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In this book we investigate, after an introductory section to
Clifford algebras, spinors on manifolds etc., in particular solu-
tions of the twistor equation as well as Killing spinors. New
results on the construction and classification of Riemannian
manifolds with real and imaginary Killing spinors, respectively,
are the main subject of this book. Moreover, we consider the
relations between solutions of the general twistor equation and
Killing spinors.

In diesem Buch werden nach einem einleitenden Abschnitt Ober
Clifford-Algebren, Spinoren auf Mannigfaltigkeiten etc. , ins-
besondere Losungen der Twistor-Gleichung sowie Killing-Spinoren
studiert. Den Hauptinhalt des Buches bilden neue Resultate zur
Konstruktion and Klassifikation Riemannscher Mannigfaltigkeiten
mit reellen bzw. imaginbren Killing-Spinoren.
Desweiteren warden die Beziehungen zwischen Losungen der allge-
meinen Twistor-Gleichung and Killing-Spinoren untersucht.

Dana ce livre on etudie, apres a un paragraphe introduisant
dedie a des alg6bres de Clifford, des spineurs sur des varietes
etc., des solutions de 1'6quation twisteur ainai que des
spineurs de Killing.
Le contenue essentiel du livre eat formL par des resultats
nouveaux concernant is construction et is classification des
varietes riemanniennes admettant des spineurs de Killing reels
ou imaginaires. De plus on analyse lea relations entre des
solutions de 1' equation twisteur generale et des spineurs de
Killing.

B 3TOM ToMe noexe BCTyIIHTeJIlHoI gaCTH, nocssrueHHol axredpaM
KJlm opAa, c>1HHOpaM Ha MHoroodpa3zax HT. U. paccMaTpzBA1DTCSl

?
eimeRM TBHCTopxoro ypa iieHHa icai H cmmHopH ira.
JiaBHOe coAepzaiize TOMa COCTOI T B HOBHX pe3yJILTaTBX 0 IIOCTpoeHHH

8 KliacczC Hitaimz pmaBOBHx MHoroodpa3H2 C BeiqeCTBeH;Tm= x718
MIizNmM CIIBHOpai11H Ki1.iL HHra.
KpoMe Toro, xcCJIeAOBaIOTCSi CB$ISH Mel gy peUeHZiNMH odigero TBHCTOpHOro
ppaBHeHHA z cIIZxopaMH KwtaHra.



Preface

This book is devoted to the so-called Killing and twistor spinors,

special kinds of spinors on Riemannian manifolds appearing in

Mathematical Physics as well as in a purely mathematical context.

In the first chapter we give an introduction to Clifford algebras,

spin-representation and the spinor calculus on Riemannian manifolds.

Furthermore, we investigate the two natural first order differ-

ential operators on spinors, the Dirac and the Twistor operator.

The main subject of the present book is the construction and

the classification of Riemannian manifolds with real and

imaginary Killing spinors. The results described here were obtained

during the last 5 years and are presented in a systematical and

complete manner in this book for the first time.

Berlin, May 1990 Helga Baum

Thomas Friedrich

Ralf Grunewald

Ines Kath
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Introduction

This book is devoted to the so-called Killing and twistor spinors,

special kinds of spinors on Riemannian manifolds appearing in Mathe-

matical Physics as well as in a purely mathematical context.

A Killing spinor is a spinor field (.p on a Riemannian spin mani-

fold satisfying the linear differential equation

B X -C?

for a complex number B and all vector fields X. Killing spinors

were first introduced in General Relativity (see [22],[263) as a

technical tool to construct integrals of the free geodesic motion.

More recently, they occurred in 10- and 11- dimensional supergravity

theories (see [2,6,7,8,12,251). When studying classical solutions

without fermionic fields with a 'residual supersymmetry' it was ob-

served that this residual supersymmetry could give rise to a Killing

spinor (see [57,[131,(143). On the other hand, Killing spinors also

played an important role in the construction of exact solutions by

providing useful 'Ansffitze' for the matter field (see [3,4,17,273).

In Geometry, Killing spinors appeared in 1980 in connection with

eigenvalue problems of the Dirac operator D. If (Mn,g) is a compact

Riemannian manifold with positive scalar curvature R >0 and if R0

denotes the minimum of R, Th. Friedrich proved (see (321) the in-

equality for the first eigenvalue ),1 of the Dirac operator 0

2 1
n R

0

n R
Moreover, if is an eigenvalue of 0 with the eigen-

spinor If, then 1P satisfies the stronger equation

1 Ro
n X "P

i.e. the eigenapinors to the smallest possible eigenvalue are
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Killing spinors (see[32]). The existence of Killing spinor imposes

algebraic conditions on the Weyl tensor of the space and on the

covariant derivative of the curvature tensor; in particular, Mn has

to be an Einstein space (see [321,[34]). Furthermore, in 1980 Th.

Friedrich constructed an Einstein metric on the 5-dimensional Stiefel

manifold V4,2
admitting Killing spinors. Compact 7-dimensional

Einstein spaces with Killing spinors were constructed by M. Duff,

B. Nilsson and C. Pope (see [26],[27]) as well as by P. van Nieuwen-

huizen and N. Warner (see [89]) in 1983. Using the twistor construc-

tion, Th. Friedrich and R. Grunewald obtained (see [40]) the first

even-dimensional examples in 1985; they constructed Einstein metrics

on P3(¢) and on the flag manifold F(1,2) with Killing spinors.

In 1986 0. Hijazi proved (see [57)) the inequality

2 4 1 n
11 4 n-Tpl'

where p1 is the first eigenvalue of the Yamabe operator

L 4 0 + R (see also [82) for a general approach). However, if

this lower bound is an eigenvalue of the Dirac operator, then the

scalar curvature R is constant and the eigenspinor is a Killing

spinor. A Kahler manifold does not admit Killing spinors (see [57]).

Consequently, in case of a compact KWhler manifold there exists a

better estimation for the first eigenvalue of the Dirac operator;

this case has been investigated in a series of papers by K.D.

Kirchberg (see [681,[691,[701). Moreover, 0. Hijazi proved that if

a compact 8-dimensional manifold admits a Killing spinor, then it

is isometric to the sphere S8 (see [581).

During the last years we investigated the relation between Killing

apinors and other geometric structures on the underlying manifold.

It has turned out that, in case of a compact odd-dimensional mani-

fold, there is a link between Killing apinors and special contact

structures; this observation yields a general construction principle

of compact odd-dimensional Riemannian manifolds with Killing spinors

as well as classification results in dimension n 5,7 (see (41],

[421,[43],[441).

Furthermore, on compact even-dimensional manifolds - at least in

dimension n = 6 - there exists a relation between Killing spinors

and certain non-integrable almost complex structures (see [551).

The complete non-compact Riemannian manifolds with Killing apinors

were classified by H. Baum (see [5],[6],[71) in 1988.

Killing apinors are special solutions of the conformally invariant



field equation

X'VY F = n g(X,Y)D p,
the so-called twistor equation (see [89],[92).

In mathematics, the twistor equation appeared as an integrability

condition for the complex structure on the twistor space of a 4-

dimensional Riemannian manifold (see [21). A. Lichnerowicz (see [89])

started a systematical geometrical investigation of the solutions

of the twistor equation in 1987. In particular, using the solution of

the Yamabe problem he proved that on a compact manifold the space of

all twistor spinors coincides - up to a conformal change of the metric-

with the space of all Killing spinors (see [84]).

Th. Friedrich (see (381) studied the zeros and 'first integrals' of

twistor spinors and their relation to Killing spinors in case of an

arbitrary Riemannian manifold.

In the first chapter of the book we give a short introduction to the

spinor calculus on Riemannian manifolds and the Dirac equation. We

define the notion of Killing and twistor spinors, prove some elementary

geometrical facts of manifolds admitting these kinds of spinors and

investigate the relation between Killing spinors, twistor spinors and

solutions of the Dirac equation. In Chapter 2 we investigate the

properties of twistor spinors in detail. We study special twistor

spinors satisfying the equation

QX'f + n a 0

for a complex function f and the so-called equation (E), introduced

by A. Lichnerowicz.

In Chapter 3 we give an interpretation of twistor spinors as a holo-

morphic linear section on a certain line bundle over the twistor space

of a Riemannian 4-manifold.

The existence of a non-trivial Killing spinor on a Riemannian spin

manifold (Mn,g) implies in particular that(Mn,g) is an Einstein space

with constant scalar curvature R - 4n(n-1)B 2. Hence, the number B

is real or purely imaginary and there are different types of Killing

spinors:
real Killing spinors ( B E IR %{0})
imaginary Killing spinors ( B E i IR' {0
parallel spinors (13 0).

Assuming the completeness of (M,g), real Killing spinors occur only

on compact manifolds and imaginary Killing spinors only on non-compact

manifolds. In the Chapters 4 and 5 compact manifolds with real Killing

spinors are studied.
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If the dimension of M is odd, then Killing spinors are related to

Einstein-Sasaki-structures (Chap. 4), in even dimension Killing

spinors are related to non-integrable almost complex structures

(Chap. 5). In Chapter 6 we present an overview on results about

parallel spinors and Chapter 7 is devoted to the description of

the structure of non-compact complete manifolds with imaginary

Killing spinors.

10



Chapter 1: An Introduction to Killing and Twistor Spinors

In this Chapter we give a short introduction to the spinor calculus

on Riemannian manifolds and the Dirac and twistor equation. In the

first three parts we fix the notations and sum up basic facts

concerning spinors and the Dirac operator on Riemannian manifolds.

For proofs of the stated properties we refer to (4].

In the last two parts we introduce the notion of twistor and

Killings spinors and prove some elementary geometric properties of

manifolds admitting these kinds of spinors.

1.1. The Spin-Group and the Spinor Representation

Let us denote by (e1,...,en) the canonical basis of the Euclidean

space (Rn,< ,>) and by Cliff(Rn) the Clifford algebra of IRn with

the bilinear form - <,> . Cliff(Rn) is an algebra over IR that

is multiplicatively generated by the vectors el,...an with the

relations

ei- ej + ej-ei = -2 chi j i,j = 1,...,n.
In case n = 2m, the complexification Cliffc(Rn) of the Clifford

algebra is isomorphic to the algebra M(2m;C) of all complex

matrices of rank 2m. In case n = 2m+1, Cliffc(Rn) is isomorphic

to M(2m;C) O M(2m;C). In this book we use the following identifi-

cation of Cliffc(Rn) with the matrix algebras mentioned above:

Denote

91 = ( 0 -i) , 92 - CO 0)' E 0 1/' T \ 1 0)
and

C40) 1 if j is odd
it 2 if j is even.

Then an isomorphism

2m: Cliffc(R2m) -') M(2m;C)

is given by the Kronecker product

2m(ej) := E Qx k E Ox g.,,,(j) Ox T Qx .... Qx T (1.1)

[(j-1)/2]-times

j

An isomorphism

.0
2m+l :

Cliffc(IR2m+1) > M(2m;(t) O M(2m;(C)

11



is given by

lt2m+l(ej) 4'2m(e1))
2m

4P2m+1(e2m+1' (i T@ ... xQ T,-i T Q ... O T)

The group Spin(n) is a double covering of the special orthogonal

group SO(n), which is universal iff n'3. Spin(n) can be

realized as a subgroup in Cliff(IRn)

Spin(n) : I xje,IRn , II xjll= 1, k EIN}

Its Lie algebra is the vector space

spin (n) = apanR(ei ej 161 e- j'n) c Cliff(IRn)

with the commutator [v,w] = v-w - W.V.
The map

Spin(n) -* SO(n)

u > 'x (u) )L(u)x := uxu-1 for xelRn

is a double covering of S0(n) with the differential
A*: spin(n) - ) so(n)

ei ej -> 2 Eij,

where

Eij i.j

is the basis of the Lie algebra so(n) of SO(n). If we restrict

the map 0
2m

to Spin(2m), we obtain a 2m-dimensional representa-

tion of Spin(2m), the so-called spinor representation

4) 2mlSpin(2m)
:
Spin(2m) >

GL(C2m)

We denote this representation as well as its representation

space by A 2m: The modul A2. splits into two irreducible unitary

representations 12m a 2m O 'U 2m' given by the eigensubspaces
of the endomorphism to the eigenvalues + im.

Let us denote by u(d)ed:2 the vector

-f-2 E(-' -j , 6
and let

12



u(61) Q ... O u(6m) , bj = 1.u(61,.... 6m) =
m -

(u(61,...,Em) iT 6. _ + 1) is an ON-basis of /, 2m with respect
j=1 2mto the standard scalar product of e . In case n = 2m+1, we

obtain two 2m_dimensional irreducible unitary representations

2m+1 and 0 2m+1 of Spin(2m+l) if we restrict 4)2m+1 to

Spin(2m+1) and project onto the first and second component of

M(2m;C) G+ M(2m;C), respectively.

The isomorphism 4n also gives rise to a multiplication of vectors

and spinors, the so-called Clifford multiplication
(n3 (A)

p Rn ® On > On

x Q u h- s p(x Ox u)=x.u =

(Pn(x)u n even

p is invariant under the Spin(n)-action, where Spin(n) acts on

An by the covering A .

Using (1.1) and (1.2) the following properties are easy to verify:

1) For an element u e- A2m+1 let u - u+ Q u- denote the

decomposition of u with respect to the (non-invariant) sub-

spaces apan(u(E1,...,6m)i IT
J.1

The map
AA

u = u+ O u 6 .0 2m+1 F--7 u : - u+ - u 6 L 2m+1

is an isomorphism of the Spin(2m+l)-representations.

The Clifford multiplication satisfies X -u = _X. U.

2) The map L1 2m+llSpin(2m) )
A

2m

u u

is an isomorphism of the Spin(2m) representations. By this

identification the vector e2m+1 acts on A 2m =/,
2m G0 2m

by

e2m+1*(u® Q U-) _ (-1)mi (u+ - u-).

3) The map

A2m+2 I Spin(i.m+1) A2m+1 (D A2m+1
(o) o o+Ci)® v U

v

is an isomorphism of the Spin(2m+1)-representations.

13



Due to this identification the vector elm+2 acts on
A

2m+1 ® 2m+1 by

e2m+2 . (u Ov) (v +Q u).

1.2. The Spinor Calculus on Riemannian Spin Manifolds

Let (Mn,g) be an n-dimensional oriented Riemannian manifold and

let P (P,p,M;SO(n)) be the bundle of all SO(n)-frames of

(Mn,g). A spinor structure of (Mn,,) is a pair (Q,f) of a

Spin(n)-principal bundle Q = (Q,q,M;Spin(n)) and a continuous

surjective map f: Q -t-P such that the diagramme

Q x Spin(n) ) Q

I f xX t f M

P x SO(n) _ > P

commutes. An oriented Riemannian manifold (M,g) admits a spinor

structure iff the second Stiefel-Whitney class w2(M) vanishes..

In case w2(M) = 0, the isomorphy classes of spinor structures are

classified by the first cohomology group H1(M;72). An oriented

Riemannian manifold with a spinor structure (Q,f) is called a

spin manifold. The complex vector bundle

S: Q XSpin(n) 'on
associated with the Spin(n)-principal bundle Q by means of the

spinor representation an is called a spinor bundle of (Mn,g).

By we denote the complex scalar product on S defined by

the canonical hermitian product on An and by

(.,.) := Re .<.,.> the corresponding real scalar product on S.

A smooth section ce'I'(S) of S is called a spinor field on

(M,g).

In case of even dimension n = 2m, the spinor bundle S splits

into two subbundles S - S+ Q+ S-

S± := Q xSpin(2m) U 2m'

which we call the positive and negative part of S.

In odd dimension n we denote by S the bundle S:= Q xSpin(n) Len'

which is isomorphic to the spinor bundle S by

S S

(q , u't-- [q, u3 .

14



By p : TM Qx S > S

X Qx c? t ) X-tF

we denote the Clifford multiplication on the bundle level, which is

the bundle morphism defined by the Clifford multiplications on the

fibres. In case of even n, p exchanges the positive and negative

part of S. In case of odd dimension we have X cce

The Clifford multiplication can be extended to k-forms. Each k-form

W e c2 k(M), 1fik'n, acts as a bundle morphism on the spinor bundle

S, which is defined by the local formula

161 .,-1
k
fin

ta(si ,...,si )si
1 k 1 k

,

where (sl,...,sn) is a local ON-basis of (M,g). In this book we

often identify the tangent bundle TM with the cotangent bundle T*M

by means of the metric g

TM T*M

X --> g(X,.).
In particular, the Clifford multiplication by a vector is the same

as that by the dual covector . Now, we list some properties of the

Clifford multiplication which are easy to verify by the definition.

1) If ef (S) is a spinor field without zeros and x E %(m) a

vector field on M, then an equation of the form X. 'f = 0

provides X = 0.

2) For the Clifford multiplication,

Y-X = -2g(X,Y) idS

X = W W

are satisfied, where X,Y are vector fields and fa is a k-form

on M.

3) With respect to the scalar product in S we have

X'Yf> , X E 'A(M) (1.5)
(-1)k(k+1)I2 1,L?, L, 4t> ,WE k(M) (1.6)

(X'Y , g(X,Y)I(I 2 (1.7)

The Levi-Civita connection V M on (M,g) defines a covariant

derivative V S :I^(S) ) (TM Qx S) in S, the so-called spinor

derivative. Locally, 7
S is given by

X(p) + 21ik<ldn kl(X)sk.sl. (1.8)

15



where L
M

kl
g(G sk,sl) are the connection forms of Q M

with

respect to a local ON-basis ('81,...Isn). For even n the spinor

derivative respects the positive and neQtive part of the spinor

bundle S. In odd dimension we have pXq VXc.P . The spinor
derivative satisfies the following rules:

x. 4> _ <7X4 -,P> +<(. VS
X

P> (1.9)

,76(y- ) =OXY.t? + Y VXCQ (1.10)

-r/MW-q+/0.OXcp , (1.11)

where X,Y are vector fields, W a k-form, and Y ,'.p spinor
fields on M.

Let us denote the curvature tensor in (S, 0 S) by '02S:A2M > End(S)

-kS(X.Y) - VSVS -V VX -0 [X,Y]
The endomorphism RS(X,Y) on S can be expressed by the curvature

of (M,g). Let us consider the curvature tensor of (M,g) to be

a bundle morphism ': A2M - /\2M on the bundle of 2-forms /A2M

9 (cG ln6 j):- Ri kl(pkn6 1,

k4l j

where Rijkl =
MgMM(si,sj)sk,sl)

are the components of the curva-

ture tensor iQ of (M,g) and (6 1, ...'G n) is the dual basis

to the ON-basis (sl,...,sn). Furthermore, we consider the Ricci-

tensor of (M,g) to be a bundle map Ric: TM-TM of the tangent
bundle

n
Ric(X) := Z_ Ric(X,sk)ek ,

k-1

Then, using the local formula (1.8) for the spinor derivative 7 S

we obtain

-0(X,Y)q - 1 -Q (X.Y) . l (1.12)

After applying the first Bianci-identity for the curvature tensor

'zM of (M,g), this relation yields

Z Ric(X)-cQ (1.13)
k-1

Now we recall the behaviour of the spinor calculus by conformal change

of the metric g (comp. [41, 3.2.4.). Let (M,g) be a spin mani-

fold and let g:- 6 6 eo(M), be a conformally equivalent

metric. Then there is an identification ... of the spinor bundle S

of (M,g) and S of (M,g) such that

16



ti

X6-1/2 -F+
2

1/2),p

+ 2 X(Co-1/2) x

where X
=6-1/2X for 11 XETM.

(1.14)

(1.15)

Finally, we collect some formulas for the spinor calculus on sub-

manifolds of codimension one and on warped products with intervals.

Let (Mn,g) be a spin manifold with spinor structure (Q,f) and

spinor bundle S and let Fn-1 c -M be an oriented submanifold of

codimension one with induced metric. We denote by 'g the normal

vector field on Fn-1 given by the orientation of F and M.

The reduction of QIF with respect to "g induces a spinor struc-

ture (QF,fF) on
(Fn-1,

91F). Let SF:= QF xSpin(n-1) An-1 denote

the spinor bundle of (F,gIF). Applying the algebraic properties of

the spinor representation restricted to a Spin group of codimension

one (Chapter 1.1) and formula (1.8) for the spinor derivative, one

obtains

1.) If n = 2m+1, the restriction of the spinor bundle S to
Fn-1

is isomorphic to the bundle SF, where g acts on SF by

I' (`S`O'P ) _ (-1)mi(cP + -'Q -) (1.16)

and the spinor derivative of <f GIr(S) is given by
S

VX<P=OX('FIF) 12VX1.1.',> (1.17)

for all XE TxF.

2.) If n = 2m+2, the restriction of the spinor bundle S to
Fn-1

Is isomorphic to the bundle SF O+ SF, where *9 acts on

SF Q SF by

If,QY2) (1.x8)

and the spinor derivative of is given by
S _S

Xq=
for all X GTXF (with the denotation <QIF =<P1 ® "F2).

Now, let (Fn-1,h) be a spin manifold with the spinor structure

(QF,fF), I = (a,b) SIR be an open interval and 6 6 Ga0(I,(0,o0))

be a smooth positive function. We consider the warped product

(Mn,g) := Fn-1 6 x I := (F x I, 6 (t)h +Q dt2).

2 Baum, Twistors and Killing Spinors 17



(Mn,g) admits a spinor structure (Q,f) which reduces itself with

respect to -rs(x,t) = to a Spin( n-1)-structure (Q,f) realizing,

over each fibre FX{t}, the spinor structure of (F,6 that

is conformally equivalent to the spinor structure (QF,fF) of

(F,h). Let 91 : F x I ->F be the projection. For a section

6r-(4r*SF) we denote by cite f (SF) the spinor field

'Pt(x) :=c'(x,t). For a vector field X on F let X be the
1

vector field X(x,t) :=G (t)
2

X(x) on M. On the warped product

M = F x I the Levi-Civita connection satisfies
1

g(VX sd` se) =rO h(V a s

g(V sue. S) _ - 6-lGl
h(s,,,,X)

9(G sue,) = 9(0-g so,sB) = 0,

where (sl,...Isn-1) denotes a local ON-basis on (F,h) and

X E TxF. Applying the formulas (1.14) and (1.15) for the spinor

calculus on conformally equivalent manifolds we obtain the following

relations between the spinor bundles of (Fn-1,h) and

(Mn,g) := F
49
x I:

1.) If n = 2m+1, the spinor bundle S of (M,g) can be identified

with the bundle Jr*SF by

SF > S xSpin(2m) 2m+l

LQ=[q,u(x,t)1 :=[9,u(x,t)]

where q denotes the element of Q(x,t) corresponding to

q c-- QF,x
with respect to the conformal equivalence of QF and

QIF x (t By this identification the Clifford multiplication

satisfies
N
X(x,t) <Q(x,t) = X(x) 6 T

x
F

(c ) _ (-1)mi of
and the spinor derivative is given by

VP 6-1/2 VXFTt - a6-16t
, X eTxF

(1.20)

(1.21)

2.) If n - 2m+2, the spinor bundle S of (M,g) can be identi-

fied with the bundle T* SF O+ T* SF by
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1_*SF O+ * SF > S = Q XSpin(n-1)
n

X102 E----i, 'F:=q10 r2
=[9,u(x,t)] Q[q,v(x,t)7 = [9,(0) Qx u(x,t)+(i) Qx v(x,01-

By this identification the Clifford multiplication satisfies

x(x,t) y)(x,t) X(X)'Flt
(x) (D x(x

), Xe.TXF

(-1)mi (`'x'20 "f1)
and the spinor derivative is given by

QQX T2 6 16'X Xe TXF

v =

(1.22)

(1.23)

In the following chapters we will often omit the symbols S and M

in the covariant derivatives V S and 7 M for simplicity and denote

all covariant derivatives by V .

1.3. The Dirac Operator of a Riemannian Spin Manifold

Let (Mn,g) be a Riemannian spin manifold with the spinor bundle S.

The Dirac operator of (Mn,g) is the first order differential

operator defined by

D: f"(S) V
S

;I r (TM x0 S)- ->r(S).

Locally D can be expressed by
n

D = ak VS. , (1.24)
k-1 k

where (81,...,sn) is a local ON-basis of (Mn,g).

Let f be a function, X a vector field and w a k-form on M.

Using (1.24), (1.3), (1.4), (1.10) and (1.11) the following commuting

rules are easy to verify

D(fT) - f Dq + grad n (1.25)
2QXcp+ j sj- (1.26)

D(w }')=(-1)kw D +(d+d)wj (s j w) /s j (1.27)

where d is the exterior differential and o< its adjoint.
The Dirac operator is elliptic and formally selfadjoint on the space

re(s) of smooth sections with compact support with respect to the

scalar product
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S <<.p(x),V(x)> dM.
M

If (Mn,g) is complete, D is essentially selfadjoint in the space

of L2-sections L2(S) defined by the completion of (r c(S),<,> ).

If M is compact, the spectrum of 0 (as an elliptic and formally

selfadjoint operator) contains only discrete real eigenvalues of

finite multiplicity (see [91], Chap. 11). In case of even dimension

n, D exchanges the positive and negative part of S. Hence, for an

eigenspinor =cp®Q t -E r(S+ +Q S-) to an eigenvalue 1 6IR

we have

D'P+ = %1F- and D(Q CP
+

and, therefore,

D(cQ+-(P) = (-x)
Hence, the spectrum of D on a compact manifold in case of even

dimension is symmetric to zero.

In 1963 A. Lichnerowicz ([81]) proved the following Weitzenb6ck

formula for the square of the Dirac operator

D2=gR+AS,
where R denotes the scalar curvature of (M,g) and , S the

Bochner-Laplace operator of 0
S

OS:=7S*°VS - (V V + div(sk)OS ).
k=1 k k k

Let f 6.C°o(M) be a smooth real-valued function and
17f:r' (S) -'r(TM Qx S) the metric covariant derivative on S

defined by

Then we have the following generalization of Lichnerowicz' formula:

Theorem 1 ([32]):

(D-f)2 = A f + R + (1-n) f2, (1.28)

where L1 f denotes the Bochner-Laplace operator of the covariant

derivative V f.

Proof: From (1.25) it follows that

(D-f) 2 = D2 - 2fD - grad f- + f2.
Using the Lichnerowicz formula for D2 we obtain

(D-f)2 =0S + 'R - 2fD - grad f- + f2.
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Applying the rules (1.9) and (1.10) it follows for the Bochner-

Laplace operators LiS and /, f

Af =QS - 2fD - grad f- + nf2.
Hence

(D-f)2 = A f + 4 R + (1-n)f2.

Theorem 1 implies the following Corollary for the spectrum of the

Dirac operator on compact manifolds.

Corollary 1 ([32]): Let (Mn,g) be a compact Riemannian spin

manifold of positive scalar curvature R >0. Then

1) The first positive and negative eigenvalue A+ and X- of D

satisfy the estimates

Ron
+ 'Z n I ,

where R0 is the minimum of the scalar curvature R.

Ron 1 Ron2) If the lowest bound +
'n-

or - is an eigenvalue of

D and Ce a corresponding eigenspinor, then cp satisfies the

differential equation

VX'
+ 2 X , T = 0

n(n-1)
reap. - R

OX
_ 1 o. X. -- 0

n(n1)
for all vector fields X on M.

Proof: Assume that ) is an eigenvalue of D with :k2g 4 Ro
'n-

and Ce 0 is an eigenspinor to k . By integration of (1.28) with

the function f =

n

we obtain

dM {('R + +jOnqj2} dM

and because of DIP = Alp

0- f j(4 R + I 2), 2+1 V n I 2 t dM. (*)

In case 'x2 L 2 R 0 'n-
contradiction.

equation (*) requires CP : 0 , which is a
contradiction. In case 2

4 R0
nom (*) particularly yields

p nT : 0. This proves the second statement.

Let (Mn,g), n43, be a compact connected spin manifold. In [57]

0. Hijazi proved a lower estimate for the elgenvalues 1..of the
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Dirac operator of (Mn,g) using a conformal invariant bound:

7.2 at nn-1) Nl 3 (n--1) R"
where p1 is the first eigenvalue of the conformal scalar Laplacian

L 4 D+ R.

If l is an eigenvalue of D satisfying 1i ITn-17 p1>0, then

(M,g) has constant scalar curvature R = pl, i.e. the two bounds

are equal.

A compact spin manifold with positive scalar curvature has no

harmonic spinors (by a harmonic spinor we mean a non-trivial

element of `2t :_ cf'ef (S)I Dq 2 01).

In general, the dimension of 'A depends on the metric as well as

on the chosen spinor structure (see [ 611).

If g - 6 g is a conformally equivalent metric, the Dirac operator

D of (M,g) satisfies

'n- I_ nn±1

D(c) = 6 4 D(6 4

(cf. [61] or [4] Chap. 3.2.4).

(1.29)

Thus, the dimension of the space of harmonic spinors is a conformal

invariant.

1.4. The Twistor Operator of a Riemannian Spin Manifold

Let (Mn,g) be a Riemannian spin manifold with the spinor bundle

S and let p: TM (3 S > S be the Clifford multiplication.

Then ker p is a subbundle of TM Qx S and there exists a pro-

jection p; TM O S > ker p onto ker p given by the formula

p(XOxCP) X % 71L 'IVs® z ak X.C
k=1

where n) is a local ON-basis.

Definition 1: The twistor operator £ of (M,g) is the composition

of the spinor derivative '/S and the projection p

p o VS: (S) :?r(TM Ox S)- -D f (Ker p).

Locally we have
n !r

p p ( sk ®'8k )

sk (S)JV-kcf* in 8k
D !k-l
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Definition 2: A spinor field 6f(S) is called a twistor spinor

if cP lies in the kernel of the twistor operator v!) .

Theorem 2: Let cpc r(S). The following conditions are equivalent:

1) cp is a twistor spinor

2) IF satisfies the so-called twistor equation

OXq + 0 (1.31)

for all vector fields X.

3) For all vector fields X,Y it holds

Y- OX? = n g(X,Y)Dcf

4) The spinor field

X. GX`k'

does not depend on the unit vector field X.

(1.32)

Proof: Equation (1.30) shows that the condition .01P2 0 is equi-

valent to the twistor equation

VXq + 1 X- D4 a 0 for all X e X. (M).

Multiplying this by a vector field we have
Y - QXcf + 1 0 and

X- 9Yce + n 0.

Using condition (1.3), the sum of these equations provides (1.32).

Conversely, let (1.32) be valid. We multiply (1.32) for Y = sj by

sj and sum up over j = 1,...,n. Then

n sj-X'Qs`P - nVXcp

X-D`'- 2 0Xf n17XIf
X-DcQ- (n+2)VX( .

This shows (1.31). Finally, from (1.32) it follows that

X-VX`P = 1 D If

for all unit vector fields X. Conversely, if X- V XW do not

depend on the unit vector field X, we obtain, by setting

X-VX4.' ,

Dc' - n' , and Vx(f = - X- X-V Xf = - X''`Y

This provides (1.31).
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Let 7 6f (S) be an arbitrary spinor field on (M,g). By

of E e(M) we denote the function

uC(x):=<<4(x), (f (x)> ,

which we call the length function of (P . By T(P 6 3E.((M) we under-

stand the vector field
n

where (a.,...on) is a local ON-basis.

The following formulas are convenient for the calculus with twistor

spinors.

Theorem 3 ([83]): Let E.r'(S) be a twistor spinor.

Then the following conditions are satisfied:

1 n
D2cf = 3 R nn-T cp (1.33)

QX(Dcf) _ 1T 2J (R 2Tn-1) X-Ric(X)). (1.34)

R ulf - 2 < Dy ,D10 (1.35)Luq _

grad u, - - n Tq (1.36)

div(Tc ) <Dcf,Dq'>+ nn R u . (1.37)

Here R denotes the scalar curvature and Ric: TM -+ TM the Ricci

curvature of (Mn,g).

Proof: Let x M. In the following calculations we use an ON-basis

(all ...Isn) arising from one in T
x
M by parallel displacement

along geodesics. Then

div(sj)(x) - o, [si,sj](x) = 0 and (V sj)(x) - 0.

If we differentiate the twistor equation (1.31) and use rule (1.10),

we obtain in xE M

O psj 178JLP +
-1

-ASf +1 D2If
Applying the WeitzenbSck formula D2 = L1S + 1 R it follows

nD2 R

Furthermore, let X be a local vector field arising from a vector

in TxM by parallel displacement along geodesics. Then, the twistor

equation implies in x r- M
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asjDX'P +
n

0 and

QXVsj`'P+ 1 sj'VX(DP) = 0

Hence,

P,S(X,sj)P n sj- QX(D ) + 1 X- Vs (Dc?).
j

Using condition (1.13) we obtain

-2 sj S(X,sj)q -
j=1

_
-2VX(D(f)

- 3 s.-X- Q (Dc{')
J-1 aj

_ -2 VX(D(f) + ? X-0 2d? + 1 QX(D,Y).

Applying D2cQ= 4 R nni it follows

OX(D T) '1(n-2) {'z .n 1) X-Ric(X)

For the Laplacian of the length-function uq -<(? ,y> formula
(1.9) provides

n n
out j i aa(u j:117- 9 v. CP,(?>+< ' Vaj'>3

z

Using the twistor equation (1.31), the Lichnerowic2-formula

D2 L1S .+ 1 R and (1.33) we obtain

Au If - 4 < aj-Dt? a D'P>

7-n 1) u( - ?/,DT DW>

Furthermore, the twistor equation yields
n

grad uc E sj(ucp)aj sjT>j ej

- 2 Z sj

n sj

g TT

The last two equations give

div(Tcp) - div(grad uqq) _ 9 Q ucP

R n T ucf -<Dcf,D(P>
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Now we can prove a further condition for cP being a twistor spinor.

Let K: TM -j TM denote the bundle map

K(X):=
n

X - Ric(X) }

We consider the bundle E:= S Q+ S and the covariant derivative

E in E defined by

/0 X K X
vX '_

Theorem 4 ([38]): For any twistor spinor c+)elr(s) it holds that

_)E 0. Conversely, if ( w
/
E r(E) is 0

E_parallel, then
DPI

is a twistor spinor and = DLF.

Proof: Let gr(S) be a twistor spinor. Then

\
QVXcQ+ n X'D`P

OX / n
Dq X DcQ - 2K(X)'(

/
The twistor equation and formula (1.34) provide Q X / cP 1 = 0.

Dcp

Now, let (p) e. ('(E) be a VE_parallel section : \ /
V E i 0. Then, in particular, by definition of 'V E we have,

QX + X-q - 0 for all vector fields X.

Multiplying this by X and using (1.3) and (1.24) this shows that

D LP ' and that t is a solution of the twistor equation (1.31).

By Theorem 4 the twistor spinors correspond to the GE'parallel

sections of the bundle E. Hence, a twistor spinor cf1 is defined

by its values c{'(mo), D '(mo) at some points moC-.M. In particular,

we obtain

Corollary 2: The dimension of the space of twistor spinors on a

connected, n-dimensional Riemannian manifold is less than or equal

to

Corollary 3: Let (P be a twistor spinor on a connected Riemannian

manifold such that cQ and O f vanish at some point mo C-.M. Then

the twistor f is trivial, i.e. r 0.
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Let us denote the components of the tensor K introduced above by

Kij = n'1 j n-3) gij - Rij . The Weyl-tensor W is given by the

formula

Wo_B,e S s R OCB,ecr - gBd Kd- go(.tKBcS+

+ g8ar-K 5+ gourKB,a

We understand the curvature tensor '(}, as well as the Weyl-tensor W

as endomorphisms of A2Mn by the rule

G'05 A, QS 5 Ri jkl6 k),6 1
k <1

W(6 in6 j) _ r Wi 6 kn61.
k<1

Using this notation a straightforward calculation provides for the

curvature tensor V' E of the covariant derivative V E in the

bundle E:

W(Xny)
,gE(X'y)(w)

W(XnY)W

Theorem 5: Let q 6 Ker. be a twistor spinor on a Riemannian

manifold Mn, then, for any 2-form 'q- Y A Z and any vector X, we

have

W(n'l)`T= 0 (1.38)
f+ 0 (1.39)

-2X {(p ZK)(Y)-(VyK)(Z))'
(1.40)

+

Proof: The equations (1.38) and (1.30) follow directly from the

formula for the curvature tensor 32E and Theorem 4. We differentiate

the equation

W(^1)'Y 0

with respect to X and obtain - using (1.38) and (1.39) -

(VXW)(q)' T Vx(W('r(, ))' P - W( VX`r) f
VX(W('q 0

W('qX
-w("L)OX f

_ 5 W('j

From formula (1.4) we obtain the following commuting rule for a

+ n((VyK)(X)-(DXK)(Y))
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2-form w and a vector X

=(X w)+ 2(X .__i w),

Hence

(10 XW)(71) !X-W(`Q)-D( + ?(X_..W(-

3(X- W('7 ) Df

We derive now a well-known relation between the covariant derivatives

of the Weyl-tensor W and the tensor K. Consider the Bianchi

identity

ViR)ko(.e + aj RkiocB +Vk RijaB = 0.
Contracting this equation with respect to i = 6 we obtain

V6 Rjko(B - Vj R ka+Vk Rja = 0.

Contracting again with respect to j = oc it follows

Vk(R) ° 2V6Rk6.
Now we calculate

oc,Ko(B = of ( 2(n-17 O(6 - VoCRot6)

))==
1 2(Vn-17 dab - 1 VB.R

`ln 17

Using the latter formula as well as the definition of the Weyl-

tensor W a direct computation yields

oaWB_ro{a = (3-n) (V BKTj- V.tKBF )

A Riemannian manifold (Mn,g) is called conformally symmetric if

VW=0

(compare [1071). The above formula particularly proves that

( VXK) (Y) - (VYK) (X) = 0

holds in any conformally symmetric space.

Theorem 6:

1) Let (Mn,g) be a conformally symmetric Riemannian manifold with

a non-trivial twistor spinor c(' and suppose that Dcp vanishes

on a discrete set only. Then M is a conformally flat space, i.e.

W 5 0.
2) A connected three-dimensional Riemannian manifold with a non-

trivial twistor is conformally flat.
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Proof: Suppose VW - 0. By Theorem 5, formula (1.40), and the

previous calculation we hate

(X __j 0

for any vector X and any 2-form '1 2. Since Dqq vanishes only on

a discrete set, this yields that the 1-form X _,
W(,7?2) equals zero

for any vector X, i.e. W( 2) = 0 for any 2-form X22.

