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MANIFOLDS WITH VECTORIAL TORSION

ILKA AGRICOLA AND MARGARITA KRAUS

Abstract. The present note deals with the properties of metric connections ∇ with vectorial
torsion V on semi-Riemannian manifolds (Mn, g). We show that the∇-curvature is symmetric if

and only if V ♭ is closed, and that V ⊥ then defines an (n−1)-dimensional integrable distribution
on Mn. If the vector field V is exact, we show that the V -curvature coincides up to global
rescaling with the Riemannian curvature of a conformally equivalent metric. We prove that
it is possible to construct connections with vectorial torsion on warped products of arbitrary
dimension matching a given Riemannian or Lorentzian curvature—for example, a V -Ricci-flat
connection with vectorial torsion in dimension 4, explaining some constructions occurring in
general relativity. Finally, we investigate the Dirac operator D of a connection with vectorial
torsion. We prove that for exact vector fields, the V -Dirac spectrum coincides with the spectrum
of the Riemannian Dirac operator. We investigate in detail the existence of V -parallel spinor
fields; several examples are constructed. It is known that the existence of a V -parallel spinor
field implies dV ♭ = 0 for n = 3 or n ≥ 5; for n = 4, this is only true on compact manifolds.
We prove an identity relating the V -Ricci curvature to the curvature in the spinor bundle.
This result allows us to prove that if there exists a nontrivial V -parallel spinor, then RicV = 0
for n 6= 4 and RicV (X) = X dV ♭ for n = 4. We conclude that the manifold is conformally
equivalent either to a manifold with Riemannian parallel spinor or to a manifold whose universal
cover is the product of R and an Einstein space of positive scalar curvature. We also prove that
if dV ♭ = 0, there are no non-trivial ∇-Killing spinor fields.

1. Introduction

The present note deals with metric connections on semi-Riemannian manifold (Mn, g) of the
form

∇XY = ∇g
XY + g(X,Y )V − g(V, Y )X,

where V denotes a fixed vector field onM and∇g is the usual Levi-Civita connection. This is one
of the three basic types of metric connections introduced by Élie Cartan (see Section 2), and is
called a metric connection with vectorial torsion. These connections are particularly interesting
on surfaces, in as much that every metric connection on a surface is of this type. By a seminal
theorem of Ambrose and Singer [AS58], a simply connected Riemannian manifold is homogeneous
if and only if its canonical connection ∇c has ∇c-parallel torsion and curvature. Cartan’s result
implies therefore that there are three possible basic types of non-symmetric homogeneous spaces
(see also [TV83]). If the canonical connection has vectorial torsion, the condition ∇c-parallel
torsion is equivalent to ∇cV = 0. Such homogeneous spaces were intensively studied in the past,
while only few results on general semi-Riemannian manifolds equipped with a metric connection
∇ with vectorial torsion are available. In [TV83, Thm 5.2], F. Tricerri and L. Vanhecke showed
that if M is connected, complete, simply-connected and ∇V = ∇R = 0, then (M,g) has to be
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isometric to hyperbolic space (see also [CGS13] for an alternative modern proof). Hence, it is
too strong a condition to require that V is ∇-parallel.
Denote by V ♭ the dual 1-form of V ; we shall loosely call the vector field V closed if dV ♭ = 0.
In Section 3, we prove that ∇ has symmetric curvature if and only if V is closed, and that this
is equivalent to the condition that the (n − 1)-dimensional distribution D := V ⊥ is involutive.

We thus believe that dV ♭ = 0 is a richer, geometrically interesting replacement of the condition
∇V = 0. If the vector field is exact, we show that the V -curvature coincides up to global rescaling
with the Riemannian curvature of a conformally equivalent metric. We then investigate more
in detail the case of warped products, both with Riemannian and Lorentzian signature. In
particular, we prove that it is possible to construct connections with vectorial torsion on warped
products of arbitrary dimension matching a given Riemannian or Lorentzian curvature—for
example, a V -Ricci-flat connection with vectorial torsion in dimension 4. This explains the
occurrence of some examples of V -Ricci-flat manifolds known in physics [OM97].
In the last part of the paper, we investigate the Dirac operator D of a connection with vectorial
torsion. As already observed by Friedrich in [Fr79], the Dirac operator is not formally self-adjoint
anymore, thus making its analysis much harder. Nevertheless, we prove that for exact vector
fields, the V -Dirac spectrum coincides with the spectrum of the Riemannian Dirac operator.
Based on results from [PS11], we derive a formula of Schrödinger-Lichnerowicz type formula for
D∗D. We investigate in detail the existence of V -parallel spinor fields (i. e. parallel for the metric
connection with vectorial torsion V ); several examples are constructed on warped products. By

a result of [Mo96], it is known that the existence of a V -parallel spinor field implies dV ♭ = 0 for
n = 3 or n ≥ 5; for n = 4, this is only true on compact manifolds. To get a more detailed picture,
we prove an identity relating the V -Ricci curvature to the curvature in the spinor bundle. This
result allows us to prove that if there exists a nontrivial V -parallel spinor, then RicV = 0 for
n 6= 4 and RicV (X) = X dV ♭ for n = 4—in particular, the V -Ricci curvature is totally skew-
symmetric in the latter case, a rather unfamiliar situation. We conclude that the manifold is
conformally equivalent either to a manifold with parallel spinor or to a manifold whose universal
cover is the product of R and an Einstein space of positive scalar curvature. We also prove that
if dV ♭ = 0, there are no non-trivial ∇-Killing spinor fields.

2. Metric connections with torsion

Consider a semi-Riemannian manifold (Mn, g) of index k. The difference between its Levi-Civita
connection ∇g and any linear connection ∇ is a (2, 1)-tensor field A,

∇XY = ∇g
XY +A(X,Y ), X, Y ∈ TMn.

Following Cartan, we study the algebraic types of the torsion tensor for a metric connection.
Denote by the same symbol the (3, 0)-tensor derived from a (2, 1)-tensor by contraction with
the metric. We identify TMn with (TMn)∗ using g from now on. Let T be the n2(n − 1)/2-
dimensional space of all possible torsion tensors,

T = {T ∈ ⊗3TMn | T (X,Y,Z) = −T (Y,X,Z)} ∼= Λ2TMn ⊗ TMn .

A connection ∇ is metric if and only if A belongs to the space

Ag := TMn ⊗ (Λ2TMn) = {A ∈ ⊗3TMn | A(X,V,W ) +A(X,W,V ) = 0} .

