## Recent Progress in Homogeneous Einstein Metrics on Generalized Flag Manifolds

Andreas Arvanitoyeorgos
University of Patras
Based on joint works with I. Chrysikos (Brno) and Y. Sakane (Osaka)
$(M, g)$ Riemannian manifold is Einstein if $\operatorname{Ric}(g)=c \cdot g$.

Consider $G$-invariant metrics on a homogeneous space $(M=G / K, g)$.
Problem: Find $G$-invariant Einstein metrics on $M=G / K$ and classify them (if they are not unique).

- $c>0 G / K$ is compact
- $c=0 G / K$ is Ricci flat $\Rightarrow$ flat
- $c<0 G / K$ is not compact


## Riemannian

- There exist compact homogeneous spaces $G / K$ with no $G$-invariant Einstein metric (e.g. $S U(4) / S U(2)$ ) (Wang-Ziller 1986)
- (Böhm-Kerr 2006) Classified all compact, simply connected homogeneous spaces of dimension $\leq 11$ admitting a $G$-invariant Einstein metric.
- (Nikonorov-Rodionov 2003, 2004) Found all $G$-invariant Einstein metrics on compact simply connected homogeneous spaces of dimension $\leq 7$ (except $S U(2) \times S U(2)$ ).
- (Böhm-Wang-Ziller 2004) Variational approach
- (Böhm 2004) Simplicial complexes
- (Graev 2006) Newton Polytopes
- (A.A.-Nikonorov 2009) Introduced a construction for obtaining manifolds 1

Previous results about Einstein metrics on flag manifolds 2
Previous results about Einstein metrics on flag manifolds 1

Ricci tensor of a

## Definition

## The problem

Review of selected research

Generalized flag manifolds

Definition
Examples of painted Dynkin diagrams
Previous results about
Einstein metrics on flag manifolds 1
Previous results about Einstein metrics on flag manifolds 2
Previous results about Einstein metrics on flag manifolds 1

$$
\begin{aligned}
& M=G / K=G / C(T) \cong A d(G) w, w \in \mathfrak{g} \\
& G=\text { compact semisimple Lie group } \\
& T=\text { a torus in } G \\
& A d: G \rightarrow A u t(\mathfrak{g}) \text { (adjoint representation) } \\
& \text { e.g. } S U(n) / S\left(U\left(n_{1}\right) \times \cdots U\left(n_{s}\right)\right),\left(n=\sum n_{i}\right) \\
& S U(n) / S(U(1) \times \cdots U(1))=S U(n) / T_{\max }
\end{aligned}
$$

- Flag manifolds admit a finite number of $G$-invariant complex structures and for each of those there exists a compatible Kähler-Einstein metric.
- They exhaust all compact simply connected homogeneous manifolds.
- They are classified by the painted Dynking diagrams.
- There is an infinite series for each classical simple Lie group and a finite number of non isomorphic flag manifolds for each exceptional Lie group.


## Examples of painted Dynkin diagrams

## The problem

Review of selected research

Generalized flag manifolds

Definition
Examples of painted Dynkin diagrams
Previous results about Einstein metrics on flag manifolds 1
Previous results about Einstein metrics on flag manifolds 2
Previous results about Einstein metrics on flag manifolds 1

Ricci tensor of a


$$
\begin{aligned}
& \Pi \backslash \Pi_{0}=\Pi_{\mathfrak{n}}=\left\{\alpha_{1}, \alpha_{p+1}: 2 \leq p \leq \ell-1\right\} \\
& M=S O(2 \ell+1) /(U(1) \times U(p) \times S O(2(\ell-p-1)+1)) \\
& (2 \leq p \leq \ell-1) .
\end{aligned}
$$

$\Pi \backslash \Pi_{0}=\left\{\alpha_{1}, \alpha_{4}\right\}$ or $\Pi \backslash \Pi_{0}=\left\{\alpha_{2}, \alpha_{5}\right\}$
Both define the flag manifold $E_{6} /(S U(4) \times S U(2) \times U(1) \times U(1))$.

## Previous results about Einstein metrics on flag manifolds 1

## Generalized flag

 manifolds
## Definition

Examples of painted Dynkin diagrams
Previous results about Einstein metrics on flag manifolds 1
Previous results about Einstein metrics on flag manifolds 2
Previous results about Einstein metrics on flag manifolds 1

Ricci tensor of a
compact homogeneous space

Riemannian submersions

Classification of flag manifolds with five isotropy summands

- Wang-Ziller (1986) $M=G / T_{\max }$ admits the standard metric $g_{B}=-$ Killing form as Einstein if and only if $G \in\left\{S U(n), S O(2 n), E_{6}, E_{7}, E_{8}\right\}$.
- Kimura (1990) Classification of flag manifolds with $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus m_{3}$ and Einstein metrics for the classical cases.
- A.A. (1993) Lie theoretic expression for the Ricci tensor and Einstein metrics for certain flag mfds with $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4}$ and for $G_{2} / U(2)$.
- Sakane (1999) $G / T_{\max }$,
$G \in\{S U(2 n+1), S O(2 n+1), S O(2 n), S p(n)\}$.
- Dos Santos-Negreiros (2006) $S U(2 n) / T_{\max }, S U(2 n+1) / T_{\max }$ ( $n \geq 6$ ).


## Previous results about Einstein metrics on flag manifolds 2

- A.A.-Chrysikos (2011) Classification for $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$
- A.A.-Chrysikos (2010) Classification for $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4}$
- A.A.-Chrysikos-Sakane $(2010,2011)$ Completed the description of invariant Einstein metrics for certain classical cases
- Chrysikos-Anastassiou (2011) Redescovered the invariant Einstein metrics for flag mfds with 2 and 3 isotropy summands, as singularites at infinity of a dynamical system via the Ricci flow.
- A.A.-Chrysikos-Sakane (2012) $G_{2} / T_{\max }=G_{2} / U(1) \times U(1)$
$\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5} \oplus \mathfrak{m}_{6}$
It admits a unique Kähler-Einstein metric and two non-Kähler Einstein metrics (up to isometry). This is an example of a flag mfd of an exceptional Lie group which admits a non-Kähler, not normal homogeneous Einstein metric.


## Previous results about Einstein metrics on flag manifolds 1

## The problem

Previous results about Einstein metrics on flag manifolds 1
Previous results about Einstein metrics on flag manifolds 2
Previous results about Einstein metrics on flag manifolds 1

When the number of isotropy summands increases then the construction of the Einstein equation (actually the Ricci tensor) becomes more difficult and the solutions difficult to be obtained.
$G$ a compact semisimple Lie group, $K$ a connected closed subgroup.
The Killing form of $\mathfrak{g}$ is negative definite, so we can define an $A d(G)$-invariant inner product $B$ on $\mathfrak{g}$ given by $B=-$ Killing form of $\mathfrak{g}$. Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ be a reductive decomposition of $\mathfrak{g}$ with respect to $B$ so that $[\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$ and $\mathfrak{m} \cong T_{o}(G / K)$.
We assume that $\mathfrak{m}$ admits a decomposition into mutually non equivalent irreducible $\mathrm{Ad}(K)$-modules as follows:

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{q} \tag{1}
\end{equation*}
$$

Then any $G$-invariant metric on $G / K$ can be expressed as

$$
\begin{equation*}
\langle,\rangle=\left.x_{1} B\right|_{\mathfrak{m}_{1}}+\cdots+\left.x_{q} B\right|_{\mathfrak{m}_{q}}, \tag{2}
\end{equation*}
$$

for positive real numbers $\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}_{+}^{q}$.

The Ricci tensor $r$ of a $G$-invariant Riemannian metric on $G / K$ is of the same form as (2), that is

$$
r=\left.r_{1} x_{1} B\right|_{\mathfrak{m}_{1}}+\cdots+\left.r_{q} x_{q} B\right|_{\mathfrak{m}_{q}} .
$$

The Ricci compenents $r_{i}$ can be obtained as follows:
Let $\left\{e_{\alpha}\right\}$ be a $B$-orthonormal basis adapted to the decomposition of $\mathfrak{m}$, i.e. $e_{\alpha} \in \mathfrak{m}_{i}$ for some $i$, and $\alpha<\beta$ if $i<j$.

We put $A_{\alpha \beta}^{\gamma}=B\left(\left[e_{\alpha}, e_{\beta}\right], e_{\gamma}\right)$ so that $\left[e_{\alpha}, e_{\beta}\right]=\sum_{\gamma} A_{\alpha \beta}^{\gamma} e_{\gamma}$ and set $\left[\begin{array}{c}k \\ i j\end{array}\right]=\sum\left(A_{\alpha \beta}^{\gamma}\right)^{2}$, where the sum is taken over all indices $\alpha, \beta, \gamma$ with $e_{\alpha} \in \mathfrak{m}_{i}, e_{\beta} \in \mathfrak{m}_{j}, e_{\gamma} \in \mathfrak{m}_{k}$ (Wang-Ziller).