In case M is a 3-dimensional manifold, we have W = 0 and,

consequently, the integrability condition (1.39) of Theorem 5

implies

(r/XK)(Y) - (VyK)(X) - 0

for all vector fields X,Y on the set {ma M3Ic'(m) 4 0}. This set

is dense in M3 (see Chapter 2 of this book) and therefore this

equation holds in all points of M3. On the other hand, the last

equation in case of a 3-dimensional Riemannian.manifold is equivalent

to the conformal flatness of the space ([94]).

Example 1: Let us consider the Euclidean space Mn - IRn and a

twistor spinor if :IRn > pn on it. According to Theorem 3,

formula (1.34), we have 0(D:? ) = 0, i.e. Dcp -: (P1 is constant.
Now we integrate the twistor equation

0-OX(P+nX'Dq -V, P+n X 11
along the line 4 sxl Oi-slfi1; and obtain

1..cf'(x) - c0(o) - - 1 x-
Consequently, the set of all twistor apinors on IRn is given by

(x) _ - 1 X. nTo n 1 fn

with q o' 'P1S
v
n'

In particular, we have dim Kero9 - 2

Moreover, any twistor spinor on IRn vanishes at most at one point,

since x 1 - 0 implies x - 0 or cQ1 0.

The twistor equation is conformally invariant in the following

sense: Let g -49g be a conformally equivalent metric to g and

let 6 be the twistor operator of (M,g). Then we have

Theorem 7: For each spinor field TEf (S),

.Zq 1.0 -1/4 "(1 ) .

In particular, cf e r(s) is a twiator spinor on (M,g) iff

6
1/4

. f (g) is a twiator spinor on (M,g).
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Proof: Using (1.14), (1.15) and (1.29) we obtain by a straight-

forward calculation

-1/4 )+ n X- D(6 -1/4')X n X , ptp =6 -1/4 1 VSX(G

With (1.30) the statement follows.

1.5. Killing Spinors on Riemannian Spin Manifolds

A special example of twistor epinors are the so-called Killing

spinors.

Definition 3: A spinor field 9'r(S) is called a Killing spinor

to the Killing number B ¢ if the differential equation

7
X

= BX 'P (1.41)

is satisfied for all vector fields X on M.

By 3C(Mn,g)B we denote the space of all Killing spinors of

(Mn,g) to the Killing number B. Obviously, each Killing spinor is

a twistor spinor satisfying formally the eigenvalue equation

D J =-nBLe for the Dirac operator. Since Killing spinors are parallel

with respect to the covariant derivative OX - BX' on the spinor

bundle, a non-trivial Killing spinor `P on a connected manifold has

no zeros. In particular, its length function is positive.

If cQ is a Killing spinor to a real Killing number B, the real

vector field
n

Xq :-
Jul

is a Killing vector field (if it is not identically zero):

From

ly(X.f) i T{<VYT,sj'T1+LT,sjV '?? SiJul
= iB{ sj1

Jul

it follows for the Lie derivative that

CeXTg(Y,Z) - g(VYXq,,Z) + g(Y,V1Xc )
iB{<(? ,(Z +<cp, CP> 3

0.

This is the origin of the name Killing spinor.

There is a fundamental geometric condition for (Mn,g) admitting

Killing spinors:
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Theorem 8 [32]: Let (Mn,g) be a connected spin manifold with a

non-trivial Killing spinor c' 7C(M,g)B. Then (Mn'.) is an

Einstein space with the scalar curvature R - 4n(n-1)82.

Proof: Let .QE1.(M,g)5 be a non-trivial Killing spinor. Then the

Killing equation (1.41) yields for the curvature tensor in S

6
S(X,Y)tP- VXVyq-V X'f-V[X,Y]CP

.VX(BY-'P) - Vy(BX-,P) - B[ X,Y]'cQ
- B(v XY-VyX -[X,Y]).4P +

2B2(Y X+g(X,Y) ) q'

Using (1.13) we obtain for the Ricci tensor

Ric(X) `P - -2 z ak.1ZS(X,sk)cP
k-1

- -482 s
k

k-(ak X+g(X,sk)W

-
482(n-1)X1

. P

Since ' has no zeros,

Ric(X) - 4B2(n-1)X.

Therefore, (Mn,g) is an Einstein space of constant scalar

curvature R - 4B2n(n-1).

Let qc-"MM,g)8 be a non-trivial Killing spinor. In particular,

Theorem 8 shows that the Killing number B is either real or

imaginary. In case BeIR' {O , we call cf a real Killing spinor;

in case B c iUR\ J01, we call `P an imaginary Killing spinor;
in case B 0, cp is of course a -parallel spinor field.

There is an important difference between the real and the imaginary

case.

Theorem 9: Let (Mn,g) be a complete connected spin manifold with

a non-trivial Killing spinor cP. If ce is real, (Mn,g) is a

compact Einstein space of positive scalar curvature. If cP is

imaginary, (Mn,g) is a non-compact Einstein space of negative

scalar curvature.

Proof: Let cP be real. Then, on account of Theorem 8, (Mn,g) is

a complete Einstein space of positive scalar curvature and the

Theorem of Myers (V41, Chap. VIII.5) provides the compactness of M.
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Let c? e,K(M,g)p1 be imaginary and assume that M is compact. Then

satisfies the eigenvalue equation D2cf - -n2p2cf and

0 6 )<DC(),Dq> dM M <D f, f> dM = -n2p2
MC>

dM
M

implies cQ = 0.

Theorem 9 and Corollary 1 show that the compact manifolds admitting

non-trivial Killing spinors are just those compact manifolds of

positive scalar curvature R that have the smallest possible first

eigenvalue ) or 'A_ of the Dirac operator D: cp . r (S) is an

eigena inor of D to the eigenvalue
R n

iff (f is a non-trivial Killing epinor to the Killing

number 1 F0
Moreover, in the compact case all twistor spinors can be obtained

by Killing spinors using a conformal deformation of the metric.

Theorem 10 ([83]): Let (Mn,g) be a compact Riemannian manifold.

Then there exists a conformal equivalent Riemannian metric

of constant scalar curvature R such that

1/46 Ker,` (M,9)1
n n-

R 07C(M,9) 1 R
n-

Proof: From the solution of the Yamabe-problem one knows that there

exists a conformal change g - of the metric g such that the

Riemannian manifold (M,g) has constant scalar curvature R. By

Theorem 7 we have for the twistor spinors on (M,g) and (M g)

KerD.

According to Theorem 3, formulae (1.33), each twistor spinor cQ of

(M, 5) is an eigenspinor of D2 to the eigenvalue 14 R nom. Since

Ker(D2-X 2) - Ker(D+ ) ) O+ Ker(D-'). )

holds on a compact manifold for all .A GIR, the statement follows

from the above mentioned connection between Killing spinors and

eigenvalues of the Dirac operator on compact manifolds.

Theorem 11 ([83],(57]): Let (Mn,g) be a connected spin manifold

admitting a non-trivial Killing spinorgq to the Killing number

B pf 0. Then, there are no non-trivial parallel k-forms, k O,n,

on Mn. In particular, such a manifold is non-KShlerian. If w is

a harmonic k-form and M is compact, then 0.
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Proof: Let Le,4 0 be a Killing spinor to the Killing number B 4 0

and let w be a parallel k-form, k id O,n.

In particular, w is harmonic and the application of formula

(1.27) provides
n

D(w. )) _ w).V
J=1 J j

_ (-1)k+in6w 'P - 2B > (s . J w)s .
J J

= (-1)k+1B(n-2k)w 'Q

This shows that D2(w-'P) = B2(n-2k)2

w . If M is compact, the smallest eigenvalue of D2 is n262

(Corollary 1, Theorem 8). Hence, in this case 0 follows

for each harmonic form w.

Using D2 . 1 R + d S and R - 4n(n-1)62, (1) yields

82.{(n-2k)2-n(n-1)Y w"P.

On the other hand, by (1.11) we have for each parallel form

VS(w.y?) - w,VS4 = w.Qi p

and, hence,

AS(W'`Q) = 4 Rcp)

=

Since k f O,n, (ii) and (III) provide w. = 0.

Differentiating 0 we obtain

W' X'Q= 0.

Using (1.4) it follows

0 = w'X.cP +2(X.w)''?J
2(-1)k I(X- w) - 'P I .

Hence, (X.. w)-'? - 0 for all vector fields X on M. Using
V y(X__w) VyX_,w + X. Vyw and differentiating again, we obtain

0 = lx
2
MI-0-0 . VX

2
(Xi_ (Xi.w) Vx

2
'P

- (V Xi_ w) '' + B(xI W)' X2. Q
4'7- 2(-1) k-1B {X2_ (Xi w). 1

Consequently, (X2. (X1.w))''P - 0 for all vector fields Xi,X2

on M. By further differentiation in the same way one obtains

0

for all vector fields Xl,...,Xk on M.
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This implies w = 0. A Kehler form is parallel, hence (M,g) cannot

be Kehlerian.

Remark: In [681,[691 and [70] , K.-D. Kirchberg studied the eigen-

values of the Dirac operator on compact Kehler manifolds (Mn,g)

of positive scalar curvature R. He proved the following lower

bound for the eigenvalues:

1)13 2
nn2

R. (*)

where R0 is the minimum of R. If
2 =

7
nn2 Ro

is an eigen-

value of D2, the complex dimension m (n=2m) of M is odd and.

(M,g) is Kehler-Einstein. In case of even complex dimension m,

the eigenvalues are bounded by

AI R.
. (**)

The estimations (*) and (**) are sharp in the sense that there are

Kehler manifolds with equality in (*) and (**). In case m = 1 and

m = 3, the only Kehler manifolds with equality in (*) are the

sphere S2 = CP1, the complex projective space CP3 and the flag

manifold F(C3). For the 4-dimensional Grassmannian manifold

G2,4 = S2 x S2 the equality in (**) is valid.

Finally we prove further geometric conditions for a manifold (M,g)

admitting Killing spinors.

Theorem 12: Let q)E'1((Mn,g)5 be a Killing spinor on (Mn,g).

Then, for the curvature tensor 9, and the Weyl tensor W the

following conditions are satisfied:

W(,YL)'y - 0 (1.42)

(VXw)(,[)-'4 - 1-2B (1.43)

1 ('q) + 452'7.3. q = 0 (1.44)

(VX'R,)(11).LP = -2Btx-(R.('v[)+4a2lviII p (1.45)

for all 2-forms and all vectors X.

Proof: Each Killing spinor is a twistor spinor. Hence equation

(1.42) follows from formula (1.38) of Theorem 6. Since the Killing

spinor cP satisfies D(P - the formulas (1.39) and (1.30)

from Theorem 5 show that

((DZK)(Y) - (VyK)(Z))'T- 0
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for all vectors Y and Z. Thus, (1.43) follows from (1.40).

According to Theorem 8 (Mn,g) is an Einstein space of scalar

curvature R - 4n(n-1)B2. Therefore, the components of the Weyl

tensor with respect to an ON-basis are

Wijkl - Rijkl + 482(cyik djl- o5il djk).

Hence, the Weyl-tensor and the curvature tensor considered to be

bundle maps on A 2M are connected by

W(,q ) -R (1) + 4B2 ,

Furthermore, we obtain

(Q XW)() . VX(W(')) - W( °X'q

VX(6t

(VXn)( ).
Thus, the equations (1.42) and (1.43) provide (1.44) and (1.45).

Theorem 13: Let (Mn,g) be a connected spin manifold with a non-

trivial Killing spinor to the Killing number B it 0. Then (M,g)

is locally irreducible. If (M,g) is locally symmetric or the

dimension of M is not greater than 4, then (M,g) is a space of

constant sectional curvature 482.

Proof: Let cQ E X(Mn,g)B be a non-trivial Killing spinor. Let us

assume that (M,g) is locally reducible in x 6M. Then there exists

an open neighbourhood U of x, which is isometric to a Riemannian

product U1 x U2. For the 1-forms 6 1 and 6 2 on U1 and U2,

respectively, we have `0Z(61A62) - 0 and (9X ) (61A62) - 0
for all vectors X tangent to U1 or U2 . Formula (1.45) implies

-883(X_., (61A62)).C a 0 on U. Hence, Z ,q Z 0 for all vector
fields Z on U, which provides q m 0 on U - a contradiction.

Now we assume (M,g) to be locally symmetric, i.e. 7'A % 0. Then

(1.45) implies

{X+ 482 0

for all vectors X and all 2-forms 'r` . Since f has no zeros, we

even obtain

11Z (n) + 4821 0

for all 2-forms . Hence, (Mn,g) is a space of constant sectional

curvature 482.

Now, suppose for the dimension n of M: nft4.An Einstein space of
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dimension n43 has constant sectional curvature. It remains to

prove the statement in case n=4. In dimension 4 the Weyl tensor splits

into a positive and a negative part

W

with respect to the decomposition of A2M in the subspace of self-

dual and anti-selfdual 2-forms

A2M =AM O+ A
2M

.

For a 4-dimensional Einstein space there exists an ON-basis

(all ...,s4) in each tangent space T
x
M such that the Weyl tensor

W is, with respect to the basis

(s1 n a2's1 n 8 3'a1 A 3 4's3 A s41S 4& a2' 82 As3) , of the form

W(x) R( + ( B A

where
x1 o o

N1
O 0

A = _ _0 2 0
B= 0 N2 0 6 +R'

0 0 a3 0 0 p3

N1 + N2 + N3 s 0 and
-11

2 + T3 R

(cf. [97]). Furthermore,

W+(x) = 0 iff )L
k
+ pk = - R(x), k-1,2,3

W_(x) - 0 iff Ak - Nk = - I R(x), ks1,2,3

(cf. [331, § 1). An even form respects the positive and negative part

of the spinor bundle. Hence, from (1.42) it follows for the Killing

spinor cp =t?+ O+ that
0 (i,j) - (1,2),(1,3),(l,4).

Applying formula (1.1) for the Clifford-multiplication, in case

+(x) il 0 these equations give the algebraic condition

det((- R 1 - (l k+Nk))E) = 0 k-1,2,3

and, in case Q (x) 0, the condition

det((- k-Nk))E) = 0 k-1,2,3.

This implies W+(x) = 0 if q $(x) A 0. Now, from the Killing

equation one concludes

S/X + s B. *f and VXT - B X,q)+.
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Since is non-trivial and B 3' 0, this shows that cQ+ as well

as are non-trivial spinor fields on M.

Both spinors,
+

and cf -, are twistor spinors on (M,g), hence

their zero-set in M is discrete (see Chapter 2.1. of this book).

Hence both, the positive part W+ and the negative part W- of

the Weyl-tensor are identically zero. Because of

0 = W(I) = ',('q) + 482 T1 ,

(M4,g) is a space of constant sectional curvature 482.

Corollary 4: Let (M4,g) be a 4-dimensional compact, connected

spin manifold with a non-trivial real Killing spinor to the

Killing number 8 4 0. Then (M4,g) is isometric to the standard

sphere of radius 12T8T

Proof: According to Theorem 13, (M4,g) is a space of constant

sectional curvature 482. Hence, (M4,g) is isometric to the

projective space IRP4 or to the sphere S4 (with suitable normation

of the metric) (see [106], Th. 2.5.1). However, IRP4 is non-

orientable and therefore no spin manifold.

The proof Theorem 13 also entails that W+ = 0 is valid on a 4-

dimensional manifold with a non-trivial parallel spinor p ± G r'(Si).

Example 2: Let us consider the standard sphere (Sn,go). We

identify S
n \ {north poles via stereographic projection with the

Euclidean space IRn. Then we have

4

o (1 (1+ )2 gIRn

for the metric.

According to Theorem 7 and Example 1 the twistor spinors on

Sn'\ {north pole} are all spinors I u,v given by

Tu'v(x) +
1+pxll

where u,v E. A n are constants.
By formula (1.15) we have for the spinor derivative of the twistor

spinor cf u,v 2

ej- 1+pxl aj('P ) + `p +

2
x

Ill
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Now, suppose that is a Killing spinor on Sn\{north pole3.

Then we have

which is equivalent to the condition

v = + for all x eaRn.

Setting x = 0, this implies v = + u .

Hence, each Killing spinor of Sn .{north poles is of the form

qu,+ u
where u eon is a constant. The functions `Pu,+

+ U

extend to infinity.

Consequently, the set of all Killing spinors on Sn to the Killing

number + 1 are the sp4 nors qu, which, on pole}

are given by

(x) = (I ± x) uu uelln constant.
F1+5-X-11-2-1

Example 3: Let Hn be the hyperbolic space realized as an open

unit ball in IRn with the metric

4
9 =

(l (1-5112)2 glRn.

As in example 2 we obtain:

The twistor spinors on Hn are all spinors (pu,v given by

lu,v(x)
1-uxQ2

where u,v e A n are constants.

The Killing spinors on Hn are

(Hn)+
2 i u(x) _ 1 1 2 (u + i

xq
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Chapter 2: The Properties of Twistor Spinors

2.1. The Zeros of a Twistor Spinor

We turn now to investigate the zeros of a solution 'f of the twistor

equation V xLf+ 1 0. First of all we shall prove that the

zeros are isolated points.

Theorem 1 ([38]): Let (Mn'.) be a connected Riemannian manifold

and )f 0 a twistor spinor. Then Nf {m 6Mn: cQ (m) = 0} is a
discrete subset of Mn.

Proof: Suppose (f(m) - 0. Using formula (1.34) we have

V(DT)(m) - 0.
Concerning

(YX uc?)(m) - 2(Y(VXT,f))(m)
2 (X-DT Y Dp )(m)

21 g(X,Y)I Dc? (m)I 2
n

-
n

we see that the Hessian of the function of =1 4'I2 at the point

meNn is given by
Hesam ucp(X,Y) _ - 9(X,Y)) 0q (.)12.

n
In case DCQ(m) / 0, m is a non-degenerate critical point of u<

and consequently an isolated zero point of . In case DcP(m) - 0,

we obtain cQ s 0 by Corollary 3 of Chapter 1.

We consider now a geodesic 1(t) in Mn and a twistor spinor P

Denote by u(t), v(t) the functions up (- (t)), I DPI 2(T-(t)).
Moreover, we introduce the functions

f1(t) = g(K(1(t)), (t))
f2(t) _ 1 K('lf (t))I2

From the twistor equation (1.31) as well as formula (1.34) we obtain

u"(t)=f1(t)u(t)+2n-2v(t)

and in the case that V fK(f) is parallel to (2.1)

v"(t) = f2(t)u(t)+

2

n2f1(t)u'(t)+fi(t)v(t)

Theorem 2 ([38]): Let L'pf 0 be a twistor spinor and denote by

T :[ 0,T] , Mn a geodesic joining of two zeros of
`P

. Then
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a) Ric(j) is parallel to
b) grad u .f is parallel to

c) _

2

g(K('
du4 )

d) u-v - ( )2z 'a

Proof: Using the notation introduced above we have

du dv
u(0) - a (0) - (0) 0, v(0)> 0

u(T) (T) _ v (T) 0,BT -

V(T) > 0.

Since u(t) and v(t) satisfy the equations (2.1), we obtain

2 n2du .t ( -7 fl ) (f2 --g f1)u
2

If f2 - f2 0 on the interval [0,T] , we have

0 (T)
_2

f1(T) (T)

(f2- f1)u> 0
9 2

because f2 - 7 f1 - -7 ( K(j 2-g(K(- ),'a' )2) : 0,
a contradiction. In case f2- n f2 0, Ric(j ) is parallel to

2
and

Moreover, we calculate

(u v - (W)2)= a V + U 3f - -7 W -dt

= v+2 f1 u'--72 (flu +-. v) 0,
2

i.e. uv - (')2. Since w is a twistor spinor vanishing at some

point, we have 2u1P Dcp _ 2 grad(u
p

(see formula (2.3)). This

implies u-v -
nz

grad u4'j 2 and, consequently,

(grad u1I2 = ()2, i.e. the gradient of uT is parallel to

Corollary 1: Let (Mn,g) be a complete connected Riemannian

manifold and suppose that the (1,1)-tensor K:-
n- (7T-n-17- Ric) Is

non-negative. Then any twistor spinor }' 0 vanishes at most at

one point.

Proof: Suppose uc (ml) = 0 = uc? (m2), ml , m2, and consider a

geodesic
-
:[0,T] ) Mn from m1 to m2. Then
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d
2

= f1 u + -7 v 3 0

since K is non-negative. With respect to

u(O) u(T) 0 and du du(O) _ (T) = 0

we conclude u(t) = 0 on [0,T], i.e. LP vanishes on the curve -r(t),

a contradiction to Theorem 1.

Remark: The condition K k 0 is satisfied in particular if (Mn,g)

is an Einstein space with scalar curvature R c 0. On the Euclidean

space Rn and on the hyperbolic space Hn there exist twistor

spinora vanishing at some point. Solving the twistor equation on

certain warped products Mn 2xIR1 we shall construct examples of
f

Riemannian manifolds admitting twistor spinors with an arbitrary

number of zeros.

2.2. The Solutions of the Twistor Equation on Warped Products

M2m 2x IR1.
f

Let (M2m,g) be an even-dimensional Einstein space with scalar

curvature R f 0. The decomposition of the spinor bundle

S- S+ +O S yields a decomposition of the kernel of the twistor

operator

ker(,Z) - ker+(2) G ker (,E)
kert(Z) - {cfe(S±):oq- 03.

Since M2m is an Einstein apace, it follows from the formulas

(1.33) and (1.34) that the Dirac operator D maps ker±(,c) into

ker (Z ). In particular, if cQ 1,...,cP k is a basis of ker+(. ),

then D c?i ...,D (f + is a basis of ker-(, ) .
We fix a function f:IR1 > (0,oo) and consider the warped product

M2m 2x IR1 with the Riemannian metric f2(t) g p+ dt2. Spinor

fields on M2m 2x fl1 are t-parametric families c (x, t) of spinor
f

fields on M2. We solve the twistor equation on M2m2xIR1 and obtain:
f

Theorem 3 ((87]): Let (M2m,g) be an Einstein space with scalar

curvature R / 0 and denote by (Q1.,....g0+ a basis of ker+(o47).

The twistor spinors 4Q(x,t) on the warped product

(M2m x IR1, f2(t) g +O dt2) are given by
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k

q(x,t) =-Ff j 1ajhl(t)+bjh2(t) q)j(x) +

+(F )3) (_1)m 4(2m-1) F {ajhl(t)+b)h2(t)}D c 1+ (X)

j=1

where aj,bj are complex numbers and the functions hl(t),h2(t)

are equal
_ t

d
hl(t) = sin( m m-T

1

_ t d r
ht- cos(2 m m-

in case R40, or
I

t
hi(t) - sinh(2 m-Rm- ( TS )

1 y ' t V7T )

h2(t) - cosh(2
m

R17 o d
T 77

in case R> 0.

Proof: We recall that ( (x,t) is a twistor spinor with respect

to the metric f2(t) g O+ dt2 if and only if CP is a

twistor spinor with respect to the metric g - g O+ ()2 (see

Theorem 7 of Chapter 1). The vector field a2m+1 :- f is a unit

vector field on (M
2m x IR1a). Using the identification of the

spin bundle of M2m x IR1 with the spin bundle S - S® + S of

M2m the Clifford multiplication by a2m+1 ' f a is given by

= i(-1)m on S+f
ST

f - -i(-1)m on S--al

(see formula (1.16)). We apply now the last condition of Theorem 2,

Chapter 1, characterizing twistor spinors. It follows easily that

if is a twistor spinor on (M2m xIR1, g (D ()2), then any

restriction ?I MZm x {t} is a twistor spinor on (M2m,g), too.

Hence, p has the following form

cQ(x,t)
j

Cj(t)c4 j(x) + I C (t)Dcf i(x).
.1 J.1 j

Consequently, we have only one condition for cP resulting from the

twistor equation, namely 9 2m+178 cf' has to coincide with
2m+1

ai Qs `P for i42m. Since M2m is an Einstein space, we obtain

from (1.32) and (1.34)
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+ +siQsiLQj .TM_ DCPj

( D
1

D2ce j m-1) c j .

Thus the condition s2m+1
s cP ai s 4 yields the differential

equations
2m+1 i

a+ - i(-l)mR 1 C-i P J

In particular, we obtain

R + _ f
Cj

m
m- Cj

#
Cj

and the fundamental solutions of this differential equation are the

functions h1(t), h2(t) given above.

This provides

k
Lf(x,t) _ ajhl(t)+bjh2(t)3cQ j(x) +

Jul

+
4(2m-1)i(-1)m cajh1(t)+bj2(t)} Dcp j(x)

Jul
1

as well as the general solution cQ - 47 c^P of the twistor equation

on the warped product (M 2m xIR1, f2(t)g. O+ dt2).

Remark: Consider an Einstein space (M2m,g) with negative scalar

curvature and a basis2 in ker+(,9 ). Suppose that there

exists a point mo 6 M such that the spinors

(Pi 0),...,cf k(mo)

as well as D'Q (m) , ... ,D cp+(m1o o

are linearly dependent. hence, there exist non-trivial linear

combinations

k
bjCj(m ) = 0 L ajDcp j(m ) - 0.

Jul Jul
We fix an integer 1 E, N and a function f: IR > (O,oc) such that

2l f l d 2(1+1) f2m(2m-1)-1)

Then C (x, t) = 'Ff ,i { a jhl(t)+b jh2(t)3 c? +(x) +

+(I^ )3i(-1)m 4(2-1) 4aj61(t)+bjh2(tDc j(x)r-
Jul
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is a twistor spinor on the warped product (M
2m x R1, f2(t)g Odt2)

vanishing at 1 points. For example, the hyperbolic space H2m

admits 2m+1 = 2-dim(S) independent twistor spinors (see example

1.3). Consequently, the warped products H2m 2x IR1 are spaces

with twistor spinors.

2.3. The First Integrals C,, and Q c on ker(,E ).

The kernel ker(Z ) of the twistor operator £ on a connected

Riemannian manifold (Mn,g) is a vector space and its dimension

n
is bounded by 212 . On this vector space, there exist a

quadratic form C and a form Q of order four defined by

CI= (Dcp,cq) = Re<Def,tp>

Q4=I(I2IDCpI 2 (D c7,Cf )2
d=1

where all...Isn is an orthonormal frame on Mn. We prove that for

any solution c? of the twistor equation the functions C y and

Q q are constant on the manifold Mn and, consequently, we obtain

well-defined first integrals C,Q: ker(2) >1R1 on ker(Z ).

Theorem 4 ([381,(83]): let T be a twistor spinor on a connected

Riemannian manifold Mn. Then Cep and Q Y are constant.

Proof: We differentiate C q with respect to the vector field X

VX(CT) - ( G
X
(DLf ) , (p) + (Dc? , VXdf ).

Using the twistor equation VXcp _ - n X DcP as well as formula
(1.34) we obtain V/X(Cq) = 0 since .X 0

for any spinor W 6 S and vector X. In the same way we prove
VX(Qcf) = O.We have

VX(Qcf) = 2(VXf,P)IDcI 2+2IqI2(VX(D(D),Dcf)

2 I (Dcc ,s,L'c? )(V/ X(DcI ), sV LP )
aL=1

57- (Dc'ce )(DC)n of=1
Using formula (1.7) we obtain

,Dcf)(t X-D(p,Dy) _ 2
pL=1
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n

a (s.6 ,Dcf)(%, P DCP )I4'I 2

and the twistor equation and formula (1.34) yield

VX(QL ) = 0.

Remark: Denote by V (f the real subspace of S given by

Vc _ X CTM}.

Then we have

Qq=IcQi2 dist2(DcP LinR(cq ,Vcf' )).

The vector field Tc? defined by
n

Tc (cQ,sC-D4')s,C

satisfies equation (1.36)
Tq _ - 2 grad(ucp)

and an elementary calculation provides the formula

-uT DY -Tc? L1 2 = upPQc'. (2.2)

In particular, if cp is a twistor spinor such that Cpp = 0 = Qp

then

n grad(uc) If (2.3)

holds. This occurs for example in case the twistor spinor p has

zeros.

Theorem 5 ((871): Let (Mn,g) be an Einstein space with scalar

curvature R ji 0. Then any twistor spinor is the sum

of two real (in case R > 0) or imaginary (in case R4 0) Killing

spinors.

Proof: Assume Ric = R g. Then we have

K = n (fin-'3)' - Ric) 7T-n- -77-n g

and, consequently, the twistor equation and formula (1.34) provide

QX''P = - 1

VX(0c - 4'(n-1'f
X.

We consider the spinor fields yi+
+'

q + D -P . Since R f 0,

we have
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On the other hand, W
+
are Killing spinors with Killing numbers

) _+ 1 r-
R

4- 2

R _ R _
n- X- DIP17 377

2 n n- X (+ -n
+ D4) )

1 R

Theorem _6 ([38,[871): Let (Mn,g) be a Riemannian spin manifold

with a twistor spinor q such that I(PI 1. Then (Mn,g) is an

Einstein space with scalar curvature

R = 4(n-1) (c + QP).

Proof: Suppose ILI'I = 1, i.e. uc,= 1. Because of TT n2 grad(up)
we obtain Ty = 0 and, consequently,

(x -Q,O ); 0
for any vector field X. Now we have

2 g(K(X),Y) _ (VX(DP),Y-CP)
(Dc?, VX(Y"P)) -

- 0 - (DCP,(VXY)'c)) - (DCP,Y. VXLP)
- 0-0 + 1(DCP,Y'X-Dcp) n g(X,Y) I Dcpj 2

This implies g(K(X),Y) - - - g(X,Y) I DCQI 2
n

and with respect to K - rz (j - Ric) we conclude that (Mn,g)

is an Einstein space. MoreoXer,

4 + QT - Ic?I 2 IDCQI 2
(cL-1

- 1 D qI 2 _ Q - - n
(9(s ) -

n2 1 ( R R) - n R
-n--7 ) - 'n 4(n-1)

Consider a twistor spinor q1 0 on a connected Riemannian manifold

(Mn,g). The set NAP of zeros of cP is a discrete set. Outside

N we introduce the conformally equivalent metric
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9 = I- 9.
Then :_ '1 cQ is a solution of the twistor equation on the

Riemannian manifold (M' Nc , g) with length one, "p1 1 (see

Theorem 7, Chapter 1).

Therefore we obtain

Corollary 2 ([38],[87]): Let (Mn,g) be a Riemannian spin manifold

with a non-trivial twistor spinor cp . Then (Mn\N T , g) is an

Einstein space with non-negative scalar curvature

R = 4(n-1) (C +
n

In case C2 + Qc>0, 1 CP is the sum of two real Killing spinors
iql

on. (Mn\Ncf , I -774 g). If C + Q,p = 0, then is a parallel
spinor.

Remark: We say that a twistor spinor cQ is conformally equivalent

to a Killing spinor if there exists a conformal change of the metric

g =6 g such that 16114 ( is a Killing spinor with respect to

the metric g. We introduce the function f = -1/2 Then the

Killing equation

QX(13
1/4 ) - 0

becomes equivalent to

ac()- 2fDp+ n grad(f).9 0.

The integrability conditions of the latter equation have been

investigated in the paper [38]. For example it turns out that a

twistor spinor ' is conformally equivalent to a real Killing

spinor if and only if C( if 0 and Qi - 0.

2.4. A Characterization of Spaces of Constant Curvature

Theorem 7 ([7],[87]): Let (Mn,g) be a connected, complete Einstein

space with spinor structure and non-positive scalar curvature RICO.

Suppose that (p it 0 is a non-parallel twistor spinor such that the

length function uq -lcl2 attains a minimum. Then (Mn,g) is

isometric to the hyperbolic space Hn (in case R Z 0) or to the

Euclidean space IRn (R-0).

We shall divide the proof of this theorem into several steps.
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Let fl t 0 be a twistor spinor on an Einstein space Mn. A point

m & Mn is a critical point of the length function u q if and only

if (Dc',X-') - 0 for all vectors X E TmMn. Moreover, the Hessian

of uq at this critical point is given by

HessmuT (X,Y) Dql 2
- 2n n- ICI 13 g(X,Y)

n

In case R < O, Hess mu T
is positive-definite. Suppose that the

scalar curvature vanishes, R = 0. With respect to formula (1.34)

it turns out that Dce is a parallel spinor field and thus ID T I 2

is constant. Since cp is a non-parallel twistor spinor, we conclude

,DqI 2 = const >0 and we obtain again that Hessmu
q

is positive-

definite. Consequently, in case R = 0 any critical point of the

length function u
T

is a non-degenerate minimum. Suppose now

that up has two different critical points m1, m26 Mn and

consider a geodesic
't

(t) (04t6T) from m1 to m2.

For the functions u(t) = u,P (Zj(t)) and V(t) =IDgI 2('-(t)) we

obtain the following differential equations

un=-7v- 2nn- u
n (2.4)

V11 Rn ufl
4(n-1)

from formula (2.1) as well as the conditions u'(0) - u'(T) = 0

and v'(0) - O(T) - 0. In case R - 0, it follows that

V(t) = C1, U(t) = C2 t2 + C
2
t + C3

n

for some constants C11 C2, C3. With respect to ul(0) - ul(T) - 0

we conclude C1 = 0, i.e. D y vanishes on -r(t). Since Mn is an

Einstein space, Dcc is a twistor spinor. According to Theorem 1 we

have Dc? 5 0 and, consequently, (P is a parallel spinor, which

contradicts the assumption. In case R'0, we obtain in particular

the equation

U =-n n- u+C1

and the conditions u'(0) = u'(T) = 0 imply u s 0, also a

contradiction. In order to summarize, we proved that if Mn is a

connected, complete Einstein manifold with scalar curvature R 4 0,

then the length function uc of a non-parallel twistor spinor has

at most one critical point. Moreover, if this critical point

actually appears, then it is a non-degenerate minimum. Suppose now

that this is the case and denote the unique critical point by

mob Mn. Let d(m,m0) be the distance from an arbitrary point
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m 6 Mn to mo and denote by y-(t) (O6t4T=d(m,mo)) a shorted

geodesic from mo to M.

We integrate the equations (2.4) along 1 (t) and obtain the

following relations between the length function uc, and the

distance function d(m,m0) (Re- 0):

u (m) =u(m) - 4(n-1)
v (m )j sinh2(1 R

t { o n it- 0 2 n n-

d(m,mo)) + u (mo)

I Dc (m), 2 = v (m) = {v(p(mo)-
nnR-1J UT (mo) cosh2( n nR

d(m,mo)) + n 3) uLP (mo).

If the scaler curvature R vanishes, we get

v (m )
ucP (m) = n2 d(m,m0)2 + ucp(mo)

n

I D (m)12 = vcO (m) m vcP (mo) > 0.

Since we already know that ucp has only one critical point, we

conclude that the distance function d(m,m0) is smooth on Mn\fmo3

and has no critical points in this set. In particular, the exponential

map

expm : Tm Mn > Mn
0 0

is a diffeomorphism and the geodesic spheres Sn-1(m0 ,r) around

mo coincide with the level surfaces of the function u p . They are

smooth submanifolds of Mn. We denote by `S the normal vector field

to the geodesic spheres,

grad(ucp)

Ilgrad(up)II

We differentiate equation (1.36)

grad(uT)
n

Tcp = - n " (cp's j D P)s j
j=1

with respect to the vector field X and apply the twistor equation

as well as formula (1.34). Then we obtain

Vx(grad(uCp )) =l-7 VI? n n_ up} X

for any vector X G TMn. The last formula yields

{n'Zvc,- 2nn- ul{'

x = { J.
ll9rad(up )II X -

9(x, )
In particular, we have
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VI-5 = 0. (2.5)

Suppose for a moment that the scalar curvature is negative, Re- 0

A simple calculation provides the formula

- v, (m) - n n- u cP(m) _{-; v (mo) - n n- up (mo)

cosh(j
nR d(m,mo)).

4Moreover, starting with grad uq 1 2 I Tc? 1
2

=

2
n

2
n j=1

4 - Q `P ) and recall that C2 + Qq is constant,-we= n(u v;P -C2
IF 1

obtain C2 + Q,p = u(m0) vcp(m0) and therefore

grad ucl 12 = 4 (u vcP - (mo)v(p (mo)).
n

Now we calculate V X and come to the result

m) = n nR
coth( nR

d(m,m0))X (2.6)

for all vectors X 6 TmMn orthogonal to '9(m).

A similar discussion in case R = 0 proves the formula

1

for all vectors X 6 TmMn orthogonal to 'S (m).

Let tt(m) denote the integral curves of the vector field 'g

normalized by the condition -ro(m)= m. Consider the diffeomorphism

'v: Sn-1(mo,1) x (0, 00) Mn , S
i m03

given by '(m,t) =tt-1(m). The formulas (2.5), (2.6) and (2.7)

allow us to calculate the pull back (g) of the metric g:

* sinh2(
n nR

t)
2(g) _ -- go O+ dt if R<0

sinh2(jn n- )

'p*(g) - t2go O+ dt2 if R = 0,

where
go = g n-1

is the restriction of the metric g to
S (m ii)

the geodesic sphere oSn-1(mo,1). We introduce the polar coordinates

on Rn = Tm Mn

0

Sn-1 x Mn = IRn

(v,t) - Because of
0

expm D (v,t) =1V(expm (v) ,0
0 0

(2.7)m,moV XE (m) = A
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we see that the metric g:= expm g on IRn = Tm M" in polar
0 0

coordinates has the form

*(g) sinh2(ICnTnR t) h O+ dt2 if R< 0 (2.8)

*(g) = t2 h O+ dt2 if R = 0, (2.9)

where h is a metric on Sn-1 defined by (in case R<0)

h = 1 exp* I ).
sinh2( -R )

pm0 g Sn-1(mo,1)
nn-1)

If we transform 1) (g) back into Euclidean coordinates

fit" { x (O,o3) (f (x) _ (11X11 I1xII), we obtain for the
coordinates of g with respect to the canonical basis of IR

sin h2( " nR h x)I) x x x x
gi j (x)

it 11 h x (ei 11 .

e j
X X

For wE S"-1 we denote by af(w) the tangent vector

a1(w):= ei - < w,e1> w eT S"- . g is continuous on R".

Therefore, for all w e Sn-1 we obtain

gij(0) ` tlimrn gij(t w)

(n nR )hw(ai(w).aj(w)) -

-<a1(w),aj(w)
R" + dij

Using w - e1, ai(ei) = 0 implies that

91j(0) = osi

The vectors al(w),...,an(w) generate TwS"-1. Hence, the metric h

is a multiple of the standard metric 9ISn-1 of the sphere Sn-1.