In particular, dimAg = dimT , reflecting the fact that metric connections can be uniquely
characterized by their torsion. The following proposition has been proven in [Ca25, p.51],
[TV83] in the Riemannian case, but one easily checks that it holds also for semi-Riemannian
manifolds.
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Proposition 2.1. The spaces T and Ag are isomorphic as O(n, k) representations, an equi-
variant bijection being

T (X,Y,Z) = A(X,Y,Z)−A(Y,X,Z), 2A(X,Y,Z) = T (X,Y,Z) − T (Y,Z,X) + T (Z,X, Y ).

For n = 2, T ∼= Ag ∼= R2 is O(2, k)-irreducible, while for n ≥ 3, it splits under the action of
O(n, k) into the sum of three irreducible representations,

T ∼= TMn ⊕ Λ3(Mn)⊕ T ′.

The connection ∇ is said to have vectorial torsion if its torsion tensor lies in the first space of
the decomposition in Proposition 2.1, i. e. if it is essentially defined by some vector field V on
M . The tensors A and T can then be directly expressed through V as

(1) AV (X)Y = g(X,Y )V − g(V, Y )X, TV (X,Y,Z) = g
(
g(V,X)Y − g(V, Y )X,Z

)
.

The connection ∇ is said to have skew-symmetric torsion or just skew torsion if its torsion
tensor lies in the second component of the decomposition in Proposition 2.1, i. e. it is given by a
3-form. The third torsion component has no geometric interpretation. Recall that homogeneous
spaces whose canonical connection has skew torsion are usually known as naturally reductive
homogeneous spaces; their holonomy properties and their classification are currently topics of
great interest. While metric connections with ∇-parallel skew torsion have a rich geometry (for
example, the characteristic connections of Sasaki manifolds, of nearly Kähler manifolds, and of
nearly parallel G2 manifolds have this property), metric connections with ∇-parallel vectorial
torsion are rare–the underlying manifold has to be covered by hyperbolic space. Alas, this
means that the general holonomy principle will not be applicable for the investigation of metric
connections with vectorial torsion.

3. Curvature

Let (M,g) be an n-dimensional semi-Riemannian manifold and ∇ a metric connection on M ,
possibly with torsion T∇. We denote the Levi-Civita connection on M by ∇g. For a vector field
V on M , we define a 1-form AV ∈ Ω1(M,End(TM)) by

(2) AV (X)Y := g(X,Y )V − g(V, Y )X,

hence ∇g +AV becomes a connection with vectorial torsion on M . Then the following formulas
relating the curvatures of ∇ and ∇+AV hold:

Lemma 3.1. The curvature quantities of the connections ∇ and ∇ + AV satisfy the following
relations:

(1) Curvature transformation:

R∇+AV (X,Y )Z = R∇(X,Y )Z + g(Y,Z)∇XV − g(X,Z)∇Y V

+
[
g(∇Y V,Z)− g(Y,Z)‖V ‖2 + g(V,Z)g(V, Y )

]
X

−
[
g(∇XV,Z)− g(X,Z)‖V ‖2 + g(V,Z)g(V,X)

]
Y

+
[
g(Y,Z)g(V,X) − g(X,Z)g(V, Y )

]
V

+g(T∇(X,Y ), Z)V − g(Z, V )T∇(X,Y ).

(2) Ricci curvature:

Ric∇+AV (X,Y ) = Ric∇(X,Y ) + [div∇V + (2− n)‖V ‖2] g(X,Y )

+(n− 2) [g(V,X)g(V, Y ) + g(∇XV, Y )]

+g(V, Y )tr(X T∇) + g(T∇(V,X), Y ).
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(3) Scalar curvature:

s∇+AV = s∇ + 2(n − 1)div∇V + (n− 1)(2− n)‖V ‖2 + 2tr(V T∇).

Proof. The formulas follow by a routine computation (for ∇ = ∇g, the terms involving T∇

vanish, see also the Appendix of [Ag06]). We normalize the Ricci curvature as follows

Ric∇+AV (X,Y ) =

n∑

i=1

εig(R
∇+AV (X, ei)ei, Y )

for an orthonormal basis e1, . . . , en (g(ei, ej) = εiδij , εi = ±1). The trace and divergence are
defined by

tr(V T∇) :=
n∑

i=1

εig(T
∇(V, ei), ei)), div∇V :=

n∑

i=1

εig(∇eiV, ei). �

In case that ∇ has skew symmetric torsion, div∇V = div∇
g
=: divV and tr(X T∇) = 0.

Let us now consider the case where∇ = ∇g the Levi-Civita connection. We denote the curvature
of ∇g by Rg and the curvature of ∇ := ∇g + AV by RV , and analogously for the Ricci and
scalar curvatures. We call a manifold V -flat if RV = 0 and use the words V -Einstein and so on
in the same way.

Corollary 3.1. Let (M,g) be an n-dimensional semi-Riemannian manifold, ∇ a connection
with vectorial torsion V . Then

(1) Ricci curvature:

RicV (X,Y ) = Ricg(X,Y )+[divV +(2−n)‖V ‖2] g(X,Y )+(n−2) [g(V,X)g(V, Y )+g(∇g
XV, Y )].

(2) Scalar curvature:

sV = sg + 2(n − 1)div V + (n− 1)(2 − n)‖V ‖2.

For surfaces, the formulas simplify

Corollary 3.2. Let (M,g) be an 2-dimensional semi-Riemannian manifold, ∇ a connection
with vectorial torsion V . Then

(1) Ricci curvature: RicV (X,Y ) = Ricg(X,Y ) + div V g(X,Y )
(2) Scalar curvature: sV = sg + 2divV

In particular, a surface M is V -Einstein if and only if M is Einstein.

Remark 3.1. If M is a closed surface, the total V -scalar curvature SV (M) :=
∫
M

sV dµ is equal

to 2πχ(M), and therefore independent of V . Especially if M is V -flat then M is a torus.

In dimension n > 2 we consider the the Schouten tensor

Cg =
1

n− 2
(

1

2(n − 1)
sgg − Ricg) ∧© g

and the Weyl tensor W g in Dimension n > 3. Here ∧© denotes the Kulkarni-Nomizu Product,
which is usually defined for symmetric tensors, but we will also use it for two arbitrary tensors:

(α ∧© β)(X,Y,Z,W ) := α(X,Z)β(Y,W )+α(Y,W )β(X,Z)−α(X,W )β(Y,Z)−α(Y,Z)β(X,W ).

