz, ’Wa be three orthogonal parallel spinors of
length 1. In the same way as in section 4.4 we define vector fields
X; and 1-forms M, (i=1,2,3) by X ¥, =Wy, X, W, =Yg,
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Xgdyp = W3 Mg = g(.,Xi), for which V7 ; =0 a;d Vﬁf 0 ho;ds.
By the Frobenius Theorem we have a foliation M =UF0‘ of M

into totally geodesic, connected, complete manifolds Fo“[. The 1-
forms Lsi of the Levi-Civita connection with respect to a frame of

the SU(2)-reduction Q(\.Pl,wz,ws) satisfy

W13 =gy W14 * P23

- - = £3
Rig =kyg = Lj7 = 0 (1£147).

=0, [N + L

12 =0

34

So one can prove in the same way as above that the leaves F;_ are
antiselfdual and Ricci-flat.

We have bl(M7) £ 3 (see [30]). On the other hand, the 1-forms
ﬂ’ll, Mys Mg are linearly independent, and consequently bl(M7) = 3.
We fix a basis {'oil, 0(2,0(3} of the torsion-free part of Hl(M7;Z)
and consider the homomorphism L:’rrl(M7)—> R3 given by

L) = (f m., LTS
T (r“h Q:r“Yz 7"13 ;

The vectors L(_ocl), L(ol 2),L(0L3) are linearly independent in R”,
because AlL(_oc 1) + AZL(()L 2) + A3L(o( 3) = 0 implies

i= 0 (i=1,2,3), and therefore
Alci 1+A2 0(2+A3°( 3
Ajk g + Ay ky + Agolg = 0 in HI(M7;|R). Let"be a lattice generated
by L(oLl), L(o(z), L(o(3). Then we obtain & submersion f: M7-—>R3/F
defined by f(m) = ( N f M 2 f'q3) mod " , where ¢ 1is a

c c c

curve from a fixed point m, to m.

since T.F4 = {teT M7: df(t)=0}, the leaves of the foliation

V] ﬁm are contained in the fibres of the submersion f. As in the
case of dimension 5 we may assume that the fibres of f are
connected and coincide with the leaves ﬁ:. The parallel transport
in a Riemannian submersion with totally geodesic fibres maps the
fibres isometrically onto each other. Thus all fibres are isometric.
They are anti-selfdual, Ricci-flat, compact Riemannian manifolds.
They obtain a sbin structure, since the normal bundle of any fibre
is trivial. As in the proof of Theorem 2 one concludes, using again
the Hitchin result (see {60]), that all fibres are isometric to a
K3-surface F.

3—->|R3/F‘ as well as the induced fibration
over |R3. Then M7 is isometric to 'M7/r‘ . On the other
hand, the parallel transport defines an isometry from ﬁ7 to

R® x F. The action of M on F preserves the holomorphic structure
as well as the unique holomorphic 2-form h2. Indeed, the holomorphic

structure of any K3-surface is given by the parallel spinors on it

Consider the covering IR
W — g3
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and h2 is one of the two parallel spinors under the isomorphism
s*2290 @ A%2 of the spinor bundle S'. We restrict the parallel
spinors ‘Wl,\PZ, LP3 on M7 to the fibre F. Since the restriction
of the Spin(7)~-representation to the subgroup Spin(4) 1is equivalent
to Ay ®A4 , each 'LPi/F (i=1,2,3) corresponds to a pair of
parallel spinors on F. The ["-action on [ preserves "vi/F since
the wi are parallel on M7é Consequently, [ acts on F holo-
morphically and preserves h".

Theorem 5 (see ([44]): Let M be a compact non-flat Riemannian
manifold with two parallel spinors. Then either M7 admits at least
four parallel spinors and is isometric to (]R3 x F)/" for a certain
K3-surface F or there exists a Ricci-flat compact Kéhler manifold
r\l6 and a holomorphic isometry é: N6—7 N6 such that M’ is
isometric to M’ = N® x [0,11/, with the identification

(x,00~ (P(x),1).

Proof: Consider two parallel spinors \}11, VY, as well as the
parallel 1-form m defined by ‘Q\pl =Y, M’ is a compact Ricci-flat
Riemannian manifold and the first Betti number is at least 1.

In case bl(M7) = 1, we can prove in the same way as for dimension 5
that the leaves of the foliation given by m are fibres of a Rie-
mannian submersion f: M’—> s with totally geodesic Ricci-flat
fibres NG. Using the parallel transport defined by the vector field
corresponding to M , M7 becomes isometric to NG x I/~ for some

@: N6—>N6. @ preserves wi‘NB and w2|N6 . Consequently, @ is

holomorphic. If bl(M7) 2 2, then there exists a harmonic 1-form
Mo orthogonal to 7 in L2. The Weitzenbdck formula

0=047, = V*V’Ql + Ric(7M,) yields_that M, is a parallel 1-form
orthogonal to ~ at any point of M. Then W) Wai= W, and
'\ys:= rM\y'l are orthogonal and parallel spinors on M".