Finally, pis the metric of the hyperbolic s ace (R < 0) or

the Euclidean space (R-0) in polar coordinates, i.e. (M",g) is

isometric to the hyperbolic space or to the Euclidean space. This

proves Theorem 7.
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2.5. The Equation V, ?+
n

0

If f: M-> d is a complex-valued function on a connected

Riemannian spin manifold (Mn,g), we consider sections cp of the

spinor bundle satisfying, for any vector X E TMn, the differential

equation

QY'Q+ f 0. (2.10)
n

This equation implies Dc4= L s .c8 cp = f.C and, hence
Jul

i

XcQ+ X D(P = 0, i.e. any solution of equation (2.10) is a twistor

spinor. Since equation (2.10) - restricted to a curve in the mani-

fold - is an ordinary differential equation of first order, any

non-trivial solution of equation (2.10) has no zeros. The first

integrals of such a special twistor spinor are given by

C f= Re(f)uT and Qf= (Im(f))2fup- n 2
oc=1

Theorem 8 ([83]): On a connected Riemannian spin manifold (Mn,g)

of dimension n 3 3 let (f X 0 be a spinor such that

VXCP+ n 0, where f is a complex-valued function with the

real part Re(f) it 0. Then f is constant and cP is a real Killing

spinor.

Proof: c4 is a twistor spinor and we can apply formula (1.34)

VX(D n K(X)

QX(f)cP
2

- n K(X).cP (2.11)

Denote the real and the imaginary part of f by a and b,

f = a+ib. Using the real part ( , ) = Re <,> of the inner product

for spinors we multiply by (

`/ (a)u tab (iX f , 4') = 0 (2.12)
X - n

Multiplying equation (2.11) by X = a. we have

n
7 aa(f)sal' + (f2 - n 37)cQ = 0 (2.13)

n
Va (f)sesdc4+ (f 2- 1n-Rn-1) 5 Q = 0

1 aoc=

Va (f)cQ + (4
1nn-1T - f2)a6+ 2 L Ga (f)

oc=1 oC

(sa aB_sBsoe ) = 0. (2.14)
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We multiply again by the spinor

Ge 2ab(i s4q),y)) +
6 n (2.15)

+2 11 -vs (b)(i(s
d-

sB-s5s0()"',l') = 0.
oC=1

From the equations (2.12) and (2.14) we obtain

(1-n) t78 (a)up+ 2 Z 08 (b)(i(sa sp-s1s (f ) 0. (2.16)
0 a.=1 0.

The latter equation we multiply by Vs (b) and take the sum over B:
B

(1-n)g(grad(a),grad(b))u = 0.

Consequently we obtain g(grad(a),grad(b)) m 0. (2.17)

Since Cc = a u 4 is constant, and non-zero by the assumption

Re(f) % 0 we conclude

g(grad(u4 ),grad(b)) = 0 _ Z Va (b)(V = 0 --
2 11

n oc=1 oc.

R

Vs (b)((a+ib)s (f ,q ) a 0=, b(i 0 (2.18)

The inner product is an imaginary number and there-

fore (2.18) is equivalent to

b<grad(b),( , cF> = 0. (2.19)

Equation (2.13) can be written in the form

0.grad(f)cP+ (f2 -
4(n17)cps

n-R

We multiply by b-P and obtain with respect to (2.19)

b <grad(a)"4,W>+ b(f2 - n 7)uT$ 0.

From the real part of the latter equation we conclude

b(a2-b2 - n(nn-17) ii 0 (2.20)

Denote by U C Mn the set of all points me Mn such that

e2(m)-b2(m) - 4To '1T R(m) it 0. U is an open subset of Mn and

(2.20) yields that b vanishes on U. From equation (2.12) we see

that a is constant on U, i.e. cQIU is a Killing spinor with

Killing number 8 = - E. Theorem 8 of Chapter 1 provides

R 4n(n-1)82 = 4(n-1) f2 4(n-1) (a2-b2) on the set U, which

is a contradiction to the definition of this set. Thus, we have

e2 - b2 - =C 0 (2.21)

on the whole manifold Mn. We multiply equation (2.16) by 178 (a)
6

and take the sum over B. Furthermore, we apply (2.17), i.e.
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grad
(a). Then we obtain

(1-n)lgrad(a)I2 up + 0.
(2.22)

We consider again the equation

R
grad(f) + (f2 -

n j) s
0

and multiply it by

i grad(b) grad(e) c' +Igrad(b)I 2f +(f2 - n T= 0

We take the real part of the inner product of the last equation by

(i. grad(b) grad(a) P (Q ) +1 grad(b)I 2u +

+ (a2-b2 - n,R )(i 0.

Equation (2.21) yields now

(i.grad(b) grad(s).q , f) -lgrad(b)I 2u

and from (2.22) we conclude

(n-1)Igrad(a)12 +Igrad(b) 12 = 0.

Now we have grad(e) S grad(b) 0, i.e. f is constant. This means

that T is a Killing spinor and the assumption Re(f) = a J 0 implies

now b = 0. This proves Theorem B.

Next we consider the case that the spinor field is a solution of

the equation VXcp+ in X-f - 0 with some real-valued function
b: For any twistor spinor cf we introduce the real sub-

space

Vp= {X X6TMnjC S

as well as the function

H,f = dist2(iT ,V' )

defined on the set I mg Mn: ct?(m) ' 0}

Theorem 9 ([38]): if 0 XT + ib x cQ - 0 with a real-valued

function b: .IR1, then

a) uq HT is constant.

b) Q' - b2u(f H(? .

Proof: Suppose v XcQ+ in 0. Then Dcf - ib f and we obtain
Q = b2UT by definition of Q . Since
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n
uq Hq= ucf' a (iuQ ,sCIc)2

we calculate

VX(uPHtf) = 4 up(X4,cF) -
n

2 (iCP,sd `P )(i VX4P,sac'P) -
an1

2 > (i(R )(i4 .s,C OX:P) _
a=1
4n ucP (i'X'cQ,'P

2n n
soL ` ) +

ocsl
2bn

+ cQ)(icQ,s
oC=1

= 4b U'? (icQ,X )u, - n (icf )ucP= 0,

i.e. uQ Hy is constant.

Corollary 3: If cP is a solution of the equation 'Xpp+ in 0

and Qcf ,4 0, then b is constant and Cp is an imaginary Killing

spinor.

Corollary 4: If If is a solution of the equation `/Xp+ Ib 0

and Q,Q - 0, then 1-, ' is a parallel spinor with respect to

the metric g =
40

Since CT C. (D(f , ) _ (ib 4Q, 4) = 0, Corollary 4 is a special case
of Corollary 2. In Chapter 7 we shall classify Riemannian manifolds

with a non-trivial solution of the equation VX ?+
in

0 and

Q' = 0. Moreover, we shall prove that a complete Riemannian mani-

fold admitting an imaginary Killing spinor q such that Q,> 0 is

isometric to the hyperbolic space Hn

2.6. The Equation

A. Lichnerowicz (see [84]) introduced the so-called equation (E)

for a spinor field:

QX(Dce) + S
0. (2.23)

We denote by ker(E) the space of all spinor fields Cp e f (S)

solving this equation. The existence of a non-trivial solution of

the equation (E) implies that the scalar curvature of the manifold

is constant.
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Theorem 10 ([84)): Suppose that a connected Riemannian spin mani-

fold (Mn,g) of dimension n ? 3 admits a non-trivial solution of

the equation (E). Then the scalar curvature R is constant.

Proof: Let q it 0 be a solution of the equation

OX(Dc
+

X.(Q = 0.

Then

D2LP= (D CF) = (n'R-1)

D3,p = n.DcQ + 4(n 1)
and, consequently

2
n--1) J D _

nTCn- ,l grad(R)"f(

On the other hand, differentiating the equation (E) we obtain

Q a 3) soc V5DL (T) +

+ TU p = 0

and, furthermore,

(Dt) + = Dcf + T(-nTy 0.

We apply now the formula D2 = Q + 4 R. and obtain

pD2 -n-R =f grad(R) c
The equations (2.24) and (2.25) yield

grad(R),cQ = 0

(2.24)

(2.25)

(2.26)

If (p(m) 4 0, then grad R(m) = 0 by (2.26). Suppose now T(m) = 0.

Since cQ is a solution of the elliptic differential equation

02c = T n-1 'r'
there exists a sequence of points mi converging to m such that

cp(mi) { 0 (see [201). Then we have grad R(mi) - 0 and with

respect to the continuity of grad (R) we obtain again grad R(m) = 0.

Consequently, the gradient of the scalar curvature vanishes identically.

Any Killing spinor is a solution of the equation (E). Indeed, If

V Xq= S X" , then DLP = - nBc and R = 4n(n-1)62. This Implies

Ox(D`?) + 4(n i7 X-c' = -nsvXcp+ nf32 x p_

= nfi -V T+ 0.
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In case of a compact manifold the kernel of the twistor operator,

ker(E), and the Killing spinors coincide:

Corollary 5: Let (Mn,g) be a compact connected Riemannian spin

manifold such that ker(E) 1101. Then

ker(E) = ker(`,)) = Killing-spinors.

Proof: Since ker(E) is non-trivial, the scalar curvature R is

constant and we already know (Theorem 10 of Chapter 1) that the

kernel of the twistor operator is the space of all Killing spinors

Moreover, we have

ker(b) = a t ker(E).
Suppose now that '4Eker(E). Then D2IF= and If is the
sum of two Killing spinors (see Corollary 1 of Chapter 1). This

proves ker(E) c k .

Theorem 11 ((46]):

ker(E) ker(D2 - n 7)r1 D-1(ker(,a)).

Proof: If cp ker(E) we have
RQX(Dp) + ) 0

and

D2p = 1 8,4 cQ) = nn-l)

In particular, ker(E) is contained in the kernel of the operator

D2 - -7 Moreover,

uX(DT ) + n XD(Dcp) = DX(D `P) + T n-1) X 0,

i.e. Dc? belongs to the kernel of the twistor operator. Conversely,

suppose that D2cp= and Dcp G. ker(.a).
Then we get

C/X(Dc?) + g XD(Dcp) = 0

VX(D?) + (n-1) X 'Q= 0
and cp is a solution of the equation (E).

Theorem 12 ([46]): Let (Mn,g) be a connected Riemannian spin

manifold with constant scalar curvature R 0. The map

ker(E) 3 cf DC' f, ker(Z)
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is an isomorphism between ker(E) and ker(b)).

Proof: Suppose cpe ker(E) and Dcp = 0. Then we have

0= c _ T cp and, consequently c(7= 0. This proves that the

given map ker(E) - ker(,D) is injective. Suppose now

c(e ker(, 7) and consider f = 4n D47 . Then we have
* 4(n-1) 2

D R_ D cQ = cF and

VX(D:(*) + 7 X.c?* = VX(t7) + 1 X 0q = 0.

Thus tp* belongs to the kernel of (E) and is an inverse image

of t .

Corollary 6: If (Mn,g) is a connected Riemannian spin manifold

with constant scalar curvature R { 0, then

dim ker(E) = dim ker(,D).

Theorem 13 ([461):

a) If (Mn,g) is an Einstein space with scalar curvature R 4 0,

then

ker(E) = ker(,e).
b) Let (Mn,g) be a connected Riemannian spin manifold such that

ker(E)n ker(,c.) / {0}. Then Mn is an Einstein space.

Proof: Suppose first that Mn is an Einstein space, Ric(X) _ E X.

If cQ B ker(E), we obtain from Theorem 12 and formula (1.34)

V X(D2T) _ 2 K(X) Dtp

2 n-'IVX2 K(X)'Dc' = - r X'cp
and T Is a twistor spinor. Conversely, if (f 6 ker(Z) we use

again formula (1.34)

VX(DcQ) n K(X)''P
which reduces in an Einstein space to

VX(D cQ) + 4(n1) X' cP = 0.

This means that, in an Einstein space, every twistor spinor is a

solution of the equation (E). We consider now an arbitrary Riemannian

manifold as well as a non-trivial solution PE ker(E) n ker(Z ).

Using the formulas (1.34) and (2.23) we obtain the condition

- Tr7RJ7 X.(F. n K(X)'cf
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and, finally,

Since cQ is a twiator spinor, the zeros of 4p are. isolated points

and we conclude

Ric(X) _ E X,

i.e. Mn is an Einstein space.

Chapter 3: A survey of TwistOr Theory

3.1. Two-dimensional Conformal Geometry

Let M2 be a 2-dimensional manifold with a fixed orientation. Two

Riemannian metrics g1, 92 on M2 are conformally equivalent if

there exists a function 'X : M2 1 such that

g1 a
2X

g2.

The set of all conformal structures Conf(M2) is the set of all

equivalence classes of Riemannian metrics. On the other hand, we

consider the set Complex(M2) of all complex structures

J: TM2-3 TM2 with the properties

a) 2-Id
b) for any vector 0 4 X E TM2 the pair .{X,JX3 defines the given

orientation.

Since the Nijenhuis tensor

[JX,JY]-[x,Y]- J[X,JY]- JCJX,Y]

vanishes identically in dimension two, any operator

J EComplex(M2) defines a complex structure on M2 (see (105]).

If [g]e.Conf(M2) is a class of conformally equivalent metrics, we

consider the operator Jg being the rotation in positive direction

around the angle . The link between two-dimensional conformal

geometry and one-dimensional complex analysis is now given by the

following

Theorem 1: The map

: Conf(M2) Comp 1ex(M2), ' (g]:= Jg

is bijective.
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Proof: Suppose that If is a non-trivial

tangent vector, then {X, 091 X _ {X, J92 X is a basis in TmM2.

An arbitrary vector Y S TmM2 decomposes into

Y = AX + BJ91X = AX + BJ92X

and consequently we obtain

g1(Y,Y) - (A2+82)g1(X,X)

g2(Y,Y) = (A2+B2)g2(X,X).
gl(X,X)

This means that the function 92 X does not depend on the vector

X E TmM2, but only on the point m M2. Hence, we have a positive

function a *: M2- ->R1 such that, for any vector X C-,TmM2

92(X,X) - .*(m)gl(X,X)

holds, i.e. the Riemannian metrics g1 and
92

are conformally

equivalent.

Finally, given a complex structure J: TM2 > TM2 we fix an

arbitrary Riemannian metric h on M2 and consider the metric

g(X,Y) = h(X,Y) + h(JX,JY).

Then we have g(JX,JY) = g(X,Y) and, in particular, g(X,JX) = 0.

This implies J = Jg, i.e. the map : Conf M2 -' Complex (M2)

is also surjective.

Denote by * : T*M2 -> T*M2 the Hodge operator on 1-forms with

respect to the metric g. Using the identification of the tangent

bundle with the cotangent bundle given by the Riemannian metric g

we obtain the commutative diagramme

T*M2 * ) T
*
M
2

1g lg

TM2
Jg

TM2

Indeed, If X1,X2 is an orthonormal basis of the fixed orientation

in TmM2 and 6 1,6 2 is the dual basis, we have

*6 1 =6 2 JgX1 = X2

*152 =
-61 JgX2 = -X1.

Fix a covector W TmM2 as well as a vector X c.T5M2. The

commutative diagramme immediately yields the relation
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(*w) (X) = -w(JgX)

between the complex structure Jg and the *-operator.

The complexification T M2 Qx C of the cotangent bundle splits

into

T*M2 O C = n1,0 O ^0,1

with
A1'0 = {w-T*M2 Q C: *w= -iw

A0'1 =3L..)GT*M2 xC: *w= 4iuO }

Proposition 1: A smooth function f: M2-->C is holomorphic if and

only if its differential df is a section in the bundle A1,0.

Proof: Since the differential df splits, according to the

decomposition
T*M2 O C = A1'0 O ^ 0'1 , into

df = df + i*df + df - i*df
2 2

we see that df Q r-( A1'0) is equivalent to df = isdf. This equa-
tion means

(i*df)(X) idf(JgX) - df(X),

i.e. df(J9X) = idf(X) for any vector X e TM2.

Denote by pr 1'0: T*M2 O C
:D
A1,0

pr , 1:
T*M2 xQ C ) n 0,1

A

n'
the projections of the complexified cotangent bundle onto

and A0'1, respectively.

We introduce the opeators

ao C°0(M2)- ' r( A1'0), 010 = pr 1,0 d

o: coo(M2) 7(A°'1), ao = pr^0.1 .d
n

011: r(T*M2 (D c)-, r (n2M2 Q C), al d - pr 0'1
A

A1,0

< : r (T *M2 p c)--> r(A 2M2 p C) , al = d . prn1'0.

Then we have al of = d. pr 0 df = d(df+i*df) _ id*df.
A' 2

On the other hand, the Laplace operator o on functions is defined

by Of = - *d*df. Now we obtain
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2 i o)l c7f = -d*df =

where dM2 is the volume form of (M2,g).

A 1-form W is a holomorphic form if locally W is the differential

of a holomorphic function,

W = df = Roof .

Proposition 2: A 1-form W is a holomorphic form if and only if

dw= 0 and *w= -ica .

Proof: Suppose that tJ is a holomorphic form. Then we have (locally)

L3 = 13 0f = df. Hence, we obtain dc. = ddf = 0 and

*c3_ * %3of = -i oof = -iGJ. Conversely, if dc.)= 0 and *u= -it,o,
then there exists locally a smooth function f: M2-' 6 such that

df = L-o (Poincar6 Lemma). Moreover, since *L)= -ito , we conclude

by Proposition 1 that f is a holomorphic function.

Corollary 1: A holomorphic 1-form on M2 is a harmonic 1-form.

Corollary 2: A 1-form to is a holomorphic form if and only if

t,J =c(+ I * oC,

where oC is a harmonic form.

Proof: Suppose that oC is a harmonic form and consider L3= o +i*o..

Then

dco - d or_+ I d*oC = 0
*(0- *QC- ix= -it,0 ,

i.e. to is a holomorphic form. Conversely, if to is a holomorphic

form, then we have

LO L3 to 0+2=2+i*22

and oL:= 0 is a harmonic form.

To summarize, in real dimension n-2 there exists a one-to-one

correspondence between Conformal Geometry and Complex Analysis.

Moreover, solutions of certain real partial differential equations

(harmonic forms) correspond to holomorphic objects on the under-

lying complex manifold (holomorphic forms). The algebraic back-

ground is the isomorphism of the groups SO(2) x U(1). This

isomorphism means that an Euclidean structure (conformal structure)

in dimension two determines a unique complex structure, namely the
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rotation around 2. The main idea of Penrose's twistor theory is the

generalization of this point of view to the dimension n = 4. In

this case the situation is more complicated since the group

U(2) C- SO(4) does not coincide with SO(4). The homogeneous space

SO(4)/U(2) is a two-dimensional sphere. Consequently, given an

Euclidean vector space (E4, <,> , b with a fixed orientation

there is a S2 = CP1-parameter family J (E4) of complex structures

compatible with the Euclidean structure and the orientation. Starting

with an oriented 4-dimensional Riemannian manifold M4 we consider

in any tangent space TIM4 the family J (TmM4) as well as the

6-dimensional manifold

Z - v J-(T M4).
mFM4 m

Z is called the twistor space of M4. In Section 3.3. we will

describe the (almost-) complex structure of the twistor space and

some of the links between the four-dimensional conformal geometry

of M4 and the complex analysis on the twistor space Z.

3.2. The Curvature Tensor of a 4-dimensional Manifold

We describe now the decomposition of the curvature tensor of a

4-dimensional Riemannian manifold. A general reference is for

example [33]. Let (M4,g) be an oriented Riemannian manifold of

dimension four. The Hodge operator * :
A2 -,A2 on 2-forms is an

involution, ** = 1. Consequently, we obtain a decomposition of the

bundle
A2 into

A2 -A®®/1?
where A+ is the (+ l)-eigen-subspace of *. We understand the

curvature tensor as well as the Weyl tensor W as bundle

morphisms

, : A2 , A2, W : A 2> A2.
Since the contraction of the Weyl tensor is zero, W maps A 2

into A. /Consequently, the Weyl tensor splits into

W = l W+ 0_ ) , W. A + A +
\ 0 W

Moreover, the curvature tensor 6R decomposes into

(W+ 0_ +
0* B

) R

0 W B* 0
TZ
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where R is the scalar curvature and B:A 2 > A+ is a bundle

morphism. It is well known (see [33]) that B 0 if and only if

(M4,g) is an Einstein space. A Riemannian manifold M4 is said

to be self-dual if W_ - 0. The 4-dimensional sphere S4, the

complex projective space CP2 and the Riemannian product S2 x H2

of the two-dimensional sphere by the hyperbolic plane are examples

of self-dual Riemannian manifolds. In case of a compact manifold

M4, its signature 6 (M4) is given by

6 (M4) _ . f (IW+12 _1 W-12)

121 M4

and the GauB-Bonnet formula can be written in the form

X (M4) = I f (1 W+12 + I W_ 12) +
8`7 M4

+ 1 f (R2-31Ric12).
48 jr

M4

In particular, if (M4,g) is a compact Einstein manifold it holds

that

(M4) R2 v 22 3 10 (M4)1
192'(C

3.3. The Twistor Space of a 4-dimensional Manifold

Denote by (E4, ',> ,b') the 4-dimensional Euclidean vector space

with inner product <,> and given orientation 0. Consider the set

J-(E4) of all endomorphisms J: E4-mss E4 satisfying the following

conditions:

(i) J2 = -id

(ii) <JX,JY) _ <X,Y> for all vectors X,Y 6E4
(iii) det(J) - 1, i.e. J preserves the orientation 0'

(iv) Setting f J(X,Y) :_ ,/JX,Y) , then the given orientation 0'

equals - _.J A O J = -(Sl3)2.

By definition, 3(E4) describes a connected set of complex struc-

tures on E4, compatible with the inner product as well as the

given orientation.

For Je J (E4) and a matrix A e SO(4), the composition AJA 1 is

again in 3(E4); the mapping J t--4
AJA-1

for A e SO(4) defines

a transitive SOW-action of 3(E4) whose isotropy subgroup at

a point 00e.J-(E4) is equal to U(2)C S0(4). In this way,
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J-(E4) a 50(.4)
/U(2) is a symmetric space and isomorphic to the

complex projective line CP1 (cp. (33]).

Now, let (M4, g,00 be a four-dimensional oriented Riemannian mani-

fold, and denote by P - (P,p,M4;SO(4)) the principal bundle of all

orthonormal frames of M4. Then the associated bundle

Z = P x 80(4)
SO(4) /U(2) P/U(2) is called the Twister space

of (M4,g,0'). Using the notion introduced above, the fibre 2x of

the Twistor space Z at a point x e M can be written as

Zx = J-(T,M4); therefore, the Twistor space parametrizes the almost

complex structures on M4, which are compatible with the metric and

the orientation.

The Levi-Civita connection of (M4,g) decomposes the tangent bundle

TZ into horizontal and vertical subbundles, TZ - ThZ + TVZ.

Denoting the twistor-projection by IT : Z 9 M4, we get an almost

complex structure I on Z preserving this decomposition and

coinciding with the canonical complex structure on the fibres
SO(4)/U(2) _ CP1. At the point J E Z the action of I on the

horizontal part T
h
Z of the tangent space at J is given by

I 'T *1 G J o rTRZ -

Theorem 2 (see [2]): (Z,I) is a complex manifold if and only if

(Ms a self-dual Riemannian manifold.

Consider now two conformally equivalent metrics 92 . e2 X 91 on

M4. The corresponding twistor spaces Z(g1), Z(g2) coincide since

the conditions (I)-(iv) defining the twistor space are conformally

invariant. Moreover, an elementary calculation yields that the

almost complex structures I(g1), I(g2) coincide, too (see [95)).

Hence, the (almost-) complex manifold (Z,I) depends only on the

conformal structure of the underlying space M4. Moreover, using the

complex manifold (Z,I) as well as the family of projective lines

given by the fibres of the projection 'Ir: Z M4 one can re-

construct the conformal structure of M4 from the holomorphic

structure of (Z,I) (see [2),[95]).

The twistor space Z can also be described by the projective spin

bundle P(S ). Consider the negative spin representation

Spin(4) -'> OL(Q 4). The group SO(4) acts on the complex projective

space P(A 4) and, consequently, the bundle

P(S-) :a P x SO(4) P(0 4)

is well-defined over any 4-dimensional Riemannian manifold. If
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is a projective spinor at the point m e M4 , we define the

operator JmJ* is TmM4 TmM4 by the formula

Jml,4 (X) V = i.X - W .

Then J
m

} is a point in the twistor space Z over m 6M
4 and we

obtain another interpretation of the twistor space (see [33]):

Z = P(S ).

The decomposition of the tangent bundle of Z into horizontal and

vertical parts also yields a one-parameter-family of Riemannian

metrics on Z.

Therefore, on the Lie algebra 402) we consider the positive-definite,

Ad(U(2))-invariant inner product

B(X,Y) :_ - 2 Re(Tr(Xo Y)), X,Y E µ (2)

and denote by ds2 the standard Riemannian metric on

CP1 = U(2)/[U(1) x U(1)] Induced by B.

For a fixed positive real number t, a Riemannian metric gt on Z

is defined by taking the pull-back of the metric g to the horizontal

part, and adding the t-fold of the fibre metric ds2 in the vertical

part of the tangent space of Z at an arbitrary point J E Z, i.e.

gt =Ji-*g + t-ds2, t >0.

The study of the Kffihler condition for gt yields the following

result, proved by Th. Friedrich/H. Kurke and N. Hitchin Independently.

Theorem 3 (see[45] or [63]): Let (M4,g) be a self-dual Einstein

space with positive scalar curvature R. Then the corresponding

twistor space (Z,I,gt) is a KShler manifold if and only if

t - 48 holds. In this situation, gt is also an Einstein metric

with the same scalar curvature as (M4,g). 13

Examples of this situation are provided by the 4-dimensional sphere

S4 with twistor space Z = CP3, and the complex projective space

¢P2 with the complex flag manifold F(1,2) as its twistor space.

However, under the additional, assumption, of compactness (or, with

respect to.Myer's theorem, also completeness) of the four-dimensional

manifold, they already. exhaust the list of all possible examples,

as the following proposition shows.

Theorem 4 (see[451 or [63]): A compact four-dimensional self-dual

Einstein space with positive scalar curvature is isometric either
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to the sphere S4 or to the complex projective plane CP2, both

endowed with their standard metric.

By construction of the metric gt, the projection

T : (Z,gt) ----,-(M
4,

g) is a Riemannian submersion. In this situation

there are standard formulas to establish a relation between the

curvature tensors of Z and M4, and assertions about Einstein

metrics on Z can be made.

Theorem 5 (see [39]):

(1) Let (M4,g) be a self-dual Einstein space with positive

scalar curvature R > 0. If t - 48/R or t = 24/R, then the

metric gt is an Einstein metric on the twistor space Z.

(2) Let (M4,g) be a 4-dimensional Riemannian manifold. If its

twistor space (Z,gt) is an Einstein space for some t> 0,

then (M4,g) is a self-dual Einstein space with positive

scalar curvature R > 0, and either t - 48/R or t = 24/R holds.

The above theorem is also valid for non-compact manifolds. However,

we restrict our further considerations to the compact case: applying

the twistor construction to S4 and OP2, by Theorem 5 a further

Einstein metric on CP3 and F(1,2) will be obtained in addition

to the standard KShler-Einstein one. This second Einstein metric

turns out to be non-KShler in both cases, but it is still homogeneous

under the action of SO(5) and U(3), respectively. We briefly

describe these metrics, since they will be needed later in § 4 of

Chapter 5.

a) The case M4 = S4

We decompose the Lie algebra so(5) into

so(5) so(4) O+ 144 = [14(2)(D-1k] O+ *,
with Mi= LinfE15'E25'E35'E451'

4-t Lin 1E13 + E24' E14 - E23I and

4 (2) a Lin lE12'E34'E13-E24'E14+E231'

where the matrices {Eij}1 4 j are the standard basis elements of

so(n) introduced in Chapter 1.

Using the inner product on so(5) given by

B1(X,Y) :_ - 2 Tr(X0Y), X,YE.so(5),

the metric g on S4 = SO(5)/S0(4) induced by B1r44)(My is the
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standard Einstein metric on S4 and has scalar curvature R 12.

Denoting by S0(4) -) S0(Mb) the isotropy representation of S4,

the frame bundle P---> S4 is given by P SO(5) xOc S0(4%) -4 S0(5),

and the twistor space Z equals

Z - S0(5) x 80(4)
SO(4)/U(2) : S0(5)/U(2).

The projection Z-4 S4 then corresponds to the imbedding

U(2) C---> S0(4), and the family {9t1t >0 of Riemannian metrics on

Z is expressed by Bit4- I*- * t-dss, t>0.
Since the Riemannian metric on.CP1 =

SO(4)/U(2) induced by

')-
irdl,

x1W is isometric to t'ds2 iff X. 21t, the Riemannian metric

g.X on Z induced by the bilinear form B1I x, + a611.w X M -is

an Einstein metric for I 1 : 2 and A2 = 1 (see Theorem 5). The

second parameter consequently yields the normal homogeneous metric

on
SO(5)/U(2). To describe the Einstein metric corresponding to

the parameter X1 = 2, we use the isomorphism

: SO(5)/U(2) -> CP3 given in ([333, p.86):

If we regard
CP3

=
U(4)/[U(3)x

U(1)] with ,.(4) [Mt(3) ®j(1)] OX,

where

42 =

K
A E C3 3.

the differential dc1:4..+ 4M, ) 42 is given by

E15 -x(01 ,0)t E25-',(0,2,0)t
E35 _,(O,0,'t E45 --->(0'0,I)t

Y5 -)(-11010)t Y6 >(i,0,0)t.

Here Y5 ` E13+E24, Y6 ` E14-E 23
denotes the basis of 41 . Since

the vectors E15, E25, E35, E45 and 1 Y , 3 Y6 are ortho-1,\ 5 72=X

normal with respect to 81Ik uy +1B1I4,.x4j, , for 'Z= 2 this
bilinear form corresponds under d s to

<A,8> :- ?-(AB + BtA) ; A,B E 4 ,

and this scalar product on }2 describes the usual KBhler-Einstein

metric on CP3.

b) The case M4 = CP2

We represent the complex projective plane CP2 = U(S)/
U(1) x U(2)]

as a homogeneous space and decompose the Lie algebra (3) into
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/GL (3) [,w(1)Q+ %(2)] Q+ 444. , with

0 a b

i = { -a 0 0 , abet C2.
-b 0 0 j

As an Ad-invariant, positive-definite inner product in 4(3) we

take

a2(X,Y) = - 2 Re(Tr(X oY)) ; X,Y e , (3).

Then B2I X,V, yields the homogeneous standard metric on CP2;

with this metric, CP2 is a self-dual Einstein space of scalar

curvature R = 24 (see [33]). Denoting by pC :[U(1) x U(2)] , S0(,yy,)
the isotropy representation of CP2,' the frame bundle of CP2 is

given by P - U(3) xx SO(MA), and since j -(A) = SO(4)/11(2)
is

isomorphic to CP1 = U(2)/ [U(1) x U(1)]
, the twistor space Z of

CP2 is obtained by

z - u(3) xd J-(A U(3)/[U(1) x U(1) x U(1)]'

Here the projection Z -' CP2 is given by the imbedding

[U(1) x U(1) x U(1)] - [U(1) x U(2)] . Geometrically, Z is

the manifold F(1,2) of (1,2)-flags in C3

Using the additional notation

((
0 0 0

41 = { 0 0 c cf-C y = C,
0 -c 0 JJ

we obtain &(3) =[M. (1) Q+ ,(1) NULQ+ ;

now remark that the metric ds2 on CP1 coincides with the metric

induced by B2r/W x,
tt

and the corresponding imbedding
Thus, the family (9t,t ' 0

of Riemannian metrics on Z is deter-

mined by B2f x,lyy+ and according to Theorem 5,
Einstein metrics are obtained for t1 - 2 and t2 - 1. The second

parameter corresponds to the normal homogeneous metric on F(1,2);

on the other hand, t1 2 yields a KShler-Einstein metric on

F(1,2) with the corresponding complex structure O+.tiY>Mti Q+ y
given at the end of example (a) in § 4, Chapter 5.

3.4. A Holomorphic Interpretation of the Twistor Equation

We consider a four-dimensional Riemannian spin manifold M4 as well

as a non-trivial solution 'w
o E r (s-) of the twistor equation
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Wo=0.
The integrability condition

W(nj 2),V0 = 0

(see Chapter 1, Theorem 12) and the fact that the zero points of

are isolated yield

W- = 0,

i.e. M4 is a self-dual Riemannian manifold. The twistor space

Z = P(S-) is a complex manifold.

and (S-)*\ 0 are complex

0 -y - 6 Sm at the point
TmM4 by the formula

Moreover, the manifolds S \ 0

manifolds too. We recall that a spinor

defines a complex' structure onm F M
4

J4' (x)-'p = I xw .

Furthermore, by the rule

(X.1 (X )

we introduce a Clifford multiplication of a vector X e. TmM4 by a

dual spinor 'g-E(S-)*. If 0 { * is a dual spinor, it
defines a complex structure J T

m
M
4 s Tm4:

J (x)1
Suppose that '1" is given by the Hermitian product on S; and by

a spinor 0 ji (k-LS;:

Then we obtain for any spinor 'y- E Sm:
< ,J C W. i x>.

i<Xty-,CP"> = i,"(xp-) _

= i(X,I-)(q-) _
(J ")(W") _

1-0(x) . <J $ (x)w,
-< w -, J'9 (x) >

and, consequently,

j _ -JT
The tangent spaces T _(S"\ 0), T _((S")* ,.0) split into a

vertical and a horizontal part. Since the vertical parts are

canonically isomorphic to the complex vector spaces which are the

fibres of the corresponding bundle they admit complex structures.

On the horizontal subspaces we define the complex structures by
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pulling back the operators J"' , J f.- from T0M4.

Finally, S \ 0 and (S-)* v 0 have universal almost complex

structures, and they are integrable if and only if M4 is a self-

dual Riemannian manifold (see [2],[33]). We obtain the diagramme

(s-)*\ 0 ° > z = P(S-) < q S--'o

M
4
/

where (S ) \ 0, Z and S \0 are holomorphic manifolds. The

projection p:
(S-)*

\0 - Z is given by p(g -) = Ker('E-). This

map is the projection of a holomorphic
C*-prinicpal

fibre bundle

over the twistor space Z. We introduce the associated bundle

H = (S-)* \ 01 x *

H is a holomorphic 1-dimensional vector bundle over Z.

Consider now an arbitrary section -+_e, fl(M4;S ). We define a

function '\y : (S-)* \ 0 - Q by

For any number A& C we have

ti (.A g ) A

The latter equation means that ti'- is a section in the associated

bundle H over the twistor space. Conversely, if f e r(z;H) is a

section, it is given by a function f: (S-)* \ 0 7 C with the

property

f(A ) = A f('5_).
We say that f is a linear section of the bundle H if f satis-

fies

f('S i +,S2) = f('C i) + f(,g-).
A linear section is an element of (S-)** = S-, and consequently the

space of all sections r(M4;S ) is isomorphic to the space

riin(Z;H) of all linear sections:

r'(M4;S ) = rlin(Z;H).

The space 7;(,°(Z;H) of all holomorphic sections is contained in

rlin(Z;H):

C rlin(Z;H).
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Indeed, if f is a holomorphic section, then the restriction to any

fibre f: (S-)* 0 - > C is a holomorphic function with the property

A f(-S-).
The power series expansion of this function contains only linear

terms, i.e. f is linear on any fibre. Next we prove that a spinor

field 'y) e- r(S ) is a solution of the twistor equation if and

only if the section by E('(Z;H) is holomorphic. We need the

following algebraic lemma:

Lemma 1: Let A:IR4--> Q 4 be a map satisfying the following

conditions:

(.i) A is IR-linear
(ii) For any algebraic spinor EP 0 4 and any vector XF.IR4,

<T ,A(Jq X)> = i< cQ ,A(X)>

holds, i.e. the functional IR4-a X-'> <cp ,A(X)> d is
J T -complex linear.

(iii) The trace c - e,,, A(ea ) vanishes in Q 4'

4 01=1

ed A(e.) = 0.
oc=1

Then A is trivial, A = 0.

Proof: In 4 and
4 we fix the basis u(1,-1), u(-1,1)

and u(1,1), u(-l;-l), respectively. The Clifford multiplication is

given by

i u(1,1) e1'u(-1,1) = i u(-l,-1)

e2.u(1,-1) -u(1,1) e2.u(-1,1) u(-l,-l)

e3.u(l,-1) = I u(-1,-1) e3.u(-1,1) -i u(1,1)

u(-1,-i) u(1,1).

Using these formulas we can calculate the complex structure

JT : IR4-aIR4 for any spinor 0 1 T -E A 4. Suppose now that
A 71 0 is a map with the properties (i) - (iii). Without loss of

generality we may assume that A(e1) - u(1,-l). Consider the spinor

cQ = u(1,-l) = A(e1). Then J`? (e1) - e2 and we obtain

<A(e1), A(e2) (e1))).=

= i< 4 ,A(e1) >= I.

Next we consider the spinor 'fi't = u(-1,1). The corresponding complex

structure is given by
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J'I (e1) _ -e2 Jn (e3) = e4.

Thus, we have

<T-, A(e2)> _ -<'q ,A(J' el),' _ -i<r ,A(e1)> = 0.
Since < L ,A(e2) > = i and <<),,-,A(e2)> = 0, we conclude

A(.e2) = -i u(1,-1).
We write A(e3) and A(e4) in the form

A(e3) =Ozu(1,-1) + B U(-1,1)

A(e4) = 1u(1,-1) + d u(-1,1).

With respect to J`4 (.e3) _ -e4 it follows that

« , A(.e4)> - -A(3 T e3)> = -i <( ,A(e3)>
i.e.

Y'- io[ .
Moreover, using the complex structure J L we deduce

< 1 , A(e4) > _ <' ,A(J1 e3)> i <-q-,A(e3)
and

cS is.
Consequently, the map A:1R4 -* U 4 is defined by

A(e1) - u(1,-1)

A(e2) - -i u(1,-1)

A(e3) - o& u(1,-1) + B u(-1,1)

A(e4) - io(u(1,-l) - is u(-1,1)

Finally, we. consider the spinor -S- - u(1,-1) + I u(-1,1). An

elementary calculation provides the formulas

J (e1) - -e3, ; ) ' 9-( .2) - -e4.

Then we have

A(e3)> - -i <' ,A(e1)
and< ,A(e4)> - -i < ,A(e2)1

We calculate the products and obtain

COL - i B - i

and consequently oC - 0, B - -1.

The map A:IR4 -:,84 is therefore given by
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A(el) = u(1,-l), A(e2) _ -i u(1,-l)

A(e3) _ -u(-1,1), A(e4) = 1 u(-1,1).

This yields

z e,_ . A(ea) = 2 1 u(1,1) { 0,
oC=1

a contradiction.

Lemma 2: Let A:IR4 JA 4 be a map with the properties:

(i) A isIR-linear.