Note that this is a tensor which is still antisymmetric in the first as well as in the last two
variables. We define the Schouten Tensor for the V -curvature in the same way as the usual
Schouten Tensor:

CV =
1

n− 2
(

1

2(n − 1)
sV g − RicV ) ∧© g

Then the equation for the V -curvature simplifies as follows:



MANIFOLDS WITH VECTORIAL TORSION 5

Proposition 3.1. Let (M,g) be a semi-Riemannian manifold of dimension n > 2, ∇ a connec-
tion with vectorial torsion V . Then for the V -curvature tensor holds

(1) RV =W g + CV if n > 3
(2) RV = CV if n = 3

Proof. Let (e1, . . . , en) an orthonormal basis. We denote the components of the curvature tensore
by g(R(ei, ej)ek, el) = Rijkl and analogously for the other tensors. We always suppose that
i 6= j 6= k 6= l. Note that both sides of the equations are pairwise antisymmetric in the first two
and in the last two arguments. Therefore it suffices to calculate the following cases:

RV
ijji = Rg

ijji + g(∇eiV, ei) + g(∇ejV, ej)− ‖V ‖2 + V 2
i + V 2

j

= Rg
ijji +

1

n− 2
(RicVii − Ricgii +RicVjj − Ricgjj +

sg − sV

n− 1
)

= Rg
ijji − Cg

ijji + CV
ijji = W g

ijji +CV
ijji

RV
ijjk = Rg

ijjk + g(∇eiV, ek) + ViVk = Rg
ijjk +

1

n− 2
(RicVik − Ricgik)

= W g
ijjk + CV

ijjk

RV
ijkl = Rg

ijkl =W g
ijkl + CV

ijkl

Here we inserted the formulas for the Ricci curvature of Corollary 3.1 in the formula for the
curvature tensor. Obviously, for n = 3 the last equation as well as the Weyl tensor vanish. �

Corollary 3.3. Let (M,g) a Riemannian manifold of Dimension n > 3, V a vector field. If
M is V -flat, then M is also conformally flat. Conversely, if M is conformally flat and V -Ricci
flat, then M is V -flat.

Remark 3.2. The triple (M,g, V ) defines a Weyl structure, i. e. a conformal manifold with a
torsion free connection which is compatible with the conformal class. The corresponding Weyl
curvature satisfies RWeyl = RV + dV ♭, therefore it coincides with the V -curvature if dV ♭ = 0
[Gau95]. This was the argument used in [AF10] to prove the first part of the corollary if dV ♭ = 0.

Our aim is to show now that indeed, assuming the vector field V to be closed is a very natural
condition. The V -Ricci curvature for surfaces is symmetric, but in higher dimensions this is
not necessarily the case. For reference, let us recall that the first Bianchi identity for a metric
connection with vectorial torsion V is (see for example [Ag06])

(3)
X,Y,Z

S RV (X,Y )Z =
X,Y,Z

S dV ♭(X,Y )Z.

Proposition 3.2. Let (M,g) be a semi-Riemannian manifold of dimension n > 2, ∇ a connec-
tion with vectorial torsion V . Then the following conditions are equivalent:

(1) The V -curvature RV (X,Y,Z,W ) is symmetric with respect to the pairwise exchange of
(X,Y ) and (Z,W ),

(2) the V -Ricci tensor RicV is symmetric,

(3) the 1-form V ♭ is closed.

Proof. We proceed as in the Riemannian case: we take the inner product of the first Bianchi
identity with some fourth vector field W and sum cyclically over X,Y,Z, and W . This yields
on the left hand side

X,Y,Z,W

S

( X,Y,Z

S RV (X,Y,Z,W )
)

= 2RV (Z,X, Y,W ) − 2RV (Y,W,Z,X),
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hence the V -curvature is ‘pairwise’ symmetric if this quantity vanishes identically. For the right
hand side, we compute

X,Y,Z,W

S

( X,Y,Z

S dV ♭(X,Y )g(Z,W )
)

= 2g(
X,Y,Z

S dV ♭(X,Y )Z,W ).

Since the inner product is non-degenerate and X,Y,Z can be chosen to be linearly independent,
we conclude that the right hand side vanishes if and only if dV ♭ = 0.
Of course, RicV will be symmetric if RV is symmetric; but let us prove that this is indeed the
only situation where this happens. By Corollary 3.1, RicV is symmetric if, for all vector fields
X,Y on M , g(∇g

XV, Y ) = g(∇g
Y V,X) holds. For the 1-form V ♭ corresponding to V , the Cartan

differential is calculated as dV ♭(X,Y ) = g(∇g
XV, Y )− g(∇g

Y V,X). This gives the result. �

Remark 3.3. A metric connection with skew torsion T ∈ Λ3(M) has symmetric curvature if T

is parallel, ∇T = 0 [Ag06, p.32]. This is again a hint that dV ♭ = 0 is a more natural geometric
condition than ∇V = 0.

Definition 3.1. Let ∇ be a metric connection with vectorial torsion V . We agree to call ∇ a
connection with closed vectorial torsion if, in addition, dV ♭ = 0 holds. More generally, we will
call a vector field closed if its dual 1-form is closed.

A second geometric interpretation of closed vectorial torsion is given in the following proposition.

Proposition 3.3. Let (M,g) be a semi-Riemannian manifold. Suppose that V is a vector field
on M with g(V, V ) = ‖V ‖2 6= 0 everywhere, and ∇ the metric connection with vectorial torsion
V . If V is closed, the distribution D = V ⊥ is involutive and for every vector field X in D holds:

(4) X(‖V ‖2) = g(V, [X,V ]).

Conversely, if D is an involutive (n−1)-dimensional distribution on (M,g) and V a vector field

of nowhere vanishing length orthogonal to D such that V dV ♭ = 0 holds, then the V -curvature
is symmetric. In this case, the V -Ricci tensor satisfies for ξ, η ∈ D:

RicV (ξ, η) − Ricg(ξ, η) =

[
H‖V ‖+

1

|V |
(V (‖V ‖)) + (2− n)‖V ‖2

]
g(ξ, η) + (n− 2)‖V ‖II (ξ, η),

RicV (ξ, V )− Ricg(ξ, V ) =
n− 2

2
ξ(‖V ‖2),

RicV (V, V )− Ricg(V, V ) = ‖V ‖2(H‖V ‖+ (n− 1)
1

‖V ‖
V (‖V ‖)),

where II is the second fundamental form, H = tr II the mean curvature on the leaves of D, and
Ricg the Ricci curvature of the Levi-Civita connection on M .