Chapter 7: Riemannian Manifolds with Imaginary Killing Spinors

According to Theorem 9 of Chapter 1 imaginary Killing spinors

can only occur on non-compact manifolds.

In this chapter we will prove the following statement:

A complete, non-compact, connected Riemannian spin manifold admits
non-trivial (imaginary) Killing spinors if and only if it is iso-
metric to a warped product
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(F""1 x g, et @ at?), perr {0},

where (F"'l,h) is a complete, connected spin manifold with non-
trivial parallel spinor fields. To prove this, we distinguish two
types of imaginary Killing spinors, those where the constant Q¢ ,
defined in Chapter 2.3 for each twistor spinor, is zero and those,
where Qe is greater than zero. These two types are characterized
by a different behaviour of their length function. The length func-
tion of an imaginary Killing spinor is, in opposite to that of a
real Killing spinor, non-constant and contains enough information
to describe the above mentioned geometric structure of the under-
lying manifold.

7.1. Imaginary Killing Spinors of Type I and Type II

Let (M",g) be a connected spin manifold. First, we prove some
properties of the length function

ug (x) :={QP(x), (x>
of an imaginary Killing spinor ¢.

Lemma 1: Let ¢ be an imaginary Killing spinor to the Killing number
pi. Then

1) X(ug) = 2pi {X-¢, ¢> (7.1)
YX(up) = 2p1<TX @, 9> + 4p? 90X, Vug (7.2)
2) VX grad ug= 4|.|2 u({,x . (7.3)
n
llgrad uq?ﬂz = -4p? jzl<sj.¢,cp>2 (7.4)
3) Let 0 be a normal geodesic in (M,g).
Then
ugp (Y (£)) = A e2Ht . et (7.5)

where A and B are real constants.

Proof: For a vector field X on M we have
X(UQ) (Vx‘?l¢>+<¢l vx‘{’% 1P{<x"?"f>‘<‘?:x“?>}‘
2pi X9 ,¥> .

For the second derivative of ug this provides
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XY(up) = 2pi K UyX @ > +LX: Ty @ P>+ KX q, Typ>§
2pi{AV X @ P + PILX VP> —pi KXo, Y PO}
[V X P D>+ pi XYY X)P ) §

201 < X @, ®> + 4uPg(X,Vuy .

(7.1) implies

n
{ grad uq;([z = ]Z=:i sj(u.‘(,)2

Z<s @, P>2.

Let (sl,...,sn) be a local ON-basis arising from an ON-basis in

X by parallel displacement along geodesics. Then, (7.2) implies

n n

ngrad ugp= %Vx(s-(ucF )sj) = jll\=_1 ij(u(P)'sj

n

L

4_
=1

= 4p uq, X.

= 4[1 U‘P g(sj,x)sj

Let r\r(t) be a normal geodesic in (M,g) and let u(t):= ug ( r(t)).
Using (7.2) we obtain

u(t) = 2pi <v], T g @ ap? “Y'“ u(t)
= 4p 2uce)
The general solution of this equation is
u(t) = A e2Ht Be'zyt,

where A,BER.

In Chapter 2.3, a constant QC? 2 0 was assigned to each twistor
spinor. If @ is a Killing spinor to the Killing number pi, then,
using (7.4), we obtain

2 .2¢ 2 1 2

Q= n“p up(x) - fgrad upOl <§.

@ MHRG) - 2 g1}
Furthermore, according to Theorem 9, Chapter 2, we have

Qq)‘i nzpzuc?- distz(Vq A ),
where V(P is the real subbundle V‘P- {tﬂP[teTM} of the spinor
bundle.
We call c() a Killing spinor of type I iff Q=0 and a Killing
spinor of type II if Oq: > 0.
Then, é) is of type I if and only if there exists a unit vector
field M such that § W= i . If ¢ is of type II, then the
length function u is bounded from below by the positive
constant —%r ./QQ' . As it was shown in Corollary 2, Chapter 4.3.,

n
all imaginary Killing spinors on 3- and 5-dimensional manifolds are
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of type I.

Now, we prove two lemmas which show how a Killing spinor to the
Killing number -pi can be constructed from a Killing spinor to the
Killing number pi.

Lemma 2: Let ¢ be a Killing spinor of type II to the Killing num-
ber pi. Then the spinor field :

Y= (up + -2%{ grad ug - )¢
is a Killing spinor of type II to the Killing number -pi.