(ii) For any spinor q-6,6 4 and any vector X EIR4,

<<Q A(Jq- X)> = i<cQ ,A(X)>
holds.

Then there exists a spinor Q 4 such that A(X) - X - '+.

4
Proof: Consider tQ+ _ - 4 e A(ea ) as well as the map

a=1
A* IR4 - Q 4, A*(X) = A(X) - X cP+. We calculate the trace

*4
4-> ea A (a., ) = L ea A(et) + 4cp+ = 0.

.C=1 oc=1

Moreover, if R) e Q 4, we have

-i<X.cP ,T+5= i<'n

A* satisfies the conditions (i)-(iii) of Lemma 1 and we conclude

A* 2 0, i.e. A(X) =

Theorem 6 (see [631): A section e. (S-) is a twistor

spinor, a N! 0, if and only if the section tiY e.f (z;H) is

holomorphi,c.

Proof: Since Y - is linear on any fibre, the function

: (S )*\ 0 ) T is holomorphic if and only if

d' -(IY) - I d4(Y) 41

holds for any horizontal vector Ye Th((S-)* . 0). Fix a point

mob M4 and locally an orthonormal frame in the tangent bundle

such that V si( mo) - 0. The section is locally given by

a function U - Q 4 and U x (A 4-\O)* -a C has the
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form
5 (yi (m)).

The equation <1 > is equivalent to

X)) = i..S-(dtV-(X))

for any vector X E,Tm M4 and any dual spinor SinceSince
0

V si(mo) = 0, we see that is a holomorphic function if and only

if

( Q J -
XW

) = il (V \ ) <2>

holds for any X &TM4 and e-(S ) . We represent the dual spinor

by a_ spinor cQ-, J (-w )
Then J Jand the equation <2> can be written as

- <VJq- X'w, CP >= i<oX-P, cP > 43)

Suppose now that 'y) is a twistor spinor, Z'y, - 0. Then we have,

for any vector X ETM4 and any spinor cp E. S

-<QJcf-X14 ,cP
=<4(JCP

X)' D p ,cf >_

-( DW ,(JC? -<1 D- , i XT
- i<1 ,T->= i<VX,W_,4-> .

Consequently, if V- is a twistor spinor, the corresponding

section 4 is holomorphic. Conversely, if is holomorphic,

the map

TM4 3 X ' VX'`V E S-

satisfies the assumptions of Lemma 2.

We conclude that there exists an spinor field CP+ G. (r S+) such that

QXCP X - 'f +,

i.e. cp is a twistor spinor.
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Chapter 4: Odd-dimensional Riemannian Manifolds with Real Killing

Spinors

In odd dimensions real Killing spinors are related to special

contact structures (in addition to the Einstein condition).

After explaining some special properties of contact forms and

Sasakian manifolds we will discuss this relationship.

First we will prove a general existence theorem: Any simply

connected Einstein-Sasakian manifold with spin structure admits two

linearly independent Killing spinors. In every odd dimension we

have a series of examples for such manifolds, namely starting with

an arbitrary compact Kbhler-Einstein manifold X2m of positive

scalar curvature we find a certain principal S1-bundle
M2m+1

over X2m which has an Einstein-Sasakian and a spin structure. This

yields a construction method for manifolds admitting Killing spinors

in any odd dimension.

It turns out that in the dimensions 5 and 7 the converse of the

above mentioned fact is true. Roughly speaking, there is a one-to-

one correspondence between Killing spinors and Einstein-Sasakian

structures on spin manifolds of these dimensions. In dimension 5

one can verify that under an additional regularity assumption on

the associated Sasakian structure our construction method yields

all possible manifolds admitting a Killing spinor. Well-known

classification results concerning 4-dimensional KAhler-Einstein

manifolds with positive scalar curvature now imply a classiflaction

of 5-dimensional manifolds admitting one Killing spinor with a

regular associated Sasakian structure. 5-Manifolds with two real

Killing spinors with the same Killing number are conformally flat.

Analogously we can describe 7-dimensional manifolds admitting

two real Killing spinors with regular structure. All of them, in

particular the well-known homogeneous spaces with a Killing spinor

as described in [26] can be obtained by our construction method.

The existence of three independent Killing spinors on a simply

connected 7-dimensional spin manifold M7 is equivalent to a

Sasakian 3-structure on M7. This structure induces a Spin(3)-action

on M7. If the corresponding orbit space is a smooth closed manifold

X4, one can verify that M7 is the manifold obtained by the construc-

tion method starting with the twistor space of X4. Results of

twistor theory now imply a classification of 7-manifolds with three

'regular' Killing spinors. 7-Manifolds with more than three

independent Killing spinors are conformally flat. Finally, we discuss

some properties of 7-dimensional manifolds with one Killing spinor
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and give examples of such manifolds.

4.1. Contact Structures, Sasakian Manifolds

Let (M2m+1, g) be a Riemannian manifold of dimension 2m+1.

Definition 1: A contact metric structure on M2m+l consists of

a tensor field cp of type (1,1), a vector field S and a 1-form

on M2m+l such that

(1) jn(dj)m it 0
(2) `1(I) = 1
(3) cf2 =-Id +,r(Qx
(4) g(c.(X),c.'(Y7 = 9(X,Y) -q(X)'q (Y)
(5) di1 (X,Y)=2g(X,c'(YD, where dj (X,Y)= X'Yl(Y)-Y.1 (X)-'r ([X,Y]).

We call 1') a contact form and T the characteristic vector field.

In particular, we have

'1](X) = g(* X) d1 (X, S ) = 0.

in such a structure.

Definition 2: A contact metric structure ( If, Y,'rj g) is called
a K-contact structure if I is a Killing vector field.

Lemma 1 ([15]): A contact metric structure ( , ,rl,g) is a

K-contact structure if and only if

VX'S - -(f (X)

holds.

Lemma 2 ([15]): If (cf, g) is a K-contact structure, then
1) c g-0
2) 0

3) 07' d'j= 0
4) ° cP - 0.

Definition 3: A manifold M2m+1 with K-contact structure

(cP, g,11,g) is called a Sasakian manifold if

lt y](X,Y) + d'j (X,Y) g- 0,
where

['P,`P] (X'y) -'frLX'p(Y)
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Then ( ,'S , ,g) is called a Sasakian structure.

Lemma 3 ([15]): A K-contact structure (If, - ,?Z ,g) is a Sasakian

structure if and only if

(VX P (Y) =

Corollary 1: A tensor field f of type (1,1), a vector field

and a 1-form 71 on
(M2m+i,g) constitute a Sasakian structure if

and only if is a Killing vector field of length 1 and

a) 7(X) = g(-9 ,X)
b) -VX- _ Lf(X)
c) 9P2= -Id+q'g
d) (VXLf)(Y) = g(X,Y)

hold.
On Sasakian manifolds we have curvature conditions (66]:

Lemma 4: If Q is the curvature tensor on a Sasakian manifold,

then

'1R (X, Y) g ='r (Y)X -'rl(X)Y.

In particular, the scalar curvature R on an Einstein-Sasakian

manifold of dimension 2m+1 equals R - 2m(2m+1).

If (M2m+1; c0, 79,n),g) is a Sasakian manifold and 81,...Is2m+1

is an orthonormal frame on M2m+1, then
2m+1

Ric(si,CQ(sj - ='GZ(si,sk,sj,cP(skD - (1-2m)g( cp(si),sj) (4.1)

for the Ricci curvature.
In particular, on an Einstein-Sasakian manifold we have

2m+1
2g(si, T(s j))

k 1
V-(si,s j,sk, 00) (4.2)

Remark 1: Let (M2m+l,g) be an Einstein-Sasakian manifold.

The curvature tensor 'R is a map

1Z : A 2(TM2m+1) A2(TM2m+1).

Let Th denote the bundle of all vectors that are orthogonal to .

R maps A2(Th) into A 2(Th). On the orthogonal complement of

A 2(Th) in A 2(TM2m+l), fl is equal to the (-1).identity. Since

W = + R
n - holds for the Weyl tensor on an n-dimensional

Einstein manifold, W(A 2(Th)) is contained in A2(Th), and W

vanishes on the orthogonal complement of A2(Th). Hence, we may
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consider R. and W to be maps

'Z, W : A2(Th)>A2(Th).

Definition 4: A triple
(-9 11'5 2'_S 3)

of Killing vector fields

consists of three orthogonal Killing vector fields
-S1, _92, -93

of

length 1 satisfying

1191' 79 2] - 213, 11f2' 19 3]= 2'1' (.'931 1911 - 2 *92.

Every integral manifold of a triple ('S 11 .12, 13) of Killing
vector fields is totally geodesic and of constant sectional curva-

ture K - 1.

Definition 5: Three Sasakian structures
(? i' on a

Riemannian manifold (M2m+l,g) constitute a Sasakian-3-structure

if ( 1 1' '92, 9 3) is a triple of Killing vector fields and if the

relations

q3 '?2 - 'P1 +'q2 Qj 3 2 LP®' '?l S2

LP l 3 ' - T2 + 13 ®1 1 'P3 'Pl s LP2 + l ® 13
'?2''l - - 93 + Ill ©12 '1'P2 - +'12 ® 91

are satisfied.

Using equation (4.1) one proves

Lemma 5: Any n-dimensional Riemannian manifold with Sasakian 3-

structure is an Einstein manifold of scalar curvature n(n-1).

Furthermore, one can show the following

Lemma 6: Let two Sasakian structures (Y i''i,1qi,g) (i-1,2)
with orthogonal characteristic vector fields 1 1,'1 2 be given on
(M2m+1,g). Then we have

'
,gl and by

'93 T2, `r13 :- (p3 -v r
53

we can define a third Sasakian structure such that

(i=1,2,3) constitute a Sasakian 3-structure.

Proof: First we show g2. For any vector field Z

it holds

g(17 211'Z) - g(-OZ'S1''2)- -Zg('g i.'g2) + g('gi'V Z'2)
- -g(Z'0S1 '92)'
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since 'E1 and 'S2 are orthogonal Killing vector fields.
In particular, we have '?1('2) _ - cf 2(-9 1) = 3

Furthermore, one deduces (-S1, -SS21= 71 'f2 -'V-C2 -S1 = 213-

Thus, 'g3 is a Killing vector field, too. The length of 19
3

equals

one, since

9(-&3"3)= 9(''1(-%2)1 1(-92))=g(' 2,`g2)-"11(:92)71(152)

= 9(752,12) = 1.
Using q1 - Id + 111 Ox 1

and (V x 11)(Y) g(X,Y) PSl- 071(Y)X

we obtain

[151. 531 1 =a 2))

`p

cQ1( 3)

(VI (1)(92) +p1(- '92) 1(-S 3)

=

9(`1

2T1('93) _ -2cf1(VV2',1)= 2cf i(s2)

= 2(--S2 +'11(152) 1) _ -2 2.

Analogously one verifies ['f2, ;3] 2 S1.
Using again 1?1 = - Id +Iqi Ox S1 we deduce

c3(X) _ -VX 93 -Vx(y1('92)) -(V XCP1)(1S2) -q'1( V X' 2)

-'11(-g2)x -'1(V x'g2)

-'12(X) Ox 11 + cp1 cP2(x)

and, in the same way,

42 T1 - -T3 +4l1 0-g2-
Furthermore, one calculates

'3'p2(x) -(?3(_VX-9 2) =VV 93 (c1(-5 2))
XS 2 X2

- (V 1)(PS2) '92)X 2 X 2
= 9(Ox62'

2)

-

2 = -`P1 +12 093 and analogously

q 3 CP1 = 42 +11®0 S3. Because of '111 2(X) g(g1,- VX 12)
- g(X,%1'g2) - g(X,-%3) "?3(X) it holds
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`P1 T3 (x) _ `Pi(-`/X13) = Lf1(-VX 4Q1(g2))

x'i)('g2) -T1(VX'92))
Cf1(-g(X.-S 2)11+1(12)X- 1(0X'92))

i (f2(x) (Q2(X) + ii(c 2(X))l 1

-42(X) +'13(X) g1.

From 2 T1 (X) _ -' 3(X) it follows in the same way that
q1 + q3 ®2'

In order to prove that (P 3' 3"q3' 9) is a Sasakian structure it
remains to show that

q3 =-Id +'13 ®13 and (O X CP3) (Y) = g(X,Y) 3- ry) (Y)X.

Because of LP 2(19 1) _ --13 and l 2 li = -13 we have

1 1 c92 -112 ®11)

2 0 P1(13) +3P2 0-9 1

1+(F

1 P2 T1 t92'
From LP 2 (P1 = -LP 1 ?2 + 'q2 (2) `91 + N®®'92 it follows now that
q3

= 72 @'51-(P1'P 1'P2 T2 +11P2 ®P1(12)
Finally, the equations

3 ( - S ) 0-S 2= - 12'
'fl3T2 .l 1 O' 3(-93) _ -'11 and '71'P2 =q3 imply

43 = 'q2 (@12 - li 0 *S1 + (-Id+'12 ®12 +1®0 1)+ l3 ®!3
_ -Id +' 3 (2) 3'

The Sasakian condition for
(P3

is a consequence of the corresponding

ones for
CP1

and q)2:

(7X ?3)(Y) =OX(Y1'2)(Y) -GX(i 2 Q 91)(Y)
. (`/ x (P1)'p2(Y)+(,01(7 x P2) (Y)-X') 2(Y)! 1 +

+'q.2(7
9(x, q 2(Y))-l1(cP 2(Y))X+(Q1(g(X,Y)!2 -

-''l2(Y) .x)-Xg(Y112)%1+g(GxY,TS2) 1 +

+'q2(Y) '1(x)
g(x,Y) cP1('&2)

Since we have already proved 711Y2 = 1q3 and 1(" 2) _ 93+ we
obtain ((Jxq3)(Y) - g(X,Y)-93 -713(Y)X.

Remark 2: If
(4 i'f i'c i'g) (i=1,2,3) is a Sasakian-3-struc-

ture, then the volume forms .i n (d'J1)m induce the same orientation.
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4.2. An Existence Theorem for Killing Spinors on Odd-dimensional

Manifolds

Theorem 1 ([44]): Let
(p , -g ,j,g) be a simply connected

Einstein-Sasakian manifold with spin structure.

a) If m : 0 mod 2, then M2m+1 admits at least one Killing spinor

for each of the values X = + I.

b) If m = 1 mod 2, then M
2m+l admits at least two Killing spinors

for one of the values _ + 2'

Proof: We define two subbundles E+ of the spinor bundle S by

E+ _ {VIES: (+ 2(p(X) +9X-X'g)p= 0}.
Furthermore, we introduce the covariant derivatives

Vg Y :=VX4 t X'4?.

First of all we show that are connections in E+ and E_,

respectively. We differentiate the equations

(+ 2.p(X) +'g X-Xg) p= 0 with respect to Y:

(+ 0.

This equation is equivalent to
it 2(QYCP)(X)-Cp(Y)X+Xtl?(Y)-cp(X)Y + 2°XY+ 2

ll + It 2(p(x) 0

and we have to show that the first term of the last equation vanishes.

A direct calculation yields this result by using the properties of

the Sasakian manifold and the equation defining the bundle E+

It 2(Qyc')(X)-4p(Y)X+XcQ(Y)- 4(X)Y ; 1TXY + 1 X'gYjtp.

-j± 2g(X,Y)g i 2j(X)Y- cP(Y)X+X cp(Y)-cp (X)Y +xY+ 2 X'9Y3'yi

_{+ 2g(X,Y)g + 2l](X)Y+2X :Q(Y)+Yq(X) + XY + 2 XgY3\P

+ 2g(X,Y) + 2 VX)Y + X Y + XY + Y X + 2 YXE; 1tXY+1 X-9+ N

2g(X,Y)15+ 2'1(X)Y X'Y +XYr+g('9,X)Y+ 1YX-f+ 1 YX t

+ g(X,1)Y + 0.

The curvature '10* of the connections V ± is given by

R±(X,Y)\.V Vyw- VY V t\V - V X,y]No
VXVyPt XVy"N+ Vx(YtiY) + XYw -V. Vx

2 YO XV,+ 2Vy(Xtil') - ; xY"V -Q[)c,Y7v- 2
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= R(X,Y),p + 4 (XY-YX)p

where R denotes the curvature of p .

Now we prove that 62= vanishes on E+, i.e. (E+,7±) are flat

bundles. Fix locally an orthonormal frame

s1's2 = q(s1), s3, s4 = c(e3),...,s2, =(Q(s2m_1), .

In particular, this fixes an orientation of M2m+1.

This frame has the following properties.

a) If a E+ and si f sj,(P(sj), then slsj'W is orthogonal to

E+.

Indeed, suppose 'J1,*2E E+ . Then we obtain

<sisjy, 1,T 2>_ _1'W1.q(sj)) si'gw2>

(8j)ai'`1' 2>= ;<Y'1, `g sic'(sj)V2>
-<-4,1,8 I a j`W2> _ <s j8i`W1,'4N 2>

_ -Gsisj.Pi,W 2>
b) If 4'e E+ , then si'g1p is orthogonal to E+ since

<si- rY 1,V2> slsj cP(sj)V11W2> +<Vpi,C?(sj)sjsiW2>

_<\ tiy2>

si g W IIXP2>

holds for lp 1, 2 E E+.

c) If '4 E. E+ , then ai cQ (si} _ +
Now we can calculate 0- ±. Let V E E+. 62(X,Y)W equals the
E+-part of 62±(X,Y)4 =Q. (X,+)'w + a(X?-YX) ? . Because of the
mentioned properties of the frame, the E+-part of

(X,Y)-* a R is given by

2m i'j 2m
R (X,Y,si, (9 (si))si (Q(s1)v 4,(= 6Z (.X,Y,si,CQ (si)) v

Iul

Since M2m+l is an Einstein-Sasakian manifold, formula (4.2)

implies that this equals + g(X,c

On the other hand, +_ 2 g(X,CP(Y))'f1p is precisely the E+-part

of 1 (YX-XY)J .
It remains to calculate the dimension of the bundles E+. Let

V e-S be equal to u 66 2m+1 relative to our frame. -* is an
element of E+ if and only if it satisfies the equation

+Xcf(X)ty=Yw for all vectors X orthogonal to '5 , i.e. if and
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only if + e2j_1e2ju = e2m+1 u
holds for all j 6 in. Relative to

the basis u( F_ (1),...,£ (m)) of Q
2m+11 e2j_1e2j

is given by

10 1) ® "' 0 ( 0 )®O-)®( 0 )®... (D (1 0)

[(j-1)/2] x
and e2m+1 by

i( 0 1) ® ... O( 0 1 1

Consequently, 1 c6(1) ....ECm) u(E (i)....,E(m)) is an element of

Kj := Ker(; a2j_le2j-e2m+1) if and only if u(E(1),...,E(m)) Kj

for all E(l),..., 6(m) such that cE(1)...E(m)
0. On the other

hand, u( F, (1),..., 6(m)) is an element of Kj if and only if

} a2j_1e2j u(E(1),...,E(m))-e2m+1u(6(1),...,E(m)) _

i(+ E(j) u(E(1),...,ECm))-C-1)mECl)`...

i(. E(j)-(-1)mb(1) ... b(m)) u(.E(1),..., E(m))
0

i.e. (-1)m E(1) +E (j) holds.
One obtains

=di E

-

M
l 1 if in is even

0 if m is odd

J

2 if m is odd

dim E+
1 if m is even

This result is interesting since we can construct such Einstein-

Sasakian manifolds as certain S1-bundles over Kahler-Einstein mani-

folds of positive scalar curvature.

Example 1: Let (X2m,g,J) be a Kahler-Einstein manifold of scalar

curvature R - 4m(m+l) and ci(X2m) denote its first Chern class.

Let A be the maximal integer such that I c (X2m) is an integral

cohomology class. Consider the S1-bundle X2m;5l) with

the Chern class
c1(M2m+1 _ X2m) = 1 c1(X2m) as well as the

connection form -,Yi' in this bundle, whose curvature form equals
2( ic. , where Si denotes the Kahler form of X2m. If

2
we define a metric g on M by g =T *g - -- A-,2 ' Ox 'v , then

2m+1 (,m+1)
M is an Einstein-Sasakian manifold.
M2m+1

is simply connected and admits a spin structure.
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Proof: With the aid of the O'Neill formulas (a. C16]) one proves

that g' is the unique Einstein metric on M2m+1 naturally defined

by g and YL', i.e. horizontally determined by g and vertically

by the length of S1.

Now we prove that M2m+1 is a Sasakian manifold. We define the

contact form 1Z, the characteristic vector field `, and the endomor-

phism field by

A _ J ( ' W X ) , if X 1

m+ i 'Ti 9( '1 (x)
0 , if X111

where - denotes the horizontal lift relative to -YZ'.

Then g = g + ® 'rj . Obviously, 'Yl, ('g) = 1 holds.
Relative to an orthonormal frame si,...'a2m satisfying

'r,si = si' s2i - 5-821-1
we have

(Z m(s1,s2,...,s2m
= 2mm!

The relations (3) and (4) of definition 1 hold because of the

corresponding properties of Furthermore, we have

d,q(X,Y)
m+

d-l'(X,Y)= 2S1(X,Y)- 2g(X,JY) = 2g(X,cfY),

i.e. (5) is satisfied. The vector field Is is a Killing vector field

since, because of oe 'ii-g- - 0 and n1 = i(-6)dIll + d {(i( ) )}
- dn?('g,.) - 0, the equation o'els g 0 holds.
The Sasakian integrability condition is satisfied since X2m is a

complex manifold (s. C15]).

The KAhler-Einstein manifold X2m is simply connected (a. (711) and

therefore the exact sequence

12(x2m)
a >`C1(S1) ,c11(M2m+1) , jr1(X2m) = 0 yields

1that Tr(M2m+1) is trivial or a cyclic group. In particular, we

conclude qr1(M2m+1) = H1(M2m+l;Z).

Using the exact Thom-Gysin sequence of the Sl-bundle
(M2m+1,-,x2m;S1)

2m+1 2m

... >H2m-2(x2m;Z)
v cl(M X ) > H2m(X2m;Z) ? *>

H2m (M2m+l;Z) > H2m-1(X2m;Z) > ...
and the Poincarb duality for H2m-l(X2m;Z) H1(X2m;Z) - 0 we obtain

H2m(M2m+l;Z) -H2m(X2m;Z)/c1(M2m+1 X2m)U H2m-2(X2m;Z).

Since c1(M2m+l ->x2m) is not a multiple of an integral cohomology

class it turns out that the homomorphism
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c1(M2m+1 > X2m) H2m-2(X2m;z) > H2m(X2m;z)

is surjective. Finally we obtain
?i1(M2m+1) = 0.

it remains to prove that M2m+1 is a spin manifold. In case

w2(X2m) = 0, this is obvious. Consider now the case o2(X2m) , o.

Then c}(X2m) s co2(X2m) = 1 mod 2 and, consequently,
c1(M2m+ -> X2m) c1(X2m) mod 2. We obtain

,2(,2m+ 1) _.Tr* 2(X2m) =qr*cI(X2m)=Ir*c1(M2m+l X2m) mod 2.

On the other hand, from the exact Thom-Gysin sequence

0 2m u c (2m+1-_, X2m) 2 2m 'T* 2 2m+1
H (X ;Z) - 1 H (X ;Z) H (M ;Z) > ...

it follows that lr*cI(M2m+l X2m) = 0.

We will now discuss what this construction method provides in

dimension 5 and 7. There arises the question on which 4-dimensional

manifolds Kahler-Einstein metrics of positive scalar curvature R

exist. First we note that such a manifold must have a positive

first Chern class, since this class is represented by the Ricci form,

which equals w > 0 on 4-dimensional Kahler-Einstein manifolds,

where 0 denotes the Kahler form. A compact 4-dimensional Kahler

manifold admits a positive first Chern class if and only if it is

analytically equivalent to S2 x S2, Q;P2 or to one of the del Pezzo

surfaces Pk (Pk is the surface obtained by blowing up k points

in a general position in CP2, see [11]), where 16k58 (see [11]).

Using a theorem of Matsushima (see[73]) we prove in Section 4.3

that if g is a Kahler-Einstein metric on S2 x S2, then the

isometry group acts transitively on this space and, consequently,

g is the standard metric. On CP2 the same is true. On P1 and

P2, there do not exist any Kahler-Einstein metrics ([17]). The

existence of families of Kahler-Einstein metrics on Pk (34k48) was

shown by Tian and Yau ([101],[102)).

We obtain the following possibilities for X4 and M5, respectively.

X4 1 M5

S2 x S2

CP2

Pk (3fki8)

V4,2

S5

M5
k

V42 denotes the Stiefel manifold of oriented orthonormal 2-frames

in IR4. Mk is diffeomorphic to the k-fold connected sum

(S2 x S3) # ... # (S2 x S3) (see Section 4.3).
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On Mk, there exists a family of Einstein metrics with a Killing

spinor. Let us discuss now examples in dimension 7. If we apply the

construction method to the KAhler manifolds X6 = CP3, the flag

manifold F(1,2), S2 x S2 X S2, CP2 x S2 or to the Gra mann mani-

fold G5,2' we obtain metrics with two independent Killing spinors

on M

7

S7,

su(3)/sl = N(1,l),[SU(2) x su(2) x Su(2)]/U(1) x U(l) _

- Q(1,1,1),[SU(3) x SU(2) x U(1)]/SU(2) x U(l) x U(1) = M(3,2)

and the Stiefel manifold respectively. These examples are

well-known (see [261). Let now X6 be Pk x S2, where Pk is one

of the del Pezzo surfaces Pk (3'k68). Then our method yields a

family of Einstein metrics with two Killing spinors on the corre-

sponding 7-dimensional manifold M. Summing up we get the following

examples

X6 M7

CP3 S7

F(1,2) N(l,1)

S2 x S2 x S2 Q(1,1,1)

CP2 x S2 M(3,2)

G5,2
V5,2

Pk x S2 (35k&8) Mk

Some of these examples can be generalized for arbitrary odd dimension.

Consider the Klein quadric Qn_1(C), i.e. the hypersurface in CPn

given by the equation

(Zo)2 + (Z1)2 + ... + (Zn)2 = 0.

The restriction of the Fubini metric of CPn to Qn_1(C) is a

KBhler-Einstein metric of positive scalar curvature.

On the other hand, the Klein quadric Qn_1(6) is diffeomorphic to

the oriented GraBmann manifold Gn-1,2. Applying now our construc-

tion method we obtain the Stiefel manifold Vn_1,2 and a metric with

two independent Killing spinors on it.

4.3. Compact 5-dimensional Riemannian Manifolds with Killing Spinors

There are some special properties of the Spin (5)-representation

based on the classical group isomorphisms

Spin(5) = Sp(2) and SU(2) = Sp(l).
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We have Sp(2)/Sp(1) - S7, i.e. Spin(s)/SU(2) = S7.

We discuss now carefully how these isomorphisms are realized by the

Spin(5)-representation.

Relative to the basis u(1,1), u(1,-1), u(-1,1), u(-1,-1) the

Clifford multiplication is given by

0

1

0 0 0 -1 0 0 0 0 -1 0
11 0 0 0 1 0 0 0 0 0 0 1

e1' 0 0 0 1 e2= 0 0 0 -1 e3- -1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0

1 0 1 0 0 0
0 0 0 -1 0 -i 0 0e4=

0-1 00

0 0 e5- 0 0 -i 0
0 1 0 0 0 0 0 1

From this we conclude

Lemma 7:

(i) {L)2r A2(IR5): 0}=

W12 +034 = 0

014 + 023 = 0

13 = 024
I'`Wi5 = 0 (i=1,...,4)3.

(ii) Let X1, X21 \3 be complex numbers. Then we have

dim {(,J2 E A2(IR5): 02u(1,1)=0, C32(.X 1u(1,-1)+ )2u(-1,1) +
+X3u(-1,-1) - 03

-(0 if '.11 0 or A2 0

3 if X1 = "k 2 = 0 and ) 3 f 0.
Spin(5) acts on the 7-sphere S7(6 5):= {4 5:1VI - i3. We denote

the isotropy group of u(1,1) relative to this action by H°.

H° projects one-to-one onto a subgroup H C SO(5). The Lie algebra

of H equals

n = {7 toijEli: c ijeiej u(1,1) - 03
j

where E ij 0 4ji5 is the standard basis of

so(5). i 7

By Lemma 7 we have h - su(2).

Lemma 8: Spin(5) acts transitively on S7(L 5). The isotropy group

14° is isomorphic to SU(2).
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Proof: The first assertion follows from

dim Spin(5) = 10, dim S7(185 ) = 7, dim H° = 3,

i.e. dim Spin(5) = dim S7(65 ) + dim H°.

Now we have to show that H° is simply connected. Consider the

exact homotopy sequence of the fibration

87(t 5) = Spin(5)/Ho.

... rir2(S7) i1(H°)_11T1(Spin(5)) - w1(S7) 5O

chi ,jr°(H0)*o(Spin(5)) >eir°(S7).

From `1r2(S7) = lr (S7) = o(S7)=0 it follows now that
jro(H°) = 7ro (Spin(5)) O and qr-1(H°) ="ri(Spin(5)) = 0.

Corollary 2: If V 4 0 is an element of L15, then there is a

unique vector "E of length one such that

,g'p= IV .

Proof: We may assume %V& S7(L15). Since Spin(5) acts transitively

on S
7(A5 ), let without loss of generality `W be u(1,1). The

equation ju(1,1) = i u(1,1) has obviously the unique solution

-go e5 .

Corollary 3: Let M5 be a compact 5-dimensional Riemannian spin

manifold, P its frame bundle and f: Q --iP, W : Q 7 M a fixed spin

structure. Then any section of length 1 in the apinor bundle

S Q xSpin(5)z 5
defines SU(2)-reductions Q('ly), P(ii) of Q

and P by

Q(V) - {geQ:\y(`r(q)) =Cq,u(1,1)J}
P() = f(Q(V)).

We will now give estimates for the maximal number of Killing spinors.

Let (M5,g) be a compact 5-dimensional Einstein manifold of positive

scalar curvature R with spin structure. We denote by m+ and

the dimensions of the spaces of Killing spinors:

V;R
m+ dim {y,e r (s) : VXy ' 1 XV,

Theorem 2: ([41]) If the Weyl tensor W of M5 does not vanish

identically, then

m+ I( 1 and m- L 1.
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Proof: Let mo6M5 be fixed such that W X 0 in a neighbourhood

V of mo. Assume that m+ 2. Then we can choose orthonormal

Killing spinors
V11 '42

with IIX'i = 2 fj X' (i=1,2). Let
i

811 ...,s5 be a local section V U P(W 1). Relative to this frame

we have W2 = >1 u(1,-1) + X 2u(-1,1)+ 23u(-1,-1). Because of

formula (1.38) and Lemma 7, W 4 0 in U implies 'l1 = 2 = 0.

Hence,

DXV1 = 2 1- laij(X)eiej u(1,1)
i

0ij(X)eia u(-1,-1)VXtiW2 = X( 73) u
i-7

jj14

relative to s1,...,s5' where 0ij-(V si,sj). For X=s1 we obtain,

noting N7811 = I "YZO e1
u(1,1) and paP2=

21 R
)3e1 u(-1,-1)

to 15(s1 + i W25(81) _ 21'2'6 i

13(- 1015(81)- cJ25(a1 = i A. 3.

On account of R 4 0 and X 3 ,4 0 this is a contradiction.

Later on we will prove:

Theorem 3 ([41]): If M5 is simply connected, then m+ = m_ holds.

We will now see that in the 5-dimensional compact case a Killing

spinor defines an Einstein-Saaakian structure. Consider a compact

5-dimensional Riemannian spin manifold M5 with a Killing spinor

of length 1)I - 1. Since M5 is an Einstein space, let the scalar

curvature R be R = 20. Furthermore, we may assume '7X V. 1 X 'Y .

With the aid of Y we define now a Sasakian structure on M5. The

real 1-form Nl let be given by y1(X):- w>. The vector field
I we define by the equation I*- i,N . This is correct, since in

a local section 81,...,85 of Q(y) the equation is written as

S u(1,1) - i u(1,1) and admits therefore a unique solution (I =s5).

Lemma 9: 1 is a Killing vector field of length I 'S) = 1.

Proof: jis a Killing vector field if and only if the equation
0 - g(V y ,Z) + g(Y, VZ 1) holds for all vector fields Y,Z.
We will prove <(g( Vy V_,Z) + g(Y, 7Z J))'4 , y,>= 0. Since

g(Vy ,Z) _ -'((V s)Z + ZV ) and

g(Y, VZ`g) _ -'(YVZ +(`/Z YS)Y), it suffices to show
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0 = <((QY'S)Z + YV/Z-9)V,V> (4.3)

From the differential equation for ' it follows that

2 YV - i V Y (-f'yP) - (V y +'S QY Y +
12

'g y 'y'

and, analogously,

Consequently we obtain

zv>
- YyZ1)>

= <Y`W (V Z'9)Q>-< 1,5Y'4) ZVp>

Addition yields the equation (4.3).

Remark 3: Lemma 9 means g(X, OD = 0.

Lemma 10: g) is a Sasakian structure on M5.

Proof: We have to show a) - d) of Corollary 1.

ad a) It holds 27((X) -i <Xy,yi>+I<-,X-Y>
2g(X,g)? l 2 = 29(X, ).

ad b) Differentiating the equation = i4 relative to x one

obtains (V 4 + -g'VX4'- iVx'y.. Using the differential
equation for Y and the definition of cP we see that this is

equivalent to

- cp)'y+ + 1-Sx Y X LP (4.4)
In particular, we have

- Q2(.x) + 2'g(p(x)W = 2.PMy .

Hence, T2(X)\p + I _g X,4V+ 1 X1V= 0.

If X,% are orthogonal, it follows
2(X) Y- I2 2X(i 1 0,

i.e. X.

In case X we obtain

c? 2(X)4 - 4 + 2 ty 0,

hence 0.

On the other hand, we know
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( X , if XI(-Id
+ Y Ox ' )(X) 0 , if X 9-9'

This proves b).

Remark: In case and X are orthogonal, (4.4) implies

q(X) W = - iXNv .

c) follows directly from the construction.

ad d) Differentiating equation (4.4) with respect to Y one obtains

(V Y'?) (x)'w =(- q (V Yx)- I c4(x)Y- V'Yx-
21

xY- (Y)x

- 11V Yx + 1-9XY)y

Thus

(V Y gyp) (x)4# = 2(- (P(X)Y- 4 (Y)x + 2(-iXY+1 XY) )

_ 2(Y(F(X)+2g((? (X),Y)+X tf(Y)+2g(X,c7Y)

+ 1(-iXY+`g XY))4

1(Y(- ix+,"1X)+X(- IY+l`9Y)

+ 1(-ixY +1XY))p

1(ig(X,Y)-g(X,1 )Y+ 1(Y I X-iXY))W

= 2(g(X,Y)1-g(X,j )Y+Y(-g(X,1)- 1X )- XY)1p

_ (g(x,Y)`9-g(x,'%)Y)'p ,

which yields (VY'Q)(X) = g(X,Y)`%..1 (X)Y for all vector
fields X,Y.

Together with Theorem 1 we obtain

Theorem 4 ([411): Let (M5,g) be a 5-dimensional Einstein manifold

of scalar curvature R = 20 with a Killing spinor 'p,E 0. Then M5

is an Einstein-Sasaki manifold.

Conversely, any 5-dimensional simply connected Einstein-Sasaki

manifold (M5,g) with spin structure admits a Killing spinor.

As a corollary one obtains Theorem 3.

We now make an additional regularity assumption. We suppose that

the constructed Sasakian structure is regular, i.e. that all integral

curves of S are closed and have the same length L. Then the trans-

formation group {¢

ts7J04t624f

of the vector field 'g' :- 7- I induces

a free S1-action on M5 , where S1 = {eit, 019t'29r3 . The orbit
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space X4 is a 4-dimensional smooth manifold. Thus, the projection

@f: M5-* X4 is a principal S1-bundle. We identify the Lie algebra

S1 of S1 with iR. Then the exponential map is given by

exp(it) = elt. Obviously, the 1-form -YL' .=
21r1

IQ is a connection inL
`f1: M5 7X4. Its curvature form is D d T' + d r1

We study now geometrical and analytical properties of the orbit

space and the topological type of the fibration. Because of oZ° g = 0
we can project g onto X4 and obtain a Riemannian metric g.

In S1 we choose the unique inner product k such that

2 *'
k(i,i)

L
. Then g g + holds and we can make use of the

417
O'Neill formulas [16].

Lemma 1l: The orbit space (X
4,t)

is an Einstein manifold of scalar

curvature R = R = 24.

The endomorphism field c maps the horizontal bundle ThM5 onto it-

self, where q 2IThM5 = - Id. Furthermore, we consider the 2-form a

on M defined by .Q (X,Y) := g(X, (cY) =
i

2 d't) . Because of o' cP= 0
and fd't1= 0, cQ and n define an almost complex structure J

and a2-form n on X4 , respectively. Obviously, S2 = g( .,J ) holds,

i.e. fl is the Kahler form of J.

Lemma 12: (X4,5,g) is a Kahler manifold.

Proof: n is closed since _ 1 de is closed. Furthermore, the

Nijenhuis tensor (5,51 of 5 vanishes because of the integrability

condition [ d'r Ox `g= 0 for C

Now we can make use of the classification of 4-dimensional compact

Kahler-Einstein manifolds of positive scalar curvature ([111, [17],

see Section 4.2). X4 has to be analytically isomorphic to S2 X S2,

MP2 or to one of the del Pezzo surfaces Pk (34kh8). Pk is the

surface obtained by blowing up k points in general position in

CP2. Next we study the topological type of the S1-fibration

(M5,'l ,X4;S1)

Lemma 13: Let c1(M5 -X4) and c1(X4) denote the first Chern

class of (MS,lr, X4;S1) and the first Chern class of X4, respec-

tively.
Then the relations
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(i) ci(X4) _ X c1(M5--' X4)

(ii) c1(X4) = A' c1(M5-+X4) for a certain integer A hold.

Proof: We have the connection l q' in (M5,'R",X4;S1) with the

curvature form d'l'
!i dl . Hence, c1(M5--_.X4) is given by

L d'r(]7it
On the other hand, since X4 is an Einstein-Kahler manifold of

scalar curvature 24, its Chern class is given by the Ricci form

C1 Ric = Ric(.,J ) = 6 2

ci(X4 1 -) -L 'fir Ric]=[- -,1 dqj
which proves (1).
Furthermore, we have an isomorphism lr* TCX*=ThM5 = Q(')x SU(2) C2

of 2-dimensional complex vector bundles. This isomorphism yields

'r
* 4) = 0 because the first chern class of any SU(2)-bundle

vanishes. Assertion (li) follows now from the exact Thom-Gysin

sequence of (M5,'W, X4;S1):

C

(M5, X4)
... H°(X4;Z) 1 )H2(X4;Z) > H2 (MS;Z) ) ...