Proof. For X,Y ∈ V ⊥ from dV ♭ = 0 follows

0 = g(V,∇g
XY −∇g

YX) = g(V, [X,Y ]),

which means that [X,Y ] ∈ V ⊥ and so V ⊥ is involutive and (4) is equivalent to V dV ♭ = 0.
Conversely, if V ⊥ is involutive then for X,Y ∈ V ⊥

dV ♭(X,Y ) = g(V,∇g
XY −∇g

YX) = g(V, [X,Y ]) = 0.

Together with V dV ♭ = 0 follows the symmetry of the V -Ricci curvature. �

Remark 3.4. By now, manifolds admitting a homogeneous structure of strict type TM ⊕ T ′

(see Proposition 2.1) are called cyclic homogeneous manifolds. Pastore and Verroca proved in
[PV91] that cyclic homogeneous manifolds whose vectorial torsion part satisfies dV ♭ = 0 are
foliated by isoparametric (n − 1)-dimensional submanifolds—the assumption that RV is ∇-
parallel is crucial for this stronger result. It is known that cyclic homogeneous manifolds are
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never compact [TV88], which fits into the general picture (see the examples) below that all
interesting examples are non compact. For dimension n ≤ 4, they are classified in [GGO14].
Examples on Lie groups can be found in [GGO15].

Remark 3.5. For any metric connection ∇ with torsion T , the differential of a 1-form ω satisfies

dω(X,Y ) = ∇Xω(Y )−∇Y ω(X) + ω(T (X,Y )).

Formula (1) implies that the last term vanishes for a connection with vectorial torsion and

ω = V ♭ , hence we obtain the remarkable identity

(5) dV ♭(X,Y ) = ∇XV
♭(Y )−∇Y V

♭(X) = g(∇XV, Y )− g(∇Y V,X),

in complete analogy to the classical formula expressing dV ♭ through ∇gV ♭. In particular, V is
closed if and only if the tensor S(X,Y ) := g(∇XV, Y ) is symmetric in X and Y .

We now consider the V -curvature for some special vector fields.

Example 3.1. If V is a Killing vector field, the condition that V be closed implies

g(∇g
XV, Y ) = 0

for all vector fields X,Y on M and therefore V is a Riemannian parallel vector field. In this
case the second fundamental form II of the orthogonal distribution is zero. Then RicV = 0 iff
Ricg(X,Y ) = (n−2)‖V ‖2g(X,Y ) for X and Y in the orthogonal distribution and Ricg(V,X) = 0
for any vector X. Therefore if M is simply connected, it is the product of a Einstein space of
positiv scalar curvature and R. Moreover if M is V -flat, it is the product of a sphere and R.

Example 3.2. If the vector field V is ∇-parallel, it is closed by equation (5) and div(V ) =
(n − 1)g(V, V ) is constant. If one integrates this identity over a closed Riemannian manifold,
V = 0 follows, proving that this condition is rather restrictive. The curvature formulas are
particularly simple,

(1) Ricci curvature: RicV (X,Y ) = Ricg(X,Y ) + (n− 1)g(V, V )g(X,Y )
(2) Scalar curvature: sV = sg + n(n− 1)g(V, V )

Therefore,M is V -Ricci flat exactly ifM is Einstein with Ricci curvature −(n−1)g(V, V )g which
is, up to a constant, the Ricci curvature of hyperbolic space. Indeed, if M is the hyperbolic
space noted as warped product R ×et R

n, then V = ∂t is V -parallel and RicV = 0. Actually
hyperbolic space satisfies even RV = 0 and according to Tricerri and Vanhecke it is locally the
only V -flat space with ∇V = 0

Example 3.3. If V is a closed conformal vector field, ∇g
XV = λX for all vector fields X on M

and a function λ on M . Thus the leaves of the distribution V ⊥ outside the set of zeroes of V
are umbilic with mean curvature n−1

‖V ‖λ and

(RicV − Ricg)(X,Y ) = (2(n − 1)λ+ ‖V ‖2(2− n))g(X,Y ) + (n − 2)g(V,X)g(V, Y )

and

sV − sg = 2n(n− 1)λ− (n− 1)(n − 2)‖V ‖2.

Now we consider the case that the orthogonal distribution is still umbilic, but the vector field is
not necessarily conformal. Umbilic distributions are precisely SO(n− 1)-structures of vectorial
type in the sense of [AF06].

Proposition 3.4. Let M be an n-dimensional Riemannian manifold with an involutive (n−1)-
dimensional D, whose leaves are totally umbilic with mean curvature H = (n − 1)λ, where
λ ∈ C∞(M). Let N a normal unit field on the leaves of D.
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For n > 2, a vector field V is orthogonal to the distribution D and closed if and only if V = hN
with h ∈ C∞(M) and h satisfies the equation

(6) dh(ξ) = hg(N, [ξ,N ])

for all vector fields ξ in the distribution D. Then for all vector fields ξ, η in D

RicV (ξ, η) − Ricg(ξ, η) = ((2n − 3)h · λ+ (2− n)h2 +N(h))g(ξ, η)

RicV (N, ξ) −Ricg(N, ξ) = (n− 2)ξ(h)

RicV (N,N) −Ricg(N,N) = (n− 1)(hλ +N(h))

Proof. Since D is umbilic, ∇g
ξN = λξ for ξ ∈ D. For V = hN , we obtain

∇g
ξV = dh(ξ)N + hλξ.

Therefore, V dV ♭ = 0 if and only if (6) holds. Then ∇g
NV = gradh because

g(∇g
NV, ξ) = −g(V,∇g

N ξ) = −g(V,∇g
ξN)− g(V, [N, ξ]) = dh(ξ)

according to (6) and g(∇g
NV,N) = dh(N). �

From Hodge theory it is well known that the space of closed vector fields on a closed Riemannian
manifold is the orthogonal sum of the space of harmonic vector fields and the space of exact
vector fields. Let us first consider the case that V is a gradient vector field. In [AT04], it
has been shown that in this case the V -geodesics coincide with the geodesics of a conformally
equivalent metric up to reparametrisation. Here we show that the V -curvature coincides up to
rescaling with the Riemannian curvature of a conformally equivalent manifold. From the point
of view of Weyl geometry this follows from the fact that the Weyl structures (W, e2f g, V − df)
are all equivalent and have therefore the same Weyl curvature. Alternatively, one compares the
definition of AV with the formulas for the connection of the conformally changed metric [Be08]
and concludes that ∇g̃ = ∇V + B with B(X) = −g(V,X)Id; the following formulas are then
obtained by a straightforward calculation.