Then the positive numbers $\left[\begin{array}{c}k \\ i j\end{array}\right]$ are independent of the $B$-orthonormal
bases chosen for $\mathfrak{m}_{i}, \mathfrak{m}_{j}, \mathfrak{m}_{k}$, and $\left[\begin{array}{c}k \\ i j\end{array}\right]=\left[\begin{array}{l}k \\ j i\end{array}\right]=\left[\begin{array}{c}j \\ k i\end{array}\right]$.
Let $d_{k}=\operatorname{dim} \mathfrak{m}_{k}$. Then we have the following:

Proposition 0.1 (Park-Sakane) The components $r_{1}, \ldots, r_{q}$ of the Ricci tensor $r$ of the metric $\langle$,$\rangle of the form (2) on G / K$ are given by
$r_{k}=\frac{1}{2 x_{k}}+\frac{1}{4 d_{k}} \sum_{j, i} \frac{x_{k}}{x_{j} x_{i}}\left[\begin{array}{c}k \\ j i\end{array}\right]-\frac{1}{2 d_{k}} \sum_{j, i} \frac{x_{j}}{x_{k} x_{i}}\left[\begin{array}{c}j \\ k i\end{array}\right] \quad(k=1, \cdots, q)$,
where the sum is taken over $i, j=1, \ldots, q$.

## The problem

## Review of selected

## research

Generalized flag manifolds

Since by assumption the submodules $\mathfrak{m}_{i}, \mathfrak{m}_{j}$ in the decomposition (1) are matualy non equivalent for any $i \neq j$, it will be $r\left(\mathfrak{m}_{i}, \mathfrak{m}_{j}\right)=0$ whenever $i \neq j$.

Thus, the $G$-invariant Einstein metrics on $M=G / K$ are exactly the positive real solutions $g=\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}_{+}^{q}$ of the polynomial system $\left\{r_{1}=\lambda, r_{2}=\lambda, \ldots, r_{q}=\lambda\right\}$, where $\lambda \in \mathbb{R}_{+}$is the Einstein constant.

## A simple example

Flag manifolds of $B_{\ell}$ with $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$. Consider the flag manifolds $M=G / K=S O(2 \ell+1) /(U(p) \times S O(2(\ell-p)+1))$ with $\ell \geq 2$, and $2 \leq p \leq \ell$.
This space is defined by the painted Dynkin diagram

$G$-invariant metrics: $\langle\rangle=,\left.x_{1} B\right|_{\mathfrak{m}_{1}}+\left.x_{2} B\right|_{\mathfrak{m}_{2}}$.
Ricci components:

$$
\begin{gathered}
r_{1}=\frac{1}{2 x_{1}}-\frac{x_{2}}{2 d_{1} x_{1}^{2}}\left[\begin{array}{c}
2 \\
11
\end{array}\right] \\
r_{2}=\frac{1}{2 x_{2}}-\frac{1}{2 d_{2} x_{2}}\left[\begin{array}{c}
1 \\
21
\end{array}\right]+\frac{x_{2}}{4 d_{2} x_{1}^{2}}\left[\begin{array}{c}
2 \\
11
\end{array}\right]
\end{gathered}
$$

Only $\left[\begin{array}{c}1 \\ 21\end{array}\right] \neq 0$.
So $\langle$,$\rangle is Einstein if and only if r_{1}=r_{2}$.
To avoid finding $\left[\begin{array}{c}1 \\ 21\end{array}\right]$ from the definition we use tha fact that

$$
\langle,\rangle=\left.1 \cdot B\right|_{\mathfrak{m}_{1}}+\left.2 \cdot B\right|_{\mathfrak{m}_{2}}
$$

is a Kähler-Einstein metric.
Thus $\left[\begin{array}{c}1 \\ 21\end{array}\right]=\frac{d_{1} d_{2}}{d_{1}+4 d_{2}}$.
We normalize the equations $r_{1}=r_{2}$ by setting $x_{1}=1$ and obtain a quadratic equation for $x_{2}$ with solutions $x_{2}=2$ and $x_{2}=\frac{4 d_{2}}{d_{1}+2 d_{2}}$.
Thus a non Kähler Einstein metric is

$$
x_{1}=2, \quad x_{2}=\frac{4 d_{2}}{d_{1}+2 d_{2}} .
$$

## Riemannian submersions

It is known that the map $\pi$ is a Riemannian submersion from $(G / K, g)$ to $(G / L, \check{g})$ with totally geodesic fibers isometric to $(L / K, \hat{g})$.
$\mathfrak{q}=$ vertical subspace of $\mathfrak{m}$
$\mathfrak{p}=$ horizontal subspace of $\mathfrak{m}$.
O'Neill had introduced two tensors $A, T$. Since fibers are totally geodesic $T=0$. Also,

$$
A_{X} Y=\frac{1}{2}[X, Y]_{\mathfrak{q}} \quad \text { for } X, Y \in \mathfrak{p}
$$

Let $r, \check{r}$ be the Ricci tensors of the metrics $g, \check{g}$ respectively. Then we have (e.g. Besse)

$$
r(X, Y)=\check{r}(X, Y)-2 g\left(A_{X}, A_{Y}\right) \quad \text { for } X, Y \in \mathfrak{p}
$$

(Note that there is a corresponding expression $r(U, V)$ for vertical vectors, but it does not contribute additional information in our approach.)

## The problem

## Review of selected

 researchLet

$$
\mathfrak{p}=\mathfrak{p}_{1} \oplus \cdots \oplus \mathfrak{p}_{\ell} \text { into non equivalent irreducible } A d(L)-\text { modules }
$$

$$
\mathfrak{q}=\mathfrak{q}_{1} \oplus \cdots \oplus \mathfrak{q}_{s} \text { into irreducible } \quad A d(K)-\text { modules }
$$

To compute the values $\left[\begin{array}{c}k \\ i j\end{array}\right]$ for $G / K$, we use information from the Riemannian submersion $\pi:(G / K, g) \rightarrow(G / L, \check{g})$ with totally geodesic fibers isometric to $(L / K, \hat{g})$.

We consider $G$-invariant metrics on $G / K$ defined by a Riemannian submersion $\pi:(G / K, g) \rightarrow(G / L, \check{g})$ given by

$$
\begin{equation*}
g=\underbrace{\left.y_{1} B\right|_{\mathfrak{p}_{1}}+\cdots+\left.y_{\ell} B\right|_{\mathfrak{p}_{\ell}}}_{\check{g}}+\underbrace{\left.z_{1} B\right|_{\mathfrak{q}_{1}}+\cdots+\left.z_{s} B\right|_{\mathfrak{q}_{s}}}_{\hat{g}} \tag{4}
\end{equation*}
$$

for positive real numbers $y_{1}, \cdots, y_{\ell}, z_{1}, \cdots, z_{s}$.

Since $K \subset L$ we decompose each irreducible component $\mathfrak{p}_{j}$ into irreducible $\operatorname{Ad}(K)$-modules:

$$
\mathfrak{p}_{j}=\mathfrak{m}_{j, 1} \oplus \cdots \oplus \mathfrak{m}_{j, k_{j}}
$$

where the $A d(K)$-modules $\mathfrak{m}_{j, t}\left(j=1, \ldots, \ell, t=1, \ldots, k_{j}\right)$ are mutually non equivalent and are chosen to be (up to reordering) submodules from the decomposition (2).

Then the submersion metric (4) can be written as

$$
\begin{equation*}
g=\left.y_{1} \sum_{t=1}^{k_{1}} B\right|_{\mathfrak{m}_{1, t}}+\cdots+\left.y_{\ell} \sum_{t=1}^{k_{\ell}} B\right|_{\mathfrak{m}_{\ell, t}}+\left.z_{1} B\right|_{\mathfrak{q}_{1}}+\cdots+\left.z_{s} B\right|_{\mathfrak{q}_{s}} \tag{5}
\end{equation*}
$$

and this is a special case of the $G$-invariant metric (2).

Lemma 0.2 Let $d_{j, t}=\operatorname{dim} \mathfrak{m}_{j, t}$. The components $r_{(j, t)}$ ( $j=1, \ldots, \ell, t=1, \ldots, k_{j}$ ) of the Ricci tensor $r$ for the metric (5) on $G / K$ are given by

$$
r_{(j, t)}=\check{r}_{j}-\frac{1}{2 d_{j, t}} \sum_{i=1}^{s} \sum_{j^{\prime}, t^{\prime}} \frac{z_{i}}{y_{j} y_{j^{\prime}}}\left[\begin{array}{c}
i  \tag{6}\\
(j, t)\left(j^{\prime}, t^{\prime}\right)
\end{array}\right],
$$

where $\check{r}_{j}$ are the components of Ricci tensor $\check{r}$ for the metric $\check{g}$ on $G / L$.

Notice that when metric (4) is viewed as a metric (2) then the horizontal part of $r_{(j, t)}$ equals to $\check{r}_{j}(j=1, \ldots, \ell)$, i.e. it is independent of $t$.

## An example and a picture

## The problem

Review of selected

## research

## Generalized flag

 manifoldsRicci tensor of a
Let $M=G / K$ be a flag manifold with five isotropy summands $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5}$.