Lemma 14: H1(MS;Z) = H4(X4;Z)/ci(M5-> X4) v H2(X4;Z)

The fundamental group of M5 is cyclic.

Proof: Since 't1(X4) = 0 [71), H3(X4;Z) = H1(X4;Z) = 0 follows

from the Poincar6 duality. The exact Thom-Gysin sequence

4 H2(X4;Z) H4(X4;Z) H4 (H5;Z)-45

H3(X4;Z) = 0> ...

yields H4(M5;Z) = H4(X4;Z)/c1(M5- X4) Q H2(X4;Z).

Using the Poincar6 duality we obtain the first assertion. The

second one follows from the exact homotopy sequence of the S1-fibra

tion and Ir1(X4) = 0.

We want to classify all possible Einstein spaces now.

First case: X4 - CP2. If X4 is analytically isomorphic to CP2

and admits a KShler-Einstein metric, then X4 is isometric to CP2

with the Fubini metric [80).

The cohomology algebra H*(CP2) is isomorphic to Z[oL) /oC3 and

the first Chern class is given by c1(CP2) = 3oC , o(e H2(CP2;Z).
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Using Lemma 12 we see that there are two possibilities for the first

Chern class of the S1-fibration:
c1(M5-aCP2) =cc or c1(M5 7 CP2) = 3oc

In the first case we have 9r1(M5) = 0, L = 21r, and in the second. 2r (see Lemma 13). Since we know the curva-one 111(H5) = Z3, L

ture tensor of CP2 as well as the curvature form dV = 4T

of the Riemannian submersion Jr : M5--? X4, we can apply the O'Neill

formulas again and conclude that M5 is conformally flat. Conse-

quently, M5 is isometric to S5 in case c1(M5-) X4) =oc and iso-

metric to S5/Z3 in case 3oc . The group of analytical

isometrics of CP2 acts transitively on CP2. Each of these iso-

metries can be lifted to an isometry of M5. Hence, M5 = S5/Z3 is

the homogeneous space of curvature one and the fundamental group

r1(M5) = Z3

Second case: Suppose that the orbit space X4 is analytically

isomorphic to S2 X S2. We will show that X4 is isometric to the

product of 2-spheres. We use a result due to L. Berard Bergery,

stating that any compact 4-dimensional Einstein manifold whose iso-

metry group is at least 4-dimensional is either symmetric or iso-

metric to CP2 # CP2 with the Page metric (a. [8]).

The Lie algebra of the isometry group is the Lie algebra i of

Killing vector fields. Since X4 is a Kdhler-Einstein manifold of

positive scalar curvature, the Lie algebra h of all holomorphic

vector fields on X4 is the complexification of the Lie algebra of

all Killing vector fields ([73]). As S2 x S2 is analytically

isomorphic to the Klein quadric Q2 in CP3, we conclude that the

dimension of the isometry group of X4 equals the dimension of the

isometry group of Q2 in the standard metric, which is S0(4).

Since S2 x S2 is not homeomorphic to CP2 # CP2, X4 is a symmetric

space. The de Rham decomposition yields now that X4 is isometric

to the product of 2-spheres with radius :. The cohomology algebra
F6"

of S2 x S2 Is A(a,b), i.e. a commutative algebra with generators

a,b and relations a2 = b2 = 0. The first Chern class of S2 X S2

is ci(S2 x S2) = 2a + 2b. Using Lemma 13 again we see that there

are two possibilities for c1(M5-' S2 x S2), namely a + b or 2a+2b.

In the first case we obtain ir1(M5) = 0, L = 49r/3 and in the

second one T 1(M5) = Z2, L = 2? /3.

On the other hand, we have the following two examples of S1-fibra-

tions over S2 x S2. First consider the Stiefel manifold V4 2'

V4,2
admits an Einstein metric of scalar curvature 20 (see (32]).
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The calculation in [321 shows that nontrivial Killing spinors

X+_ _ + defining regular Sasakian structures
exist on this space. The integral curves of the characteristic vector

field are the usual fibres of 't: V422 > S2 x S2 = G4,2, where

G4,2
denotes the GraDmann manifold. The length of the fibres in

this metric is 491-

The second example we get from the first one. V44,2
is the manifold

of all oriented orthonormal 2-frames (v1,v2) of IR4. Consider

the fixed-point-free involution

I: V412 -V4,2

(v1,v2) (-vq;-v2),

which maps all fibres onto itself. I is an orientation preserving

isometry. V422/I = V4,2/Z2 admits two spin structures (see [321),

which are defined by the two possible lifts of I into the spin

bundle P of V4,2. Relative to one of these lifts, 4 1 and 'ty 2

are invariant. Hence, they define Killing spinors with a regular

Sasakian structure on V4,2/Z2

Hence, the S1-bundle M5 is isomorphic to V42- S2 X S2

in case `11(M5) = 0, and isomorphic to V4,2/z2->s 2 x1 S2 in case

T1(M5) = Z2. Furthermore, the metric on S2 x S2 and the length

of the fibres define uniquely the metric of M5.

Consequently, M5 is isometric to V42
2

or to V4,2/Z2 in the

mentioned metric.

Third case: X4 = Pk. Now let X4 be one of the del Pezzo surfaces

with 3ik48. The cohomology algebra H*(Pk) is generated by the

elements pC , El,...,Ek E.H2(Pk) with the relations o63 = O,o(Ej 0,

E2 = -1. The first Chern class of Pk is 3o(+ E1+...+Ek (s. [11]).

Consequently, there is only one possibilitiy for the Chern class of

the fibration MS > Pk, namely c1(M5 Pk) = 3ot+E1+...+Ek. From

H4(Pk;Z) = Z and Ei = -1 it follows that H1(M5;Z) _

H4(Pk;Z)/(3a +E1+...+Ek)U H2(Pk;Z) = 0. Thus, M5 is diffeomorphic

to a simply connected principal S1-bundle over one of the del Pezzo

surfaces Pk (36k-e8). On the other hand, on Pk there exists a

family of Kahler-Einstein metrics with positive scalar curvature.

Consequently, by Theorem 1 we obtain a family of Einstein metrics

with a Killing spinor on each of these S1-bundles.

There is a result due to S. Smale on the structure of 5-manifolds,

(8.[981) which states that a simply connected closed spin manifold
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of dimension 5 whose second homology group H2(MS;Z) is free and

abelian is diffeomorphic to S5 #(S2 x S) #...# (S2 x S3)

k x

Therefore, we obtain a one-to-one-correspondence between metrics

with Killing spinors defining a regular Sasakian structure on the

k-fold connected sum (S2 x S3) #...# (S2 x S3) and Kahler-Einstein

metrics on Pk.

Summing up, we have proved the following

Theorem 5 ([41]): Let (M5, g) be an Einstein space with a Killing

spinor u and the scalar curvature R = 20. Suppose in addition

that the associated Sasakian structure is regular. Then there are

three possibilities:

(1) M5 is isometric to S5 or 55/Z3 with the homogeneous metric

of constant curvature.

(2) M5 is isometric to the Stiefel manifold V4,2 or to V4,2/Z2

with the Einstein metric considered in [321, [67].

(3) M5 is diffeomorphic to the simply connected S1-bundle with the

Chern class
cl(M5->P

k
) = cl(Pk) over a del Pezzo surface Pk

(34k68).

4.4. Compact 7-dimensional Riemannian Manifolds with Killing Spinors

The complex Spin (7)-representation A 7 is the complexification of

a real representation, since the real Clifford algebra Cliff(7) is

isomorphic to MR(8) O+ MR(8). In all calculations we use the reali-

zation of that real spin representation which we obtain from

e1 - E18 + E27 - E36 - E45

e2 =-E17 + E28 + E35 - E46

e3 --E16 + E25 - E38 + E47

e4 --E15 - E26 - E37 - E48

e5 --E13 - E24 + E57 + E68

e6 E14 - E23 - E58 + E67

e7 = E12 - E34 - E56 + E78

where Eij is the standard basis of the Lie algebra so(8):
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i

We denote this real representation also by Q
7.

Let u1,...,u8 be the standard basis of 47 IR8. Spin(7) acts

transitively on the Stiefel manifolds

Vk(L! 7) = {(vl,...,vk) : vieL73<vi> = dii
We consider now the isotropy groups H0(ul,...,uk) C Spin(7):

Ho(u1, ...,uk) = f gc-Spin(7) : gua = ud,1` of k J

and their Lie algebras h(ul,...,uk). It is well-known (see (261)

that h(u1), h(u1,u2), h(ul,u2,u3) are isomorphic to the Lie

algebras 22' su(3), su(2), respectively.

More precisely, we have

Lemma 15: h(u1) 0ij eiej° 12 +C.)34 + W56 = 0

4i13+ W24 - 067 = 0 W 14- "23- 057 = 0

W16- 025 + W37 = 0 , 015- 026- 047 = 0

W 17+ 4036 + W45 = 0 , W27+ W35- 046 = 0 }
h(ul, u2) =[ f b ij eie j : w12 + CJ34 + 056 = 0 1

i.4 j

13 = W24' '14 + 023 = 0, W15 - 026

'16 + W25 = 0' W35 = 046, '36 + W45 = 0,

43 17 = 0 (1=1,...,7)1

h(u1,u21u3) _f Y Wij eiej W13 -6324, 4014 + '23 = 01
i4j

W12 + W34 = 0, W15 = Wi6 s 0i7 - 0 (1ai-67)J.

Lemma 16: The Spin(7)-actions on S7, V2(LI 7) and V3(Q 7) are

transitive. The isotropy groups H°(u1), H°(ul,u2), H0(ul,u2,u3)

are isomorphic to G2, SU(3) and SU(2), respectively.

Proof: The first assertion follows from
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dim Vi(/j 7) = 7 = dim Spin(7) - dim H(u1)

dim V2(Q 7) = 13 = dim Spin(7)- dim H(ul,u2)

dim V3(p 7) = 18 = dim Spin(7)- dim H(ul,u2,u3).

The exact homotopy sequence of the fibration

Vk(Q 7) - Spin(7)/H°(ul,...,uk) (k=1,2,3) implies the second

assertion because of 71(Vk(&7)) =`lr2(Vk(67)) = 0 (k=1,2,3).

Lemma 17: For any orthogonal elements 'Vl A O and V2 / 0 of

p 7 - IR there exists a unique vector 'g 61R8 such that

*SW1
='42'

Proof: For any vector XF-IR8 it holds that (X`4 1,i 1) = 0. There-

fore we have a linear map from IR7 into the orthogonal complement

of defined by

IR7 --->
wi

X I--9j X 1.

Since dim IR7 = 7 = dim.y,l, this is an isomorphism.

Consider now a 7-dimensional Riemannian spin manifold with a real

spinor bundle S. As a corollary of Lemma 16 we obtain:

Lemma 18: If 41,...,tpk (k-1,2,3) are orthonormal sections in S,

then we can define topological reductions of the spin structure Q

and the frame bundle P by

Q(V l,...,'W k) = U 7 Qm(V l....'V k)
meM

Qm(wl....,'Wk) _ {gEQm:WI(m) =[q,ui], i=1,...,k3

and P(V 11...,lvk) = f(Q(VI....... k))'
Further, we consider only sections in the real spinor bundle.

The spaces of all real Killing spinors in the complex bundle are

the complexification of the corresponding spaces in the real spinor

bundle.

We now give estimates for the maximal number of independent Killing

spinors.

Let (M7,g) be a compact Einstein spin manifold with scalar cur-

vature R and spinor bundle S. We denote by m+ the dimension of

the spaces of Killing spinors:

m+ = dim 11* Ef (S) :VXy,= + Xty
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Theorem 6 (see [89] or [581): If m+> 0 and m_> 0, then M7 is

isometric to the sphere S7.

Proof: Given two Killing spinors *+, V_ satisfying

VX + + I 4 XNp+ , we consider the function f
An obvious calculation yields £ f = R f. In case f it 0, M7 must

be isometric to the sphere S7 by Obata's Theorem (see [9]).

In case f = 0, i.e. V+ and y+_ are orthogonal, we consider the

1-form defined by

W(X) _ (Xy++,y+_).

Because of dim {'ICS: 01 = 7 - dim TM7 the 1-form c.
vanishes nowhere. On the other hand, to is a parallel form:

(VX(a)(Y) = X(Vp+,V+_) -((VXY)%V+,V'_)

_ (Y'gxw+" +-) + (Y'4'+, 7x V-)

Ya't {(XY+,I{+_) + ( Y X

g(X,Y)( 77 g(X,Y) f
0,

since we have f = 0 in the situation considered. Now the Weitzen-

b8ck formula for 1-forms yields Ric(w) = 90- 0. This is a
7

contradiction.

Theorem 7 ([43],[44]): Let (M7,g) be a compact connected Riemanniw

spin manifold. If m+>3 or m_>3, then M7 is a space of constant

sectional curvature.

Proof: Let W 1' W2' W3 be three orthoncrmal Killing spinors with
the same Killing number and 51,...,57 a local section in
P(-1+1' y+2"W3) For the Weyl tensor

W : A 2(TM7) ) A 2(TM7)

W(,SiA S ) _ Wi k15kA Slj k,l j

we obtain from

W( ) W1 = W ( ' ) 4 ) 2 = W(7i )y, 3 = 0 for all 11 6 A2TM7

the relations
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Wij13 = Wij24 Wij14 + Wij23 = 0 Wij12 + Wij34 = 0

WijkS = Wijk6 = Wijk7 = 0 16 i,j,k '- 7

(see Lemma 15)

We consider again the real Spin(7)-representation d 7 y (R8. The Lie

algebra h(ul,u2,u3) of the isotropy group H°(ui,u2,u3) is a

subgroup of so(L 7) = so(8) and given by

h(ul.u2,u3) aij = 0 14j67)

a56 = a78 a57 = -a68

a58 = a67 }-

This follows immediately from Lemma 15. Hence H°(ul,u2,u3) acts

trivially on u4 and coincides with the usual SU(2)-action on

span Iu5,u6'u7'u8J =1R4 = C2.

Suppose now that M7 admits four orthonormal Killing spinors

w1,..., `p4. In the reduction P(Wl, U+21 4)3) of the frame bundle
we may choose a section a.,...,S7 such that W 4 = a4u4+'X 5u5 holds.

If 'X 5 '4 0, then, because of the above mentioned relations for the

Weyl tensor,

W(X,Y)* 4-12 A'S((WXY12 - WXY34)u6

+ (-WXY13 - WXY24)u7

+ (WXY14 - WXY23)u8)

= 0

implies W = 0. Thus we still have to prove that '
5

does not vanish

on an open set UCM7. Assume that w 4 = u4 on U C M7. Without

loss of generality let the scalar curvature be R - 42. We denote

by wij the connection forms of the Levi-Civita connection relative

to sl,...,s7. The equations

1

provide the conditions

7- Wij(s1)eiejul = e1u1 = U8

> Wij(s1)eieju2 = e1u2 = u7
t`j

iG Wlj(sl)eieju3 elu3 = -u6

= Wij(si)eieju4 = elu4 = -u5.
j
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Thus, we get

W27(s1) +035(sl) - (046(sl) =

LI 27(sl) - L35(s1) + w46(s1) = 1

LJ27(s1) - L35(81) - W46(81) = -1

" 27(x1) + 035(s1) + W46(61) = -1,

which is a contradiction.

In dimension 7 we can also prove the converse of Theorem 1.

Let (M7,g) be a compact Einstein manifold of scalar curvature

R = 42 with spin structure. Furthermore, let q'1 and 2 be two

orthonormal Killing spinors with the Killing number ')L= We

define a vector field I by the equation '9'y 1 =Y2-
This is correct, see Lemma 17. If s1'...is7 is a local section

in P( w 11 'W2), then 1= s7 holds. Moreover, we introduce the 1-

form rl(X):= (Xii1, 'Y2) as well as the (1,1)-tensor cQ := - t7!.

Lemma 19: is a Sasakian structure on M7.

Proof: First we prove that
_,

is a Killing vector field, i.e.

g(VY'S,x) + 9(Y,VX1) = 0.
We differentiate the equation IV 1 ---?2 with respect to Y and

multiply it by X'y+l:

((17Yg,)Yl,x-l+1) +(-gY`I'l,xVl) _ 2(Y'w2,xlyi).
Analogously we have

((VX'S)V,,Y`Y1) + 2(1X*1,YW1) _ (xW21Y-Y1)
Adding both equations and taking into account (Xw Yip) _
= g(X,Y)IWI 2 we obtain

9(VY'I,x)+g(Y,VX'$) = 12((Yy,2,"1) + (x 2,YW1))

- 1((-9YW1,x'+1)+(1x*j'Y'4+1))

= 9(X,Y)(`y+1,t{+2)

+ 2((YV2,X''1'1) + (XL+2,Y'V1)) +

g(Y,j)(-W1,xV1) + ti{il)
= 0.

Moreover, we have 11(X) _ (XW
1, 2) _ (x '1+ '1)= 9(X,' ). By our

definition, holds. Now we verify the condition
2

= -Id + ,q( `1. Suppose that X is orthogonal to '- the

102



remaining case is obvious. From (QXj)y1 +*97X' l =VXM'2 it
follows that LP(X)'y 1 =1X'.)1 and, therefore,

-1P 2(X)tw 1 = --gc?(X) ZV1 = -%'9 Xy11 = XW1, i.e.

q 2(X) = -X.

It remains to prove (V Xu?)(Y) = g(X,Y)`g - I(Y)X. We use the equa-
tion 2 (f (X).1 1 = ('1 X-X t)-p 1, which we obtain by covariant
differentiation of 't'W1 =4)2'
We start with OX(q(Y)'N1) =V/X(L? (MV 1 +W(Y)OXV1

=QX(`-?(Y))'Pl + ((Y)X'4' 1

_and V X(qq (Y)4i l) = VX(- 2 Yw2 + 2 '&Y\4)3.)

_ - 2 (VXY)\V2 - YXyp2 - 2(P(X)YY1 +

+ 2s(v
Now we obtain

(QXq)(Y)'W1 = (VX(P(Y))xy 1 -?(VXY)''1 =
- 2(V XY)V2 4 YX'4'2- 2 VX)Y(Y 1+ 2`g(V XY)'N 1

+ 4 2 (Q(Y)Xv1 XY) w1
- 4 YXV 2 2 (P(X)Ytp1 + 2 '(Y)X'r 1

YXiy2 + 2 (Y(P(X)+ X(P(Y))W1 YgXw1
2 (Y)

(Y
1 27q(Y)X'(p1

(g(X,Y)'9 - Iq (Y)X)'' 1.

Thus calculation provides (OX(P)(Y) - g(X,Y)19-'7(Y)X.
Theorem 1 and Lemma 19 yield the following

Theorem 8 (.[441): Let M7 be a simply connected 7-dimensional spin

manifold. Then there is a one-to-one correspondence between pairs

of Killing spinors and Einstein-Sasakian structures on M7.

Suppose now that the constructed Sasakian structure ((' ' ,'r( g)

on M7 is regular, i.e. all integral curves of 'g are closed and

have the same length L. We use again the method described in case

of dimension 5 (Lemmas 11, 12, 13) and obtain

Theorem 9 ([431,[441): Let (M7,g) be a compact Einstein manifold

of scalar curvature R - 42 with two Killing spinors such that the

induced Sasakian structure is regular. Then M7 is a principal S1-
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bundle over a Kahler-Einstein manifold of scalar curvature R - 48.

For the first Chern class c1(X6) of X6 and the first Chern class

c1(M7 '>X 6 ) of the S1-bundle the relations

(1) c1(X6) = L. cl(M7 > X6)

(ii) c1(X6) = A E Z

hold.

Analogously to Lemma 14 one verifies

Lemma 20: H1(M7;Z) = H6(X6;Z)/c1(M7 )X6) u H4(X6;Z).

From the exact homotopy sequence of the fibration S1 -)M7--'X6

it follows that m"1(M7) is a cyclic group. Because of MyerS'

Theorem IT1(M7) is finite.

Our next aim is the classification of 7-dimensional manifolds with

three independent Killing spinors.

Let (M7,g) be a compact 7-dimensional Einstein manifold of scalar

curvature R = 42 admitting three orthonormal real Killing spinors

with the Killing number 2. Solving the equations

X1'W1 =y+2' X2'4'1 -W3, X3'4'2 ="k3

we obtain three orthogonal Killing vector fields of length one, for

instance g(X1,X2) - (X1"+1, X21'1)
_ ( 2'V 3) - 0.

Defining 'I i = g(X1,.), Fi =- [JX1 we obtain three Sasakian struc-

tures ( Ifi,Xi,Ii,g), i-1,2,3.

Lemma 21: (41,Xi, lqi,g) (i-1,2,3) constitute a Sasakian 3-struc-

ture.

Proof: We differentiate the equation defining X1 relative to X2:

(9X 2x1) y'i + X1X2'' 1 =
2

X2 y+2,

i.e. (ux
2
xi) Wi - X1V3.

On the other hand, X1 and V X X1 are orthogonal to each other,
2

since X1 Is a Killing vector field of length one. Consequently,

we have

(r/X2X1) V 2 = (V X2X1)X14'l = -X1(tX2X1) l = -'V3.

Hence, V X X1 = -X3. The assertion follows now from Lemma 6.
2
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Conversely, given a simply connected Riemannian spin manifold

(M7,g) with a Sasakian 3-structure (Cfi' 1i, i,g), i=1,2,3. Then
(M7,g) is automatically an Einstein manifold and we can apply the

method used in Section 4.2.

We consider the bundles

Ei = {4 6S: (+ 4'1(X) +791X-X'gi):y= 0 (i=1,2).
Let M7 be not isometric to the sphere S7. E+ as well as E2, or

E as well as E2 have the dimension 2. Assume, for example, the

first case. Theorem 7 implies E+t1E2 4 0 since each of the bundles

Ei and E+ yields two Killing spinors. Therefore, we may choose

a spinor -q / 0 in E+IfEZ. Then, by the definition of Ei the

spinors 'g1'+ and '924' are elements of E+ and E2, respectively.
These spinors are orthogonal to each other, since

( gig , S2''+) = 9( 'Ell
'g2)`'pIZ = 0. Hence E1 { EZ and, consequent-

ly, M7 admits three independent Killing spinors with the Killing

number 2. On the other hand, if M7 is isometric to the sphere,

then there exist four independent Killing spinors for each of the

values 11, - 1.

Finally, we obtain:

Theorem 10 ([43],[44]): Let (M7,g) be a compact Riemannian spin

manifold with three independent Killing spinors. Then (M7,g) admits

a Sasakian 3-structure. Conversely, every simply connected spin

manifold with Sasakian 3-structure admits at least three independent

Killing spinors.

We consider now again the Killing vector fields X1, X2, X3 con-

structed by means of three Killing spinors with

[X1,X2]= 2X3, [X2,X31 = 2X1, [X3,X1] = 2X2.

By the Frobenius theorem these vector fields define a foliation of

M7. The leaves FF are totally geodesic (a. Section 4.1.) and

have constant sectional curvature K = 1, i.e. they are isometric

to S3/r0, .

We consider the induced Spin(3)-action on M7.

Now we want to classify all 7-dimensional compact Riemannian mani-

folds with three Killing spinors under a certain regularity assump-

tion on this action. We suppose that M7 is a simply connected

compact spin manifold admitting three Killing spinors with the

Killing number such that M7/Spin(3) _: X4 is a smooth closed

manifold. In this case M7 is an S1-fibration over the twistor
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space Z+ of X4. Indeed, let p: M7 >X4 be the projection and

identify the tangent space Tp(m)X4 with the orthogonal complement

of span(X ,X2,X3) in T
m
M

7.

We define the projection

[r: MZ--PZ by the formula

lr(m) = dp cg1(m)dp-

Then the kernel of the differential d `LT : TmMZ >T1rrm)Z+ is genera-

ted by X1 and, consequently, `ir: MZ -> Z+ is an SY1-fibration.

This projection coincides with the corresponding projection for two

Killing spinors y 1,'y.2. Theorem 9 provides now

Lemma 22: qr: M7 >Z+ is an S1-fibration and Z+ is a compact

Kahler-Einstein manifold of scalar curvature R = 48. The canonical

complex structure of Z+ is given by <Q1

Since the only Kahlerian twistor spaces are VP3 and the flag

manifold F(1,2) (see 0457,[63], see also Section 3), Z+ is

analytically equivalent to one of these spaces. Moreover, on VP3

and F(1,2) there exists only one Kahler-Einstein structure (see

[69]) and, consequently, Z+ is analytically isometric to VP3

or F(1,2). By q we denote the fibration q: Z+-->X 4.

Now we carefully investigate the action of Spin(3) on M7. For a

given point m e M7 we denote by

H(m) - { te Spin(3): T - ml
the isotropy group of this point.

Lemma 23: For any point m E M7 the isotropy group H(m) is trivial

or isomorphic to Z2.

Proof: We consider the orbit Mx - p-1(x) relative to the Spin(3)-

action of x - p(m). For the map

Spin(3) -->Mx

It I_ Tm
m - C m holds if and only if there is an hm e;H(m) such that

It' - thm. Thus, we have Mx - Spin(3)/H(m), where H(m) acts on

Spin(3) from the right.

Let H be the subgroup of Spin(3) generated by X1. The action

of H on Spin(3)/H(m) is given by

H x S 3/H(m) > S3 /H(m)

(h,[-t]) F---> [h?]
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Denote by S2 the sphere S2 :- q-1 (x). Then the diagramme

Spin(3) - Spin(3)/H(m) = Mx
Ir

Sx = (S3/H(m)

H. pin(3) (HNSpin(3)) / H(m)

is commutative. Since ir is a submersion and S3-_S3/H(m) is a

covering, i is a submersion, too, and therefore a covering.

Since (H`Spin(3))/H(m) - S2 = S2, we deduce that `)T is one-to-one,

i.e. H(m) acts trivially on H\Spin(3). Identifying

Spin(3) a.SU(2) we may assume that

z 0

H =K 0 1 , Z E g1

z

holds. Then, the action of H on Spin(3) is given by

/z 0\ (cc e\ _/zK zD)
t(\ /Jl /JI 1/\ a

Hence, the projection SU(2) , Spin(.3) > H\Spin(3) = S2 maps
(ot

onto 01 E S2 a Qv{oo and the action of H(m) CSU(2) on

\Spin(3) = S2 is given by

S2 x H(m) S2

C D LOW =+

Since H(m) acts trivially on S2, we obtain H(m) _ {e} or Z2.

Lemma 24: The orbit type of the Spin(3)-action on M7 is constant,

i.e. there are two possible cases: either H(m) ={e} or H(m) = Z2

for all points mC,M7.

Proof: Consider _ (-1) a Spin(3) and the corresponding isometric

involution _ (-1): M7 P M7. The fixed point set of T- is the

union of closed totally- geodesic submanifolds Na . The manifolds

Na are Spin(3) invariant and S0(3) = Spin(3)/ft acts freely

on it. Since -- preserves the orientation, the dimension of Not

is odd. Hence, dim %, - 3, dim Na = 5 or N..k= M7.

Next we show that the case dim N<= 5 is impossible. We assume

that the fixed point set of l- has a component Na of dimension 5

and consider the images of N L in X4 and Z. Then
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7-2 := p(N r- X4 is a surface andcr(N,,, )C Z+ is a complex sub-

manifold of the twistor space Z. In fact, the tangent space of Na

contains all vectors Y invariant under the differential d-- of '

Let Y be in TNOL . Then d T P1(Y) - -drVYXS = -Vd,_T(Y)dT(X1),
since - is an isometry. On the other hand, Y and X1 are invariant

under d-r and therefore d r CPl(Y) _ - Qyx1 = ggl(Y) holds, i.e.
TNOL is C1-invariant. Now we regard the twiatorll projection

q: Z+-,. X4. Then we have q-l(r2) =<ir(Na ). Since 9r(Na ) is a
complex submanifold, the latter equation means, by definition of

the twistor space, that Tx
y-2 is invariant under all algebraic

complex structures of T,X4, a contradiction.

Finally, we prove that the fixed point set of Y cannot contain a

component of dimension 3. Assume dim Not = 3 and take a tubular

neighbourhood U = Spin(3) x
z2

D4. The Z2-action on Spin(3) is

given by r. On D4, (-1) EZ2 is an involution with the unique

fixed point Oe D4. U is homotopy equivalent to N,, , therefore

(U) ='r1(Nd) = 9rl(Spin(3)/1((+1 ) = Z2. On the other hand, U\N«

is a principal Spin(3)-bundle over p(U\N ). U I Na is diffeomorphic

to Spin(3) x (IR4\40}) for small U. Since

T1(U o(M7\ N )) _ 1(U\Na) = 0, the van Kampen Theorem implies
now that T1(M ) is the free product of 9r1(U) and j(M7\Not ).

Because of 1Irl(U) = Z2 and 111(M7) = 0 this is a contradiction.

Consequently, the fixed point set of r is 0 or M7. In the

first case we obtain H(m) = 0, and in the second one H(M) = Z2

for all m EM7.

We explain now the classification of simply-connected Riemannian

manifolds with three Killing spinors. First of all we remark that

two such spaces are known, namely the 7-dimensional sphere S7 and

the space SU(3)/S1 = N(1,1) described in [26] (see also Section

4.5). We prove that under the regularity assumption on the Spin(3)-

action, these are the only possible spaces with three Killing spinors.

Theorem 11 (see [43],[44]): Let M7 be a compact simply connected

Riemannian spin manifold of scalar curvature R = 42 with three

Killing spinors such that M7/Spin(3) becomes a smooth closed

manifold for the Induced Spin(3)-action.

Then M7 is isometric to the sphere S7 or to the space

SU(3)/51,1 = N(1,1).
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Proof: We consider the map it: MZ
>Z+.

Since the isotropy group

H(m) is constant, this is a principal S1-bundle. On the other

hand, Z+ is a Kahler-Einstein twistor space and, therefore,

isometric to the complex projective spaceCP3 or to the flag mani-

fold F(1,2) ([45],[63],[691, see also Section 3.). In case

Z+ = CP3, we have c1(CP3) = 4o , where c< E H2 (CP3 ;Z) is the

generator of the second cohomology group. Since 1T1(M7) = 0, the

Chern class of the fibration 7r: M7 > CP3 has to be equal to

c1(M7 > CP3) = a and because of the relation

c1(CP3) = 2 c1(M7 ) CP3) we obtain L = 2T for the length L of

the circles of this fibration (see Theorem 9). These data determine

M7 up to an isometry and it turns out that M7 is isometric to the

sphere S7.

We handle the second case similarly. Let Z+ be analytically iso-

metric to F(1,2). It holds H1(F(1,2);Z) = H3(F(1,2);Z) =

= H5(F(1,2),Z) - 0. The group H2(F(1,2);Z) has two generators,

cC ,-r. H4(F(1,2);Z) is generated by oG2 and oc -, H6(F(1,2);Z)
by 'a"& 2. The first Chern class of F(1,2) is c1(F(1,2)) = 2 .

Thus, the Chern class of the fibration equals c1(M7 > F(1,2))= 'r
and the length of the fibres is L =r. Again, these data describe

M7 uniquely and we obtain M7 = SU(3)/S1,1.

Corollary 4: Every compact simply connected 7-dimensional spin

manifold with regular Sasakian 3-structure is isometric to S7 or

SU(3)/Si,l = N(1,1).

4.5. An Example

Now we investigate in particular metrics with Killing spinors on

homogeneous spaces N(k,l) - SU(3)/Sk1, where the inclusion
1Skr1 > SU(3) is given by

1 eik9 0 0

91-> 0 e119 0

0 0 e-(k+l)9

We can assume k4l >O. The Lie algebra su(3) of SU(3) splits as

su(3) S1 + m, where the Lie algebra of S1 is given by

k; 0 0

S1 span C 0 li 0 1 C su(3)
0 0 -(k+i)i
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and m is the following subset of su(3):

m=Po+p1+P2+ P3'
where (21+k)i 0 0

Po :=span L = 0 -(2k+1)i 0

0 0 (k-l)i

0 1

P1 :=span { A12 -1 0 O , A12 i 0 0

0 0 0 0 0 0

0 0 0 0 i
P2 :=span {A13 = 0 0 0

_

A13 = 0 0 0 }
-1 0 0 i 0 0

0 0 O 0 0 0

p3 := span {A23 = 0 0 A23 s 0 0 1

0 -1 0 0 i 0

With the aid of the Killing form B(X,Y) Re(tr(XY)) we define a

family g. of inner products on m:

X(-B)I
P + 1 (-B P + Y (-B)l

P +
(-B)I

po x 2 z 3

(a'x'y'z > 0).

Let oc denote the number o(= (k2+12+kl), furthermore let s =
1

Ja
'We fix the following orthonormal basis of m:

X1 = i z A12 ' X 2 = - / ' 2 , X3 - fy A13' X4 = YY A13'

X5 -47 A23, X6 -
4z

A23' X7 L.

Relati ve to this basis we identify m and IR7.

The is otropy representa tion Ad: S1 > SO(m) is, with respect to this

basis,

Ad(9)

given by

_

/cos(k-1)g -ain(k-1)e 0 0 0 0 0

sin(k -1)Q cos(k-l)Q 0 0 0 0 0

0 0 cos(2k+1)g -sin(2k+1)g 0 0 p

0 0 sin(2k+1)g coa(2k+1)9 0 0 0

0 0 0 0 cos(k+21)9 -sink+21)g 0
0 0 0 0 sink+21)g cos(k+21)9 0

0 0 0 0 0 0 1
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For Ad: 51 ,Spin(et) - Spin(7) this implies

Ad(9) _ (cos - 9 + sin
k-l 9 e1e2)(Cos 2- +1 9 + sin 2= 9 e3e4).

(cos
k-+21 9 + sin k21 9 e5e6).

Consequently, relative to the basis u1,...,u8:

B2 .A2 -2AB 0 0 0 0 0 0

2A8 82-A2 0 0 0 0 0 0

0 0 AC-BD BC+AD 0 0 0 0

0 0 AD-BC AC+BD 0 0 0 0

Ad(9)= 0 0 0 0 B2+A2 0 0 0

0 0 0 0 0 A2+82 0 0

0 0 0 0 0 0 BD-AC BC+AD

0 0 0 0 0 0 -BC-AD -BD-AC

where A:= sin1 2--.k=1 6 , B:= cos A , C:= sin 3Z 9,

D:= cos 1 9.

A section in the spinor bundle S = SU(3) xAd 45 is a map

SU(3)-> Q7 which satisfies
(g9) = Ad(8 1)* (g) for all geSU(3), 96 Si.

Thus, u5 and u6 and, for k=1=1, also u3 and u4 as constant

maps are sections in S.

The Levi-Civita connection of the homogeneous space is described by

the map

A : m --- so(m)

A(X)(Y) := 1r1CX,Y]m + U(X,Y),

where CX,Y) is the m-component of [X,Y] and U: m x m -'"m is

given by

29(U(X,Y),Z) - g(X,CZ,Y]m) + g(CZ,X]m,Y)

(see [65).

One calculates

A(X1) = 2c E27 - C( E35 + E46)

A(X2) -2cE17
- C(E45 - E36)

/\(X3) = 2aE
47

- d(E26 - E15)
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1(X4) - -2d E37 + d(E16 + E25)

A(X5) - -2V E67 - e(E13 + E24)

/1(X6) - 2e E57 - e(E14 - E23)

MX7) - (-(1+k)(x -s)E12-e( -s)E34 + k( s)E56)

where c:= xy Y-z c:= 7s (k+1)

d:= 2 ( +
xy

), d:= 1
06

e:=
1( xz +

y
Xz

-1 x ),x z e:= g-"Z-.k
oc

Consequently, the lift m > s in(7) of A is given by

/1(X1) = c e2e7 -
2

(e3e5 + e4e6)

n(X2) =-c e1e7 - C (e4e5 - e3e6)

/1(X3) d e4e7 - d (e2e6 - ele5)

7(X) =-d eed (ee+ ee4 37 +16 25)
N
/1(X5) =-e e6e7 - (e1e3 + e2e4)

/1(X6) = e ee5e7 - a (ele4 - e2e3)

7(X7)
(

_ (-(l+h)(, -s)ele2-1(,A -s)e3e4+k(. -s)e5e6).

We obtain for the maps /1(Xi)-pX1 relative to the basis ul,...,u8:

A(XI)-NXl = (c-N)E18+(c-p)E27 + (c+c+N)E36 + (c-c+p)E45

%1(X2)-NX2 = (-c+p)E17+ (c-p)E28 + (-c+c-N)E35 + (c+c+N)E46

7 (X3)-NX3 - (-d+d+p)E16 + (a+d-p)E25
+

(a+p)E38 + (-3-N)E47

/1(X4)-p X4 - (-a-d+p)E15 + (-d+d+N)E26 + (d+N)E37 + (a+p)E48

A(X5)-NX5 - (e+p)E13 + (e+N)E24 + (e+e-p)E57 + (e-a-N)E68

? (X6)-NX6 =

=X)-/1(X

a-p)E14 + (e+p)E23 + (-e-e+p)E58
+ (e a-N)E67T(-1

( (-(1+k)x-lY+kz + 2 ls) - )Ep 77 N 122 2s( -(l+k)x-ly-kz+(Iy= (
2(l+k)s)+N)E34

2s

1 3 -(l+k)x+ly+kz
+(2 a 2s +N)E56

+(1 (-(l+k)x+ly-kz
+2ks)-p)E2s 78

Let us first consider the homogeneous space N(1,1), i.e. k=1=1.

On N(1,1) we have the metrics g1 and 921 which are given by
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x1 = Z, Y1 = z1 = 1, 1 = 2 and x2 = . y2 = z2 = U, 16,
respectively.

For g1 we obtain

1 -1-X1 =n(X1 + 24
42

(E18 + E27)
2 T2

/1(X2) + 1 X2 = =r (-E17 + E28)242 T2

X(X3)
+ X3 = f2- E25

212
r

/1(X4) + X4 = -y` E152 12

1 (X5) + 1 X5 = f 2 E57
212

%1(X6) + -I- X6 - -42 E58
242'

n(X7) + 212' X7 - iA (E12 + E78).

We see that u3, u4 and u6 are in the kernel of each of these

operators. Thus, u3, u4, u6 c- (S) are Killing spinors. Hence gl

is an Einstein metric on N(1,1) with three linear independent

Killing spinors.