Proposition 3.5. Let M be a manifold with metric g, V = −grad f and g̃ = e2fg. Then

RV = e−2fRg̃, RicV = Ricg̃, sV = e2fsg̃.

In particular, M is (−grad f)-flat (resp. (−grad f)-Einstein resp. (−grad f)-Ricci flat) if and
only if (M, g̃) is flat (resp. Einstein resp. Ricci flat).

Example 3.4. Let (F, gF ) an (n−1)-dimensional Riemannian manifold and f ∈ C∞(R,R+). For
ε = ±1 we consider on the differentiable manifold M = R×F the product metric gε = εdt2+gF
and the warped product metric g̃ε = εdt2 + f2gF ; hence, the sign ε is introduced to cover
Riemannian and Lorentzian signature in one expression. In these examples the distribution

R × TF has totally umbilic leaves {t} × F , with mean curvature (n − 1)λ = (n − 1) ḟ
f
for the

warped product.
For the Ricci curvature of the Levi-Civita connection on (M, g̃±1), it is well known that

Ricg̃ε(∂t, ∂t) = −
(n− 1)

f
f̈

Ricg̃ε(ξ, ∂t) = 0(7)

Ricg̃ε = RicgF (ξ, η) − ǫ(
f̈

f
+ (n− 2)

ḟ2

f2
)g(ξ, η)

where ξ, η are vector fields on F .
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We are interested in connections ∇̃V := ∇g̃ε + AV with symmetric Ricci tensor R̃ic
V

ε and
orthogonal distribution given by R× TF . By equation (6) this amounts to choosing V = h · ∂t
for some h ∈ C∞(R), because for the normal unit vector field N = ∂t, we have g(∂t, [∂t, ξ]) = 0
for vector fields ξ in the leaves. If we ask moreover for a factor h such that

R̃ic
V

ε = Ricgε ,

the only possible choice is h = ε ḟ
f
, because (M, g̃ε) and (M,gε) are conformally equivalent

with the conformal factor f−2. By Proposition 3.5, the vector field we were looking for is thus

V = grad (ln f) = ε ḟf ∂t. This is exactly the choice of vector field that appeared in [AT04].

Although we are mainly interested in connections with pure vectorial torsion, it is straightfor-
ward to generalize our results to connections with an additional part in the torsion. In [OM97],
the authors constructed on the warped productM ×f S

3 a Lorentzian spacetime with nontrivial
Nieh-Yan 4-forms with nonvanishing torsion, but zero Ricci curvature. We generalize this con-
struction in the following proposition. To this purpose we replace in Example 3.4 the Levi-Civita
connection by a connection with skew symmetric torsion induced by a connection on F . More
exactly, let ∇F be the Levi-Civita connection on F and ∇F + ω a connection on F with skew

symmetric torsion, and π :M → F the projection. Then ∇̃ω = ∇g̃ε +π∗ω is a metric connection
on (M, g̃ε) with skew symmetric torsion. In [OM97], ω is chosen such that the Ricci curvature
of ∇g−1 + π∗ω vanishes.

Proposition 3.6. Denote by R̃ic
ω,V

ε the Ricci curvature of ∇̃ω + AV on (M, g̃ε) and by Ricωε
the Riemannian Ricci curvature of ∇gε + π∗ω on the product (M,gε). Then

R̃ic
ω,V

ε = Ricωε if and only if V = ε
ḟ

f
∂t.

Proof. We generalize Example 3.4. If Ric(F,ω) denotes the Ricci tensor of the connection ∇F +ω
on F , then according to the formulas for the curvature of connection with skew symmetric

torsion [Ag06] the Ricci tensor of ∇̃ω on M ×f F is the same as (7) with RicgF replaced by

Ric(F,ω). Because V T = 0 and T is skew symmetric, the last two terms in (3) vanish in this

situation, div∇
ω
V = divV and ∇̃ωV = ∇̃gV for V = h∂t. Therefore the same argument as in

Example 3.4 shows the result. �

Remark 3.6. The importance of this result stems from the fact that it implies, in particular,
that it is possible to construct connections with vectorial torsion on warped products of arbitrary
dimension matching a given Riemannian or Lorentzian curvature—for example, a Ricci-flat
connection with vectorial torsion in dimension 4. This is totally different from the case of skew
torsion, where it was proved that a Riemannian Einstein manifold can never be Einstein with
skew torsion if n = 4, 5 [AF14, Exa 2.14].

Now we consider the case of a harmonic vector field V , which means a closed vector field with
vanishing divergence. For surfaces, it follows from Corollary 3.2 that the V -Ricci curvature
coincides with the Riemannian Ricci curvature.
In the case of a non trivial spacelike vector field with vanishing divergence for n > 2

sV = sg − (n− 1)(n − 2)‖V ‖2 ≤ sg

holds. But if M is closed manifold we can always choose a conformal equivalent metric such
that the corresponding vectorfield is divergence free. More precisely for n > 2 in [Gau95] has
been shown that on a closed Weyl manifold (M,g, V ) there exists a standard metric g̃ = e2fg

such that Ṽ = V − df is divergence free related to the metric g̃ .
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Corollary 3.4. For any vector field V on a closed Riemannian manifold M of dimension n > 2,
the inequality e2fsg̃ ≥ sV holds, where g̃ = e2fg is the standard metric for the corresponding
Weyl structure.

Proof. From Corollary 3.1 and proposition 3.5, we conclude that sV = e2fsṼ ≤ e2fsg̃ where
Ṽ = V − df . �

Example 3.5. In this example, we do not assume a priori that the V -Ricci curvature is sym-
metric. Consider a S1-fiber bundleM → B with S1-invariant metric on M and a vertical vector
field V on M and the connection on M induced by the metric. If V is a fundamental vector
field on M given by the S1-action, ξ is a vector field on B and ξ̄ its horizontal lift to M , then
[V, ξ̄] = 0. Therefore

div V = 0, dV ♭(ξ̄, η̄) = 2g(∇ξ̄V, η̄) and dV ♭(V, ξ̄) = −ξ̄‖V ‖2.