Proof: By formula (7.3) we obtain
1
Vxxl).-vx(ucpuf) + m-vx(grad uc?'t.p)
= X(u"P )@ +ipucPX-‘?+ 2p1 Vy(grad uq)) ¢ + 2 grad u‘?x %
= ‘P )P+ ipu‘fx - 2pi ug X - X grad up @
- g(grad ucp, X)gP
= -pi X ll ¢+ ngraducp} ¢
= -pi X-p .
From (7.1) it follows
uy = I u(f uP TT grad "Q quI
= u‘.{) —-2 || grad u(Pﬂ Up# —?-(grad "CP"P ¢>

2
= U‘P{ % - —4—'1-2 lgrad uq)ll _}

= Q o
LR

This implies ng 1‘?—7 >0. Hence, Y is of type II.
np

Lemma 3: Let (M",g) be an even-dimensional manifold with a
Killing spinor #=¢* (3 ¢~ to the Killing number X. Then
l.‘.(>1:=(.(7+ -®@~ 1is a Killing spinor of the same type to the Killing
number -x.

Proof: Since the Clifford multiplication commutes the positive and
negative part of S, we obtain

ch(?*' = AX P~ and Uy~ = AX-Pr,
Hence,
V@ =Vy@" -V ™ =X ™ =X @ ¥ = =X~ P,

Because of
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ug o T A e G T L up s it follows that Q= O, -

In Chapter 7.4 we will see that there exist odd-dimensional mani-
folds with non-trivial Killing spinors to the Killing number pi
and no Killing spinors to the number -pi.

Finally, we want to study which Killing spinors of the hyperbolic
space are of type I and which of type II.

In example 3, Chapter 1, we have seen that the Killing spinors on
the hyperbolic space H24 2 of constant sectional curvature -4p2
(realized in the Poincaré-model) are the spinors

Jz(niw LAKS (x).-,/—-z—-z (L+2pixdu, §
2"

Ixlt
uetC

Using formula (7.4) we obtain for the constant Qﬁ

"2'2 o, =lg @I* - ——zllgrad<q’ RN G
= 4lul® + z<e 9,0, @ (0)?
= 4{mnﬁ + n Le,  u u)zs

gl e

Hence, in case n # 3,5, almost all Killing spinors on the hyper-
bolic space are of type II. Using formula (1.1) and (1.2) it is easy
to verify that in case n = 2m the space

span { § lu=u( € 1,00 € DeuC &g, nn by g ED & =+ 1y
is a Zm-l-dimensional subspace of Killing spinors of type I and
the spinor fields @u with u = u(él,...,&m) are of type II. In
case n= 2m+1,

v, = span{ @ [u = u(€y,enai€y ),j =+ 1}

are 2" 1-d1mensional subspaces of K1111ng spinors of type I and the
spinor fields ¢u with u=u(£1,...,ém) + u(d. ,...,éﬁ), where

(8, ,...,d&) differs from (61,...,€m) in an odd and more than

one number of elements, are Killing spinors of type II.

7.2, Complete Riemannian Manifolds with Imaginary Killing Spinors
of Type II

In this chapter we will prove that the hyperbolic space i$ the only
complete manifold admitting imaginary Killing spinors of type II.
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Theorem 1 ({77 ): Let (M",g) be a complete, non-compact, connected
spin manifold with a non-trivial Killing spinor of type II to the

Killing number pi. Then (M",g) 1is isometric to the hyperbolic

space u" 2 of constant sectional curvature -4p“.
-4p

Proof: Acoording to Theorem 8, Chapter 1, and Theorem 7, Chapter 2,
it is sufficient to prove that the length function ugp of a non-
trivial Killing spinor ¢ of type II attains a minimum. Because
of QoL(PB |t 4ch; for o &C we can suppose that Q‘P= nzpz.
Then ug is bounded from below by 1.
Let c>1 be a real number such that there exists a point y,emM
with ugp (y )< c. We consider the subset M,:= {xe M[uq;(_x) € cjewm,
Let y be a normal geodesic with F(0) = y,. According to (7.5)
we have

u(t) = uy (V(t)) = A et 4B et >,

Since (M,g) 1is complete, u is defined for all te&R, which
implies that A,B>0. The minimum of u is 27AB, which shows that

142‘/A—‘B£u(0)=A+B<c (i).
From (i) we obtain

ABeGle- 62D, 3ec + VcZ1 ), (i1)
Let d>0 be a parameter such that *x"(d)e M- Then

u(d) = A e2bd , g e~2Md ¢ |

The resulting quadratic equation for eZIpI d together with (i) and

(ii) yields e2!M1d ¢ 2¢2, Thus, each point of M. lies in the
closed geodesic ball of radius 1 1n(2¢) around c. Hence Mc
is compact and Ug has a minimum on M-

Remark: Let ug be the length function of an imaginary Killing
spinor @ of type II with Qg = nzpz. Then (according to the proof of
Theorem 7, Chapter 2, and Theorem 1) ucf; has exactly one critical
point X,- Let T be a normal geodesic with 'X-(O) = Xg. For the
constants A and B in

u(t) = u‘?("r(t)) = A e2Ht | g -t

it follows
o
u(0) =uc_k-,(x°) =m-a£r=1=A+B and
u'(o) = 0 = 2u(A + B).
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i

Hence A =B =3 and u(t) = cosh(2ut).