For g2 it holds

/1(X1) -f3 X1 ='1a
1

(E18 + E27) + 5 E36
n(X2) -

IM
X2 = 'Z'16 (-E17+E28) + 5 E45

7(,X3) - 7f X3 = Y6 (E16 + E38 - E47)

/1(X4) - z
3 X4 1 (E26 + E37 + E4S

(X5) - 4 x5
= M (E 13 + E24 - E 68)

N
A (X6) -

4
3

X6 3a
1

(-E14 + E23 - E67

A(X7) - T6 X7 =
M

E12 + E78) + 5 E34.

The intersection of all kernels of these operators contains u5,

i.e. u5 6r(s) is a Killing spinor. Thus, g2 is an Einstein

metric with one Killing spinor.

Now we study the case of k> 1 >0. We need the following fact.

Lemma 25: The system

0 = 3(l+k)A(1-B) + l(3B-2)+kB(2B-3)

0 = (1+k)A(2A-3B)+31(B-A)+kB(2B-3A)

A>O B>0

(4.5)

(4.6)
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admits two solutions (A1,B1), (A2,B2) such that

-3(1+k)A1 + 21 + 3kB1> 0

and -3(1+k)A2 + 21 + 3kB2 4 0.

Proof: Discussing the curves of the functions

f(B) . 1(3B-2) + kB(2B-3)

3(l+k)(B-1)

Ann

312 6k1) 913B 6B 2) (2( 22 ++1 + +20k1 ++20k B -91k + 31 +
1

Bf (B)
t 4(1+k)

we obtain the following diagramme

B=1 B

Since the equations (4.5) and (4.6) are equivalent to f(B) - A

and f+(B) = A, respectively, the intersections of the curves f_

and f- as well as f+ and f yield the solutions (A1,81) and

2 1
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(A2,B2).

Using these solutions (A1,B1), (A21B2) we define positive real

numbers y1 and y2 by

_ (-3(1+k)AB1 + 318 + 2kB2) 4 -Y

(-3(l+k)A1+21+3kB1) 771

- (-2(l+k)A2+31A1+3kA1B1)

and

(3(1+k)A2B2 - 3162 - 2kB22) Y72

(3(1+k)A2 - 21 - 3kB2) Jy2

(2(l+k)A2 - 31A2 - 3kA2B2) y2

respectively.

If we futhermore define xi - Aiyi, zi - Biyi (i-1,2), each of the
tuples (xi,yi,zi) is a solution of one of the systems

4xyz + 3(l+k)xz + 3lyz + 3kz2

xyz - + 3(l+k)xy + 21y2 + 3kzy

xyz = + 2(1+k)x2 + 31xy + 3kxz.

Setting = 2 (a - a and Ni = / ((l+k)xl-ly1-kzl) one

obtains a solution ( X,x1,y1,z1) of

c= C-N1
d d-N1
e= a-N1

(-(l+k)x + ly + kz) +
N1

0

and a solution ( 1 ,x2,y2,z2) of

C - c + N2

d = -d+N2

e--e+p2
11 (-(.l+k)x + ly + kz) + N2 - 0

For the metric defined by ('X ,x1,y1,z1) the spinor u6 belongs to

the kernel of each of the operators A (X ) - N1Xj (j=1,...,7), i.e.

it is a Killing spinor. For the metric defined by ('x,x2,y2,z2)

we calculate analogously that u5 a (S) Is a Killing spinor.
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Finally, we have

Theorem 12: For 011 >0, (k,l) = 1, there exist two Einstein metrics

with Killing spinors on N(k,l) - SU(3)/Skl. If k-1=1, then

N(k,l) admits three independent Killing spinors relative to one of

these metrics and one Killing spinor relative to the other one.

If 1 4 1 or k # 1, then there exists only one Killing spinor for

each of these metrics.

4.6. 7-dimensional Riemannian Manifolds with one Real Killing Spinor

The above discussed example proves that there are 7-dimensional

manifolds with exactly one Killing spinor. Unfortunately, we can

not apply the methods described in Section 4.4 to these manifolds.

However, there is an equivalence between metrics with on¢Killing

spinor and certain vector cross products on 7-dimensional spin

manifolds.

Let (M7,g) be a compact 7-dimensional Riemannian spin manifold with

a Killing spinor 0, i.e.

QX' .--X,+-
We define a (2,1)-tensor A by

YX'1p- -g(Y,X)'tp + A(Y,X)'4J.

This is correct because of Lemma 17.

Lemma 26: The above defined tensor A admits the following

properties

1) A(X,Y) - -A(Y,X)

2) g(Y,A(Y,X)) = 0

3) A(Y,A(Y,X)) - -IY12X + g(Y,X)Y

4) (V ZA)(Y,X) = 2'l.lg(Y,Z)X - g(X,Z)Y + A(Z,A(Y,X))J.

Furthermore, we obtain by polarization

5) g(Y1,A(Y2,X)) + g(Y2,A(Y1,X)) - 0

6) A(Y1,A(Y2,X)) - -A(Y2,A(Y1,X)) - 2g(Y1,Y2)X + g(Y1,X)Y2

+ g(Y20X)Y11

Proof: 1) is obvious.

From the definition of A it follows
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A(.Y,A(Y,X))'tp= g(Y,A(Y,X))"kP
= X,p+ g(Y,X)Y1p+ g(Y,A(Y,X))Zy
= -IYIXtiy+ g(Y,X)YV+ g(Y,A(Y,X))'4,.

This implies A(Y,A(Y,X)) _ -jYI2 X + g(Y,X)Y and g(Y,A(Y,X)) = 0.

In order to verify 4) we differentiate the equation defining A

relative to Z:

(V ZY)Xy;+ Y(V ZX)4 +'XYXZ'W = -g(V ZY,X)-P -g(Y, VZX)W

-g(Y,X)X Zvp+ T/Z(A(Y,X))4+ A(Y,X)X Zy,

-g(V ZY,X)ly -g(Y.V Zx).w - g(Y,X)2 Z\p

+(VZA)(Y,X)xp + A( GZY,X)y,+ A(Y, 7 ZX)tip

+ A(Y,X)'1 Z-9)

Thus we have

-g(Y,X)XZ p+ (V/ ZA)(Y,X)%,+ A(Y,X)X Z.N=

_ ) YXZ-+s A ZYX ,+ 2g(Y,Z)X X'V,-2g(X,Z)X Y'VJ

i.e. ),ZA(Y,X)-V = -2g(Y,Z)X XV+2g(X,Z))LYtp+ A(Y,X),L Z1p

+ ('VZA)(Y,X)lp .

This implies

2 Xg(Y,Z)Xi -2g(X,Z)',,Yy,. (V ZA)(Y,X)')

which is equivalent to 4).

Remark 4: Because of Property 3), A is non-degenerate. Further-

more, we have by 3) and 5)

IA(X,Y)j2 s g( A(X,Y), A(X,Y))

= IX12 IYI2 - g(X,Y)2
and by 1) and 2)

g(A(X1,X2)'Xi) = 0 (i=1,2).

From 4) it follows in particular

(V
K

i

A)(x1,x2) - 0 (i=1,2).

Thus A is a nearly parallel vector cross product in the sense of

A. Gray (see [513).

Recall that a Cayley multiplication on a real 8-dimensional Euclidean

vector space (W, <,> ) is a bilinear map * : W x W -+ W such that

a) there exists an element e of W satisfying

x*e=e*x=x for all xr-W.
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b) II x * yH = II xU-IIyU , where pxp2 :_ <x,x>.

Consider now the bundle TM7 O+ 'T1, where '51 is the trivial line

bundle as well as the metric h on TM7 Q+ s 1 defined by

h((X,s),(Y,t)) = g(X,Y) + at. Let m be a point of M7 and set

(X,s) * (Y,t) - (A(X,Y) + tX + 9Y, at - g(X,Y))

for X,Y 6T
m
M7; s,t e1R. Then, on account of the vector cross product

properties of A, * is a Cayley multiplication in each fibre of

(TM7 (D 11,h) that depends smoothly on me M7.

Now we want to prove the converse, namely, if there exists a (2,1)-

tensor A with the above mentioned properties 1) - 4) on a simply

connected 7-dimensional spin manifold M7, then M7 admits a Killing

spinor. Let A be such a (2,1)-tensor. First we note that A defines

an orientation on 0 in a canonical way. Indeed, consider the 3-form

3(X,Y,Z) - g(X,A(Y,Z)) and the following 4-form 4. Let

sl,...,s7 be an orthonormal frame and vti defined by

'ji(X,Y) = g(A(X,Y),si).

n 7
Then 4 = 'lin'gi is an invariantly defined 4-form. In order

i-1
to show that a 3 n 4 does not vanish we choose the following

local frame. We fix vector fields 91,82 of length one which are

orthogonal; let s3 be a vector field of length one which is ortho-

gonal to s1,s2 and A(91,s2). Furthermore, let 941...,97 be

84 - A(a3)A(a1,82)), 85 = A(si,s3), 86 - A(s3,a2), 87-A(s2,81).

We obtain an orthonormal frame. One computes

A(81,82) - -s7 A(s2,s4) - 85 A($31a7) - -s4

A(s1's3) ' a5 A(s2,s5) = -84 A(s4085) ` 82

A(s1's4) ' a6 A(s2,s6) - a3 A($4's6) s1

A(sl,s5) - -s3 A(s2,87) = -91 A(s4,s7) ' $3

A(8118 6) - -84 A(s3,s4) = 87 A(s5,s6) s-$7

A(s1,87) - 82 A(83'a5) - 81 A(s5,s7) ' s6

A(s2,83) - -86 A($3,a6) - -s2 A(86,s7) = -s5

Now it can be checked easily that fl.3 A :,4 is a positive multiple

of s1 A ... As
7' Hence, it defines an orientation. Consider now

the subset

E - I%v I ZXV- -g(Z,X)'li+ A(Z,X)Mj
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of the spinor bundle. Calculations in the above constructed special

frame show that a spinor q,e S belongs to JE if: (teiR)
relative to s1,...,s7 Consequently, E is a 1-dimensional sub-

bundle of S. With respect to the other orientation of M7, E has

the dimension 0.

Next we show that we can define by

a covariant derivative in E:

Let 4) be a local section in E; X,Y,Z E TM7. Differentiating

MX* = -g(Z,X)t' + A(Z,X)\p

we obtain

(VYZ)Xp+ Z(VYX)4++ZX(DYV+)--Yg(Z,X),y-g(Z,X)Vyy

+Vy(A(Z,X))+A(Z,X)- V V
i.e.
ZX(VY' + -') -g(Z,X) 0 y\Y + Vy(A(Z,X))14+

+A(Z,X) 7YIV -(VYz)X'P-Z(pYX)4--, ZXY

--9(D yZ,X)'{+ -9(Z, V YX)'y+ -9(Z,X) V Y''

+(Q yA) (Z, X)* +A(V yZ, X)* +A(Z, 0 yX) 4

+A(Z,X) V W -( `/yZ)Xy+-Z(VyX)tV

- ',ZXYw

since yre r(E), this implies

ZX(Vy V+- aY4)=-9(Z,X) DyV'+(GyA) (Z,X)* +A(Z,X) V/ Y'Y- XZXY-Q

-g(Z,X)Q yW +(2'Ag(Z,Y)X-2). g(X,Y)Z +

+2'a A(Y,A(Z,X)))W +A(Z,X) V y\p-'a ZXYtp

- ,YZXy-g(Z,X)Dyy++2). A(Y,A(Z,X))-, +A(Z,X)V yt4

:'Ag(Z,X)Yty -'XYA(Z,X)I+-g(Z,X)'y4, +21 {YA(Z,X)y+

+ g(Y,A(t,X))43+ A(Z,X) DYV

- g(Z,X)(VYy+-XYV)+A(Z,X)VY4+-),YA(Z,X)-y+2Ag(Y,A(Z,X))4

- g(Z,X)(Dy-Y-)LYt*) + A(Z,X)(Dy',p -AY4).
Consequently, V/y4-'),YW is a section in f (.E).
The curvature tensor . of this covariant derivative is given by

(X,Y)t =9,(X,Y)'4. +'X2 (XY-YX)t4 ( . r ( ) ) ,I~ (E)), where G. is the
curvature tensor with respect to ' . But
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(}1 (X,Y)`W= R(X,Y,si,sj)sisj'V+ aZ(XY-YX)1+
i.e j

has to be parallel to t(r, and by means of (1.5) and (1.7) we get

(a(X,Y)'f.Y)a - I R(X,Y.si.s3)g(si.s3)IY12-0 , hence

QZ vanishes in E. Thus, there exists a V -parallel section in E

and we have proved

Theorem 13: Let (M7,g) be a simply connected 7-dimensional

Riemannian spin manifold and A a (2,1)-tensor on M7 such that

1) A(X,Y) _ -A(Y,X)

2) g(Y,A(Y,X)) = 0

3) A(Y,A(Y,X)) _ -IY12 X + g(Y,X)Y

4) (QZA)(Y,X) = 22 {g(Y,Z)X-g(X,Z)Y+A(Z,A(Y,X))3 )SIR, '.l>O.

Then M7 admits a Killing spinor.

Chapter 5: Even-dimensional Riemannian Manifolds with Real Killing

minors

By Theorem 13 and Corollary 4 of Chapter 1 it follows that the

only complete, connected Riemannian Spin manifolds of dimension

n 4 and admitting real Killing Spinors are the standard spheres.

An analogous result for n = 8 has been proved by 0. Hijazi (12].

However, the conjecture that in any even dimension the classifica-

tion of real Killing spinors leads to the standard spheres fails

already in dimension n = 6.

The first examples of 6-dimensional Riemannian manifolds admitting

a real Killing spinor have been obtained by applying the twistor,

construction to the 4-manifolds S4 and CP2. The corresponding

twistor spaces are CP3 and the complex flag manifold F(1,2),

respectively, and these manifolds , endowed with a non-standard

homogeneous Einstein metric, both have real Killing spinors C40].

Moreover, there is a series of other examples.

The main tool to describe the six-dimensional Riemannian spin mani-

folds (M6,g) admitting real Killing spinors is an almost complex

structure J which may be defined on M6 by means of a non-

trivial real Killing spinor. Although J turns out to be non-

120



integrable, it still satisfies (V XJ)(X) = 0 for all vector fields

X on M6, hence the manifold is nearly Kdhler. This class of mani-

folds was considered first by J. Koto [77] and studied in detail

by A. Gray ([48)-(541). The main result of this chapter is proved

in § 3: A connected, simply connected six-dimensional almost

hermitian manifold, which is nearly KShler non-KShler, admits a real

Killing spinor.

However, the situation in higher even dimensions (n'-10) is widely

unknown. The results for n = 6 possibly may be used to clarify the

existence of real Killing spinors in the dimension n = 10, but also

a procedure to obtain a list of examples in an arbitrarily high

even dimension (similarly to that of the odd dimensional case)would

be useful.

5.1. Real Killing Spinors on Even-dimensional Riemannian Spin

Manifolds

Throughout this chapter, let (Mn,g) be a complete, connected Rie-

mannian spin manifold of even dimension n - 2m Suppose that there

exists a non-trivial real Killing apinor cper(S) on M, i.e.

9XCp= BXCP (5.1)

holds with a real number BEIR\{03 and for any vector field X on

M. According to Theorem 9 of Chapter 1, (Mn,g) is then a compact

Einstein space of positive scalar curvature R = 482n(n-1).

In case of an even-dimensional manifold, the spinor bundle S splits

into two orthogonal subbundles S = S+ O+ S corresponding to the

irreducible components of the Spin(2m) -representation. Since the

Clifford multiplication with vector fields exchanges the positive

and negative part of S, we deduce from (5.1) that, for any Killing

spinor cQ cQ+ +tr e f (S),
QX(Q+ - BXqp (5.2)
QX (f - BX i+

holds for any vector field X on M. If cpef (S) is a Killing

spinor with (5.1), cp is also an eigenspinor of the Dirac operator,

we have

-nBcQ (5.3)

and by (5.2) we derive the equations
Df+

- -nbcq (5.4)Df- - -nBLe +
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For a spinor field * e r(S), we consider the length function

u.IV (x) (x) , \p(x)) and denote _ . If ce r (S) is a
real Killing spinor, it follows from the equations (1.5) and (1.9)

of Chapter l,that is a positive constant function on M.

Lemma 1: Let (M2m,g) be not isometric to the standard sphere S2m.

If _ y+ +c.( is a real Killing spinor on M, then

jcc+l=R Iis constant on M.

Proof: Consider the real functions

f+(x) =<q+(x), q+(x))> and f -(.x) -<q (x),C' (x)>
with xf M and let (si,...,sn) be a local orthonormal frame on

M. Then, from (1.9), we obtain

pf+ E. Vsi V f+ - . div(s ) f+

n
2 >.

Since the Killing number B of C' can be expressed by means of

the scalar curvature R of M, we conclude from (5.4) and the

Lichnerowicz formula D2(Q - wcQ + A? (see § 1.3) that

Of+ ' =i<n n- sjC'

(f+-f )

Similar calculations lead to Af- - (f--f+).

Now, the Obata Theorem says that if there exists a positive constant

c on an n-dimensional compact Riemannian manifold and a non-zero

function f such that Ric ? and a f = nni c.f, then the

manifold is isometric to the standard sphere (see [9] ). Since in

our case the manifold is can apply this theorem with

c -

n

and f - f+ - f ; the supposition M2m j 82m then implies

f = 0. With respect to up - f+ + f a constant the assertion

follows. Cl

As a generalization of the above proof we obtain the following

result.

Lemma 2: Consider M2m pt S2m as in Lemma 1, let eel, ...,cpk e f (S)

be real Killing spinors with Killing number B on M and set

ce, - 'ei +pi for i-1,...,k. Then the functions
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fij i' jij > are constant on M.

Proof: For 14i,jk define the functions fij =<<Pi,CPj> and

fij = <(pi, The same considerations as in the proof of Lemma 1

then yield fij = fij. In order to show that these functions are

constant, we take a unitary vector field X on M and derive the

equation

o <cQ i, cp j in the direction of X. By (1.9), we
obtain after some simplifications

0=(Xgi',Pj +<c' ,XCPj>-<X(Qi'CPj>-«i'Xgj>

-<Xcii,cp j>+«i,XCPi>+«i,Xq j> + <X P j,C j>

= 2<Xcpi,((j;>+ 2«i,Xcpj>.

On the other hand, we have

X<cfi'(j>- BI<xfi,Tj>+<cfi'X(f> = 0,
which completes the proof.

As another application of the Obata Theorem, we still prove the

following result (which is also valid in arbitrary dimension, not

only for n even):

Lemma 3: Let (Mn,g) be a complete, connected Riemannian spin

manifold which is not isometric to the standard sphere. If

c.Q,yE r(S) are two non-trivial Killing spinors with real Killing

numbers B and (-B), respectively., then <V 'Cf) 0.

Proof: By assumption, we have VxCQ. BX O and VX'y _ -BXW for any
vector field X on M. We consider the function f =<'V',C> on M,

and similar calculations as in Lemma 1 then yield Af = 4B2n<4) ,(F>.
Since, by Theorem 9 of chapter 1, (Mn,g) is a compact Einstein space

of positive scalar curvature R = 4B2n(n-1), we obtain a f =
n--R

f.

By the Obata Theorem and with respect to Mn { Sn, it follows that

f i 0 holds. Q

Next, for a spin manifold

ture R> O we set =

subbundles of S:

M2m of constant positive scalar curve-
R

n .n- and introduce the following

E. : {wc r (S): Vxy/+XX,p= 0 for all XE r (TM)3,
E_ :={ver (S):vxy1-xxv. 0 for all XEf
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Clearly, if E+ is non-empty, the manifold has a Killing spinor

with Killing number (-X). Since, for any (Ps E+, the mapping

q - ql+ + (P---)\I -sp+ - cP- provides a bijection between E+ and
E- the complex ranks of these bundles are equal. Denote this

common value by k.
1M un

By Lemma 2, it always holds that k L dimc(An+) 2m-1, if M *S
for the standard spheres S2m we have k = 2m . By this property,

the spheres are characterized uniquely (see [32]).

To conclude this section, we mention Hijazi's result concerning

B-dimensional spin manifolds with real Killing spinors [58).

Theorem 1: Let (M8,g) be an 8-dimensional complete, connected

Riemannian spin manifold with a real Killing spinor cP6 ['(S). Then

(M8, g) is isometric to the standard sphere S8.

Proof: Note that, in the dimension n = 8, there exists a natural

real structure in the spinor bundle S, i.e. an antilinear bundle

map j: S-S with j2 = id, and having the properties

(i) of = 0,
(ii) Xj = JX for vector fields X e r (TM),
(iii) <jy',J-t =<cP,41> for 4, '. C r'(S).

(cp. [1]). The corresponding real subbundle S :={We:r(S): j(w)-'43
also splits into a positive and a negative part under the real

Spin(8) -representation, r = + O+ L - , with the fibre dimen-

sion diMR z_ x = dN 8 at any point xe. M. Given a real

Killing spinor c6r(S) with the Killing number B e1R\{0}, it

corresponds, via (PR :_ 1(cp + j(' ), to an element c?R a r' ( E) which
is also a Killing spinor to the same Killing number. From (iii) and

the property that j(zf) - zj(c') for any ze C one easily sees

that 0 and, therefore, <cPR' TO - <q,cF> is also a
non-zero constant. Writing <PR =p+R + Y

R
according to the

decomposition L 5 + O+ Z - , it follows from (5.2) that the

relations V XPPR - BXcP+ hold for any vector field X on M.

Consequently, the same calculations as in the proof of Lemma 1

show that the real function

f satisfies Af - n . f.

Now, let X be a unit vector field on M. A simple calculation

involving (1.5) and (1.9) yields
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X(f) = 25 (fR>+(q? ,)(( >] , hence

X(f) = 26 Re<XlfR, IfR>= 2B (X(f +)
Since the mapping p: TXM-* X given by p(X) = is injec-

tive, and dime TXM = dims 7-+ = a, it follows that there exists

at least one unit vector X 6T
x
M for which X(f) ji 0.

Consequently f does not vanish identically, and from Obata's

Theorem (see proof of Lemma 1) the assertion follows. O

5.2. The almost complex structure defined on a 6-dimensional manifold

by a real Killing spinor

We now turn to the study of 6-dimensional spin manifolds with real

Killing spinors. We start with a brief description of the Clifford

multiplication in this dimension.

Since Cliffc(IR6) is multiplicatively generated by the vectors

el,...,e5cIR6, the C-algebra isomorphism 4 : Cliffc(IR6) '> End(Ll 6)

will be completely described by its value on each of these genera-

tors. The restriction of to Spin(6) splits into two irreducible

complex 4-dimensional representations, which we denote by

6)
and ((P ,4 6). According to § 1 of Chapter 1, we have

6 = Lin j U (1,1,1), U (1,-1,-1), U (-1,1,-19, U (-1,-1,1)lj
A 5 - Lin U (1,-1,1), u(

(5.5)

and the mapping I t(ej)6 End(Q 6) take each component to the

other, ±(ej): 06 ' A6, 1 4 J 6.

Evaluating the general formulas of § 1.1 in this special ordering

of the U (E, 1, b 2, E 3) as the basis of a+, p 8 given above, the
cl-+(ej) are described by the matrices

i o 0 o 1 0 0 0

0
0 i 0 0 0 -1 0 0

-(e1) 0
cp_(e2)=

± 0 0 -1 00 0
0 0 0 i 0 0 0 1

0 -1 0 00 0 0i
+ - i 0 0 0
-(e3).+ 0 0 0 -i

( ±(e4) 0 0 0 1
(5.6)

0 0 1 00 00 1

0 0 -i 0 0 0 1 0
0 0 0 -i +(e 0 0 0 1- 6 1 0 0 0i 0 0 0
0 1 0 0 0 1 0 0

In this way, we have also described the differential of c acting

125



on the Lie algebra pin(6), which we denote by 45 , too.

We remark that 4) : Cliffc(R6) > End(66) induces a group

isomorphism Spin(6)--. SU(, 6) = SU(4) (see [93]).

Now, recall the definition of the subbundles E+, E_C S given at

the end of Lemma 3.

Proposition 1: Suppose that M6 is a six-dimensional complete,

connected Riemannian spin manifold which is not isometric to the

standard sphere S6.

Then the complex rank of E. and E_ is not greater than 1.

Proof: Suppose that there exist two linearly independent spinor

fields 41 and (F2 in E+ with cfi -chi +Ti (i=1,2) corre-
sponding to the decomposition of S. By Lemma 2, we may assume

that l y- j2 =1p;12 = 1, and l, 2 0 holds on M. For any
vector field X on M, it follows by differentiating that

Re <Xcf i, cf 1 >= 0 (5.7)

Re<Xcf 2,(2>- 0 (5.8)

<q1,Xq'2>+<xq ,q' 2>= 0 (5.9)

Since SU(4) acts transitively on pairs of vectors e1,e2 6
Q4

with < ei,ej> = csij and since Spin(6) = SUM, there exists an

element q 60
x

in the fibre of the Spin(,6)-principal bundle

Q->M at x6M, such that the spinors <f i(x), cp+(x) 6S+ =,a6 can
be expressed by

cfi(x) _ [q, U (1,1,1)] _ (1,0,0,0) and

cf2(x) = [q, U(1,-1,-1)] _ (0,1,0,0).

Representing here the spinors as 4-tuples of complex numbers, we

have used the ordering of the U ( E 1' & 2' E 3) given in (5.5) to
identify V 6 : a4. With the same element q 6 Qx and the basis of

fixed in (5.5) we can also write

(x) s [q, and

c_ (x) - [q, (x,y,z,w),2

where oc,6,lt ,S,x,y,z,w 6 6 are complex numbers.

Denote by a = (s1,...,s6) the orthonormal frame in TXM given by

f(q) = s and let (t1,...,te)CIR6 be the components of a vector

t E TxM with respect to this frame. Then, in the above notation,

(5.6) implies that the Clifford multiplication with t is given by
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t cfi(x)= (t2+it1,-t4 it3,t6+it5,0)

tcQ2(x) =(-t4+it3,-t2+it1,0,t6+it5).
(5.10)

According to (5.7) we thus obtain

ReI(t2+it1)cC +(-t4 t3)6 + (t6+it5) }= 0,

and since t E TxM can be varied, we have PL- B =?= 0. Similarly,

(5.8) yields x - y = w - 0, hence cQ (x) (0,0,0, d) and

2(x) _ (O,0,z,O).

Now, (5.9) implies d(t6-its) + (t6+it5)z 0 for any t5,t6 WR,

so that cS - z - 0 follows. Consequently, c? i(x) -cp 2(x) - 0, and

since also cP1
2
= 0, which is a contradiction. [3

Combining (5.7), (5.8) and (5.10) we obtain the following remark.

Corollary 1: On a 6-dimensional spin manifold M, a real Killing
spinor (P6 r (S) with the decomposition (f -(P+ +cF satisfies

<X(+, c > ( P 0

for all vector fields X on M.

Now, suppose that (M6, 9) is a complete, connected Riemannian spin

manifold not isometric to the standard sphere, and that there exists

a real Killing spinor q -cp+ +cf- G (S) with the Killing number

B 0.

Then, by Lemma 1, we may assume I(P+jIcP 1- 1, and since

Spin(6) = SU(4) acts transitively on a:4, there exists such an

element q(x)E 0x for any x E M that +(x) is represented by

cP+(x) - [q(x),u(1,1,1)1.

Moreover, from the local triviality of the spinor bundle Q M we

conclude that, for a sufficiently small open set U C M, there also

exists a smooth section q: U > QrU such that

Y+(y) _ [q(y), u(1,1,1)] holds for all y eU.
By (5.10) and Corollary 1 we now obtain that, on U c M, the spinor

takes the form y _(y) = [q(y),z(y) u(-1,-1,-l)] , y r--U,

with a complex-valued function z on U.

At the point xe M, consider the subspace

Lx:-(X , f +(x); X ETxM i C. S;.

Since the mapping X iX 4 +(x) is injective, Lx forms a 6-

dimensional real subspace of SX = 4 6; by means of Corollary 1 we

obtain an orthogonal decomposition
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Sx - (X) O+ Lx,

and, as the orthogonal complement of C-'? -(x), Lx is a complex

subspace of SX. Consequently, Lx for all X e TxM, a

property that allows to define an almost complex structure 3 on

M6 by the relation

J(X). + :- ix-,P+, X e r (TM) (5.11)

From the injectivity of the Clifford multiplication we conclude

that 3 is well defined and satisfies J2 = -1; the equation

-2g(X,Y), which is valid for vector fields X,Y regarded

as endomorphisms of S, shows that J acts as an isometry.

Remark 1: Using the local description

tQ+(y) = C q(y), u(1,1,1)] , ye uc-M6

and denoting by (t1,...,t6) the components of a tangent vector

field 6

t ` tisi E (' (TU)
i=1

with respect to the orthonormal frame s - (91,...,a6) determined

by f(q) = a, we derive from (5.19) that

t.q + _ (t2+it1,-t4-it3,t6+it5,O), hence

it-,f+ _ (-t1+it2,t3-1t4,-t5+it6,0),

both spinor fields regarded as linear combinations of the basic

sections '(6) _ [q,u(6)]E r'(S lU)
Then, in the frame a (s1,...,s6 the local expression for J

takes the form

J(t) _ (t2,-ti,t41-t3,t6,-t5) (5.12),

hence, 3(t) is again a smooth vector field.

Remark 2: Analogously, if we represent

as a linear combination of the

corresponding basic sections 'YI(6) =[q,u(6)] E r(S+ru), the formulas

for -(ej) yield

(0,-t6+it5,-t4+it3,-t2+it1),

hence Remark 1 yields

(O,t5+it6,t3+it4,t1+it2)
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Because of c? = = we conclude

J(X) y7 = -iX cQ , X E r'(TM) (5.13)

Consequently, the decomposition S®Q.cp + (H L', with

LX = 1X.rp (x); X ETXM} for xE. M6,

induces the almost complex structure (-J) on M6.

Lemma 4: Let (M6,g) be a complete, connected Riemannian spin

manifold and c' = cp+ +cP-E f (S) a real Killing spinor with the
Killing number B f 0. Suppose that (M6,g) is not isometric to the

standard sphere.

Then the almost complex structure defined by (5.11) satisfies

215YX c( + 2iMg(X,Y)rP + 2Bg(X,JY) cf -

for vector fields X,Y on M.

Proof: By definition, we have

(OXJ)(Y):F+ =[VX(JY)](P+ - J(pXY)y+;

an application of (5.11) and (1.10) then yields

(oxJ)(Y)cp + vx(JY iP+) - JY(V XT+)-i(V XY)(P+.

From (5.2) we now obtain

( QXJ)(Y)T + = i VX(YcP+) - BJY-X-f- - i(,/ XY)cp+

- i(V XY)tf + + iY(1 -i(QXY)cP+

- iBYX(f -
Because of (1.3) and (5.13) we conclude

(QXJ)(Y)(f+= iBYXq + 2Bg(JY,X)cf

- iBYXT- - iBXY(P- + 2Bg(JY,X)c0-

- 21BYXcf- + 2iBg(X,Y)cf + 26g(JY,X) CP .

Corollary 2: For vector fields X,Y on M, we have

(a) (VXJ)(X) - 0
(b) (VXJ) does not vanish identically.

(c) II(OXJ)Y,12 - 4521 lIX42 flyQl2 - g(X,Y)2-g(X,JY)2}.

Proof: (a) and (b) are easy consequences of (c). To get (c), take

the inner product at both sides of the equation in Lemma 4 by itself,

and then use (1.7), (1.5) and (1.3) successively. 0
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Corollary 3: The almost complex structure defined by (5.11) is non-

integrable.

Proof: We show that the Nijenhuis-Tensor of J defined by

N(X,Y) = {CJX,JY]-(X,Y]- J[X,JY]- J[JX,Y] f

does not vanish at any point x 6 M. We have

N(X,Y) = (0 XJ)JY - (73 3)X + ( V JXJ)Y- (V yJ)JX

by a simple calculation involving the definition of (Q J).

Now, Corollary 2(a) yields ( 0 XJ)Y + (Q yJ)X = 0 for vector fields

X and Y of M. On the other hand, since J2 = -1, we have

0 = V X(J2) = (V XJ)J + J(`/XJ), which implies (QXJ)JY - -J(V XJ)Y.

Then we obtain (vXJ)JY = -J(VXJ)Y = J(VyJ)X= -(Qy3)JX=(V/JXJ)Y,
hence N(X,Y) = 4(p XJ)JY.

Now the assertion follows from Corollary 2(b). 0

Remark 3: The almost complex structure under consideration has

been defined only for manifolds M6 , S6. However, using the

algebraic properties of the Cayley numbers, an almost complex struc-

ture J can be defined also for the standard sphere S6 so that

S6 is, in a canonical way, an almost hermitian manifold. Since the

automorphism group G2 of the Cayley numbers acts transitively on

S6 and leaves J invariant, we get the homogeneous space

S
6

- G2/SU(3)'

Although J is non-integrable, the same properties stated for the

manifolds M6 , S6 in Corollary 2 are fullfilled in this case,

too (cf. [50] and (74, ch. IX, § 2]).

5.3. Nearly KAhler Manifolds in the Dimension n - 6

Let (Mn,g,J) be an almost hermitian manifold with the Riemannian

metric g and almost complex structure J, hence we have

g(JX,JY) - g(X,Y) for all X,Y a r(TM) (5.14)

Denote by the Levi-Civita connection of (Mn,g), the covariant

derivative of the (1,1)-Tensor J is given by

(Q XJ)(Y) _ ux(JY) - J(0 XY) X, Ye r (TM) (5.15)
(Mn,g,J) is called KBhlerian iff 0 J - 0.
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Definition 1: An almost hermitian manifold (Mn,g,J) is said to

be nearly KAhlerian provided (V XJ)(X) - 0 for all vector fields

X on M.

Following [54], we introduce two additional notions. If M is

nearly K&hlerian, then M is called strict if we have (VXJ) 14 0

at any point x f- M and for an arbitrary non-zero vector X 6T XM
-

Secondly, M is said to be of (global) constant type if there is

a real constant oC such that for all vector fields X,Y on M

II (V XJ)(Y)II2 oc{ 11 X112 NY112 - 9(X,Y)2 - g(JX,Y)2}.

In this case, the number . is called the constant type of M.,:

Thus, in the previous section we have shown (compare corollary 2

and Remark 3):

Corollary 4: Let (M6,g) be a 6-dimensional complete, connected

Riemannian spin manifold with a real Killing spinor. Then (M6,g)

has a natural almost hermitianp structure, which is strictly nearly

KShlerian of positive constant type.

First of all, we summarize some of the known identities valid for

nearly K&hler manifolds and properties of such manifolds in lower

dimensions. As usually, let 6 denote the cyclic sum and define the

iterated covariant derivative of the almost complex structure J

for vector fields X,Z E r (TM) by

VZXJ =OZ(VXJ) -0(VZX)J

Lemma 5: Let (Mn,g,J) be a nearly KAhler manifold. Then for vector

fields X,Y,Z on M we have

a) (VXJ)Y + (V YJ)X . 0 (5.17)

b) (a XJ)JX - 0, hence

('V JXJ)Y - (V XJ)JY (5.18)

c) J((VXJ)Y) - -(V XJ)JY - -(OJXJ)Y (5.19)

d) g((VlXJ)Y,Z) - -g((VXJ)Z,Y) (5.20)

Proof: The Properties (a) and (b) are direct consequences of (5.15)

and Definition 1. Further, since 0 V J°(VXJ), we

have 0 = (V XJ)JY + J((VXJ)Y), hence W.

Finally, (d) follows from a more general formula valid for any
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almost hermitian manifold (see[741, Chapter IX, § 4): Denote by

<P(X,Y) - g(X,JY) the fundamental form of J and by N the

Nijenhuis Tensor as in Corollary 3, then

4g((G XJ)Y,Z)= 6d c(X,JY,JZ)-6d'D(X,Y,Z)+ g(N(Y,Z),JX). T]

In particular, Lemma 5 implies that,for X,Y ETXM, the vector

(0 XJ)Y is always perpendicular to X,JX,Y and JY.

Although the proof of the following lemma is elementary,it requires

more expense. The several parts are contained in [491, L521 and [53].

Notice that our sign convention for the curvature tensor is opposite

to that of the papers quoted here.

Lemma 6: Let (Mn,g,J) be a nearly KShler manifold. Then the

relations

R(U,X,JY,JZ) - R(U,X,Y,Z) - g((VUJ)X,(V yJ)Z) (5.21)

2g((V UXJ)Y,Z)
Z

9((QUJ)X,(QYJ)JZ) (5.22)

hold for arbitrary vector fields X,Y,Z and U on M.

In addition to the ordinary Ricci curvature tensor, we consider still

another contraction of the curvature tensor on nearly KShler mani-

folds. Let n) be a local frame field and choose two

vector fields X,Y on M. Then, by setting

g(Ric*(X),Y) - - R(X,JY,si,Jsi), (5.23)
i-1

a (1,1)-Tensor field Ric* on M , which is called the Ricci *-
cur-vature, is defined.

In the lower dimensions, the nearly KShler manifolds are widely

determined. In case of the dimension n - 4, a nearly KShler mani-

fold is also KShler, since, for any vector X ETXM4 and a vector

Y G TXM4 with g(Y,X) - g(JY,X) = 0, we have that (V XJ)Y is

orthogonal to Lin[X,JX,Y,JYl= TXM, hence zero. Thus, (V XJ)Y - 0

for all vector fields X,Y on M4, and the manifold is Kahler [49).

For the dimension n - 6, A.Gray proved the following proposition

([54]):

Proposition 2: Let (M,g,J) be a 6-dimensional nearly KShler mani-

fold, and assume that M is not KShlerian. Then

(i) M is of constant type with a positive number oc

(ii) M is's strict nearly KShler manifold;
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(iii) (M,g) is an Einstein manifold;

(iv) the first Chern class of M vanishes;

(v) Ric - 5 Ric* = 50(I on M.

Since (M,g) is Einstein, R-I = 6 Ric = 30. I for the scalar

curvature R of M, hence R = 30 a( > 0.
Throughout the rest of this section we shall assume that (M,g,3)

is a connected 6-dimensional almost hermitian manifold which is

nearly KBhler non-Khhler. Since w2(M) = c1(M) (mod 2), by

Proposition 2(iv) also the second Stiefel-Whitney class vanishes,

hence (M,g) is known to be a spin manifold. Let 0(>O be the

constant type of M and set A- I4o . For local calculations we

use an adapted orthonormal frame in general: Let sl' J(a1),s3'J(s3)

be orthonormal vector fields on an open subset V of M, then

define a vector field a5 on V by ( ' J)s3 = 2T s5
1

Thus, a5 is orthogonal to the vector fields already chosen and

has constant length 1 so that si'J(sl)'s3'J(s3)'s5'J(s5)) is an

orthonormal frame on V. It satisfies (Vs
i

J)sj 2 Xs
k

if (ijk)

is an even permutation of (135). The other values of V J can easily

be obtained from (5.17) - (5.20).