For the curvature quantities this implies:

RicV (ξ, η) − Ricg(ξ, η) = (n− 2)(
1

2
dV ♭(ξ̄, η̄)− ‖V ‖2g(ξ, η))

RicV (V, ξ)− Ricg(V, ξ) = −
(n− 2)

2
dV ♭(V, ξ̄)

RicV (V, V )− Ricg(V, V ) = 0

sV − sg = −(n− 1)(n − 2)‖V ‖2

Now let us study what happens when the V -Ricci tensor is symmetric, i. e. dV ♭ = 0. The
equivalent geometric criterion (4) from Proposition 3.3 is fulfilled if and only if ξ̄(‖V ‖) = 0 for
all horizontal vector fields ξ and a fundamental vector field V ; because of the S1-invariance of
the metric this is equivalent to ‖V ‖ =const. Thus, the V -Ricci tensor is symmetric if and only
if V has constant length. Since Proposition 3.3 also shows that then situation the horizontal
distribution is involutive, we can furthermore conclude that the connection of the bundle is flat.
By a well-known result of algebraic topology, this is equivalent to the vanishing of the real Euler
class of the S1-bundle.

Proposition 3.7. Let V be a vector field with vanishing divergence on a closed Riemannian
manifold. Then ∫

M

RicV (V, V )dµ =

∫

M

Ricg(V, V )dµ.

Moreover if V is harmonic and RicV = 0 then V is ∇g-parallel and therefore the universal cover
of M is the product of an Einstein space of positive scalar curvature and R.

Proof. The formula of Corollary 3.1 yields for a vector field with vanishing divergence RicV (V, V ) =
Ricg(V, V ) + n−2

2 V (‖V ‖)2 and the first result follows from Stokes’ theorem by integration. If V
is harmonic then the Bochner formula yields for a V -Ricci flat manifold

0 =

∫

M

(Ricg(V, V ) + ‖∇gV ‖2)dµ =

∫

M

‖∇gV ‖2dµ. �

4. Dirac operators of connections with vectorial torsion

Already in 1979, Thomas Friedrich observed that the Dirac operator D associated with a met-
ric connection ∇ with torsion T has different properties depending on the torsion type. We
summarize the result of [Fr79] in the following table:
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T ∈ TM T ∈ Λ3(M) T ∈ T ′

D formally self-adjoint no yes yes

D = Dg no no yes

Assume from now on that (M,g) is spin, and denote by ΣM its spinor bundle. For the connection
∇g +AV (X)Y defined before, the lift to ΣM is given by [Ag06, p.18]

(8) ∇Xψ = ∇g
Xψ +

1

2
(X ∧ V ) · ψ.

One then easily computes that

(9) Dψ = Dgψ −
n− 1

2
V · ψ, D∗ψ = Dgψ +

n− 1

2
V · ψ,

because the Clifford multiplication by a vector field is skew-adjoint with respect to the hermitian
product on the spin bundle. We start by constructing a few examples of manifolds with a V -
parallel spinor field.

Example 4.1. Let F be an (n − 1)-dimensional manifold with Killing spinor with Killing
number 1

2 . Then F is an Einstein space of scalar curvature (n− 1)(n − 2). The induced spinor
on M = R× F is −∂t-parallel, because for n odd and X tangent to F

∇g
∂t
ψ = 0

∇g
Xψ = ∇F

X(ψ|F ) =
1

2
X · ∂t · ψ =

1

2
X ∧ ∂t · ψ

For n even, one performs a similar calculation to obtain the result. Note that the manifold is ∂t-
Ricci flat; in Theorem 4.2, we will show that this is always true (with the additional assumption

dV ♭ = 0 in dimension 4, which is satisfied in this example).

Example 4.2. If F is a manifold with a parallel spinor, the induced spinor on the warped

product R ×f F is ḟ
f
∂t-parallel. Remember that in Example 3.4 we have shown that these

manifolds are − ḟ
f ∂t-Ricci flat, as they should be.

Remark 4.1. Since the connection is metric, V -parallel spinors have automatically constant
length, so we may assume the length to be one. If V = 1

2gradu is a gradient vector field, V -
parallel spinor fields coincide with weakly T -parallel spinors as defined in [Ki06] for the choice of
parameter β = Id. These spinors are used to construct solutions of the Einstein Dirac equation.

Proposition 4.1. If V is an exact vector field, the V -Dirac spectrum is the same as the spectrum
of the Riemannian Dirac operator.

Proof. By assumption, there exists a function f such that V = grad f . Choose the conformal

factor h = e
(n−1)

2
f ; then, according to [BFGK91, p. 19],

(10) Dhψ = hDgψ + gradhψ −
n− 1

2
grad fhψ = hDgψ.

Therefore, if ψ is an eigenspinor for Dg, then hψ is an eigenspinor for D and vice versa, because
h has no zeros. �

Remark 4.2. We recall the behaviour of spinor bundles under a conformal change of metric.
If g̃ = e2fg, then there is an identification of the two spinor bundles which we denote by
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∼. Comparing the formulas [BFGK91, p. 16] with (8) shows that for the connection (8) with
V = −grad f

∇g̃

X̃
ψ̃ = e−f ∇̃Xψ and Dg̃ψ̃ = e−fD̃ψ.

Therefore, V -parallel spinors and V -harmonic spinors can be identified with the parallel and
harmonic spinors for the Levi-Civita on the corresponding conformally equivalent Riemannian
manifold.

In [PS11], the authors derived the following formula for D∗
tDt,

(11) D∗
tDtψ = ∆∇

(n−1)tψ +
1

4
sgψ +

(n− 1)t

2
divgV ψ + t2

(
n− 1

2

)2

(2− n)‖V ‖2ψ

where ∆∇
t is the Laplacian associated with the connection

(12) ∇t
Xψ = ∇g

Xψ +
t

2
(X ∧ V ) · ψ

and Dt the corresponding Dirac operator. As for connections with skew torsion, one observes
that a rescaling of the vector field is necessary; but while this rescaling was by a constant in
the skew torsion case, it turns out to be dimension dependent here. In particular, for n = 2
the scaling factor is equal to one! According to [PS11], the Laplacian of the rescaled connection
satisfies

(13) ∆∇
n−1 = (Dg)2 −

1

4
sg +

n− 1

2
[2V ·Dg + 2∇g

V − d(V b)] + (
n− 1

2
)2(n− 1)‖V ‖2

and therefore the Laplacian ∆∇
t associated with ∇g +AtV is given by

(14) ∆∇
t = (Dg)2 −

1

4
sg + tV Dg + t∇g

V − t
1

2
d(V b) + t2

1

4
(n− 1)‖V ‖2.