It follows that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right]=\mathfrak{m}_{3},\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right]=\mathfrak{m}_{4},\left[\mathfrak{m}_{2}, \mathfrak{m}_{3}\right]=\mathfrak{m}_{5}$ and $\left[\mathfrak{m}_{1}, \mathfrak{m}_{4}\right]=\mathfrak{m}_{5}$.
Thus the non zero structure constant are

$$
\left[\begin{array}{c}
3 \\
12
\end{array}\right],\left[\begin{array}{c}
4 \\
22
\end{array}\right],\left[\begin{array}{c}
5 \\
23
\end{array}\right],\left[\begin{array}{c}
5 \\
14
\end{array}\right] .
$$

A $G$-invariant metric $g$ on $G / K$ is given by

$$
\begin{equation*}
g=\left.x_{1} B\right|_{\mathfrak{m}_{1}}+\left.x_{2} B\right|_{\mathfrak{m}_{2}}+\left.x_{3} B\right|_{\mathfrak{m}_{3}}+\left.x_{4} B\right|_{\mathfrak{m}_{4}}+\left.x_{5} B\right|_{\mathfrak{m}_{5}} \tag{7}
\end{equation*}
$$

where $x_{j}(j=1, \ldots, 5)$ are positive numbers.
Put $d_{i}=\operatorname{dim} \mathfrak{m}_{i}$ for $i=1, \cdots, 5$.

## An example and a picture

An example and a picture
An example and a picture
An example and a picture
An example and a picture
An example and a picture

Then the components $r_{i}(i=1, \ldots, 5)$ of the Ricci tensor for a $G$-invariant Riemannian metric (7) on $G / K$ are given as follows:

$$
\begin{align*}
& r_{1}=\frac{1}{2 x_{1}}+\frac{1}{2 d_{1}}\left[\begin{array}{c}
3 \\
12
\end{array}\right]\left(\frac{x_{1}}{x_{2} x_{3}}-\frac{x_{2}}{x_{1} x_{3}}-\frac{x_{3}}{x_{1} x_{2}}\right)+\frac{1}{2 d_{1}}\left[\begin{array}{c}
5 \\
14
\end{array}\right]\left(\frac{x_{1}}{x_{4} x_{5}}-\frac{x_{5}}{x_{1} x_{4}}-\frac{x_{4}}{x_{1} x_{5}}\right) \\
& r_{2}=\frac{1}{2 x_{2}}+\frac{1}{2 d_{2}}\left[\begin{array}{c}
3 \\
12
\end{array}\right]\left(\frac{x_{2}}{x_{1} x_{3}}-\frac{x_{1}}{x_{2} x_{3}}-\frac{x_{3}}{x_{1} x_{2}}\right)-\frac{1}{2 d_{2}}\left[\begin{array}{c}
4 \\
22
\end{array}\right] \frac{x_{4}}{x_{2}^{2}}+\frac{1}{2 d_{2}}\left[\begin{array}{c}
5 \\
23
\end{array}\right]\left(\frac{x_{2}}{x_{3} x_{5}}-\frac{x_{5}}{x_{2} x_{3}}-\right. \\
& r_{3}=\frac{1}{2 x_{3}}+\frac{1}{2 d_{3}}\left[\begin{array}{c}
3 \\
12
\end{array}\right]\left(\frac{x_{3}}{x_{1} x_{2}}-\frac{x_{2}}{x_{1} x_{3}}-\frac{x_{1}}{x_{2} x_{3}}\right)+\frac{1}{2 d_{3}}\left[\begin{array}{c}
5 \\
23
\end{array}\right]\left(\frac{x_{3}}{x_{2} x_{5}}-\frac{x_{5}}{x_{2} x_{3}}-\frac{x_{2}}{x_{3} x_{5}}\right) \\
& r_{4}=\frac{1}{2 x_{4}}+\frac{1}{2 d_{4}}\left[\begin{array}{c}
5 \\
14
\end{array}\right]\left(\frac{x_{4}}{x_{1} x_{5}}-\frac{x_{5}}{x_{1} x_{4}}-\frac{x_{1}}{x_{4} x_{5}}\right)+\frac{1}{4 d_{4}}\left[\begin{array}{c}
4 \\
22
\end{array}\right]\left(\frac{2}{x_{4}}+\frac{x_{4}}{x_{2}^{2}}\right) \\
& r_{5}=\frac{1}{2 x_{5}}+\frac{1}{2 d_{5}}\left[\begin{array}{c}
5 \\
23
\end{array}\right]\left(\frac{x_{5}}{x_{2} x_{3}}-\frac{x_{2}}{x_{3} x_{5}}-\frac{x_{3}}{x_{2} x_{5}}\right)+\frac{1}{2 d_{5}}\left[\begin{array}{c}
5 \\
14
\end{array}\right]\left(\frac{x_{5}}{x_{1} x_{4}}-\frac{x_{1}}{x_{4} x_{5}}-\frac{x_{4}}{x_{1} x_{5}}\right) \tag{8}
\end{align*}
$$

## An example and a picture

$$
\begin{align*}
& \mathfrak{m}=\mathfrak{q} \oplus \mathfrak{p}=\mathfrak{q}_{1} \oplus\left(\mathfrak{p}_{1}+\mathfrak{p}_{2}\right)= \\
& \mathfrak{m}_{1} \oplus\left(\mathfrak{m}_{2} \oplus \mathfrak{m}_{3}+\mathfrak{m}_{4} \oplus \mathfrak{m}_{5}\right) \equiv  \tag{9}\\
& \mathfrak{m}_{1} \oplus\left(\mathfrak{m}_{1,1} \oplus \mathfrak{m}_{1,2}+\mathfrak{m}_{2,1} \oplus \mathfrak{m}_{2,2}\right)
\end{align*}
$$

## An example and a picture

## The problem

Review of selected research

Generalized flag manifolds

Ricci tensor of a


$$
\begin{align*}
& \mathfrak{m}=\mathfrak{q} \oplus \mathfrak{p}=\mathfrak{q}_{1} \oplus\left(\mathfrak{p}_{1}+\mathfrak{p}_{2}\right)=\mathfrak{m}_{1} \oplus\left(\mathfrak{m}_{2} \oplus \mathfrak{m}_{3}+\mathfrak{m}_{4} \oplus \mathfrak{m}_{5}\right) \\
& \equiv \mathfrak{m}_{1} \oplus\left(\mathfrak{m}_{1,1} \oplus \mathfrak{m}_{1,2}+\mathfrak{m}_{2,1} \oplus \mathfrak{m}_{2,2}\right) \tag{10}
\end{align*}
$$

Then $r_{(1,1)}=r_{2}, r_{(1,2)}=r_{3}, r_{(2,1)}=r_{4}, r_{(2,2)}=r_{5}$

## An example and a picture

We consider a $G$-invariant metric on $G / K$ defined by a Riemannian submersion $\pi:(G / K, g) \rightarrow(G / L, \check{g})$ given by

$$
\begin{equation*}
g=\left.y_{1} B\right|_{\mathfrak{p}_{1}}+\left.y_{2} B\right|_{\mathfrak{p}_{2}}+\left.z_{1} B\right|_{\mathfrak{q}_{1}} \tag{11}
\end{equation*}
$$

and the metric $\check{g}$ on $G / L$

$$
\check{g}=\left.y_{1} B\right|_{\mathfrak{p}_{1}}+\left.y_{2} B\right|_{\mathfrak{p}_{2}}
$$

for positive real numbers $y_{1}, y_{2}, z_{1}$.
Note that, when we write the metric (11) as in the form (7), we have

$$
\begin{equation*}
g=\left.y_{1} B\right|_{\mathfrak{m}_{2}}+\left.y_{1} B\right|_{\mathfrak{m}_{3}}+\left.y_{2} B\right|_{\mathfrak{m}_{4}}+\left.y_{2} B\right|_{\mathfrak{m}_{5}}+\left.z_{1} B\right|_{\mathfrak{m}_{1}} \tag{12}
\end{equation*}
$$

## An example and a picture

## The problem

Review of selected research

Generalized flag manifolds

$$
r_{4}=\frac{1}{2 y_{2}}-\frac{1}{2 d_{4}}\left[\begin{array}{c}
5 \\
14
\end{array}\right] \frac{z_{1}}{y_{2}^{2}}+\frac{1}{4 d_{4}}\left[\begin{array}{c}
4 \\
22
\end{array}\right]\left(\frac{y_{2}}{y_{1}^{2}}-\frac{2}{y_{2}}\right)
$$

We put $\tilde{d}_{1}=\operatorname{dim} \mathfrak{p}_{1}$ and $\tilde{d}_{2}=\operatorname{dim} \mathfrak{p}_{2}$. Then $\tilde{d}_{1}=d_{2}+d_{3}$ and $\tilde{d}_{2}=d_{4}+d_{5}$.

## An example and a picture

## The problem

Review of selected research

Generalized flag manifolds

Ricci tensor of a
By using the earlier very simple example $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ the components $\check{r}_{1}, \check{r}_{2}$ of the Ricci tensor $\check{r}$ of a $G$-invariant metric $\check{g}=\left.y_{1} B\right|_{\mathfrak{p}_{1}}+\left.y_{2} B\right|_{\mathfrak{p}_{2}}$ are given by

$$
\left\{\begin{array}{l}
\check{r}_{1}=\frac{1}{2 y_{1}}-\frac{y_{2}}{2 \tilde{d}_{1} y_{1}^{2}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right]  \tag{13}\\
\check{r}_{2}=\frac{1}{2 y_{2}}-\frac{1}{2 \tilde{d}_{2} y_{2}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right]+\frac{y_{2}}{4 \tilde{d}_{2} y_{1}^{2}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right]
\end{array}\right.
$$

where $\left[\left[\begin{array}{c}2 \\ 11\end{array}\right]\right]=\frac{\tilde{d}_{1} \tilde{d}_{2}}{\tilde{d}_{1}+4 \tilde{d}_{2}}$.
Note that, in the notation of Lemma 0.2, we have that $r_{(1,1)}=r_{2}$, $r_{(1,2)}=r_{3}, r_{(2,1)}=r_{4}$ and $r_{(2,2)}=r_{5}$.