Consequently, the length function uy satisfies
ug (x) = cosh(2p d(x,xo)) for all xeM,

where d(x,xo) denotes the geodesic distance of x and xo.

We proved that the only complete connected manifold with imaginary
Killing spinors of type II is the hyperbolic space. Finally, we want
to remark that there exist non-complete manifolds of non-constant
sectional curvature which admit imaginary Killing spinors of type II.
Such manifolds can be constructed as follows:

Let (Fn'l,h) be a compact connected spin manifold with real
Killing spinors in '_‘I{(F,h)lj as well as in K (F,h)_ . Examples of
such manifolds can be found in Chapter 4.2, Theorem 1.

Let (M",g) be the warped product

(M,@):= (F x(0,0), sinh?(2pt)-h @ dt?)

We show that (M,g) has imaginary Killing spinors of type II to
the Killing number pi.

Case 1: n = 2m+l

Let c?e'J((F,h) be a real Killing spinor and denote byq):q«‘* @c{?‘
the decomposition of ¢ with respect to S;—'. Then VXFC(/+ = pXeg ”
and qu) = pX-P*. We define
Px,t):e et @+ ()4 (-1)M e"'t’cf (), fr= (=),
Using the denotation of Chapter 1.2 for the spinor calculus on
warped products and the formulas (1.20) and (1.21) we will prove
that e XM.@)yy:

$Gs ot (Bt gF e, ym \7qu>’)

Uxt = sInh(2pt) X ¢ X

- p coth(2pt)X - ¢+

1 St - m it o+
= STAR(ZET 1 © p X+ (-1)" i pet” Xep” -
sin l-l { /A—\/ /A—i,
-p cw[(-nﬂ;e\"‘ix-cf* - eftx.g -1}
A A
pi {(-l)m i ebt X4~ + e Pt X-Cf"'s
= pi X9 if XETF

and
Vg\p = i e "t¢f+ + ip ehitep - R .
= pi e-"tg PR ILINLS ST
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Unless (F,h) is the standard sphere, |q+|2 =|¢ -'2 = const =: c>0
(see Lemma 1, Chapter 5.1) is valid end it is easy to verify that

2 2 2
Q~= 4¢n >0.
W 3

Case 2: n = 2m + 2

Let ¢,eX (F, h) and P, €K (F,h) -

We define (uslng the denotationa of Chapter 1.2 for the spinor cal-
culus on warped products):

Wpix, t):= [(iept + e'pt)({?1 + (-1 et . e'"t)cpz]
A _ A
@ D" (-1 ') g, 4 (e 4 1 P, ]

Using

g A —g? A\ 2 ,s\F n A
UxF@y =Vx @y = B X-Py = =pX-f, and [y @, = pX -,
we obtsin by applying (1.22) and (1.23)ea in the first case
v3ge 1 pX-¥  for all XETF  and

S ~ ~
‘ZQNF ipgt v .
Hence, peX (M,g) pi
Unless (F,h) is laometrlc to the standard aphere, ¢, and q%
have constant length ¢y 5\l?§“ and c, ® l@zn , and are orthogonsl
to each other:

<c{>1, q)2>= 0 (see Chapter 5.1, Lemma 3).

Furthermore, lltPill =ll<(71l!2 ang <Py 9,> '<‘-(>1:“P >

It follows Q{p- 16 (cy+c )2- n p > 0,

7.3. Complete Riemannian Manifolds with Imaginsry Killing Spinors of
Type I

In this chapter we will study the structure of complete spin meni-
folds admitting imaginary Killing spinors of type I. In fact, we
consider a more general question. We derive the structure of complete
manifolds admitting a twistor spinor ¢ such that Q¢- 0 and

Vyp+ 2 x-¢ =0

for 8 resl function b on M without zeros (see also Chapter 2.5).
If b = -pn = constant, then ? is a Killing spinor of type I to
the Killing number pi.

Theorem 2: ([6],[7],[85]): Let (M",g) be s complete, connected
spin manifold edmitting a twiator spinor ¢ such that (2¢- 0 and
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VX“P+ ib . €% 0 for areal function b on M without zeros.
Then each level set F of the length function uyp is an (n-1)~
dimensional complete connected submanifold with parallel spinor
fields. The function b is constant on F and for the normal geo-
desics «((x), orthogonal to F, the function b(t):= b('Y't(x)) does
not depend on xeF. Moreover, (M",g) is isometric to the warped
product

4 ?
= 2 b(s)ds
(F xR, e" Y

glF @ dtz).