Lemma 7: For the vector fields U,X,Y,Z 6 r'(TM), we have

(1) g((V UJ)X,(V yJ)z) = g(U,z)g(X,Y)

-g(U,JY)g(X,JZ)+g(U,JZ)g(X,JY)

(ii) if g(X,Y) - g(X,JY) - 0, then

(VYJ)(VY3)X = -o&ILY112 X.

Proof: Because of the linearity in each of the components, (i) is

a direct checking on the elements of the local frame given above.

Then (ii) follows from (1) and (5.20) by setting U = Y. Q

Let X,Y,Z,V be vector fields on M. Since M is a 6-dimensional

Einstein space and o(= ,B , the definition of the conformally Weyl

tensor of M (compare § 1.4) reduces to

W(X,Y,Z,V) = R(X,Y,Z,V)+o({g(X,Z)g(Y,V)-g(X,V)g(Y,Z)) (5.24)

By W(X,Y,Z,V) g(W(X,Y)Z,V) we regard W as a (1,3)-tensor

on M, too.
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Lemma 8: Let X,Y,Z be vector fields on M. Then

(i) W(X,Y)JZ = J(W(X,Y)Z)

(ii) Tr(W(X,Y)-J) = 0.

Proof: From (5.21) and (5.24), we have for u er(TM)

g((0 XJ)Y,(V ZJ)U) _

W(X,Y,JZ,JU)-a.{ g(Y,JU)g(JZ,X)-g(X,JU)g(Y,JZ)3-

-W(X,Y,Z,U)+a {g(Y,U)g(Z,X)-g(X,U)g(Y,Z)3

= W(X,Y,JZ,JU)-W(X,Y,Z,U)+g((V XJ)Y,(g Z)W)

by Lemma 7 M. Therefore, W(X,Y,Z,U) = W(X,Y,JZ,JU) or, equivalent-

ly, with V = JU,

g(W(X,Y)JZ,V) _ -g(W(X,Y)Z,JV) = g(J(W(X,Y)Z),V).

This implies (i). For the proof of (ii) we notice that for a local

frame (sl,...,s6) in xE M, (5.23) and Proposition 2(v) imply

R(X,Y,si,Jsi) = 2g(Ric*(X),JY) = 204 g(X,JY),
i=1

thus, by (5.24), we obtain

6 6
> W(X,Y,si,Js1). 2e(g(X,JY)+ocZ-ig(X,si)g(Y,Jsi)-g(X,Jsi)g(Y,sj)J

= 2o(g(X,JY)-o( 11{g(X,si)g(JY,si)-g(JX,si)g(Y,si)3

= 2dg(X,JY)-o(g(X,3Y) +o-eg(JX,Y) = 0 . 0

Remark 4: Consider an adapted orthonormal frame (si,...,s6) at

x 6 M with the properties (Vs
I
J) aj 219

k
for any even permuta-

tion (ijk) of (135), and a21 = J(s2i_1) for i=1,2,3.

Then, by Lemma 8, the coefficients Wijkl - g(W(si'sj)ak's1) of

the Weyl tensor satisfy the equations

Wij12 + Wij34 + Wij56 = 0 (5.25)

Wij24 - W iJ13 = 0 Wij14 + Wij23 = 0 1

Wij15 - W iJ26 - 0 Wij16 + Wij25 = 0

Wij46 - Wij35 - 0 Wij36 + Wij45 = 0 J

(5.26)

Lemma 9: If X,Y are vector fields on M with UXM=UYU- 1 and

g(X,Y) - g(X,JY) = 0, then
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dg(VZX,JX)+c(g(VZY,JY) + g(VZC(VXJ)Y], J[(VXJ)Y1) = 0
for any vector field Z on M.

Proof: First remark that

Lag( VXJ)7 (Y) = V [(V XJ)Y]- (V XJ) (V ZY),

thus, from (5.16), we obtain

(VZXJ)(Y)=VZ[(VXJ)Y]- (V/XJ)(VzY)-(V (VZX)0)(Y)

To get simpler expressions, we write A(X,Y) _ (V XJ)Y for the

moment; then the above equation changes into

VZ[A(X,Y)]- [V'zXJ](Y)+A(X, VZY)+A(0 ZX,Y) (5.27)

Then (5.22) yields

g(L7ZXJ XY),J(A(X,Y))) - 1j g(A(Z,X),A(Y,A(Y,X))) +

+ g(A(Z,JA(X,Y)),A(X,JY))+g(A(Z,Y),A(JA(X,Y),JX))}

- - l{g(A(Z,X),A(Y,A(Y,X))) -

g(A(Z,A(X,JY)),A(X,JY))-g(A(Z,Y),A(A(X,Y),X))3.

Now recall that A(Y,A(Y,X)) _ - aX by Lemma 7; replacing

V A(X,JY) in the second term, we get

g(CV1zXJ]Y, J(A(X,Y))) 12 {o g(A(Z,X),X) +

+g(A(Z,V),V)+ oLg(A(Z,Y),Y)}= 0,

since A(Z,X) is orthogonal to X. Now, from Lemma 7 (i) and the

assumptions JJXp= pYll= 1, g(X,Y) = g(X,JY) 0, it follows that

g(A(V ZY,X),A(JY,X)) =OLg(VZY,JY) and

g(A(V ZX,Y),A(JX,Y)) of g(V ZX, JX) .

Consequently, we conclude from (5.27) that

g(V Z[A(X,Y)] ,J(A(X,Y)))

g(A(X, Q ZY),3(A(X,Y)))+g(A(V ZX,Y),J(A(X,Y)))

_ -g(A(X,V ZY),A(X,JY))-g(A(V ZX,Y),A(JX,Y))

-d-9(VZY,JY) -oag(V ZX,JX).

Hence the assertion follows. 0

After these preparations, we are able to prove the central result

of this chapter. 1551
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Theorem 2: Let (M,g,J) be a 6-dimensional connected simply

connected almost hermitian manifold, and assume that M is nearly

Kdhler non-Kfihler. Then there exists a real Killing spinor on M.

Proof: Since c1(M) = 0, and M is simply connected, there exists

a unique spin structure Q > M over M. Denote by S the associated

spinor bundle. Let oC= 35
R

be the positive constant type of M,

and set a = 2 . Consider locally an adapted orthonormal frame on

M consisting of elements {silt=1,...,6 satisfying (QsiJ)sj= 21.8
k

for any even permutation (ijk) of (135), and

J(s2i) = a2i-1
for i=1,2,3.

Then we choose the orientation of M so that [ 1,...,s6} is

positively oriented.

Next, we form subbundles V1,V2 of S by

Vl ={w6('(S) : J(X)y, = iX tN for all X E f (TM)r,

V2 ={4s('(S) : J(X)y - -iXW for all Xe. I (TM)

At a point x e M, an element y'ESx Q6 can be represented as a

linear combination of the basis elements u(E1,f2,E3) of A6, and

the evaluation of J(s2k)-y - 1-9 2k y+ for k=1,2,3 by means of (5.6)

yields, by some algebraic calculations,

V1(x) _ C.[s ,u(1,1,1)] , and similarly

V2(x)

where s* denotes a section in the spin structure Q corresponding

to the frame a = (s ,...,s6).

Consequently, V1 C S , V2 C- S , and both are 1-dimensional complex

aubbundles of S. Now, consider the direct sum V = V1 O+ V2; for

any section t' I (V) we have the decomposition 14 =
W+

+ tN

according to S - S® + S-. Then we can define a subbundle E

of V by

E ={VEr(V):(VXJ)(Y)W+ =-2i), YXW -21lg(X,Y)4) - 2,1g(X,JY)q-

for all X,YE rl(TM)3.
Using again algebraic calculations with the u(ElOE2' E.3) and the

matrices given in (5.6), and exploiting (V5i J)sj = 2 A sk for

even permutations (ijk) of (135) at a point x c- M it turns out

that we have

Ex = (C - C s*,u(1,1,1) - u(-1,-1,-i)]
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Thus, E is also a 1-dimensional complex subbundle of S. We intro-

duce a covariant derivative 0 : 1-(E)->
('(T*M

Ox E) in E by the

formula

QX41-QXY 1 Xy,, XEr(TM),1) r(E).
First we show that V is well-defined: Starting with y,E r(E), the

section C/X'y also belongs to f (E).
For this purpose, denote by { wij the family of local 1-forms on

M defined by the Riemannian connection V ; they are given by

wij(X) - g(VXsi,sj) for XEI'(TM).

Recall from Chapter 1 that, for a section c r(s) of the form

'QE - [s*,u(E1,E2,E3)], we locally have

VX'1E- g L wij(x) (5.28)
i<j

Now, to investigate VX'qF for a fixed vector field X on M, let

us consider the local endomorphisms a(X), b(X), c(X) and q(X) of

S , which are defined by

a(X) - w13(X)s183+w24(X)s2s4+w14(X)s1s4+w23(X)82a3

b(X) - w15(X)s1s5+W26(X)6286+w16(X)s1a6+W25(X)a285

c(X) - W35(X)8385+W46(X)s436+W36(X)8386+W45(X)a485

q(X) - a(X) + b(X) + c(X).

We determine the value of a(X) on the local sections

1
[6*,u(1,1,1)] and

We have

21 - g(( a 51J)83,55) = 9((x/8
5
J)s1,s3)

- 9(a 85(Js1),s3) - g(J( V 5561),83)

- -g (7 5562,63) + g(Q 35s1,Js3) w23(s5)-w14(s5)'

Thus, w23(85) + w14(s5) - -21, and, analogously

w23(sj) + w14(sj) = 0 for j A 5.

In the same way we obtain

w13(s6) - w24(86) - -21 , and

w13(sj) - w24(8j) - 0 for j 4 6.

Since a1s4'q1 ' 8283 11 ° 85 rL-1'

and 8183 11 ' -828411
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we obtain

Ia(X)' 1 = [w13(X)-w24(X)l (-s6'q-1)+[w14(X)+w23(X)J (-85'.-1).
Thus, a(s6)'

1
= 2 As6 Q-1'

a(s5 1 = 2 As5'1 -1

and a(sj) = 0 for j = 5,6.

The same method provides

b(s3)411 = 2X s31_1, b(s4)"j 1 = 2a s4'I_i,

c(s1)'q 1 = 2,-911-1, c(s2)'7 1 = 22. s2,q _1,

and b(sj)'I 1 = 0 for j { 3,4
c(sjh 1 = 0 for j { 1,2.

Summing up, we have q(sk)'1 1 = 2 Xsk'l -1 for k=1,...,6, and

consequently q(X)'rl1 = 2).X i1 _1 for any vector field X on M.

The same procedure also yields q(X)rl _1 = 2'1X'11.
Now, we use formula (5.28) to determine the covariant derivative of

the local section '7)1 and 11-l. A calculation shows that

3182^11 = 83841 1 = 95861 1 = i '1 1, and

8132") -1 5354g1 -1 ' 353611 -1 = -i _1.

Therefore,

VX,l1 ' 2 Cw12(X)+w34(X)+w56(X)] i'! 1 + 12 q(X) n 1'
However, setting X - si, Y - s3 in Lemma 9 entails
w12(X) + w34(X) + w56(X) = 0 so that O Xrl1 = a holds.

Analogously, we obtain VXi-1 = kX-q 1.
Now it is easy to see that, for \ E.f (E), also 7XV is a section

in E. Let V- 9w1i - 9I_1 be the local form of a section in E,

where 9 is a complex valued function. It follows that

xw+axy,=

d9(X)(t i+9 Q V x'l-1 +;x(e'11-9 ? _i)

= d9(x)(}l1- _1>.
Hence, we obtain VXV - d9(X)('q1-l_i) and this is a section

belonging to r' (E), too.

For the vector fields X,Y on M and a spinor field ipe f (s), the

curvature of the covariant derivative V in r(s) is given by

2 R(X,Y)lp[VXVy -17yVX -drX,y]]'
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To get an expression for the curvature of we take a 1I6r(E).

Then

(p y+Ix-p) =VY(VXy+)
=QYVXW+' '(Vx'')+72YX\P+'W (xNJ).

and similarly,

Ye'-vxpYV+AX(VYV)
+12XY_++'1Qx(Yw),

[X,Y] V[X,Y)' + VVxY -VYX)-Y

An addition, taking into account (1.10), yields

3 R(X,Y) -[!XOY X -V [x,Y3JN) _
1 R(X,Y)'+ X2(XY-YX)\ .

Since R(X,Y) - holds (cf. Chapter 1),

we have
k,l

2R(X,Y)tiy= 5- R(X,Y,sk,al) 2(XY-YX)\
k,l

Recall that 41 2 =o(= ,M so that, by formula (5.24), which defines

the Weyl tensor on an Einstein space, we conclude

2R(X,Y)Y- Z_ ty, 6 (-`(E)
k,l

Now, using the local form ip = 611 1 - Gil_1 for a section N)6 (E)

together with (5.6) to compute the right-hand side of this equation,

Remark 4 shows that

R(X,Y)14)- 0 for WEf (E), X,YEr(TM).
Consequently, (E,C/) is a flat 1-dimensional bundle over a simply

connected manifold M. Thus, there exists a V -parallel section

in E, i.e. a spinor field \.r(E) with QXV+-XXy+- 0 for any
vector field X on M.

Obviously, '1 is then a Killing spinor with the Killing number

B = -X , and writing we also obtain V XkP - for
X6 r(TM).

Remark 5: As it was pointed out by A. Gray in [54], a nearly

K&hler manifold (Mn,g,3) with

11 (V X3)Y!I2 ot ( IIXU2II Y112 - g(X,Y)2 - g(JX,Y)23

for all vector fields X,Y on M and a positive constant oC ,

necessarily has the dimension n - 6. Therefore, the general method

of the above proof cannot work in higher dimensions.
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5.4. Examples

The examples of 6-dimensional nearly KShler non-KAhler manifolds

which can be found in the literature are always reductive homogeneous

spaces G/K with a Riemannian metric induced by an Ad(G)-invariant

inner product on the Lie algebra I of G. Moreover, they carry

the structure of Riemannian 3-symmetric spaces, i.e. the almost

complex structure 3 comes from a Lie group automorphism 6 on G

of order 3 and with fixed point set K (see [53]). In [50], the

following simply connected spaces are mentioned:

U(3)/U(1)x U(1)x U(1) '
SO(5)/U(2)1 S0(6)/U(3)1 SO(5)/U(1)x SO(3)'

Sp(2)/U(2) and S6 = G2/SU(3)'

Furthermore, given a compact, connected non-abelian Lie group G,

the structure of a Riemannian 3-symmetric space can be defined

according to a construction of Ledger and Obata (see[78]) also on

the product G x G. Therefore, If G = S3, we also obtain an almost

hermitian structure on S3 X S3 = Spin(4), which is nearly KBhler

and non-Kahler.

In the sequel, we more explicitly discuss some of the examples

mentioned above. In particular, the existence of real Killing spinors

will be shown by calculating the smallest eigenvalue of the Dirac

operator.

First we consider the Levi-Civita connection of a homogeneous Rie-

mannian manifold.

Let G be a connected compact Lie group and H a closed, connected

subgroup of G. Consider the homogeneous space Mn = G/H with the

isotropy representation o.: H -)SO(Tx M) = SO(n) at the point
0

x0 - eH and suppose that there is a lifting H - Spin(n) of

a such that the following diagramme commutes:

Spin(n)

I-X
H 0 SO(n)

The mapping d defines a natural spin structure Q - G )Q Spin(n)

over G/H, and the associated spinor bundle S = G x
J)a

An is a
homogeneous vector bundle on M - G/H.

Now, suppose that an Ad(H)-invariant, positive-definite symmetric

bilinear form B is given on the Lie algebra $ of G. and choose

a linear subspace jr in A4 that is orthogonal to the Lie algebra
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4 of H and satisfies A_ *E) . Since Vi , we have

]

5
-'

and G/H is a reductive homogeneous space.

Let .1 = _KG 'bL be a decomposition of -r into linear subspaces

that are orthogonal with respect to B and satisfy the relations

Then, for an arbitrary t 7 0, the equation

Bt = Bf yyyk,yyti, + 2t Bf,. x ,W (5.30)

defines an Ad(H)-invariant scalar product on it yields a left

invariant Riemannian metric on G/H, which we shall denote by gt.

Lemma 10: The Levi-Civita connection of gt is given by the

mapping At: "> so () defined by
At(X)Y ='[X,Y]di
At(X)B = t[X,B]
At(A)Y = (1-t)LA,Y]
/\t(A)B - 0

for X,YG 444 and A,B e. 44

(Here the index denotes the projection onto the corresponding

component).

Proof: From Wang's Theorem it follows that the Levi-Civita

connection induced by Bt is uniquely determined by a linear map

At:>End(J) satisfying the conditions
(i) At(X)Y -At(Y)X = [X,Y] T ,

(ii) Bt(/\t(X)Y,Z) + Bt(/\t(X)Z,Y) - 0
for all vectors X,Y,Z E (see [74], vol. II, Chapter X). Hence,

it suffices to verify that the mapping defined in Lemma 10 satisfies

the two conditions (i) and (ii), which is ensured by (5.29). O

The differential -A, : spin(n) ' so(n) of ). is a Lie algebra

isomorphism, hence ( )*)- exists, and we obtain a mapping

At = OX *.)-1 o A t: -- spin(n) .
To describe the action of the Dirac operator Dt: ('(s)- r(s)
corresponding to Bt, we identify the sections of the spinor bundle
S - G with the functions f: G> Ln satisfying the

141



relation

cf(gh) (5.31)

for all gr- G, h 6- H.

For such a function `P: G-77;1 An' the action of the Dirac operator

is then given by the formula

+I)/1t(ej)(Q] (5.32)
j

where Jej}j=1,... n is a Bt-orthonormal basis of , and ej(4)

denotes the derivative of cF in the direction of the vector field

generated by ej (see[65]).

We now consider several examples.

a) The complex flag manifold F(1,2)

The flag manifold F(1,2) consists of pairs (1,v), where both

1 and v are linear subspaces of
C3 of dimension 1 and 2,

respectively, and l c v holds. The U(3)-action in C3 is tran-

sitive on F(1,2) with the isotropy subgroup H= U(1) x U(1) x U(1),

hence F(1,2) - U(3)/U(l) x U(1) X U(1)'
The Lie algebras of U(3)

and H are given by

,&.3) = {A6M3(C) : AT + A = 03,

4 A . 1K (3) : A is diagonal
We decompose 4(3) = j,0+ 1 with where

and consider the inner product on A(3) given by

B(A,B) _ - 2 Re(Tr(AB)), A,B 6 4(3).

Then Mb and 4V are orthogonal with respect to B, and the relations

(5.29) are satisfied.

For t > O, (5.30) thus determines a U(3)-invariant Riemannian metric

gt on F(1,2). According to § 3 of Chapter 3, Einstein metrics are

obtained for t 2 and t = 1; the parameter t = 1 corresponds to

the standard Kehler-Einstein metric of F(1,2) with scalar curvature

R = 24, whereas t
2

yields a biinvariant Einstein metric of

scalar curvature R = 30.

Denote by Dij the n x n-matrix consisting of a single 1 in the

i-th row and j-th column, and zeros elsewhere. We set

Eij - Dij - Dji for 1 )E j, and $ij = 11=1 (Dij+Dji). The matrices
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Eij (i <j) then generate the Lie algebra so(n); notice that this

notion differs from that of Chapter 1 by a sign, hence the Lie

algebra isomorphism

*: spin(n)- so(n) is given by

'*(eiej) -2 Eij (5.33)

To distinguish a basis of (D A4, , consider the matrices

e - E , e2 S e - E13' e S and e5 = 1
1 12 2 121 3 4 13 r2t E23'

1
S

e6- 2t 23.
Then 4% - Lin{e1,e2,e3,e41, 44 = Lin {e5,e6 and the elements

el,...,e6 form an orthonormal basis of r with respect to Bt which

we shall use to identify with R6. Afi basis of is given by

1H1,H2,H3j with Hi =

$
Sii

for i=1,2,3.

Using the identification
'

-IR we can also compute the isotropy

representation o(: H > SO(ro) = S0(6) of G/H. For an arbitrary

element h E H with fifi

eit 0 0

0 eis 0 t,r,s IR
0 0 eir

cos t -sin t
it is defined by 0C(h)ej = writing e(t)- at t oscost

9(t-s) 0 0

o.(h)= 0 Q(t-r) 0 6 S0(6).

0 0 6(s-r)

It follows that the differential 0L,,: - - > so(6) is given by the

formulas

0C+(H1)
_ -

(H ) °
E12

E

- E34

- E I 34)(5°c,,. 2 12 56 .

oL*(H3) E34 + E56

Lemma 11: There exists a lifting homomorphism 3 : H - Spin(6) of

of with _A- of -o(.

Proof: It suffices to show that oC*('Tr1(H))GX*(T1(Spin(6))) = 0)
or, equivalently, that each generator of 'Trl(H) vanishes under the

superposition with oC . Taking,for instance,
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It 0 o

' (t)= 0 1 0 , t 6 [0, 21r] ,
uu

0 0 1

as an element of `r1(14), the composition with the isotropy re-

presentation p( yields

9(t) 0 0

OLOT(t)= 0 9(t) 0 ; now, since

0 0 9(0)

9(t) 0 0 9(0) 0

0 9(0) 0 and 0 9(t)

0 0 9(0) 0 0

homotopically equivalent in S0(6) (they correspond to different

rotations of the basis vectors of IR6), we obtain for the homotopy

classes in 1r1(S0(6))

9(t) 0 0 9(0) 0 0[ 0 9(0) 0 + 0 9(t) 0 =

0 0 9(0) 0 0 9(0)

9(t) 0 0

= 2 0 9(0) 0

0 0 9(0)

hence Lc4a V01 = 0 since `j(S0(6)) = Z2. The other generating

elements of T1(H) are treated analogously.

The map oC : H i Spin(6)
ture Q = U(3) x; Spin(6)

gives rise to 0 homogeneous spin struc-

H1(F(1,2);Z2) - 1o3,

(see § 2 of Ch. 1).

over F(.1,2). As

this spin structure is the only possible one

Using the Identification = IR6 and the commutator relations that

hold between the matrices e1,...,e6 we obtain by Lemma 10 the

formulas for the Levi-Civita connection At corresponding to

A computation shows that, with respect to (5.33), the mapping

At At: IR6__ spin(6) is given by

At(el) _ - 21- (e3e5 + e4e6)

nt(e2) 24-2 (a4a5 - a3e6)

nt(e3) = -

2
(e2a6 - a1a5)

Bt.
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At(e4) = 2{t (ele6 + e2e5)

-11
At(e5) = t(ele3 + e2e4)

2

At(e6) - (1-t) (ele4 - e2e5).
2 2t

Since now the Dirac operator of (F(1,2),gt) is completely deter-

mined, we can state the following result. [40]

Proposition 3: Let gt be the left-invariant Riemannian metric

on F(1,2) determined by (5.30). Then:

(1) On the Einstein space (F(1,2), 9112) the Dirac operator has

the eigenvalues + nnR
+ 3.

(ii) On the Kahler-Einstein s ace (F(1,2),gl) the Dirac operator has

the eigenvalues + 1
An

R = + 242.

Proof: From (5.33), (5.34) and the formulas given in (5.6) we note

that, for 1=1,2,3, the homomorphism o',*(Hi) 6 End(, 6) annihilates

both vectors q+ = u(-1,1,-1) and CP = u(1,-1,1). Hence, for

arbitrary zl,z2 EC and all X 6

J oC"(X)[zlT+ + z2c' ] = 0
holds, and since H is connected, we conclude that, for any he H,

we have

J)oG(h)[zl Cr + z2]=[z1 i,+ + z2p J.
Thus, the invariance property (5.31) is automatically satisfied for

the constant function cP: U(3)-6 given by
LP (9) =

zlT+ + z2CP ,

and cP defines a section in the spinor bundle S - U(3) x jz d6.

On this constant section the expression for the Dirac operator

Dt corresponding to Bt, which is given in (5.32), simplifies to

Dtq
. j T(e [1t(ej)cP7

For the particular terms we obtain

(iz2(P+ - iz1LF ), J-1,...,4
42-

(1-,t) (iz2c+ - izlq'-), J=5,6,i t
and after summation

for t = D1/2C = 3(iz2 CP+ - iz1p ),
for t - 1: D1(' = 242 (iz2T + - izly ).
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Consequently, eigenspinors of Dt which realize the desired eigen-

values are obtained by z1 = 1, z2 = -i and z1 = 1, z2 = +i.

Since in our calculations T + = u(-1,1,-1) and
-

= u(1,-1,l)

hold, we easily check that the almost complex structure on F(1,2),

defined in (5.11), is explicitly given by

J(e1) = e2, J(e3) _ -e4 and J(e5) = e6.

Returning to our description of 1r = .W, NL , we identify an

element of
fi

0 a b

-a 0 c ; a,b,c6 C
-b -c 0 I

with the corresponding triple (a,b,c)E C3. In this notation, the

almost complex structure J becomes J(a,b,c)) _ (ia,-ib,ic).

From this, it can also be checked directly that the manifold

(F(1,2),g112, J) Is nearly Kahler non-Kehler. Furthermore, we set

z = - + 243 i and consider the diagonal matrix C = (ck1) with

the entries ckl = zk Ski (16k,1'3), which defines a Lie group

automorphism n9`: U(3)-->U(3) by '(A):= C-1 A - C for any
A E U(3). Then nJ is of order 3 with a fixed point set equal to H,

and the almost complex structure J is generated by ,'` in the

following sense:

If we denote the natural projection by Ir: U(3)--"F(1,2) and define

a transformation 6 of F(1,2) by the equation
then the differential 6.*:'V > is related to J by

6.s =- 2 id+-7J. fifi
fi

Therefore, (F(1,2) 191/2) is also equipped with the structure of a

3-symmetric space.

Finally, we remark that in our notation the complex structure

I: 1 > corresponding to the K6hler-Einstein structure of

(F(1,2),gl) is given by I((a,b,c)) = (ia,-ib,-ic).

b) The complex projective space CP3

According to example (a) of § 3 in Chapter 3, we choose the inner

product in so(5) given by

B1(X,Y) X,Y 0so(5),

decompose so(5) into so(5) = A(2) 0.1* + .vv as described in

§ 3.3, and, for t > 0, consider the Ad(U(2))-invariant bilinear
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form Bt on At* +Q .LV defined by Bt = Blf ut u,w + 2t B11-/VYxMt

If we denote 4 - 44 (2), the commutator relations (5.29) are satis-

fied between 4 , AV and 'V , thus by Lemma 10 the Levi-Civita

connection At of the left-invariant metric gt on

CP3 = SO(5)/U(2) corresponding to Bt can be determined. Moreover,

considerations similar to that of Lemma 11 show that there exists a

lifting homomorphism oC: U(2) ) Spin(6) of the isotropy representa-

tion oL: U(2) -+ SO(6) of CP3, and by calculating the kernel of

15 1*(X) E End(A6) for arbitrary X64(2) we obtain a constant
function C : 0 6 describing a section in the spinor bundle

S over CP3. `

By analogous calculations as for the flag manifold F(1,2) in

example (a), the application of the Dirac operator Dt corresponding

to gt on this spinor field cQe r(S) can be determined.

According to § 3.3, the metric gt on CP3 is an Einstein metric

for the parameters t
2 and t = 1. The metric g1 was shown to

be the Kehler standard metric of CP3 and it has scalar curvature

R - 12, whereas g1/2 is normal homogeneous with respect to S0(5)

and has scalar curvature R = 15.

Similar to the case of F(1,2), we can state the following result:

Proposition 4: Let gt be the left-invariant Riemannian metric on

CP3 described above.

(i) On the Einstein space (CP3, g1/2) the Dirac operator has the

= + q2.eigenvalues ± Fn-R' 3

(ii) On the Kghler-Einstein space (00, 91) the Dirac operator

realizes the eigenvaluea +
nn2

R = + 2.

c) The Lie group Spin(4) s S3 x S3

We decompose the Lie algebra spin(4) 'W so(4) into

so(4) O+ ,T with ,4 = span tE12'E13E233 and

= span IE14'E24'E341
,
where the matrices E1 (i < )) are the

standard generators of so(4) as described in example (a) of § 5.4.

Then, by B(X,Y) _ - 1 Tr(X - Y), X,Y E,so(4) and

Bt = BIIrp x + 2t B,2 X M for t> 0, we get a family of left-
invariatiemannian metres gt on S3 x S3. By Wang's Theorem,

the Levi-Civita connection of gt corresponds to a map

At : so(4)- , fir ) which is given by
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nt(x)Y = 2[X,Y]
At(X)A - (1-t)[x,A]
At(B)Y = t[B,Y]
At(A)B = 2[A,B]

for X,Y E /f2 and A,B 6
With t and t = I we obtain Einstein metrics on G = 53 x S3,

where t
2

corresponds to the usual product metric. The para-

meter t = 1/6 yields an Einstein metric with scalar curvature

R = 10.

In the following, we fix t = g; an orthonormal basis of 6@:T
with respect to B1/6is given by ei = {3 E12, e2 = F3 E13'

e3 = 53 E23, e4 = E14, e5 = E24, e6 = E34 band we use these vec-
tors {'e1....,e63 to identify so(4) with R .

Consider the trivial spin structure Q = G x Spin(6) (which is the

only existing one, since G = S3 x S3 is simply connected); the

associated spinor bundle is then the trivial vector bundle

S = G X A 6,and hence r (s) consists of all smooth functions

G-> Q 6. Using the description of At given above and Ikeda's

formula (see example (a)) to express the Dirac operator D corre-

sponding to B1/61 we obtain several eigenspinors of D. They are

given by

u(1,1,1) ; u(1,-1,1)

Tit

[u(1,-1,-1) + u(-1,-1,1)]+ [U(-1,1,1) + u(1,1,-1)]

' _ [u(1,-1,-1) - u(-1,-1,1)] ; [u(-1,1,1) - u(1,1,-1)].

In particular, we state

Proposition 5: On the Einstein space (S3 x S3, g1/6) the Dirac ope-

rator has the eigenvalues

=
2

7 _ + [ and + 3 .

The eigenvalues + are realized by the spinors CQi (1-1,2,3),

whereas ,± are eigenspinors for + P3, hence Killing spinors on

S3 x S3. Writing V1 = [u(1,-1,-1) - u(-1,-1,1)] 6 r'(S+) and

2 =[u(-1,1,1) - u(1,1,-1)1 . r w), we have -y ± -'P1 ;,P2,
and the almost complex structure J, which makes (S3 x S3, 91/6)

a nearly K&hler non-Kahler manifold, is then defined by

J(X)v, = iX V , X E so(4). In the above notation, it is described

by J(e3) = e4, J(e1) = e6, J(e5) = e2.
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Chapter 6: Manifolds with Parallel Spinor Fields

Let Mn be a Riemannian spin manifold. A spinor field Zyef(S)

is said to be parallel if Vyr = 0. If a Riemannian spin manifold

admits a parallel spinor field, its Ricci tensor vanishes, Ric 7 0.

(see Chapter 1, Theorem 8). Consequently, a 3-dimensional Riemannian

manifold with parallel spinor field is flat. We consider now the

four-dimensional case. The bundle A2M4 decomposes into
A2M4 = A 2 +O A 2M4 and the curvature tensor Q : A 2M4 > A 2M4

is given by

(jZ=W+ 0- 1 0, B 1 - R
0 W J * B* 0 T7

Suppose now that M4 admits a parallel spinor by . Then Ric = 0

and, consequently, the curvature tensor R. coincides with the Weyl

tensor,

a

Moreover, we have (see Chapter 1, Theorem 12)

0.

The spinor bundle S decomposes into S = S+ p+ S-. The condition

W(12),+± = 0, 0 .4 'iy
± E f (st)

implies W+ = 0 by an algebraic computation (see Chapter 1,proof of

Theorem 13-). Therefore, a 4-dimensional Riemannian spin manifold

M4 with parallel spinors *+,y- in S4, S is flat. We consider

now the case that M4 admits a parallel spinor ,w +ia (S+). In this

case we define an almost complex structure J: TM4-a TM4 by the

formula

Since n++ is parallel, J is parallel too. In particular,

(M4,g,J) Is a Ricci flat Klihler manifold. In case M4 is a compact

manifold, its first Chern class c1(M4) in the de-Rham-cohomology

is given by the Ricci-form (see [1051). With respect to Ric II 0

we conclude

c1(M4) . 0.
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A compact, complex surface M4 satisfying c1(M4) = 0 is said to

be a K3-surface (see (18]). It follows from the solution of the

Calabi conjecture that any K3-surface admits an (anti-)self-dual

Ricci-flat Kahler metric (see [17]). Thus, we obtain

Theorem 1 (see [60],[17]): A compact, non-flat 4-dimensional Rie-

mannian spin manifold with a parallel spinor is isometric to a K3-

surface with an (anti-) self-dual Ricci-flat Kahler metric. Any K3-

surface admits two independent parallel spinors in
S+.

We describe now all non-flat compact 5-dimensional Riemannian mani-

folds M5 with parallel spinors. In case of dimension 5 a parallel

spinor defines a 1-form q by 'J(X):= -i <Xt{, ,xV>,, 'I is parallel
and one obtaines a foliation of M5. We will prove that this folia-

tion is a fibration of M5 over S1. The fibres are totally geodesic

K3-surfaces.

Theorem 2 ([42]): If (M5,g) is a non-flat compact Riemannian

spin manifold with parallel spinor,then there exist a K3-surface F

with an anti-aelfdual Kahler-Einstein metric and a holomorphic iso-

metry : F --> F such that M5 is isometric to F(P = F x I/

with the identification (f,0)^' (c(f),1).
The two spin structures of M5 correspond to the two possible lifts

of into the unique spin structure of F. The parallel apinors

of M5 with respect to the corresponding spin structure are

given by the (+ -invariant parallel apinors ^{j of F.

The bundle S+ of a K3-surface is isomorphic to A0'0 O+ A0'2.

The lifts 3 of a holomorphic isometry Cp into S+ are given by

+(f, Q) = (+ f4_', We call the spin structure of M5=F,

defined by + a 'positive spin structure', the other one a 'negative

spin structure'.

Theorem 3 ([42]): The space of parallel apinors of M5 = F with

respect to the positive spin-structure has dimension one or two. M5

admits two linearly Independent parallel apinors if and only if the

holomorphic 2-form h2 on the K3-surface is -invariant.

The dimension of the space of all parallel apinors with respect to

the negative spin structure is at most 1. In this spin structure a

parallel spinor exists if and only if a'(h2) -h2 holds.
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Proof of Theorem 2 and Theorem 3: Let (M5,g) be a compact non-flat

Riemannian spin manifold with a parallel spinor field Y of length

1. In particular, M5 is Ricci-flat. By

and 12(X)-i <Xy, ,1y>
the spinor defines a parallel vector field s and a parallel 1-

form q , respectively, i.e. Q'S= 0, 7,q = 0. The 1-form 'j is closed
and vanishes nowhere. By the Frobenius Theorem q defines a folia-

tion of M5, V is the normal vector field.

Because of \71&= 0, all leaves are totally geodesic submanifolds of

M5. We will now prove that this foliation is a fibration over S1.

Since 'r1 is closed, we can define a homomorphism

S4, : ` 1(M5)

by r--* where ,r- is a closed curve in M5.
This homomorphism is non-trivial, since on account of Hom(9r1(M5);1R)

Hom(H1(M5;Z);R) = HIR(M5)R), it would follows from

0 = J Q that 'q is the differential of a smooth func-
tion on M5. However, o vanishes nowhere.
Since M5 is a compact Ricci-flat, non-flat Riemannian manifold, we

have b1(M5) 4 1 for the first Betti number b1(M5) of M5 (s.[1041).

Hence, the image of this homomorphism is a discrete subgroup of IR

I.e. C ' Z' for a positive number C eIR.
We fix a point mo a M5 and define a function

f: M5 - R1/C.ZC = S1
by f(m) S gmod

where T is a curve from m
0

to m. Because of the above mentioned

properties of
J n 6

Hom(ir 1(M5kR) this definition is correct. We

have df- I . Consequently f is a submersion and the leaves of

the foliation rq- 0 are the connected components of the fibres of

f. If each fibre consists of k leaves, then f # 1r1(M5) is a sub-

group of index k in qr1(S1) because of the exactness of the homo-

topy sequence of the fibration f. In this case we can lift f into

the k-fold covering of S1 and we obtain a fibration
f:

M5-'1 S1

with the property, that the fibres of f are the leaves of 41 = 0.

V V,= 0 implies that the flow of - maps the fibres isometrically

onto each other.

The fibres are anti-selfdual Ricci-flat Riemannian manifolds. This

can be proved in the following way. We choose a local section

in the SU(2)-reduction Q(11y) of the frame bundle (see [41)).

Let tAjt (14i,j65) be the coefficients of the Levi-Civita connection
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with respect to this frame. From pW = O, I.e.

E L. eieju(1,1) = 0, it follows that

012 +'34 = 0, 013 = 024' '314 + '023 = 0
00 = 0 (14it5).

However, the L)ij (1=-i,jfi4) are the 1-forms of the Levi-Civita

connection of the fibres. Consequently, the Levi-Civita connection

in the principal SO(4)-bundle is anti-selfdual.This is equivalent to

the statement (s.[33]).

Thus each fibre is a compact, connected, anti-selfdual Ricci-flat

Riemannian manifold. Consequently, we have only the following

possibilities (a. [60]).

1) All fibres are flat.

2) All fibres are K3-surfaces.

3) The fibres are Enriques surfaces.

4) Each fibre is of the form N/T, where N is an Enriques surface

and T is an antiholomorphic involution on N.

Case 1) is impossible, since it would imply M5 to be flat. The

Cases 3) and 4) are also impossible, because the fibres are spin

manifolds, but Enriques surfaces do not admit a spin structure.

Consequently M5 fibres into K3-surfaces being isometrical to each

other. Using the flow of ' one can consider M5 as the Riemannian

product F x I of the fibre F and the Interval I= [0,1] , where

F x {0} and F x t1} are identified by an isometry ' : F--> F. We

want to show that tk is also holomorphic. The restriction V/F of

w to any fibre is a parallel spinor, too. On the other hand, -,/F

is a section in S+ since F is a K3-surface (see [60]). Hence, the

equation (Jt)W = it 4 defines the complex structure J: TF--3- TF

of the fibre F. Since W /F is invariant with respect to one of the

lifts t of (I , we obtain d4'J = Jd(t , i.e. c is holomorphic.
Finally, we see that the space of parallel spinors of M5 is equal

to the space of +- and f_-invariant parallel spinors on the K3-

surface F, respectively. This proves Theorem 2.