## An example and a picture

From Lemma 0.2 we see that the horizontal part of $r_{(1,2)}\left(=r_{3}\right)$ equals to $\check{r}_{1}$ and the horizontal part of $r(2,1)\left(=r_{4}\right)$ equals to $\check{r}_{2}$, and thus we get

$$
\begin{gathered}
\frac{1}{2 y_{1}}-\left[\begin{array}{c}
5 \\
23
\end{array}\right] \frac{1}{2 d_{3}} \frac{y_{2}}{y_{1}^{2}}=\frac{1}{2 y_{1}}-\frac{y_{2}}{2 \tilde{d}_{1} y_{1}^{2}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right] \\
\frac{1}{2 y_{2}}+\left[\begin{array}{c}
4 \\
22
\end{array}\right] \frac{1}{4 d_{4}}\left(\frac{y_{2}}{y_{1}^{2}}-\frac{2}{y_{2}}\right)=\frac{1}{2 y_{2}}-\frac{1}{2 \tilde{d}_{2} y_{2}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right] .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& {\left[\begin{array}{c}
5 \\
23
\end{array}\right]=d_{3} \frac{1}{\tilde{d}_{1}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right]=\frac{d_{3}\left(d_{4}+d_{5}\right)}{\left(d_{2}+d_{3}\right)+4\left(d_{4}+d_{5}\right)}} \\
& {\left[\begin{array}{c}
4 \\
22
\end{array}\right]=d_{4} \frac{1}{\tilde{d}_{2}}\left[\left[\begin{array}{c}
2 \\
11
\end{array}\right]\right]=\frac{d_{4}\left(d_{2}+d_{3}\right)}{\left(d_{2}+d_{3}\right)+4\left(d_{4}+d_{5}\right)}}
\end{aligned}
$$

## An example and a picture

## The problem

Review of selected research

Generalized flag manifolds

The two other triplets

$$
\left[\begin{array}{c}
3 \\
12
\end{array}\right], \quad\left[\begin{array}{c}
5 \\
14
\end{array}\right]
$$

will be computed later on by taking into account the existence of Kähler-Einstein metric.

We remark that if we are going to study Einstein metrics on flag manifolds with six or more summands, then we need to apply the above method to two fibrations.

So the problem now is the following:
Classify all flag manifolds with five isotropy summands, use the above method to construct the Einstein equation and then study its solutions.

## The problem

Review of selected manifolds

# Classification of flag manifolds with five isotropy summands 

## Lie theoretic description

## The problem

## Review of selected

 research
## Generalized flag

 manifoldsRicci tensor of a

## Riemannian

submersions

Classification of flag
manifolds with five isotropy summands
Lie theoretic description
Painted Dynkin
diagrams
$T$-roorts and isotropy representation
$T$-roorts and isotropy representation

Kähler-Einstein metrics
Let $G$ be a compact connected simple Lie group with Lie algebra $\mathfrak{g}$, and let $\mathfrak{h}$ a maximal abelian subalgebra of $\mathfrak{g}$ with $\operatorname{dim}_{\mathbb{C}} \mathfrak{h}^{\mathbb{C}}=l=r k G$. There is a root space decomposition $\mathfrak{g}^{\mathbb{C}}=\mathfrak{h}^{\mathbb{C}}+\sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}^{\mathbb{C}}$. Let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be a system of simple roots $\Delta$. We denote by $\left\{\Lambda_{1}, \ldots, \Lambda_{l}\right\}$ the fundamental weights of $\mathfrak{g}^{\mathbb{C}}$ corresponding to $\Pi$, that is $\frac{2\left(\Lambda_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}=\delta_{i j}$ for any $1 \leq i, j \leq l$.
Let $\Pi_{0}$ be a subset of $\Pi$ and set $\Pi_{\mathfrak{m}}=\Pi \backslash \Pi_{0}=\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right\}$, where $1 \leq i_{1}<\cdots<i_{r} \leq l$. We put $\Delta_{0}=\Delta \cap\left\{\Pi_{0}\right\}_{\mathbb{Z}}=\left\{\beta \in \Delta: \beta=\sum_{\alpha_{i} \in \Pi_{0}} k_{i} \alpha_{i}, k_{i} \in \mathbb{Z}\right\}$, where $\left\{\Pi_{0}\right\}_{\mathbb{Z}}$ denotes the set of roots generated by $\Pi_{0}$ with integer coefficients (this is a the subspace of $\mathfrak{h}_{0}$ ). Then $\Delta_{0}$ is a root subsystem of $\Delta$.

Definition 0.3 The roots of the set $\Delta_{\mathfrak{m}}=\Delta \backslash \Delta_{0}$ are called complemetary roots.

## Painted Dynkin diagrams

## Review of selected

## research

## Generalized flag

 manifoldsRicci tensor of a

Riemannian
submersions

Classification of flag

$$
G_{2} / T
$$

Definition 0.4 Let $\Gamma(\Pi)$ be the Dynkin diagram of $\Pi$. By painting black in $\Gamma(\Pi)$ the simple roots $\alpha_{i} \in \Pi_{\mathfrak{m}}=\Pi \backslash \Pi_{0}$ we obtain the painted Dynkin diagram $\Gamma\left(\Pi_{\mathfrak{m}}\right)$ of $M$.

## Example

$$
G_{2}\left(\alpha_{2}\right)
$$

$$
G_{2}\left(\alpha_{1}\right)
$$



These correspond to the flag manifolds

$$
\begin{gathered}
G_{2} / U(2) \quad \text { with } \mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \\
G_{2} / U(2) \quad \text { with } \mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3}, \text { and } \\
G_{2} /(U(1) \times U(1)) \text { with } \mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5} \oplus \mathfrak{m}_{6}
\end{gathered}
$$

## $T$-roorts and isotropy representation

Let

$$
\mathfrak{t}=\mathfrak{z} \cap \mathfrak{h}_{0}=\left\{H \in \mathfrak{h}_{0}:\left(H, \Pi_{0}\right)=0\right\}, \quad\left(\mathfrak{h}_{0}=\sqrt{-1} \mathfrak{h}\right)
$$

We consider the restriction map $\kappa: \mathfrak{h}_{0}^{*} \rightarrow \mathfrak{t}^{*},\left.\alpha \mapsto \alpha\right|_{\mathfrak{t}}$ and set $\Delta_{\mathfrak{t}}=\kappa(\Delta), \kappa\left(\Delta_{0}\right)=0$.

Definition 0.5 The elements of $\Delta_{\mathfrak{t}}$ are called $\mathfrak{t}$-roots.
Let $\mathfrak{m}^{\mathbb{C}}=T_{o}(G / K)^{\mathbb{C}}$ be the complexification of $\mathfrak{m}$. Then it is $\mathfrak{m}^{\mathbb{C}}=\sum_{\alpha \in \Delta_{\mathfrak{m}}} \mathfrak{g}_{\alpha}^{\mathbb{C}}$.

Proposition 0.6 (Alexkseevsky-Perelomov) There exists a 1-1 correspondence between $\mathfrak{t}$-roots $\xi$ and irreducible submodules $\mathfrak{m}_{\xi}$ of the $\operatorname{Ad}_{G}(K)$-module $\mathfrak{m}^{\mathbb{C}}$ given by

$$
\Delta_{\mathfrak{t}} \ni \xi \mapsto \mathfrak{m}_{\xi}=\sum_{\left\{\alpha \in \Delta_{\mathfrak{m}}: \kappa(\alpha)=\xi\right\}} \mathfrak{g}_{\alpha}^{\mathbb{C}}
$$

## $T$-roorts and isotropy representation

If we denote by $\Delta_{t}^{+}$the set of all positive $t$-roots (this is the restricton of the root system $\Delta^{+}$under the map $\kappa$ ), then

$$
\begin{equation*}
\mathfrak{m}=\sum_{\xi \in \Delta_{\mathfrak{t}}^{+}}\left(\mathfrak{m}_{\xi}+\mathfrak{m}_{-\xi}\right)^{\tau}=\sum_{\xi_{i} \in \Delta_{\mathfrak{t}}^{+}=\left\{\xi_{1}, \ldots, \xi_{q}\right\}} \mathfrak{m}_{i} \tag{14}
\end{equation*}
$$

as $A d_{G}(K)$-modules. Also,

$$
\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{i}=2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{m}}^{+}: \kappa(\alpha)=\xi_{i}\right\}\right|
$$

$G$-invariant Riemannian metrics $g$ on $G / K$ can be expressed as

$$
\begin{equation*}
g=\left.\sum_{\xi \in \Delta_{\mathfrak{t}}^{+}} x_{\xi} B\right|_{\left(\mathfrak{m}_{\xi}+\mathfrak{m}_{-\xi}\right)^{\tau}}=\left.\sum_{i=1}^{q} x_{\xi_{i}} B\right|_{\left(\mathfrak{m}_{\xi_{i}}+\mathfrak{m}_{-\xi_{i}}\right)^{\tau}} \tag{15}
\end{equation*}
$$

for positive real numbers $x_{\xi}, x_{\xi_{i}}$. Thus $G$-invariant Riemannian metrics on $M=G / K$ are parametrized by $q$ real positive parameters.