Proof: Since Qq): O and b has no zeros, according to Theorem 9,
Chapter 2, there exists a unit vector field €on M such that

g-gp = l(? . (7.6)
Using

X(u?) "(Vx‘? >+ P, thp>
B R S TO L JE LT IN

-- -2‘,,—” xR, Q) (7.7)
we obtain
Clug) = - B2t p@>= B g (7.8)

Hence, u@¢ is regular in each point and the level sets
F(c):= u‘é"(c) of up are (n-1)-dimensional complete submanifolds
of M. Multiplying equation (2.14) by ¢ yields

i sB(b)qu + (z-‘%gn + b2)< 8g P P> +

1 n
+31 5 8, (b) (s, 8,-8,v8, ) P,P> = 0.
20 3 o TBTUB ot
Since {sg-¢,¢> and (sol-sb-slssok)-tP,QP> are purely imaginary,
the imaginary part of this equation yields:

1 X(b)ug + (Frmsyy + b X P> = O (7.9)
for all vectors X. Together with (7.7) this shows that b is
constant on the level sets of up . If X 1is tangent to a level
set of u(e , then (7.6) and (7.7) provide

024§ X + X-E)P,p> = -29(X, §lugp -

Hence, f is a normal vector field to the level sets of up -
Differentiating (7.6) we obtain

g X‘(P .vX(f' \P) = Vx-g'LP - ib f' X+
=Vyg @+ -1-?-‘ xE¢P . 2-12 gC§, X) ¢
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and, therefore,

V8¢ -2 x¢ + 21 g(€0P=0.

It follows
'g = 0 (7.10)
Y $= 2_2 X for all X orthogonal to § . (7.11)

Using (7.10) and (7.11) we see that the 1-form m , which is dual

to €, is closed. Hence, the level sets of up are just the leaves
of the foliation defined by 7 . For the Lie derivative of the
metric g we obtain

(«fgg)(ﬂl,wz) = g(\‘]wlg,wz) + g(wl,sz €)
= 2 gt Wy, (7.12)

where w* denotes the component of W which is orthogonal to § .
Let us denote by ¢4 the integral curves of € . Because of (7.10)
these curves are geodesics,which are defined for all teR,

since (M,g) 1is complete. Hence, f{t} is a R-parametric group of
diffeomorphisms 11: M—>M. From (7. 12) we obtain for each vec-
tor XeTxM

(s Lg Oy X, $) =
(fgg)y;(x)(an(x), A CE))
(cfgg)'x-t(x)(drt()()):\g(’X’t(X)))
0.

3t (P 19X E)

Thus,
(VR0 8) = gy (4 (39 1 X § (400 = g, (X, E60)

for all telR.In particular, for the level set F(x) of u§>con-
taining the point x it follows

4 (T FOO) = RECy O = Ty, GoF (F £ 00 (7.13)

Hence, the diffeomorphism Yt ™maps the connected components of the
level sets of ugp one upon the other: Yf(F(xo)) = F(X't(x))o’

Let F be a fixed level set of up , xeF andc =u (x).
Denoting u(t):= u¢ (x—t(x)) and b(t):= b(x—t(x)) and applying
(7.8) we obtain

u'(t) = 39%32 u(t), (7.14)

which provides
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2 t
7 [ b(s)ds

u(t) =ce 0

Since b has no zeros, u(t) is strictly monoton. Therefore, the
integral curve -Y—t(x) intersects F only for t = O. This shows

that the smooth map
P: FxR—M
("'t)“*](t(")

is injective. We will prove that @ is a diffeomorphism.
For the differential of ¢ we obtain

dOX @ r ) = dypp (0 +rE ().
Because of (7.13), d@ (x,t) is an isomorphism and, therefore, @
a local diffeomorphism. It remains to show that @ is surjective.
By U(z)cM we denote an open neighbourhood of zcM which is
diffeomorphic to a product V(z) x(-£,£), where V(z) 1is an open
connected set in F(z).
Let x €M\F. We fix a point xeF, and consider a curve d connecting
Xq and x. Jcan be covered by a finite number of sets U(xj),
j=0,..0,p, X_ = X.
Let aj .Tt (xj-l) =nx-sj(§j)eu(xj_1)nu(xj), where Qj lies in
V(x;), hence in the connected component F(xj)o of xj in the
level set F(xj).
It follows

A L)

X, =¢x-t(xp), where t '?sj-tj’
and, therefore,

Fxg)o = T (F(X)),e
This shows that ® is surjective, hence a diffeomorphism. In partic-
ular, the level sets of u,_-() are connected and we have

Te(FO) = Flyp ().

It follows that u(t):= ugp (A(t(x)) do not depend on x&¢F and,
because of (7.14), b(t):= b(¥.(x)) has the same property.

-%
Now, we want to prove that the induced metric @ g is of the form

4t
= ¢ b(s)ds

@*g-ené gr ® at2.