Proposition 4.2. Let V a vector field on a spin manifold. Then for the Dirac operator Dt

corresponding to the connection (12) we get:
(15)

D∗
tDtψ = ∆∇

t ψ+
1

4
sgψ+t

n− 1

2
divgV ψ+t2

(n− 1)(n − 2)

4
‖V ‖2ψ+t(n−2)(V Dg+∇g

V −
1

2
dV ♭)

Proof. We deduce from (14)

∆∇
(n−1)tψ = ∆∇

t ψ + t2n
(n− 1)(n − 2)

4
‖V ‖2ψ + t(n− 2)(V Dg +∇g

V −
1

2
dV ♭).

By replacing this expression in (11) and using (9), one obtains the result. �

We shall now investigate what can be said about V -parallel spinor fields. In Weyl geometry,
there is a lift of the Weyl connectection to weighted spinor bundles. V -parallel spinor fields
can be identified with parallel spinors of weight zero for the Weyl connection. These have been
studied by [Mo96]. The author showed the following proposition:

Proposition 4.3. Let (M,g, V ) be a Weyl manifold of dimension n ≥ 3, and in addition
compact if n = 4. If it admits a non trivial parallel spinor of weight zero, then V is closed.

The following proposition may already be found in [AF06, Thm 2.1.], we reproduce a proof for
completeness.

Proposition 4.4. If ψ is a V -parallel spinor field, the following identities hold:

(1) The Riemannian scalar curvature is given by

sg = (n− 1)(n − 2)‖V ‖2 − 2(n − 1)divV, i. e. sV = 0.
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(2) The square of the Riemannian Dirac operator acts on ψ by

(Dg)2ψ = (
n − 1

2
||V ||)2ψ −

n− 1

2
divV ψ =

1

4
(sg + (n− 1)‖V ‖2)ψ.

Proof. For a V -parallel spinor, equation (8) implies for X = V :

∇g
V ψ = 0

and equation (9) is reduced to Dgψ = n−1
2 V · ψ. By applying the Riemannian identity for

Dg(V · ψ) ([BFGK91, p. 19]), we obtain

(16) (Dg)2ψ = (
n− 1

2
||V ||)2ψ −

n− 1

2
divV ψ +

n− 1

2
d(V b)ψ,

and from (14) we get

(17) sgψ =
[
(n− 1)(n − 2)||V ||2 − 2(n− 1)divV + 2(n − 2)d(V b)

]
ψ.

But for any 2-form α, the quantity (αψ,ψ) is purely imaginary, therefore the last term vanishes.
This gives d(V b)ψ = 0—in fact, we already know that d(V b) = 0 from Moroianu’s result except
when n = 2, 4. Either way, inserting d(V b)ψ = 0 in (16) und (17) yields the proposition after a
short calculation. �

For a surface, we conclude that V has to be closed, sg = −2 divV and Stokes’ formula implies:

Corollary 4.1. The only closed surface admitting non-trivial V -parallel spinor fields is the
torus.

The following example shows that on the flat 2-dimensional torus, there exists a vector field V
admitting V -parallel spinor fields for every spin structure.

Example 4.3. On the 2-dimensional flat torus T 2 = [0, 1]/ ∼ there are four spin structures,
which we label with (ε1, ε2) with εi ∈ {0, 1}. The space of continuous spinors can be identified
with

{ψ ∈ C0([0, 1]2,C2) |ψ(x, 0) = (−1)ε2ψ(x, 1) and ψ(0, y) = (−1)ε1ψ(1, y)}.

Therefore, Example 4.4 implies that on T 2 there are (v1, v2)-parallel spinors if and only if
v1 = 2(k + ε2)π and v2 = 2(m+ ε2)π where k,m ∈ Z.

If there exists a V -parallel spinor field on R2 then V = grad f for a harmonic function f
anf therefore V -parallel spinor fields correspond to parallel spinor fields on the corresponding
conformal equivalent manifold. We give a more concrete example.

Example 4.4. On R2, every constant vector field V = (v1, v2) admits a 2-dimensional space of
V -parallel spinors, since the spinor derivative is given by

∇V
∂x
ψ = ∂xψ +

1

2
v2ω · ψ, ∇V

∂y
ψ = ∂yψ −

1

2
v1ω · ψ

with ω =

[
−i 0
0 i

]
. Therefore, the space of V -parallel spinors on R2 is spanned by e

i
2
(v2x−v1y)e1

and e−
i
2
(v2x−v1y)e2.

Remark 4.3. In [Mo96] parallel spinors of Weyl structures (M,g, V ) have been investigated, in
particular in dimension 4. In this case the author shows that a compact Weyl 4-manifold with
a V -parallel spinor is a hyperhermitian manifold and thus, by a result of Boyer, conformally
equivalent to a torus, a K3 surface, or a Hopf surface.
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Remark 4.4. Suppose that ψ is a V -parallel spinor field, n > 2. If divV = 0 then M has
constant positive scalar curvature

sg = (n− 1)(n − 2)‖V ‖2

and therefore the expression (2) of the previous Proposition is reduced to

(Dg)2ψ = (
n− 1

2
||V ||)2ψ =

n− 1

4(n− 2)
sgψ.

A Dg-eigenspinor is given by ψ̃ =
√

(n−1)sg

4(n−2) ψ +Dgψ.

A deeper analysis will now show that as in the case of the Levi-Civita connection, the V -Ricci
curvature of M will vanish if it is symmetric and if M admits a nontrivial V - parallel spinor.
Recall that the curvature operator of any spin connection can be understood as a endomorphism-
valued 2-form,

R(X,Y )ψ = ∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ.

One checks that it is related to the curvature operator on 2-forms defined through

R(ei ∧ ej) :=
∑

k<l

Rijkl ek ∧ el

by the relation

R(X,Y )ψ =
1

2
R(X ∧ Y ) · ψ.

The following identity is crucial for deriving integrability conditions for spinor fields satisfying
first order differential equations. It generalizes a well-known result of Friedrich [Fr80, Satz 5.2]
for the Levi-Civita connection (V = 0).

Theorem 4.1. Let ∇ be a metric spin connection with vectorial torsion. Then, the following
identity holds for any spinor field ψ and any vector field X:

RicV (X) · ψ = −2

n∑

k=1

ekR
V (X, ek)ψ − dV ♭ ∧X · ψ.