## Kähler-Einstein metrics

## Review of selected

 researchGeneralized flag manifolds

Ricci tensor of a
In computing the Ricci tensor for a generalized flag manifold $M=G / K$ by using Riemannian submersions we will also use the well known fact that $M$ admits a finite number of $G$-invariant Kähler-Einstein metrics.
Let $\delta_{\mathfrak{m}}=\frac{1}{2} \sum_{\alpha \in \Delta_{\mathfrak{m}}^{+}} \alpha \in \sqrt{-1} \mathfrak{h}$ (Koszul form).
Then $2 \delta_{\mathfrak{m}}=k_{\alpha_{i_{1}}} \Lambda_{\alpha_{i_{1}}}+\cdots+k_{\alpha_{i_{r}}} \Lambda_{\alpha_{i_{r}}}$, where $k_{\alpha}=\frac{2\left(2 \delta_{\mathfrak{m}}, \alpha\right)}{(\alpha, \alpha)}$ for $\alpha \in \Pi \backslash \Pi_{0}$.

Proposition 0.7 The $G$-invariant metric $g_{2 \delta_{\mathfrak{m}}}$ on $G / K$ corresponding to $2 \delta_{\mathfrak{m}}$ is a Kähler-Einstein metric which is given by

$$
g_{2 \delta_{\mathfrak{m}}}=\left.\sum_{\xi \in \Delta_{\mathfrak{t}}^{+}}\left(2 \delta_{\mathfrak{m}}, \xi\right) B\right|_{\left(\mathfrak{m}_{\xi}+\mathfrak{m}_{-\xi}\right)^{\tau}}
$$

## Example A

## The problem

## Review of selected

 researchGeneralized flag manifolds

Ricci tensor of a compact homogeneous space

## Riemannian

## submersions

Classification of flag
manifolds with five isotropy summands

## Case of $E_{6}$ : (Type A)

Recall that the highest root $\tilde{\alpha}$ of $E_{6}$ is given by
$\tilde{\alpha}=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+2 \alpha_{6}$. There are two pairs $\left(\Pi, \Pi_{0}\right)$ of Type A, which determine flag manifolds with five isotropy summands, namely the choices $\Pi \backslash \Pi_{0}=\left\{\alpha_{1}, \alpha_{4}\right\}$ and $\Pi \backslash \Pi_{0}=\left\{\alpha_{2}, \alpha_{5}\right\}$. They correspond to the painted Dynkin diagrams

which both define the flag manifold $E_{6} / S U(4) \times S U(2) \times U(1)^{2}$. However, there is an outer automorphism of $E_{6}$ which makes these painted Dynkin diagrams equivalent (e.g. Bordeman et al). Thus we will not distinguish these two pairs $\left(\Pi, \Pi_{0}\right)$ and we will work with the first one.

## Example A

## The problem

Review of selected research

## Generalized flag

 manifoldsRicci tensor of a compact homogeneous space

Riemannian
submersions
Classification of flag manifolds with five isotropy summands
Lie theoretic description
Painted Dynkin
diagrams
$T$-roorts and isotropy representation
$T$-roorts and isotropy representation
Kähler-Einstein metrics
Example A
Example A
Example A
Example B

Let $\mathfrak{n}$ be the $B$-orthogonal complement of the isotropy subalgebra $\mathfrak{k}$ in $\mathfrak{e}_{6}$. The root system of the semisimple part of the isotropy subgroup $K$ is given by $\Delta_{0}^{+}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}, \alpha_{2}+\alpha_{3}, \alpha_{3}+\alpha_{6}, \alpha_{2}+\alpha_{3}+\alpha_{6}\right\}$, thus

$$
\Delta_{\mathfrak{n}}^{+}= \begin{cases}\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+2 \alpha_{6} & \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{6}  \tag{16}\\ \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+\alpha_{6} & \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{6} \\ \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+\alpha_{6} & \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} \\ \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} & \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} \\ \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{6} & \alpha_{3}+\alpha_{4}+\alpha_{5} \\ \alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+\alpha_{6} & \alpha_{3}+\alpha_{4}+\alpha_{6} \\ \alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} & \alpha_{3}+\alpha_{4} \\ \alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{6} & \alpha_{4}+\alpha_{5} \\ \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} & \alpha_{4} \\ \alpha_{1} & \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}\end{cases}
$$

Let $\alpha=\sum_{k=1}^{6} c_{k} \alpha_{k} \in \Delta_{\mathfrak{n}}^{+}$. Since $\Pi_{\mathfrak{n}}=\left\{\alpha_{1}, \alpha_{4}\right\}$, it follows that that $\kappa(\alpha)=c_{1} \bar{\alpha}_{1}+c_{4} \bar{\alpha}_{4}$, where the numbers $c_{1}, c_{4}$ are such that $0 \leq c_{1}, c_{4} \leq 2$.

## Example A

## The problem

## Review of selected

## research

Generalized flag manifolds

Ricci tensor of a

## Riemannian

submersions
Classification of flag
So, by using (16), we easily conclude that the positive $\mathfrak{t}$-roots are given by $\Delta(\mathfrak{n})_{\mathfrak{t}}^{+}=\left\{\bar{\alpha}_{1}, \bar{\alpha}_{4}, \bar{\alpha}_{1}+\bar{\alpha}_{4}, 2 \bar{\alpha}_{4}, \bar{\alpha}_{1}+2 \bar{\alpha}_{4}\right\}$, and thus $\mathfrak{n}=\mathfrak{n}_{1} \oplus \mathfrak{n}_{2} \oplus \mathfrak{n}_{3} \oplus \mathfrak{n}_{4} \oplus \mathfrak{n}_{5}$.
Also, we easily conclude that

$$
\begin{align*}
\operatorname{dim}_{\mathbb{R}} \mathfrak{n}_{1} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{n}}^{+}: \kappa(\alpha)=\bar{\alpha}_{1}\right\}\right|=2 \cdot 4=8 \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{n}_{2} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{n}}^{+}: \kappa(\alpha)=\bar{\alpha}_{4}\right\}\right|=2 \cdot 12=24 \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{n}_{3} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{n}}^{+}: \kappa(\alpha)=\bar{\alpha}_{1}+\bar{\alpha}_{4}\right\}\right|=2 \cdot 8=16 \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{n}_{4} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{n}}^{+}: \kappa(\alpha)=2 \bar{\alpha}_{4}\right\}\right|=2 \cdot 1=2, \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{n}_{5} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{n}}^{+}: \kappa(\alpha)=\bar{\alpha}_{1}+2 \bar{\alpha}_{4}\right\}\right|=2 \cdot 4=8 . \tag{17}
\end{align*}
$$

## Example B

## Case of $E_{6}$ : (Type B)

The flag manifold $E_{6} / S U(4) \times S U(2) \times U(1)^{2}$ is also defined by two pairs $\left(\Pi, \Pi_{0}\right)$ of Type B, given by $\Pi \backslash \Pi_{0}=\left\{\alpha_{4}, \alpha_{6}\right\}$ and $\Pi \backslash \Pi_{0}=\left\{\alpha_{2}, \alpha_{6}\right\}$. They correspond to the painted Dynkin diagrams


Note that there is also an outer automorphism of $E_{6}$ which makes these painted Dynkin diagrams equivalent, and thus we can work with the first pair $\left(\Pi, \Pi_{0}\right)$ only. By similar method we obtain that the positive $t$-roots are $\Delta(\mathfrak{m})_{\mathfrak{t}}^{+}=\left\{\bar{\alpha}_{6}, \bar{\alpha}_{4}, \bar{\alpha}_{6}+\bar{\alpha}_{4}, \bar{\alpha}_{6}+2 \bar{\alpha}_{4}, 2 \bar{\alpha}_{6}+2 \bar{\alpha}_{4}\right\}$ and thus we obtain the decomposition $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5}$. where the dimensions of the submodules $\mathfrak{m}_{i}$ are given as follows:

## Example B

## Review of selected

## research

Generalized flag manifolds

Ricci tensor of a

$$
\left.\begin{array}{rl}
\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{1} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{m}}^{+}: \kappa(\alpha)=\bar{\alpha}_{6}\right\}\right|=2 \cdot 4=8, \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{2} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{m}}^{+}: \kappa(\alpha)=\bar{\alpha}_{4}\right\}\right|=2 \cdot 8=16, \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{3} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{m}}^{+}: \kappa(\alpha)=\bar{\alpha}_{6}+\bar{\alpha}_{4}\right\}\right|=2 \cdot 12=24, \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{4} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{m}}^{+}: \kappa(\alpha)=\bar{\alpha}_{6}+2 \bar{\alpha}_{4}\right\}\right|=2 \cdot 4=8, \\
\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{5} & =2 \cdot\left|\left\{\alpha \in \Delta_{\mathfrak{m}}^{+}: \kappa(\alpha)=2 \bar{\alpha}_{6}+2 \bar{\alpha}_{4}\right\}\right|=2 \cdot 1=2 . \tag{18}
\end{array}\right\}
$$

However We can show that these flag manifolds $G / K$ of Type A and B are isometric as real manifolds, by an isometry arising from the action of the Weyl group of $G$.
Thus we study only flag manifolds of Type A.