Let X,YETXF. According to (7.12) and (7.13) we have
b (Pt DY) = (YL, (X,Y) =

= (.fs g),x,t(x)(dfx-t(X),dfx't(Y))
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_ 4b(t) *
= - (Ttg)x(X,Y).
This provides -t
* 2 b(s)as
(Ttg)x(X,Y) = g (X,Y) e .

Then
@Dy X O r 3 X@+P -
" 950 (4 B0+ P B 00) .0 PO+ B, 600

* n A
¢ = (Ttg)x(x,x) + rr

4 1 b(eas

A 2 "~
-e g (X% + at?(r 5%, rs-?).

Finally, we show that F has & non-trivial parallel spinor field.
We choose the orientation on F in such a way that & is orien-
tation preserving.

Then we can apply the formulas (1.16)-(1.19) of Chapter 1.2 descri-
bing the spinor calculus on submanifolds of codimension one.

Consider first the case of n = 2m+1. Then, (1.17) implies for
XeTF

s
VRes - B X =0, (@) - 3K S

S
(7.6) and (7.11) imply VXF(cﬂF) = 0, Consequently, the restriction
of ¢ to F is a parallel spinor field on (F,g|g). From (1.16) it
follows

9 =% @l O P = 1-D"QlE -91D
- 191E @alp-
Hence, the parallel spinor LP'F belongs to ("(_S;) if m is odd,
and to I"(SF) if m is even. In case of n = 2m+2, (P]F decomposes
into ¢z =@ ® Pper(sp) ® [(Sp). Using (1.18) we obtain
$Qle %01 @ & - (D 10, ©@Fp =19
=iP; ® 1P,

which provides ¢, = (-1)" ®,. Using (1.19) and (7.11) it follows
for XeTF

ves B xe, @ "y -
'VXF % ® ('1)mVxF‘P1 - %fo‘ (g, ® (-1)"@?1)
S § ~ ~
W @ - LB x0) @ 0", F e, - L2 xd).
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This implies ViFd?l = 0, hence, @, 1is parallel on (F,g|.).

This finishes the proof of Theorem 2.

In particular, Theorem 2 shows the following behaviour of the length
function of an imaginary Killing spinor ¢ of type I to the Killing
number pi: The level sets of u are (n-1)-dimensional submani-
folds and on the normal geodesics 7 (x) orthogonal to the level
sets, up has the form up ( Tt(x)) = e2Mt

ugp (x) . Moreover,
Theorem 2 provides

Corollary 1: Let (Mn,g) be a complete, non-compact, connected
spin manifold with a non-trivial Killing-spinor of type I to the
Killing number pi, peR \{0}. Then (Mn,g) is isometric to a
warped product (F""1 x R, e_‘wth @ dtz), where (F"'l,h) is a
complete spin manifold with non-trivial parallel spinors.

Now, we prove that there really exist non-trivial Killing spinors
on each warped product

M, = "1 xR, et B at?), pewr {0},

where (F,h) is a Riemannian manifold with non-trivial parallel
spinors.

Theorem 3: ([7], [85]): Let (F"-l,h') be a spin manifold with
non-trivial parallel spinor fields and let ce C'(R) be a positive
real function. Then,on the warped product

(_M",g):- (F xIR), c(t)h @ dtz), there exists a twistor spinor
9# 0 satisfying Q‘-?' 0 and

Uy ¥+ B x-@= 0 ),
where .
gcé(:t) if n is even
b(x,t)= \
) +(-1)" Ec—c{{‘-} if n=2m+1 and (F,h) has
' ) parallel spinors in r‘(sé)

Proof: To prove the existence of the twistor spinors we use the
formulas (1.20)-(1.23) of Chapter 1.2, which describe the spinor
calculus on warped products.

1. case: n = 2m+l. Let w* é-l"(_s%) be a parallel spinor in S;
and s;, respectively. We define a spinor field on (M,g) by
P R

@F(x,t):= ety wiix).
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According to (1.20) and (1.21) we have
1
S ~
V%‘(’t - c” vang _ % cle' X- gt
«% c et (-1)™ 1 X- 92

o -
+
for XeTxF and 1 .
vsgo?-t = % N e
- % c'c_lf-{’t

S I GO b ST
Thus, @* is a solution of (*) with b(x,t)= § c'(t)e(t)™1(-1)".
Assume that Qq,t # 0. Then, according to Corollary 3, Chapter 2,

b(x,t) is constant and cei is a Killing spinor to the Killing

(-1)" c'(t) N
ey

The length function of ¢* is
, 0ot) = Ve 190012
e Vo@D y10)2,

(x t) tends to zero if t—>o0 or t—> -w0.
Hence, <?— is a Killing spinor of type I. This contradicts Q"P" 0.

number pi ¥ <

2. case: n = 2m+2.