Let h2 denote the 'unique' holomorphic 2-form of the K3-surface F

and let's E S+ be a parallel spinor. Because of the isomorphy
S + = A 010 A0'2, I corresponds to an element

(A,Bh2)e AO's G A0'2 , where A,B e (C are constant on F. Let

F-.w F be a holomorphic isometry. Then we have

+(A,Bh2) = (+A, +B h ).

Consequently there exists at most one parallel spinor with respect

to the negative spin structure of F, , namely (O,h2). The spinor
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(01h2) is '_-invariant if and only if -h2. With respect

to} we have at least one parallel spinor, namely (1,0). Further-

more, the spinor (O,h2) is invariant if and only if i h2 = h2.

This proves Theorem 3.

The existence of parallel spinors implies topological conditionson

M5. We consider H2(M5;R). Let M5 = F.
Using

H2(M5;IR) _ {62e H2(F;(R) : CP* E 2 = 2j

and the global Torelli Theorem (181 we obtain

Corollary 1: Let (M5,g) be a 5-dimensional compact non-flat

Riemannian manifold with parallel spinor. Then

2 G dim H2(M5;R) 22.

Moreover, dim H2(M5;R) = 22 if and only if M5 is isometric to

the Riemannian product of a K3-surface by S1.

Corollary 2: If there are two independent parallel spinors on M5,

then

4 16 dim H2(M5;R) & 22.

Remark: Since the automorphism group of a K3-surface is finite all

integral curves of the vector field 't are closed.

Examples may be found in [42].

With the some method we now classify all 7-dimensional compact

Riemannian manifolds with three or two parallel spinors.

Theorem 4 (see [44)): Let (M7,g) be a non-flat compact 7-dimen-

sional Riemannian spin manifold with at least three parallel spinors.

Then there exists a K3-surface F with an anti-selfdual Ricci-flat

Riemannian metric, a lattice f cIR3 and a representation

e : r ? Auth1(F) of r into the group of all automorphisma of F

preserving the unique holomorphic 2-form h2 such that M7 is

isometric to ((R3 x F)/ r , where r acts on IR3 x F by

t(x,f) _ (x+Y-, '(:T)f).
Conversely, a 7-dimensional Riemannian manifold of this type ad-

mits at least four parallel spinors.

Proof: Let '41,'9 2,W3 be three orthogonal parallel spinors of

length 1. In the same way as in section 4.4 we define vector fields

Xi and 1-forms e 1 (i=1,2,3) by X1y' 1 =v'2' X2'W2 = W3'
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X3`,2 =y'3' 'l i = g(.,x1), for which ij'rJ i = 0 and 7X1= 0 holds.
By the Frobenius Theorem we have a foliation M7 =UUF4 of M7

IV.

into totally geodesic, connected, complete manifolds 4FoE. The 1-

forms
L ij

of the Levi-Civita connection with respect to a frame of

the SU(2)-reduction Q( 1,12,V3) satisfy

L 13 = L324, 014 023 = 0, W12 + 1.) 34 o 0

0i5 = Loi6 = (Zi7 = 0 (1*117) .

So one can prove in the same way as above that the leaves Fa are

antiselfdual and Ricci-flat.

We have b1(M7) c 3 (see (303). On the other hand, the 1-forms

'1' 1 2' 7 3 are linearly independent, and consequently bi(M7) = 3.

We fix a basis (cc11 oL2, d 3 3 of the torsion-free part of H1(M7;Z)

and consider the homomorphism L:1r1(M7)-. R3 given by

L(t) _ ( S l i' $ 72' S 13)
The vectors L(oci), L(o.2),L(o(3) are linearly independent in IR3,

because A1L(oC 1) + A2L(OL 2) + A3L(o( 3) = 0 implies
Jr r i = 0 (i=1,2,3), and therefore

A1c[1+A2o(2+A3oL3

A1a(1 + A2 oc2 + A3 o(3 = 0 in H1(M7;(2) . Let (' be a lattice generated
by L(0LI), L(oC2), L(o(3). Then we obtain a submersion f: M7 >IR3/r

defined by f(m) f m1' S '11.2' S'13) mod r , where c is a
C C C

curve from a fixed point m0 to M.

Since TXF _ {t ETxM7: df(t)=O}, the leaves of the foliation

U Fa are contained in the fibres of the submersion f. As in the

case of dimension 5 we may assume that the fibres of f are

connected and coincide with the leaves F. The parallel transport

in a Riemannian submersion with totally geodesic fibres maps the

fibres isometrically onto each other. Thus all fibres are isometric.

They are anti-selfdual, Ricci-flat, compact Riemannian manifolds.

They obtain a spin structure, since the normal bundle of any fibre

is trivial. As in the proof of Theorem 2 one concludes, using again

the Hitchin result (see (60]), that all fibres are isometric to a

K3-surface F.

Consider the covering iR3 *>IR3/r as well as the induced fibration

M7 ,IR3 over IR3. Then M7 is isometric to M7/ r . On the other

hand, the parallel transport defines an isometry from M7 to

iR3 x F. The action of r on F preserves the holomorphic structure

as well as the unique holomorphic 2-form h2. Indeed, the holomorphic

structure of any K3-surface is given by the parallel spinors on it
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and h2 is one of the two parallel spinors under the isomorphism

St_n0,0 + A0 '2 of the spinor bundle S
t

We restrict the parallel

spinors w1''p2' W3 on M7 to the fibre F. Since the restriction

of the Spin(7)-representation to the subgroup Spin(4) is equivalent

to A4 +Q L 4 , each 'l'i/F (i=1,2,3) corresponds to a pair of

parallel spinors on F. The r -action on r preserves Ti/F since

the ,Vi are parallel on M7. Consequently, r acts on F holo-

morphically and preserves h2.

Theorem 5 (see [441): Let M7 be a compact non-flat Riemannian

manifold with two parallel spinors. Then either M7 admits at least

four parallel spinors and is isometric to (JR3 x F)/(' for a certain

K3-surface F or there exists a Ricci-flat compact Kahler manifold

N6 and a holomorphic isometry $': N6 >N6 such that M7 is

isometric to M7 N6 x [0,11/_ with the identification

(x,0)- (. 4(x),1).

Proof: Consider two parallel spinors '4'1' 42 as well as the

parallel 1-form fj defined by
'1 w1 =NV2.

M7 is a compact Ricci-flat

Riemannian manifold and the first Betti number is at least 1.

In case b1(M7) = 1, we can prove in the same way as for dimension 5

that the leaves of the foliation given by (1 are fibres of a Rie-

mannian submersion f: M7 ) S1 with totally geodesic Ricci-flat

fibres N6. Using the parallel transport defined by the vector field

corresponding to 'T , M7 becomes isometric to N6 x I/,v for some

: N6-->N6. preserves V 1IN6 and W 2IN6 . Consequently, cj is

holomorphic. If b1(M7) it 2, then there exists a harmonic 1-form

'1o orthogonal to TL in L2. The Weitzenbbck formula

0 =0'l1 - 0*O'ql + Ric(j1) yields that 1q1 is a parallel 1-form
orthogonal to 'vt at any point of M7. Then y/1+ 'y+2:2 q* VI and

'13:= 711Y1
are orthogonal and parallel spinors on M7.

Chapter 7: Riemannian Manifolds with Imaginary Killing Spinors

According to Theorem 9 of Chapter 1 imaginary Killing spinors

can only occur on non-compact manifolds.

In this chapter we will prove the following statement:

A complete, non-compact, connected Riemannian spin manifold admits

non-trivial (imaginary) Killing spinors if and only if it is iso-

metric to a warped product
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(Fn-1 x R, a-4pth Q+ dt2), pelt` {0},
where (Fn-1, h) is a complete, connected spin manifold with non-

trivial parallel spinor fields. To prove this, we distinguish two

types of imaginary Killing spinors, those where the constant Qce,

defined in Chapter 2.3 for each twistor spinor, is zero and those,

where Qcp is greater than zero. These two types are characterized

by a different behaviour of their length function. The length func-

tion of an imaginary Killing spinor is, in opposite to that of a

real Killing apinor, non-constant and contains enough information

to describe the above mentioned geometric structure of the under-

lying manifold.

7.1. Imaginary Killing Spinors of Type I and Type II

Let (Mn,g) be a connected spin manifold. First, we prove some

properties of the length function

u' (x) :=<q(x), c'(x)>
of an imaginary Killing spinor cQ.

Lemma 1: Let c{4 be an imaginary Killing spinor to the Killing number

pi. Then

1) X(up) = 2pi (7.1)
YX(uT) = 2pi<7yX- cp,cf> + 4p2 g(X,Y)uc (7.2)

2) VX grad u4,= 4p2
uc?

X (7.3)

Hgrad uT11 2
= -4p2 <aj.F,cf12 (7.4)

3) Let t be a normal geodesic in (M,g).

Then

u
q

(.?' (t)) = A e2pt + Be-2pt, (7.5)
where A and B are real constants.

Proof: For a vector field X on M we have

X(u,) =<vx(?,C?>+.4q, vxtf? ip{<x

2pi <X-' , `P>

For the second derivative of u this provides
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XY(uq) = 2pi{<VyX'? L> +.X' QyL[,` >+<X'`', Vycp>J
= 2pii<VyX'cP ,W> + pi<X'Y'1f,''f'>-pi<X"t;f, Y'-'>}

= 2Ni{«yX'`F,q> +
2pi {<VYX'cQ, + 4p2g(X,Y)ur

(7.1) implies

grad u,?ji2 = L sj(u.)2 = - 4p2 2

Let (sl,...,sn) be a local ON-basis arising from an ON-basis in

x by parallel displacement along geodesics. Then, (7.2) implies
n n

VXgrad uce= VX(sj (uc )SP = j Xs)(up ) si
n

= 4p2up g(s1,X)s
j=1

= 4p2ul X.

Let 1(t) be a normal geodesic in (.M,g) and let u(t):= ucp ( r(t)).

Using (7.2) we obtain

un(t) = cP>+ 4p2
4p u(t).

The general solution of this equation is

u(t) = A e2pt + Be-2pt,

where A,BEIR.

In Chapter 2.3, a constant Qq 1 0 was assigned to each twistor

spinor. If cc is a Killing spinor to the Killing number pi, then,

using (7.4), we obtain

4 up(x)II 21.4 s n2p2j4(x) - d grad

Furthermore, according to Theorem 9, Chapter 2, we have

QCps n211 2uT ' dist2(Vt icP ),
where VT is the real eubbundle Vc= { t, f jt E TM} of the spinor
bundle.
We call cQ a Killing spinor of type I iff Q cp= 0 and a Killing

s inor of type II if Qcp > 0.

Then, I is of type I if and only if there exists a unit vector

field on M such that J`c'= icp . If q is of type II, then the

length function u is bounded from below by the positive

constant n- Q q' . As it was shown in Corollary 2, Chapter 4.3.,

all imaginary Killing spinors on 3- and 5-dimensional manifolds are
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of type I.

Now, we prove two lemmas which show how a Killing spinor to the

Killing number -Ni can be constructed from a Killing spinor to the

Killing number pi.

Lemma 2: Let q be a Killing spinor of type II to the Killing num-

ber pi. Then the spinor field

(u,-F + 2-I grad uf

is a Killing spinor of type II to the Killing number -pi.

Proof: By formula (7.3) we obtain

VxY=Vx(uq Y) + 71.vX(grad uq' ')
- X(uq ) +ipucX . + 2N1 QX(grad u(p)- + grad uf X y
= X(up)cp+ 2pi u -

u (p, X)Lp
pi X. uT + grad uq3 T

PJL

_ -Ni X- 'W .

From (7.1) it follows

u = grad uT q1127VT
u

= u + 11 grad ucQ+ <grad ucf--, cP>'

= uY jug - (grad u p II2,i
4

=u1n 4,7 - 3
Q

4This implies Q,= ._ >0. Hence, '111 is of type II.
n p

Lemma 3: Let (Mn,g) be an even-dimensional manifold with a

Killing spinor Lp- (P+ p+ - to the Killing number X. Then
LF1:=(Q+ - Q- is a Killing spinor of the same type to the Killing

number - )k.

Proof: Since the Clifford multiplication commutes the positive and

negative part of S, we obtain

Vxcf+ _ and VXLQ = )lX-Q+.
Hence,

vxcp1
=Qxcf+ -Gx(P-

=ax.cP- -ax. Cpl.
Because of
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u,P =Yq112 =QQ+112 +1jq 112 =#q1112 = uIf1, it follows that Q= QIf1.

In Chapter 7.4 we will see that there exist odd-dimensional mani-

folds with non-trivial Killing spinors to the Killing number pi

and no Killing spinors to the number -pi.

Finally, we want to study which Killing spinors of the hyperbolic

space are of type I and which of type II.

In example 3, Chapter 1, we have seen that the Killing spinors on

the hyperbolic space Hn4p2 of constant sectional curvature -4p2

(realized in the Poincare-model) are the spinors

?C(Hn4p2pi = u(x):= 1-4i 2 l
u C. 2

Using formula (7.4) we obtain for the constant QYu

'f Qq u>(o)II2
np u n4p

= 4lluli4 + 7. .e (0),
j

u(o)>2
j

u

4 {11u114

=1
+LGe u,u>2j.

Hence, in case n # 3,5, almost all Killing spinors on the hyper-

bolic space are of type II. Using formula (1.1) and (1.2) it is easy

to verify that in case n = 2m the space

span 1`PuIu=u( &1,...,E m)+u( b1,...,Em-1- -m)t Ej = + 13

is a 2m-l-dimensional subspace of Killing spinors of type I and

the spinor fields q
u

with u u(E1,...,fm) are of type II. In

case n= 2m+1,

V+ := span {c uju = u(E1.... ,Em)1 II bj = + 1

m-lare 2 -dimensional subspaces of Killing spinors of type I and the

spinor fields qu with u=u(61,...,&m) + u(d1,..., m), where

(d1,...,dm) differs from (611 16m) in an odd and more than

one number of elements, are Killing spinors of type II.

7.2. Complete Riemannian Manifolds with Imaginary Killing Spinors

of Type II

In this chapter we will prove that the hyperbolic space iS the only

complete manifold admitting imaginary Killing spinors of type II.

j=1
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Theorem 1 ([71 ): Let (Mn,g) be a complete, non-compact, connected

spin manifold with a non-trivial Killing spinor of type II to the

Killing number pi. Then (Mn,g) is isometric to the hyperbolic

space Hn 2 of constant sectional curvature -4p2.
-4p

Proof: According to Theorem 8, Chapter 1, and Theorem 7, Chapter 2,

it is sufficient to prove that the length function u, of a non-

trivial Killing spinor c? of type II attains a minimum. Because

of Q"T _ I dI 4Qc(1 for oc & C we can suppose that Q = n2p2

Then uce is bounded from below by 1.
Let c > 1 be a real number such that there exists a point yoe M

with u,? (yo)< c. We consider the subset Mc:= IX 6 M(uy;(x) 4 eJ cM.

Let - be a normal geodesic with -t(0) = yo. According to (7.5)

we have

u(t) = of (Y(t)) = A e2pt + B e-2pt 1.

Since (M,g) is complete, u is defined for all t 61R, which

implies that A,B >0. The minimum of u is 2 AB, which shows that

1 4 2 )1 A B 4 u(0) = A+ Btc M.
From (i) we obtain

A,B G (l(c- (c + cY `-1 )). (ii)
Let d> O be a parameter such that f(d) E Mc. Then

u(d) = A e2pd + B e-2pd c c.

The resulting quadratic equation for e21Nld together with (i) and

(ii) yields e2hpid 6 2c2. Thus, each point of Mc lies in the

closed geodesic ball of radius
1

ln(2c) around c. Hence Mc

is compact and u`q has a minimum on Mc.

Remark: Let be the length function of an imaginary Killing

spinor ck of type II with Q cf= n2p2. Then (according to the proof of

Theorem 7, Chapter 2, and Theorem 1) ucf has exactly one critical

point xo. Let -r be a normal geodesic with 1(0) - xo. For the

constants A and B in

u(t) = u q (-r(t)) = A e2pt + B e-2pt

it follows

u(0) = u (xo) = nrvp = 1 = A + B and

u'(0) = 0 = 2?(A + B).
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Hence A = B = 2 and u(t) = cosh(2pt).

Consequently, the length function u`f satisfies

u,p(x) = cosh(2p d(x,xo)) for all xGM,

where d(x,x0) denotes the geodesic distance of x and x0.

We proved that the only complete connected manifold with imaginary

Killing spinors of type II is the hyperbolic space. Finally, we want

to remark that there exist non-complete manifolds of non-constant

sectional curvature which admit imaginary Killing spinors of type II.

Such manifolds can be constructed as follows:

Let (Fn-1,h) be a compact connected spin manifold with real

Killing spinors in 7((F,h)p as well as in x (F,h)-p. Examples of

such manifolds can be found in Chapter 4.2, Theorem 1.

Let (Mn,g) be the warped product

(M,g):= (F x(0,oo), Q+ dt2).

We show that (M,g) has imaginary Killing spinors of type II to

the Killing number pi.

Case 1: n = 2m+1

Let f&-X(F,h)p be a real Killing spinor and denote bycp=q Q+q7

the decomposition of c with respect to SF. Then V X '+ = PX° '

and VXF = pX ,p+. We define

w (x,t):= e-Ntce+(x)+(-1)mi ept -(x), i:= (-1)mp.

Using the denotation of Chapter 1.2 for the spinor calculus on

warped products and the formulas (1.20) and (1.21)

that ,ye7((M,g)pi:
S S

FQ s n
1

p (e'pt OXFIf ++(-1)m i VXcQ )

- p coth(2pt)X -'$

- p

and

_ -A e-ptcf+ + ip eptcP-

snip IeptpX,LF
+

we will

(-1)m i pept
X,,'+

-

cosh(2pt)[(-l) mi a-pt

Z= pi {(-1)m I ept e-pt
X ETXF

= pi p (-1)m
= pi '9'

e

prove
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Unless (F,h) is the standard sphere, Icf+I2 =( 12 = const =: c > 0

(see Lemma 1, Chapter 5.1) is valid and it is easy to verify that

Q, = 4c2n2p2>0.

Case2: n-2m+2
Let Y16:7( (F,h)p and C - - - k

We define (using the denotations of Chapter 1.2 for the spinor cal-

culus on warped products):

y,(x,t):= [(iePt + e-pt) (p1 + (-i ept + e-Pt ) 2 ]

Q+ (-1)m [(e-pt-i ePt) TnP1 + (e-pt + I ept) p 21

Using ^ A
S ^ n S

UXF 1 = 7XFf1 = p X 1 -pX `f1 and pxFCP2 = pX "?2

we obtain by applying (1.22) and (1.23)as in the first case

7Xy,= i for all X F_TXF and

.p

Hence, 1a 3( (M,9)pi
Unless (F,h) is isometric to the standard sphere, q1 and cP2

have constant length ci s lI T1 II and c2 a N (P2 u2, and are orthogonal
to each other:

q1' Y2> ' 0 (see Chapter 5.1, Lemma 3).

Furthermore, II coin 2 and <c'1, cf 2> -<`101, c'P2>
It follows Q,-- 16 (ci+c2)2. n2p2> 0.

7.3. Complete Riemannian Manifolds with Imaginary Killing Spinors of

Type I

In this chapter we will study the structure of complete spin mani-

folds admitting imaginary Killing spinors of type I. In fact, we

consider a more general question. We derive the structure of complete

manifolds admitting a twistor spinor 1P such that Qe 0 and

=0
for a real function b on M without zeros (see also Chapter 2.5).

If b = -pn - constant, then f is a Killing epinor of type I to

the Killing number pi.

Theorem 2: ([6],[7],[851): Let (Mn,g) be a complete, connected

spin manifold admitting a twistor spinor q such that Qcp- 0 and
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in X = 0 for a real function b on M without zeros.

Then each level set F of the length function u4 is an (n-1)-

dimensional complete connected submanifold with parallel spinor

fields. The function b is constant on F and for the normal geo-

desics yt(x), orthogonal to F, the function b(t):= b(y t(x)) does

not depend on x e,F. Moreover, (Mn,g) is isometric to the warped

product

4
b(e)ds

(F x IR, en 0 9IF +0 dt2).

Proof: Since Qp - 0 and b has no zeros, according to Theorem 9,

Chapter 2, there exists a unit vector field 'g on M such that

' Lp - ic? .

Using

«X T,I >+4CP' VXw>
Lb

- libn 0.'P . cp>

we obtain

(u) _ - 2nb <%S'Lp' (p>' 2n uq .

Hence, ucp is regular in each point and the level sets

(7.6)

(7.7)

(7.8)

F(c): up(c) of u qo are (n-1) -dimensional complete submanifolds

of M. Multiplying equation (2.14) by (P yields

i e6(b)uf + ( nnl) + b2)( E> +

+ 1 5- ad (b) <(a 0.
OF=1 oc:

Since <s8 Q,'P> and LO,LP> are purely imaginary,
the imaginary part of this equation yields:

R ) + b2) <X.q,cp> = 0 (7.9)i X(b)uT + (Trn -
for all vectors X. Together with (7.7) this shows that b is

constant on the level sets of uy . If X is tangent to a level

set of uT , then (7.6) and (7.7) provide

0 X + _2g(X,I)up

Hence, I is a normal vector field to the level sets of u (P .

Differentiating (7.6) we obtain

X'`P ''X( V X X _

- V, ' e +
in X `g.,f + 2nb g(l ,X) f
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and, therefore,

DX'g - 2n
2n 19( ,X),Q. 0.

It follows

0
2b

Xn
(7.10)

for all X orthogonal to (7.11)

Using (7.10) and (7.11) we see that the 1-form ^1, which is dual

to 'g, is closed. Hence, the level sets of up are just the leaves

of the foliation defined by 'r . For the Lie derivative of the

metric g we obtain

(° g)(W1,W2) = 9(7 W ,w2) + 9(W11VW
1
S

2
. 4n

9(W1,W2), (7.12)

where Wj denotes the component of Wj which is orthogonal to 5 .

Let us denote by tt the integral curves of ` . Because of (7.10)

these curves are geoaesics,which are defined for all to L

since (M,g) is complete. Hence, {-tt } is a R-parametric group of

diffeomorphisms .(t: M> M. From (7. 12) we obtain for each vec-

tor X e. TXM

d (-t* _ (r t t1 9)x(X, -S) _
(.f9)-"(x)(d-rt(X), d-3`t(-g))t
(f-S9)-( (X)(d:tt(X)),g('g't(X)))

= 0.

Thus,

(rtg)x(X,1) = 9(. (x)(d t(X), (1 t(x))) = gx(X, (x))
for all particular, for the level set F(x) of u

f
con-

taining the point x it follows

d -rt(TXF(x)) = IR`g(Tt(X))1 = TTt(x)F('rt(x)) (7.13)

Hence, the diffeomorphism Tt maps the connected components of the

level sets of u(e one upon the other: Tt(F(xo)) = F(,t t(x))o.

Let F be a fixed level set of ucp , x e. F and c = u (x).

Denoting u(t):- u(p (t t(x)) and b(t):= b(T t(x)) and applying

(7.8) we obtain

u(t) (7.14)

which provides
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t
j b(s)ds

u(t) = c en 0
Since b has no zeros, u(t) is strictly monoton. Therefore, the

integral curve Tt(x) intersects F only for t - 0. This shows

that the smooth map

1) : F x IR -M
(x,t) Tt(x)

is injective. We will prove that c' is a diffeomorphism.

For the differential of cj5 we obtain

d Q ) (X ( 2 )r d tt(X) +r'g (Tt(x))
Because of (7.13), d(j(x,t) is an isomorphism and, therefore,

a local diffeomorphism. It remains to show that d5 is surjective.

By U(z)c M we denote an open neighbourhood of z e M which is

diffeomorphic to a product V(z) x(-f,E), where V(z) is an open

connected set in F(z).

Let xo6 M\F. We fix a point x r__ F, and consider a curve d connecting

x
0

and x. cScan be covered by a finite number of sets U(xj),

j=0,.... p, xp = X.

Let aj =-(tj(xj_1) .U(xj_i)nU(xj), where zj lies in
eV(xj), hence in the conn cted component F(xj)o of xj in the

level set F(xj).

It follows

X0 _ Tt(xp), where t s 3 sj-tj,

i

and, therefore,

F(xo)o It(F(x))o.

This shows that is surjective, hence a diffeomorphism. In partic-

ular, the level sets of u P are connected and we have

1t(F(x)) - F(tt(x)).

It follows that u(t):= ue (Tt(x)) do not depend on x a F and,

because of (7.14), b(t):- b(Yt(x)) has the same property.

Now, we want to prove that the induced metric *g is of the form

4 (t*
f b( e ) ds

9 - an 0 91F (D dt2.

Let X,Y a TxF. According to (7.12) and (7.13) we have

q t 9)X(X,Y) ( (t°L'gg)X(X,Y) -

- ( g).rt(X)(d tt(X).dtt(Y))
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4b(t) (1tg)x(X,Y).
n

This provides t

f b(a)ds
(,-tg)x(X.Y) = gx(X,Y) en 0

Then

g)(x,t)(X O+ r X Q+
r a

= 9Tt(x)(d tt(X)+ r'g(-rt(x)),d1t(X)+r'9(,rt(x)))

t = ('ttg)x(x,x) + r$
4

= en 0 b(s)ds
gx(x,X) + dt2(r a , r S r).

Finally, we show that F has a non-trivial parallel spinor field.

We choose the orientation on F in such a way that fP is orien-

tation preserving.

Then we can apply the formulas (1.16)-(1.19) of Chapter 1.2 descri-

bing the spinor calculus on submanifolds of codimension one.

Consider first the case of n = 2m+1. Then, (1.17) implies for

XETF
in =VxF(c2IF) - g 17x -8 - 5.T

(7.6) and (7.11) imply G XF(cfIF) 0, consequently, the restriction

of cp to F is a parallel spinor field on (F,gIF). From (1.16) it

follows

$(eQIF) at. (`CI®QCFI F) i(-1)m(qIF -BPIF)
iqIF

Hence, the parallel spinor CPIF belongs to ('(SF) if m is odd,

and to ('(SF) if m is even. In case of n 2m+2, (.?I, decomposes
1% o'

into CIF 1 0 T2 6r (SF) O+ r (S F). Using (1.18) we obtain

' IF S ( 1 Q CY _ (-1)m i(Q2 G 1) i F

s iCPi O
which provides qP2 = (-1)mcQl. Using (1.19) and (7.11) it follows

for XSTF

GxCP
irpx (cp 1 O+

GXF T1 a (-1)mVXFcQ1 - GX(iq1 O+ (-1)m 1)
(GxF - ! X . 1 ) +O (-1)m(. V cQi - in

X
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S
This implies V XF c 1 - 0, hence, rp is parallel on (F,gIF)'

This finishes the proof of Theorem 2.

In particular, Theorem 2 shows the following behaviour of the length

function of an imaginary Killing spinor q of type I to the Killing

number Iii: The level sets of u T are (n-l)-dimensional submani-

folds and on the normal geodesics tt(x) orthogonal to the level

sets, up has the form u e (y t(x)) - e-2Ntu (x). Moreover,

Theorem 2 provides

Corollary 1: Let (Mn,g) be a complete, non-compact, connected

spin manifold with a non-trivial Killing-spinor of type I to the

Killing number pi, p F-IR v 101. Then (Mn,g) is isometric to a

warped product (Fn-1 x R, a-4Nth O+ dt2), where (Fn-1,h) is a

complete spin manifold with non-trivial parallel spinors.

Now, we prove that there really exist non-trivial Killing spinors

on each warped product

(Mn, g) - (Fn-1 x it, a-4Nth O+ dt2) , p eIR \ 10},

where (F,h) is a Riemannian manifold with non-trivial parallel

spinors.

Theorem 3: ([7] , [85)): Let (Fn-l, h) be a spin manifold with
non-trivial parallel spinor fields and let c e(,p0(R) be a positive

real function. Then,on the warped product

(Mn,,):. (F xIR), c(t)h O+ dt2), there exists a twistor spinor

c?;i 0 satisfying 4 - 0 and

(7XLF+ bn X'(p= 0 (*),
where

b(x,t)-
if n is even

m n c' (.t)(-1) if n-2m+l and (F,h) has

parallel apinors in r(SF)

Proof: To prove the existence of the twistor spinors we use the

formulas (1.20)-(1.23) of Chapter 1.2, which describe the spinor

calculus on warped products.

1. case: n - 2m+1. Let ly* e-'(SF) be a parallel spinor in SF

and SF, respectively. We define a spinor field on (M,g) by

IQt(x,t):- 4 c(t) W±(x).
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According to (1.20) and (1.21) we have1 S
X j.cf*

for X E TxF and 1

4S Q± i c 1' c-1, c T+

c'c-icft

Thus, cQ t is a solution of (*) with b(x,t)- n c'(t)c(t)'1(-1)m.

Assume that Q
C?

2 11 0. Then, according to Corollary 3, Chapter 2,

b(x,t) is constant and [Q± Is a Killing spinor to the Killing

number pi =
(-1)m c'(t)

The length function of C is

u + (x,t) = 1c(t) I+±(x)I2
i c ( Q ) a+(-1)m2pt I\ *-(x)12.

uq*(x,t) tends to zero if t ->oO or t-> -00.

Hence, T+ is a Killing spinor of type I. This contradicts Qp f 0.

2. case: n - 2m+2.

Let y S (r SF) be parallel. Then \ Ef (SF) is parallel, too. We

consider the spinor field

c.(x,t):= c(t) (ta(x) Q+ (..l)ml+(x))

on (M,g). According to (1.22) and (1.23) we have

A(

Q L= c V F iXG (-1)mVXF1 c-1c1X.

1

- c'c-i c ((-i)mi t1+ +0 )

c'c'ii
X CTx F and

1 1

c(t) c' (.t) ( +Q (-1)m 4))
- c'c'

Therefore, c is a solution of (,*) with b(x,t)

Qc - 0 follows as above.
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Theorem 3 shows that there are compact manifolds with non-trivial

solutions of

Xf+ in X c a 0 (*)
for certain non-constant functions b, whereas for constant func-

tions b (*) is only solvable for non-compact manifolds.

Consider for example a K3-surface (F ,h) with a Yau-metric and

a 21r -periodic, positive function cE C 'O (IR). Then, on the warped

product (F4 x S1, c(t)h +Q dt2), there exist two linearly in-

dependent solutions of the equation

+ C, (t) i X = 0.
X FM n

Furthermore, for the Killing spinor problem Theorem 3 yields

Corollary 2: Let (Fn-1,h) be a complete spin manifold with non-

trivial parallel spinor fields. Then the warped product

(Mn,9):=
(Fn-1 x IR, e_4I th 3 dt2), N6IR'I O ,

is a complete manifold with imaginary Killing spinors of type I.

Moreover, in case n = 2m+l

dim 'R (M,g)Ni dim3C(F,h)o

dim 7C(M,g) . Pi2 dim x(F,h)o

where 7C(F,h)o is the space of all parallel spinors in SF and

SF, respectively, and p = (-1)mp. In case n = 2m42, it is

dim 7L(M,9)Pi = dim 7C(M,g)_pi ? dim _J), (F,h)0.

The hyperbolic space Hn 2 is isometric to the warped product

(IRn-1 x IR, \e-opt 9Rn_1 9 dt2).
Hence, summing up the results of Theorem 1, Corollary 1 and

Corollary 2 we obtain that a complete, non-compact connected spin

manifold (Mn,g) admits non-trivial (imaginary) Killing spinors if

and only if (Mn,g) is isometric to a warped product

(Fn-l x 1R, aOpt h +Q dt2), peIR %{07!,

where (F,h) is a complete, connected spin manifold with non-

trivial parallel spinor fields.
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7.4. Killing Spinors on 5-dimensional, Complete, non-Compact Mani-

folds

Finally we will study the space of imaginary Killing spinors in

dimension five in more detail. We will give a construction principle

for all Killing spinors on a 5-dimensional complete, non-compact

manifold. According to the results of Chapter 7.2 and Chapter 7.3

such a manifold has the form

(F4 x IR, a-4pth O+ dt2), {0},

where (F4,h) is a complete manifold with parallel spinors.

Theorem 4 ([6]): Let (F4,h) be a 4-dimensional complete spin

manifold with a parallel spinor field in i (SF), and consider the

warped product

(MS,g) := (F x 1R, a-4pth (D dt2), p 61R 'f0}.
Then

1.) 4 if (F,h) is isometric to the

dim '7Z(M,g)Pi =
Euclidean space

dim h(F,h)0L2 otherwise

2.) If (F,h) is compact, then

dim 71(M,g)-Ni = dim 7((F,h)o 6 2.

If this dimension is greater than zero, (F,h) is flat, hence

(M5,g) is a space of constant sectional curvature -4p 2.

Proof: According to Corollary 2 we have dim X(M,g)pikdim 7C(F,h)0"' .

Let cQ E 7((M,g) i. Then, using the denotation of Chapter 1.2 for
p N

the spinor calculus on warped products, `P is described by

where \p E r(T *SF). 'ly decomposes into V- y®+ yi e. r(SF)0+ r(SF).
Let From (1.20) and (1.21) it follows

a (Q) ip P- -P 'p+ + pc
Hence,

A(`\y +) _
-p + and a (w ) = pY .

Therefore, there exists spinors 1yo e. ('(SF) satisfying

ty+(x,t) - e-Ptw a(x) and V-(x, t) - eptV o(x).

According to 1.20) and (1.21) for X F.TxF we have

a2ptaXF\Pt - pi x.pp - px
- 201 X
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Since the Clifford multiplication commutes the components SF and

SF of SF1 it follows

SFro 0 (7.15)

CJXF o = 2Ni X. Y a (7.16)

Suppose that cf 0. Then 4,0 = 0 and o is parallel. In this

case, we have

cQ(x,t) = e-Nty'o(x). (7.17)

In particular, if dim 7L(M,g)pi7 dim a(,(F,h)o, then there exists a

Killing spinor x(M,g)pi such that q it 0 and, according to

(7.15) and (7.16) we have a non-trivial parallel spinor

o E r (SF-) and a spinor 'doe r (SF) with

ivXFVo
= 2piX

for all vectors X on F. A 4-dimensional manifold with non-trivial

parallel spinors in P(SF) as well as in r(SF) is flat (see

Chapter 6). Hence, if dim 71(M,g)pi> dim x (F,h)o, (F,h) is flat

(and complete), therefore isometric to a factor space (R4Ir , where

r is a discrete group of isometries of IR4.

Now, we will prove that (F,h) is in fact isometric to IR4. Since

yio is non-trivial and parallel, W.- has no zeros. Hence, the map

TF4-mss SF

X F---> X (i y> o)

is an isomorphism of the real 4-dimensional vector bundles. Let Z

be the vector field defined by

V O
= Z.(ip o).

Then (7.16) implies

2Ni
SF'

=GXZ (iV'o) +

i IV
X

Z--+;.

This provides

dXZ = 2NX

for all vector fields X on F.

(7.18)

In particular, each Killing spinor cpE x(M,g)pi that is not of the

form (7.17) is described by

CF= ie el'tl+o (7.19)
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where tpo s (sF) is a non-trivial parallel spinor field and Z a

vector field satisfying (7.18). It is easy to verify that each spinor

of the form (7.19) is a Killing spinor to the Killing number Pi.

In the flat, complete, connected Riemannian manifold (F4,h) there

exists a closed, totally geodesic submanifold Nkc F4 with the same

homotopy type as F4 (see [1061, Theorem 3.3.3). Since N is totally

geodesic, we have

(1) '7 Y _V XY for all vector fields X,Y on N,

(ii) for a vector field H normal to N and any X E TN, the

derivative V FH is normal to N. too.

Let Z denote the vector field

Z := proJTNZ

on N. Then the divergence of the vector field Z on (N,hIN) is

k k
divN(Z) j h(V ejZ,aj) = ii h(0 ajZ,aj)

h(VF Z,aj)-h(pa (proinormZ),a
J=11 ai j

h(V a Z,aj),
J-1 j

where (al,...,ak) is a local ON-basis of (N,hIN). From (7.18) it

follows that div
N (Z)

= 2P dim N, and because of divN(Z)dN - 0,

we obtain dim N = 0. Hence, F is simply-connecJ and therefore

isometric to the Euclidean space IR4. In this case (M5,g) is iso-

metric to the hyperbolic space H54P2 and we have dim XM,g)Pi - 4.

This proves the first part of Theorem 4. According to Corollary 2

we have dim '(M,g)_pi 4 dim J( (F,h)o. If dim 71(F,h)a >0, then
(F,h) is flat and (M ,g) is a space of constant sectional curva-

ture. In the same way as above it can be shown that

dim x(M,g)_111 > dim k(F,h)o if and only if there exists a vector

field Z on F satisfying the equation

XZ = -2pX (7.20)

for all vector fields X on F. Each Killing spinor in

that is not of the form

x(M,g)_ i

P

cQ= a-Pt 'W o , (7.21)

where W o E r (SF-)

(p- e11t W o

is parallel, can be described as follows:

+ ie-Pt Z- 4 , (7.22)
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where i o er (s+) is parallel and Z is a vector field satisfying

(7.20). Equation (7.20) in particular shows that divF(Z) _ -8p 0,

which is impossible on a compact manifold. Hence, on compact mani-

folds we have dim(M,g)-Pi - dim 7((F,h)o.

All Killing spinors on a 5-dimensional complete manifold

(M5,g) _ (F4 x IR, a-4pth O+ dt2) different from the hyperbolic

space, where (F4,h) is a manifold with non-trivial parallel spinor

fields in ('(SF), are described by the formulas (7.17), (7.21) and

(7.22). In particular, from Theorem 7.4 it follows:

1) If (F4,h) is a K3-surface with the Yau-metric, then

dim 7L(M,g)pi- 2 and dim k(M,g)_pi = 0.

2) If (F4,h) is the flat torus with the canonical apinor structure,

then

dim 7((M,g)pi = dim :C(M,g)-pi - 2.

If (M5,g) is the hyperbolic space, then we obtain all Killing

apinors in the Poincard model (see example 3, Chapter 1) or in the

model

H5 2 - (JR4 x 1R, a-4pt 4 O+ dt2)4p

using the formulas (7.17), (7.19), (7.21) and (7.22) in the form

.x(H5
) - (x.t) - e-ptu +-4p2 pi + ?U,VI `Pu,v

where ueQ+, VeA2
(H54p2)-Ni

={
ti

u,v1Tu,v(x.t) - e p v,

where vEp 2.
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