## Example A, Kähler-Einstein metric

Let $\Pi \backslash \Pi_{0}=\Pi_{\mathfrak{n}}=\left\{\alpha_{1}, \alpha_{4}\right\}$. It is $2 \delta_{\mathfrak{n}}=5 \Lambda_{\alpha_{1}}+7 \Lambda_{\alpha_{4}}$, Thus the Kähler Einstein metric $g_{2 \delta_{\mathrm{m}}}$ on $G / K$ is given by

$$
g_{2 \delta_{\mathfrak{n}}}=\left.5 B\right|_{\mathfrak{n}_{1}}+\left.7 B\right|_{\mathfrak{n}_{2}}+\left.12 B\right|_{\mathfrak{n}_{3}}+\left.14 B\right|_{\mathfrak{n}_{4}}+\left.19 B\right|_{\mathfrak{n}_{5}} .
$$

Also, here $G=E_{6}, K=U(1) \times U(1) \times S U(2) \times S U(4)$, $L=U(5) \times S U(2)$ and we have
$d_{1}=8, d_{2}=24, d_{3}=16, d_{4}=2, d_{5}=8$.
Thus by applying the expressions found earlier we obtain that

$$
\left[\begin{array}{c}
5 \\
23
\end{array}\right]=2, \quad\left[\begin{array}{c}
4 \\
22
\end{array}\right]=1
$$

## Example A, Kähler-Einstein metric

Since the Kähler Einstein metric $g_{2 \delta_{\mathrm{m}}}$ on $G / K$ is given as above, we substitute the values $x_{1}=5, x_{2}=7, x_{3}=12, x_{4}=14, x_{5}=19$ into (8).

Consider the components $r_{2}, r_{3}, r_{4}$ and $r_{5}$ of the Ricci tensor for these values.
Then, from $r_{2}-r_{3}=0$ and $r_{4}-r_{5}=0$, we obtain that

$$
\left[\begin{array}{c}
3 \\
12
\end{array}\right]=2, \quad\left[\begin{array}{c}
5 \\
14
\end{array}\right]=\frac{1}{3} .
$$



# The classification of flag manifolds with five isotropy summands 

Flag manifolds $G / K$ of a simple Lie group $G$ whose isotropy representation decomposes into a sum of five irreducible summands can be obtained by the following possible Dynkin diagrams:
(a) Paint black one simple root of Dynkin mark 5, that is

$$
\Pi \backslash \Pi_{0}=\left\{\alpha_{p}: \operatorname{Mrk}\left(\alpha_{\mathrm{p}}\right)=5\right\}
$$

This case corresponds only to the flag manifold $E_{8} /(U(1) \times S U(4) \times S U(5))$.
It was studied by Chrysikos-Sakane in a recent work in which they classified all flag manifolds $M$ with $b_{2}(M)=1$.
This space admits five non-Kähler Einstein metrics and a unique Kähler-Einstein metric.
(b) Paint black two simple roots, one of Dynkin mark 1 and one of Dynkin mark 2, that is

$$
\Pi \backslash \Pi_{0}=\left\{\alpha_{i}, \alpha_{j}: \operatorname{Mrk}\left(\alpha_{\mathrm{i}}\right)=1, \operatorname{Mrk}\left(\alpha_{\mathrm{j}}\right)=2\right\} . \quad \text { Type } \mathbf{A}
$$

(c) Paint black two simple roots, both of Dynkin mark 2, that is

$$
\Pi \backslash \Pi_{0}=\left\{\alpha_{i}, \alpha_{j}: \operatorname{Mrk}\left(\alpha_{\mathrm{i}}\right)=\operatorname{Mrk}\left(\alpha_{\mathrm{j}}\right)=2\right\} . \quad \text { Туре В }
$$

For both cases $b_{2}(M)=2$.
It can be shown that
Type $\mathbf{A} \Rightarrow \mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4}$, or
$\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5}$.
Type $\mathbf{B} \Rightarrow \mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5}$, or
$\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \mathfrak{m}_{3} \oplus \mathfrak{m}_{4} \oplus \mathfrak{m}_{5} \oplus \mathfrak{m}_{6}$.

## Riemannian

submersions

The following table gives the pairs $\left(\Pi, \Pi_{0}\right)$ of Type $A$ and $B$, which determine flag manifolds $G / K$ with $\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{5}$.

| $G$ Classical | $B \ell=S O(2 \ell+1)$ | $D_{\ell}=S O(2 \ell)$ |
| ---: | :--- | :--- |
| Type A | $\Pi \backslash \Pi_{0}=\left\{\alpha_{1}, \alpha_{p+1}: 2 \leq p \leq \ell-1\right\}$ | $\Pi \backslash \Pi_{0}=\left\{\alpha_{1}, \alpha_{p+1}: 2 \leq p \leq \ell-3\right\}$ |
| Type B | $\Pi \backslash \Pi_{0}=\left\{\alpha_{p}, \alpha_{p+1}: 2 \leq p \leq \ell-1\right\}$ | $\Pi \backslash \Pi_{0}=\left\{\alpha_{p}, \alpha_{p+1}: 2 \leq p \leq \ell-3\right\}$ |
| $G$ Exceptional | $E_{6}$ | $E_{7}$ |
| Type A | $\Pi \backslash \Pi_{0}=\left\{\alpha_{1}, \alpha_{4}\right\}$ | $\Pi \backslash \Pi_{0}=\left\{\alpha_{1}, \alpha_{7}\right\}$ |
| Type A | $\Pi \backslash \Pi_{0}=\left\{\alpha_{2}, \alpha_{5}\right\}$ |  |
| Type B $\Pi \backslash \Pi_{0}=\left\{\alpha_{4}, \alpha_{6}\right\}$ <br> Type B $\Pi \backslash \Pi_{0}=\left\{\alpha_{2}, \alpha_{6}\right\}$ | $\Pi \backslash \Pi_{0}=\left\{\alpha_{6}, \alpha_{7}\right\}$ |  |

## 5 summands and $b_{2}(M)=2$

## The problem

Review of selected research

Generalized flag manifolds

Since corresponding flag manifolds of Types A and B are isometric, it suffices to study only the following non isometric flag manifolds:

Generalized flag manifolds with five isotropy summands and $b_{2}(M)=2$

$$
\begin{array}{ll}
M=G / K \text { classical } & M=G / K \text { exceptional } \\
\hline S O(2 \ell+1) / U(1) \times U(p) \times S O(2(\ell-p-1)+1) & E_{6} / S U(4) \times S U(2) \times U(1)^{2} \\
S O(2 \ell) / U(1) \times U(p) \times S O(2(\ell-p-1)) & E_{7} / S U(6) \times U(1)^{2}
\end{array}
$$

## Einstein metrics

Main Theorem. (1) Let $M_{1}=G_{1} / K_{1}$ be one of the flag manifolds $E_{6} /(S U(4) \times S U(2) \times U(1) \times U(1))$ or $E_{7} /(U(1) \times U(6))$. Then $M_{1}$ admits exactly seven $G_{1}$-invariant Einstein metrics up to isometry.
There are two Kähler-Einstein metrics and five non Kähler metrics (up to scalar).
(2) Let $M_{2}=G_{2} / K_{2}$ be one of the flag manifolds

$$
S O(2 \ell+1) /(U(1) \times U(p) \times S O(2(\ell-p-1)+1)) \text { or }
$$

$$
S O(2 \ell) /(U(1) \times U(p) \times S O(2(\ell-p-1)))
$$

Then $M_{2}$ admits at least two $G_{2}$-invariant non Kähler-Einstein metrics up to isometry.

Classification of flag manifolds with five

isotropy summands

## Riemannian

submersions

Classification of flag

For flag manifolds with five isotropy summands the Einstein equation reduces to an algebraic system of four equations with four unknowns.

These systems are difficult to be solved, especially in the cases where the coefficents depend on parameters (this happens for the flag manifolds of a classical Lie group). In this cases we only prove existence of a certain number of solutions.
For flag manifolds of an exceptional Lie group it is possible to obtain numerical solutions, however there is one case
$\left(E_{8} / U(1) \times S U(2) \times S U(3) \times S U(5)\right.$ with six isotropy summands and $b_{2}(M)=1$ ) where we can not obtain solutions (even numerical!).

To obtain numerical solutions or prove existence of solution for parametric systems of equations we use methods of Gröbner bases.