T —— Y

Let \yel"(SF) be parallel. Then Q)eP(SF) is parallel, too. We
consider the spinor field

/“_’—‘—‘,\/
qex, )= Hel®) (px0) @ D"$(x))

on (M,g). According to (1.22) and (1.23) we have

1 A
s s,
89 ¢ 2{V T v@ 0"V, 9)-§ e le'xe €
1
—
A (L ATEILETA )
= - % c'c 1y X ¢
for Xé.TxF and
1_1 ——
Pl O OR YO RS
= - % clet gy .
* n c'(t)
Therefore, ¢ 1is a solution of (¥*) with b(x,t) = 3oy .
Q;‘aa 0 follows as above. )
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Theorem 3 shows that there are compact manifolds with non-trivial
solut1ons of

Tdr 2 x-q 20 (*)

for certain non-constant functions b, whereas for constant func-
tions b (*) is only solvable for non-compact manifolds.
Consider for example a K3-surface (F",h) with a Yau-metric and
a 2r -periodic, positive function ce C®(R). Then, on the warped
product (F* x s, c(t)n ® dt?), there exist two linearly in-
dependent solutions of the equation
ct(t) i

Uyt + grEy 5 X9 = 0.
Furthermore, for the Killing spinor problem Theorem 3 yields
Corollary 2: Let (F"'l,h) be a complete spin manifold with non-
trivial parallel spinor fields. Then the warped product

M",9):= (F"1 xR, et © at?), pemr+fo},

is a complete manifold with imaginary Killing spinors of type I.
Moreover, in case n = 2m+1

dim (M, @)y * dimK(F,n)g
dim R(M.g)_ﬁié dim X(F,h)7,

+

where Tk(F,h)% is the space of all parallel spinors in Sg and
S;, respectively, and p = (-1)™u. In case n = 2m+2, it is

dim ':k(M,g)pl = dim 'J{(M,g)_pi 2 dim K (F,h)
The hyperbollc space is isometric to the warped product

®"1 x R, e g -1 d at?).
Hence, sunmlng up the results of Theorem 1, Corollary 1 and
Corollary 2 we obtain that a complete, non-compact connected spin
manifold (M",g) admits non-trivial (imaginary) Killing spinors if
and only if (M",g) is isometric to a warped product

(F"l xR, et h @ at?), per{o},

where (F,h) is a complete, connected spin manifold with non-
trivial parallel spinor fields.
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7.4. Killing Spinors on 5-dimensional, Complete, non-Compact Mani-
folds

Finally we will study the space of imaginary Killing spinors in
dimension five in more detail. We will give a construction principle
for all Killing spinors on a 5-dimensional complete, non-compact
manifold. According to the results of Chapter 7.2 and Chapter 7.3
such a manifold has the form

(F* xR, et @ at®), per {0},

where (F4,h) is a complete manifold with parallel spinors.

Theorem 4 ([6]): Let (F*,h) be a 4-dimensional complete spin
manifold with a parallel spinor field in F(S;), and consider the
warped product

M°,9) := (F xR, et & at?), perfo}.
Then

1.) 4 if gF,h) is isometric to the
dim X(M‘g)pf Euclidean space

dim :Q(F,h);42 otherwise

2,) If (F,h) is compact, then
dim J{(M,g)_pi = dim X (F,h) € 2.

If this dimension is greater than zero, (F,h) is flat, hence
(Ms,g) is a space of constant sectional curvature -4p2.

Proof: According to Corollary 2 we have dim X (M, g)p adim H(F, h);.
Let @e XK(M,g) pic Then, using the denotation of Chapter 1.2 for
the spinor calculus on warped products, ¥ is described by Y= "P B
where \p er'("l‘ *s g)e W decomposes into \ = y? @Lp e I"(SF)G)I"(SF).
Let cp— 1= M)—. From (1.20) and (1.21) it follows
[P = TP -pp* s peT.
Hence,
5%@ *) = -pyp*  end 53;— (¢ =py’.
Therefore, there exists spinors 1yg e P(SE) satisfying
Yroot) = e Py too  and wTix,t) = ety D00
According to (1.20) and (1.21) for XeT,F we have
e2Hty F 1X@-pX €@
x Wg = H $-p
—
= 2pi X% .
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Since the Clifford multiplication commutes the components S; and

S; of S, it follows
Sg . _
v F\yo =0 (7.15)
sF + -
Uy ¥o = 2u Xopyg (7.16)

Suppose that CP' = 0. Then \p; £ 0 and ﬂ;; is parallel. In this
case, we have

————————
Qix,t) = e FEPprix). (7.17)

In particular, if dim X(M,g) 17-dlm:’((F,h);, then there exists a
Killing spinor CPeiu(M,g)ui such that ¢~ ¥ 0 and, according to
(7.15) and (7.16) we have a non-trivial parallel spinor
Yoe M(Ssg) and a spinor w;c—,f‘(s;) with
sF + -

VX Yo * 2|.|1X'\Po
for all vectors X on F. A 4-dimensional manifold with non-trivial
parallel spinors in F(S*) as well as in P(S') is flat (see
Chapter 6). Hence, if dim XM, g)P1> dim X (F, h) (F,h) is flat
(and complete), therefore isometric to a factor space R 'P , where
™ is a discrete group of isometries of R .