Proof. Rewrite the first term on the right hand side (without the numerical factor) as
n∑

k=1

ekR
V (el, ek) =

1

2

n∑

k=1

ek · R
V (el ∧ ek) =

1

2

n∑

k=1

∑

i<j

RV
lkijekeiej =: R1 +R2,

where R1 denotes all terms with three different indices k, i, j, and R2 all terms with at least one
repeated index. We first discuss R1:

R1 =
1

2

∑

i<j


∑

k<i

RV
lkijekeiej +

∑

i<k<j

RV
lkijekeiej +

∑

j<k

RV
lkijekeiej


 =

1

2

∑

k<i<j

k,i,j

S RV
lkijekeiej,

where the symbol S denotes the cyclic sum. The first Bianchi identity for a metric connection
with vectorial torsion (see equation (3)) implies then R1 = −1

2dV
♭ ∧ e♭l . The second term does

not depend on the detailed type of the connection, so a similar argument as in [ABBK13] shows

R2 = −
1

2

n∑

r=1



r−1∑

p=1

Rc
lppree +

n∑

q=r+1

Rc
lqqrer


 .

But since the Ricci tensor is exactly the contraction of the curvature, R2 = −RicV (el)/2. This
ends the proof. �
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For closed vector fields V , Theorem 4.1 amounts therefore to an identity that looks formally as
for ∇ = ∇g.

Theorem 4.2. Let (M,g) be a semi-Riemannian spin manifold, ∇ a connection with vectorial
torsion V , n ≥ 2.

(1) If M admits a nontrivial V -parallel spinor field, then RicV = 0 and dV ♭ = 0 hold, and in
particular, M is locally conformally Ricci flat. If n = 4, RicV is totally skew symmetric
and given by RicV (X) = X dV ♭.

(2) If dV ♭ = 0, there are no nontrivial ∇-Killing spinor fields, i. e. spinor fields satisfying
the equation ∇Xψ = β X · ψ for some β 6= 0.

Proof. For both claims, let’s suppose ψ is a spinor satisfying the equation ∇Xψ = β X · ψ for
all vector fields X (∇-parallel spinor fields will be obtained by choosing β = 0). Such a spinor
field has automatically constant length, because it is parallel for the metric spinorial connection
∇̃X := ∇X − β X·. Then

R(X,Y )ψ = ∇X∇Y ψ −∇Y ∇Xψ −∇[X,Y ]ψ

= ∇X(β Y · ψ)−∇Y (β X · ψ)− β[X,Y ] · ψ

= β(∇XY −∇YX − [X,Y ]) · ψ + β(Y · ∇Xψ −X · ∇Y ψ)

= β(g(V,X)Y − g(V, Y )X) · ψ + β2(Y ·X −X · Y ) · ψ

= β(g(V,X)Y − g(V, Y )X) · ψ + 2β2(Y ·X + g(X,Y )) · ψ.

Therefore, the curvature contraction may be computed,
n∑

k=1

ekR
V (X, ek) = −β(ng(V,X) + V ·X) · ψ + 2β2(1− n)X · ψ.

By Theorem 4.1, we can conclude that the following equation is an integrability condition for
the existence of such a spinor field,

(18) RicV (X) · ψ = 2βn g(V,X)ψ + 2β V ·X · ψ + 4β2(n− 1)X · ψ − (dV ♭ ∧X) · ψ.

We now discuss the two situations occuring in the statement. Let’s treat the easier case first,
i. e. β 6= 0 and dV ♭ = 0. The last term of the integrability condition hence vanishes. Let (−,−) be
the positive definite scalar product on spinor fields induced by the canonical hermitian product
of the spinor bundle, and recall that it satisfies (X · ϕ,ϕ) = 0 for any spinor field ϕ. We take
the scalar product of the remaining identity (18) with ψ and, by the previous remark, we are
finally left with

0 = βn g(V,X)‖ψ‖2 + β (V ·X · ψ,ψ) + 0.

But (V ·X · ψ,ψ) = −(X · ψ, V · ψ) = −g(X,V )‖ψ‖2, so this identity cannot hold for β 6= 0 if
n 6= 1.
Now let’s consider the case of a V -parallel spinor field, i. e. β = 0. The integrability condition
(18) is thus reduced to

RicV (X) · ψ = −(dV ♭ ∧X) · ψ.

Inner and exterior product are related by X · ω = X ∧ ω −X ω. From Prosition 4.4, we know
that dV ♭ · ψ = 0, hence X · dV ♭ · ψ = 0 and thus

−(dV ♭ ∧X) · ψ = +(X ∧ dV ♭) · ψ = (X dV ♭) · ψ.

Hence, the integrability condition is reduced to RicV (X) ·ψ = (X dV ♭) ·ψ. Since ψ has constant
length, this implies

RicV (X) = X dV ♭.
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Viewed as an endomorphism, X dV ♭ is antisymmetric, whereas RicV may be split into its
symmetric and antisymmetric part according to Corollary 3.1,

RicV (X) = RicVsym(X) +
n− 2

2
X dV ♭.

We conclude RicVsym(X) = 4−n
2 X dV ♭. One is symmetric, one is antisymmetric, so both have

to vanish. If n 6= 4, this implies dV ♭ = 0 and then also RicV (X) = 0. For n = 4, we can
only conclude RicVsym(X) = 0, hence RicV has only antisymmetric part given by RicV (X) =

X dV ♭. �

Remark 4.5. The dimension distinction in statement (1) of the Corollary cannot be removed.
Indeed, in Section 7 of [Mo96], an example of a non closed vector field V admitting non-trivial V -

parallel spinors is given on an open subset of C2. Thus, RicV (X) = X dV ♭ 6= 0 and statement
(1) cannot be improved to RicV (X) = 0 for n = 4 without the assumption of compactness

(compare Proposition 4.3). However, our result proves that dV ♭ = 0 if and only if RicV = 0 in
the non-compact case, and gives a formula expressing one quantity through the other. Oddly
enough, we recover that sV = 0 even in dimension 4 (as it should be by Proposition 4.4), since
RicV , although possibly non-zero, is always skew-symmetric and therefore trace-free.

Recall that a closed manifold of dimension n > 2 with vector field V carries a conformally
equivalent metric for which the corresponding vector field has vanishing divergence. Applying
Proposition 3.7 thus yields

Corollary 4.2. Let M be a closed Riemannian manifold of dimension n > 2 with a V -parallel
spinor. Then M is conformally equivalent either to a manifold with parallel spinor or to a
manifold whose universal cover is the product of R and an Einstein space of positive scalar
curvature.
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