## Case of $E_{6}$

## Generalized flag

 manifoldsRicci tensor of a compact homogeneous space

Riemannian

## submersions

Classification of flag
manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Solutions of algebraic systems of equations

Case of $E_{6}$

Consider $M=E_{6} / S U(4) \times S U(2) \times U(1)^{2}$.
The components $r_{i}(i=1, \cdots, 5)$ of the Ricci tensor for a $G$-invariant Riemannian metric (7) on $G / K$ are given as follows:

$$
\begin{align*}
& r_{1}=\frac{1}{2 x_{1}}+\frac{1}{8}\left(\frac{x_{1}}{x_{2} x_{3}}-\frac{x_{2}}{x_{1} x_{3}}-\frac{x_{3}}{x_{1} x_{2}}\right)+\frac{1}{48}\left(\frac{x_{1}}{x_{4} x_{5}}-\frac{x_{5}}{x_{1} x_{4}}-\frac{x_{4}}{x_{1} x_{5}}\right) \\
& r_{2}=\frac{1}{2 x_{2}}+\frac{1}{24}\left(\frac{x_{2}}{x_{1} x_{3}}-\frac{x_{1}}{x_{2} x_{3}}-\frac{x_{3}}{x_{1} x_{2}}\right)-\frac{1}{48} \frac{x_{4}}{x_{2}^{2}}+\frac{1}{24}\left(\frac{x_{2}}{x_{3} x_{5}}-\frac{x_{5}}{x_{2} x_{3}}\right. \\
& r_{3}=\frac{1}{2 x_{3}}+\frac{1}{16}\left(\frac{x_{3}}{x_{1} x_{2}}-\frac{x_{2}}{x_{1} x_{3}}-\frac{x_{1}}{x_{2} x_{3}}\right)+\frac{1}{16}\left(\frac{x_{3}}{x_{2} x_{5}}-\frac{x_{5}}{x_{2} x_{3}}-\frac{x_{2}}{x_{3} x_{5}}\right) \\
& r_{4}=\frac{1}{2 x_{4}}+\frac{1}{12}\left(\frac{x_{4}}{x_{1} x_{5}}-\frac{x_{5}}{x_{1} x_{4}}-\frac{x_{1}}{x_{4} x_{5}}\right)+\frac{1}{8}\left(-\frac{2}{x_{4}}+\frac{x_{4}}{x_{2}^{2}}\right) \\
& r_{5}=\frac{1}{2 x_{5}}+\frac{1}{8}\left(\frac{x_{5}}{x_{2} x_{3}}-\frac{x_{2}}{x_{3} x_{5}}-\frac{x_{3}}{x_{2} x_{5}}\right)+\frac{1}{48}\left(\frac{x_{5}}{x_{1} x_{4}}-\frac{x_{1}}{x_{4} x_{5}}-\frac{x_{4}}{x_{1} x_{5}}\right) \tag{19}
\end{align*}
$$

## Case of $E_{6}$

## The problem

## Review of selected

 researchGeneralized flag manifolds

Ricci tensor of a

We consider the system of equations:

$$
\begin{equation*}
r_{1}=r_{5}, \quad r_{2}=r_{3}, \quad r_{3}=r_{4}, \quad r_{4}=r_{5} \tag{20}
\end{equation*}
$$

From $r_{1}-r_{5}=0$, we see that
$\left(x_{1}-x_{5}\right)\left(x_{1} x_{2} x_{3}+3 x_{1} x_{4} x_{5}+3 x_{2}^{2} x_{4}-12 x_{2} x_{3} x_{4}+x_{2} x_{3} x_{5}+3 x_{3}^{2} x_{4}\right)=$

Case of $x_{5}=x_{1}$. We obtain four non isometric Einstein metrics (non Kähler) (Not presented here).
Case of $x_{5} \neq x_{1}$. We normalize our equations by setting $x_{1}=1$. We see that the system of polynomial equations (20) reduces to the following system of polynomial equations:

## Case of $E_{6}$

## The problem

## Review of selected

 research
## Generalized flag

 manifoldsRicci tensor of a compact homogeneous space

Riemannian
submersions
Classification of flag
manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Solutions of algebraic systems of equations

Case of $E_{6}$

We normalize our equations by setting $x_{1}=1$. We see that the system of polynomial equations (20) reduces to the following system of polynomial equations:

$$
\begin{align*}
& p_{1}=-8 x_{2}^{3} x_{4} x_{5}-2 x_{2}{ }^{3} x_{4}-x_{2}{ }^{2} x_{3} x_{4}{ }^{2}+24 x_{2}{ }^{2} x_{3} x_{4} x_{5}-x_{2}{ }^{2} x_{3} x_{5}{ }^{2}+x_{2}{ }^{2} \\
& +2 x_{2} x_{3}{ }^{2} x_{4}-24 x_{2} x_{3} x_{4} x_{5}+2 x_{2} x_{4} x_{5}^{2}+8 x_{2} x_{4} x_{5}+x_{3} x_{4}^{2} x_{5}=0, \\
& p_{2}=5 x_{2}{ }^{3} x_{5}+5 x_{2}{ }^{3}-24 x_{2}{ }^{2} x_{5}-5 x_{2} x_{3}{ }^{2} x_{5}-5 x_{2} x_{3}{ }^{2}+24 x_{2} x_{3} x_{5}+x_{2} x_{5} \\
& p_{3}=-3 x_{2}^{3} x_{4} x_{5}-3 x_{2}{ }^{3} x_{4}-4 x_{2}{ }^{2} x_{3} x_{4}^{2}+4 x_{2}{ }^{2} x_{3} x_{5}^{2}-12 x_{2}^{2} x_{3} x_{5}+4 x_{2} \\
& +3 x_{2} x_{3}{ }^{2} x_{4} x_{5}+3 x_{2} x_{3}{ }^{2} x_{4}-3 x_{2} x_{4} x_{5}{ }^{2} 3 x_{2} x_{4} x_{5}-6 x_{3} x_{4}^{2} x_{5}=0, \\
& p_{4}=3 x_{2}^{2} x_{4}-12 x_{2} x_{3} x_{4}+x_{2} x_{3} x_{5}+x_{2} x_{3}+3 x_{3}{ }^{2} x_{4}+3 x_{4} x_{5}=0 . \tag{22}
\end{align*}
$$

To find non zero solutions of equations (22), we consider a polynomial ring $R_{2}=\mathbb{Q}\left[y, x_{2}, x_{3}, x_{4}, x_{5}\right]$ and an ideal $I_{2}$ generated by

$$
\left\{p_{1}, p_{2}, p_{3}, p_{4}, y x_{2} x_{3} x_{4} x_{5}-1\right\}
$$

## Generalized flag

 manifoldsRicci tensor of a compact homogeneous space

Riemannian submersions

Classification of flag manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Solutions of algebraic systems of equations

Case of $E_{6}$

## We take a lexicographic order $>$ with $y>x_{2}>x_{5}>x_{3}>x_{4}$ for a monomial ordering on $R_{2}$. Then a Gröbner basis for the ideal $I_{2}$ contains a polynomial

$$
\left(5 x_{4}-22\right)\left(5 x_{4}-14\right)\left(17 x_{4}-22\right)\left(19 x_{4}-14\right) q_{1}
$$

## where

$$
\begin{aligned}
& q_{1}=25684944948354308203125 x_{4}{ }^{24}-312330714783423219879187500 x_{4}{ }^{23} \\
& -14789576030598686784365775000 x_{4}{ }^{22}+169312435225853499159893370000 x_{4}{ }^{21} \\
& +1668319000494283065686208840000 x_{4}{ }^{20}-8641784992792389994443258331200 x_{4}{ }^{19} \\
& -10861158787935440551542665216640 x_{4}{ }^{18}+87429206357937887857587009061632 x_{4}{ }^{17} \\
& -32949087665531461793795791137024 x_{4}{ }^{16}-302754123930816030608716028461056 x_{4}{ }^{15} \\
& +377294987073145336781487843082240 x_{4}{ }^{14}+229461889322385205525089296121856 x_{4}{ }^{13} \\
& -745488535262100375331097397100544 x_{4}{ }^{12}+464674752074856427879419685109760 x_{4}{ }^{11} \\
& +120588308696762557788249740279808 x_{4}{ }^{10}-332437403867399257596854179725312 x_{4}{ }^{9} \\
& +206232698781395558570755696361472 x_{4}{ }^{8}-60625111325239908567111130152960 x_{4}{ }^{7} \\
& +5786387485742898687693985677312 x_{4}{ }^{6}+1618103684685636757652930297856 x_{4}{ }^{5} \\
& -597859726821790689492624998400 x_{4}{ }^{4}+84059799581674625557541683200 x_{4}{ }^{3} \\
& -2979131989754489205686272000 x_{4}{ }^{2}-1842910805533143334912000000 x_{4} \\
& +333622121893933875200000000 \text {. }
\end{aligned}
$$

## Case of $E_{6}$

## The problem

## Review of selected

## research

Generalized flag manifolds

Ricci tensor of a compact homogeneous space

## Riemannian

submersions
Classification of flag
manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Case of $E_{6}$

For the case when $\left(5 x_{4}-22\right)\left(5 x_{4}-14\right)\left(17 x_{4}-22\right)\left(19 x_{4}-14\right)=0$, we consider ideals $I_{3}, I_{4}, I_{5}, I_{6}$ of the polynomial ring $R_{2}=\mathbb{Q}\left[y, x_{2}, x_{3}, x_{4}, x_{5}\right]$ generated by
$\left\{p_{1}, p_{2}, p_{3}, p_{4}, y, x_{2} x_{3} x_{4} x_{5}-1,5 x_{4}-22\right\}, \quad\left\{p_{1}, p_{2}, p_{3}, p_{4}, y, x_{2} x_{3} x_{4} x_{5}-1,5 x_{4}-14\right\}$, $\left\{p_{1}, p_{2}, p_{3}, p_{4}, y, x_{2} x_{3} x_{4} x_{5}-1,17 x_{4}-22\right\}, \quad\left\{p_{1}, p_{2}, p_{3}, p_{4}, y, x_{2} x_{3} x_{4} x_{5}-1,17 x_{4}-14\right\}$
respectively.
We take a lexicographic order $>$ with $y>x_{2}>x_{5}>x_{3}>x_{4}$ for a monomial ordering on $R_{2}$. Then Gröbner bases for the ideals $I_{3}, I_{4}, I_{5}$, $I_{6}$ contain polynomials

$$
\begin{array}{rr}
\left\{5 x_{4}-22,5 x_{3}-6,5 x_{5}-17,5 x_{2}-11\right\}, & \left\{5 x_{4}-14,5 x_{3}-12,5 x_{5}-19,5 x_{2}-7\right\}, \\
\left\{17 x_{4}-22,17 x_{3}-6,17 x_{5}-5,17 x_{2}-11\right\}, & \left\{19 x_{4}-14,19 x_{3}-12,19 x_{5}-5,19 x_{2}-7\right\} .
\end{array}
$$

respectively. Thus we obtain the following solutions of equations (22):