Now, we will prove that (F,h) is in fact isometric to R*. since
\p; is non-trivial and parallel, u); has no zeros. Hence, the map

4 ot
TF > Sp
X —> X-(iqu)

is an isomorphism of the real 4-dimensional vector bundles. Let Z
be the vector field defined by

\P; = Z:(iy ).
Then (7.16) implies

N - Se .
2p1 XYW =V §J =VyZ (AW ) + 12V 'y,
= 1szw3.
This provides
Uiz = 2px (7.18)
for all vector fields X on F.

In particular, each Killing spinor q’e'IK(M,g)pl that is not of the
form (7.17) is described by
N ——

Tty o t
@= ieFzops 4 oMy, (7.19)
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where \p; el"(s;) is a non-trivial parallel spinor field and Z a
vector field satisfying (7.18). It is easy to verify that each spinor
of the form (7.19) is a Killing spinor to the Killing number pi.

In the flat, complete, connected Riemannian manifold (F4,h) there
exists a closed, totally geodesic submanifold NK < F4 with the same
homotopy type as F* (see[1067, Theorem 3.3.3). Since N is totally
geodesic, we have

(i) V;Y =V§Y for all vector fields X,Y on N,

(ii) for a vector field H normal to N and any XeTxN, the
derivative V;H is normal to N, too.
Let f denote the vector field

~

Z := projTNZ

~
on N. Then the divergence of the vector field Z on (N,th) is

. . K ~
divi(2) = Zk_ nvNZ,a) = Zh(VF Z,a;) =
=1 ey fa ey
K
= %{h(vEjz‘aj)°h(v'a:j(projnornz)‘aj)}

k F
= Z h(Va Zlaj)l
j=1 ]
where (al,...,ak) is a local ON-basis of (N,th). From (7.18) it
A ~
follows that divN(Z) = 2y dim N, and because of fdlvN(_Z)dN = 0,
we obtain dim N = O. Hence, F |is simply-connecteu and therefore
isometric to the Euclidean space R*. In this case (Ms,g) is iso-
metric to the hyperbolic space S 2 and we have dlmj’((m,g)'_li = 4,

This proves the first part of Theorem 4. According to Corollary 2
we have dim ‘J((M,g)_p 2 dim X (F,h) . If dim R(F,h); >0, then
(F,h) 1is flat and (M°,g) 1is a space of constant sectional curva-
ture. In the same way as above it can be shown that

dim CQ(M,Q)_pi > dim X (F,h)  if andonly if there exists a vector
field Z on F satisfying the equation

Tz = -2pX (7.20)

for all vector fields X on F. Each Killing spinor in ,.']((M,g)_pl
that is not of the form
N ——

e=ePty-, (7.21)
where w; € l"(s;) is parallel, can be described as follows:
L ——~—
gp=ettul s ieHtz.y2, (7.22)
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where 193 el“(SF) is parallel and Z 1is a vector field satisfying
(7.20). Equation (7.20) in particular shows that divF(Z) = -8y £ 0,
which is impossible on a compact manifold. Hence, on compact mani-
folds we have dim 27«((!4!,9)_"Il = dim U((F,h);.

All Killing spinors on a 5-dimensional complete manifold

™%,9) = (F* x R, e~*th ® dt?) different from the hyperbolic
space, where (F4,h) is a manifold with non-trivial parallel spinor
fields in [ (S}), are described by the formulas (7.17), (7.21) and
(7.22). In particular, from Theorem 7.4 it follows:

1) If (F4,h) is a K3-surface with the Yau-metric, then
dim 7<(M'g)pi= 2 and dim UQ(M,g)_pi = 0.

2) If (F4,h) is the flat torus with the canonical spinor structure,
then
dim .7('(M,g)pi = dim 7<(m,g)_pi = 2.

If (M5,g) is the hyperbolic space, then we obtain all Killing
spinors in the Poincaré model (see example 3, Chapter 1) or in the
model

5 4 -4pt 2
H = R* xR, e g, ® dt9)
—ap2 R4

using the formulas (7.17), (7.19), (7.21) and (7.22) in the form
(1 ~ -pt t -pt
K z)pi '{‘?u,v|‘9u,v(x‘t) = ety 4 (eMPazpie Oy, }

-4'_1
where ueAf, veAf

i (ud o] & - pt_ -pt,, -pt
3((H_4p2)_pi {cfu'v[¢ulv(x,t) (elP-2pie”Pix)u + PPy,

where ueAf, V6AE.
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