## Case of $E_{6}$

## The problem

Review of selected research

Generalized flag manifolds

Ricci tensor of a compact homogeneous space

Riemannian
submersions
Classification of flag manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Solutions of algebraic systems of equations

## Case of $E_{6}$

Case of $E_{6}$
Case of $E_{6}$
Case of $E_{6}$
Case of $E_{6}$
Case of $E_{6}$

1) $x_{1}=1, x_{2}=\frac{11}{5}, x_{3}=\frac{6}{5}, x_{4}=\frac{22}{5}, x_{5}=\frac{17}{5}, \quad$ 2) $x_{1}=1, x_{2}=\frac{7}{5}, x_{3}=\frac{12}{5}, x_{4}=\frac{14}{5}, x_{5}=\frac{1}{5}$
2) $x_{1}=1, x_{2}=\frac{11}{17}, x_{3}=\frac{6}{17}, x_{4}=\frac{22}{17}, x_{5}=\frac{5}{17}$,
3) $x_{1}=1, x_{2}=\frac{7}{19}, x_{3}=\frac{12}{19}, x_{4}=\frac{14}{19}, x_{5}=$

## Case of $E_{6}$

## The problem

Review of selected research

Generalized flag manifolds

Ricci tensor of a compact homogeneous space

## Riemannian

## submersions

Classification of flag manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Solutions of algebraic systems of equations

Case of $E_{6}$

We normalize these solutions as follows:

1) $x_{1}=5, x_{2}=11, x_{3}=6, x_{4}=22, x_{5}=17$,
2) $x_{1}=5, x_{2}=7, x_{3}=12, x_{4}=14, x_{5}=19$,
3) $x_{1}=17, x_{2}=11, x_{3}=6, x_{4}=22, x_{5}=5$, 4) $x_{1}=19, x_{2}=7, x_{3}=12, x_{4}=14, x_{5}=5 . ~ \$$
and we get Kähler Einstein metrics for these values of $x_{i}$ 's. Note that the metrics corresponding to the cases 1) and 3) are isometric and the cases 2) and 4) are isometric.

For the case when $q_{1}=0$ and
$\left(5 x_{4}-22\right)\left(5 x_{4}-14\right)\left(17 x_{4}-22\right)\left(19 x_{4}-14\right) \neq 0$, we consider a ideal $I_{7}$ of the polynomial ring $R_{2}=\mathbb{Q}\left[y, x_{2}, x_{3}, x_{4}, x_{5}\right]$ generated by
$\left\{p_{1}, p_{2}, p_{3}, p_{4}, y\left(5 x_{4}-22\right)\left(5 x_{4}-14\right)\left(17 x_{4}-22\right)\left(19 x_{4}-14\right) x_{2} x_{3} x_{4} x_{5}-1\right\}$.
We take the same lexicographic order $>$ with $y>x_{2}>x_{5}>x_{3}>x_{4}$ for a monomial ordering on $R_{2}$. Then a Gröbner basis for the ideal $I_{7}$ contains the polynomial $q_{1}$ and polynomials of the form

$$
\begin{equation*}
b_{2} x_{2}+v_{2}\left(x_{4}\right), \quad b_{3} x_{3}+v_{3}\left(x_{4}\right), \quad b_{5} x_{5}+v_{5}\left(x_{4}\right) \tag{25}
\end{equation*}
$$

## Case of $E_{6}$

## The problem

Review of selected research

Generalized flag manifolds

Ricci tensor of a compact homogeneous space

Riemannian
submersions
Classification of flag manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

Solutions of algebraic systems of equations

Case of $E_{6}$
where $b_{2}, b_{3}, b_{5}$ are positive integers and $v_{2}\left(x_{4}\right), v_{3}\left(x_{4}\right), v_{5}\left(x_{4}\right)$ are polynomials of degree 23 with integer coefficients.
By solving the equation $q_{1}=0$ for $x_{4}$ numerically, we obtain exactly 6 positive solutions, 8 negative solutions and 10 non-real solutions. The 6 positive solutions are approximately given by

1) $x_{4} \approx 1.157018562397866$,
2) $x_{4} \approx 2.075646788197390$,
3) $x_{4} \approx 2.145057741729789$,
4) $x_{4} \approx 2.163849575049888$,
5) $x_{4} \approx 12.97930323340096$,
6) $x_{4} \approx 12207.19468694106$.

We substitute the values for $x_{4}$ into the equations
$b_{2} x_{2}+v_{2}\left(x_{4}\right)=0, b_{3} x_{3}+v_{3}\left(x_{4}\right)=0, b_{5} x_{5}+v_{5}\left(x_{4}\right)=0$. Then we obtain the following values approximately:

1) $x_{4} \approx 1.15702, x_{2} \approx 0.641194, x_{3} \approx 0.566074, x_{5} \approx 0.557426$,
2) $x_{4} \approx 2.07565, x_{2} \approx 1.15028, x_{3} \approx 1.01551, x_{5} \approx 1.79396$,
3) $x_{4} \approx 2.14506, x_{2} \approx 8.87367, x_{3} \approx 33.3409, x_{5} \approx-1.12628$,
4) $x_{4} \approx 2.16385, x_{2} \approx 27.3523, x_{3} \approx 7.26471, x_{5} \approx-1.16127$,
5) $x_{4} \approx 12.9793, x_{2} \approx 1.3699, x_{3} \approx 5.42602, x_{5} \approx-1.49194$,
6) $x_{4} \approx 12207.2, x_{2} \approx 18.0447, x_{3} \approx 1.46532, x_{5} \approx-221.833$.

## Case of $E_{6}$

## The problem

## Review of selected

 researchGeneralized flag manifolds

Ricci tensor of a compact homogeneous space

Riemannian
submersions

Classification of flag
manifolds with five isotropy summands

The classification of flag manifolds with five isotropy summands

## Case of $E_{6}$

Case of $E_{6}$
Case of $E_{6}$
Case of $E_{6}$
Case of $E_{6}$
Case of $E_{6}$

Thus we see that only cases 1) and 2) correspond to Einstein metrics. We substitute these values for $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ into (19) and get

1) $r_{1}=r_{2}=r_{3}=r_{4}=r_{5} \approx 0.31855$,
2) $r_{1}=r_{2}=r_{3}=r_{4}=r_{5} \approx 0.571467$.

Thus we obtain two Einstein metrics with Einstein constant 1:

1) $x_{1} \approx 0.31855, x_{2} \approx 0.366421, x_{3} \approx 0.323492, x_{4} \approx 0.661198, x_{5} \approx 0.571467$,
2) $\quad x_{1} \approx 0.571467, x_{2} \approx 0.366421, x_{3} \approx 0.323492, x_{4} \approx 0.661198, x_{5} \approx 0.31855$.

Now we see that these two metrics are isometric.

## Case of $E_{6}$

Theorem 0.8 The flag manifold $E_{6} /(S U(4) \times S U(2) \times U(1) \times U(1))$ admits exactly seven $E_{6}$-invariant Einstein metrics up to isometry. There are two Kähler-Einstein metrics (up to scalar) given by
$\left\{x_{1}=5, x_{2}=7, x_{3}=12, x_{4}=14, x_{5}=19\right\}, \quad\left\{x_{1}=5, x_{2}=11, x_{3}=6, x_{4}=22, x_{5}=17\right\}$.
The other five are non-Kähler. These metrics are given approximately by

$$
\begin{aligned}
& \left\{x_{1} \approx 0.571467, x_{2} \approx 0.366421, x_{3} \approx 0.323492, x_{4} \approx 0.661198, x_{5} \approx 0.31855\right\}, \\
& \left\{x_{1} \approx 0.49572094, x_{2} \approx 0.39385688, x_{3} \approx 0.30158949, x_{4} \approx 0.093299706, x_{5} \approx 0.4957209\right. \text { \&द子) } \\
& \left\{x_{1} \approx 0.29495775, x_{2} \approx 0.40303263, x_{3} \approx 0.48143674, x_{4} \approx 0.10093004, x_{5} \approx 0.29495775\right\}(30) \\
& \left\{x_{1} \approx 0.47024404, x_{2} \approx 0.35268279, x_{3} \approx 0.31380214, x_{4} \approx 0.62760315, x_{5} \approx 0.47024404\right\}(31) \\
& \left\{x_{1} \approx 0.26465483, x_{2} \approx 0.42092053, x_{3} \approx 0.43231982, x_{4} \approx 0.42390247, x_{5} \approx 0.26465483\right\}(32)
\end{aligned}
$$

