Abelian complex structures and related geometries

María Laura Barberis

Universidad Nacional de Córdoba, Argentina CIEM - CONICET

Workshop on geometric structures on manifolds and their applications Castle Rauischholzhausen July 01-07 2012

Plan

- Abelian complex structures.
- Relation to HKT geometry.
- Affine Lie algebras and abelian double products.
- Kähler Lie algebras with abelian complex structures.
- The first canonical connection.
- Flat complex connections with (1,1)-torsion.

Abelian complex structures

A complex structure J on a real Lie algebra $\mathfrak g$ is called *abelian* when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}. \tag{1}$$

Equivalently, $\mathfrak{g}^{1,0}$ is an abelian subalgebra of $\mathfrak{g}^{\mathbb{C}}$.

If G is a Lie group with Lie algebra $\mathfrak g$ these conditions imply the vanishing of the Nijenhuis tensor on the invariant almost complex manifold (G,J), that is, J is integrable on G.

Abelian complex structures

A complex structure J on a real Lie algebra $\mathfrak g$ is called *abelian* when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}. \tag{1}$$

Equivalently, $\mathfrak{g}^{1,0}$ is an abelian subalgebra of $\mathfrak{g}^{\mathbb{C}}$.

If G is a Lie group with Lie algebra $\mathfrak g$ these conditions imply the vanishing of the Nijenhuis tensor on the invariant almost complex manifold (G,J), that is, J is integrable on G.

Abelian complex structures

A complex structure J on a real Lie algebra $\mathfrak g$ is called *abelian* when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}. \tag{1}$$

Equivalently, $\mathfrak{g}^{1,0}$ is an abelian subalgebra of $\mathfrak{g}^{\mathbb{C}}$.

If G is a Lie group with Lie algebra $\mathfrak g$ these conditions imply the vanishing of the Nijenhuis tensor on the invariant almost complex manifold (G,J), that is, J is integrable on G.

- A hyperhermitian structure on a smooth manifold M is $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that $J_1J_2=-J_2J_1=J_3$,
 - ② g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha=1,2,3.$
- Given a hyperhermitian structure $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$ on M, g is called *hyper-Kähler with torsion* (HKT) if there exists a connection ∇ on M satisfying
 - ① $\nabla g = 0$, $\nabla J_{\alpha} = 0$, $\alpha = 1, 2, 3$,
 - ① the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that $J_1J_2=-J_2J_1=J_3$,
 - ② g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha=1,2,3.$
- Given a hyperhermitian structure $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$ on M, g is called *hyper-Kähler with torsion* (HKT) if there exists a connection ∇ on M satisfying
 - ① $\nabla g = 0$, $\nabla J_{\alpha} = 0$, $\alpha = 1, 2, 3$,
 - ② the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that $J_1J_2=-J_2J_1=J_3$,
 - 2 g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha=1,2,3.$
- Given a hyperhermitian structure ($\{J_{\alpha}\}_{\alpha=1,2,3},g$) on M, g is called *hyper-Kähler with torsion* (HKT) if there exists a connection ∇ on M satisfying
 - ① $\nabla g = 0$, $\nabla J_{\alpha} = 0$, $\alpha = 1, 2, 3$,
 - ② the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that $J_1J_2=-J_2J_1=J_3$,
 - 2 g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha=1,2,3.$
- Given a hyperhermitian structure $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$ on M, g is called *hyper-Kähler with torsion* (HKT) if there exists a connection ∇ on M satisfying
 - **1** $\nabla g = 0$, $\nabla J_{\alpha} = 0$, $\alpha = 1, 2, 3$,
 - ② the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that $J_1J_2=-J_2J_1=J_3$,
 - 2 g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha=1,2,3.$
- Given a hyperhermitian structure ($\{J_{\alpha}\}_{\alpha=1,2,3},g$) on M, g is called *hyper-Kähler with torsion* (HKT) if there exists a connection ∇ on M satisfying
 - **1** $\nabla g = 0$, $\nabla J_{\alpha} = 0$, $\alpha = 1, 2, 3$,
 - 2 the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

- Dotti Fino (2002): If G is a 2-step nilpotent Lie group with a left invariant HKT structure ($\{J_{\alpha}\}_{\alpha=1,2,3},g$), then the hypercomplex structure is abelian.
- B Dotti Verbitsky (2009): Let $(N, \{J_{\alpha}\}_{\alpha=1,2,3}, g)$ be an HKT nilmanifold such that $\{J_{\alpha}\}$ is left invariant. Then the hypercomplex structure $\{J_{\alpha}\}$ is abelian.

This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

- Dotti Fino (2002): If G is a 2-step nilpotent Lie group with a left invariant HKT structure ($\{J_{\alpha}\}_{\alpha=1,2,3},g$), then the hypercomplex structure is abelian.
- B Dotti Verbitsky (2009): Let $(N, \{J_{\alpha}\}_{\alpha=1,2,3}, g)$ be an HKT nilmanifold such that $\{J_{\alpha}\}$ is left invariant. Then the hypercomplex structure $\{J_{\alpha}\}$ is abelian.

This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

- Dotti Fino (2002): If G is a 2-step nilpotent Lie group with a left invariant HKT structure $(\{J_{\alpha}\}_{\alpha=1,2,3},g)$, then the hypercomplex structure is abelian.
- B Dotti Verbitsky (2009): Let $(N, \{J_{\alpha}\}_{\alpha=1,2,3}, g)$ be an HKT nilmanifold such that $\{J_{\alpha}\}$ is left invariant. Then the hypercomplex structure $\{J_{\alpha}\}$ is abelian.

Affine Lie algebras

• Let (\mathcal{A},\cdot) be a finite dimensional associative, commutative algebra. Set $\mathfrak{aff}(\mathcal{A}) := \mathcal{A} \oplus \mathcal{A}$ with Lie bracket:

$$[(a,a'),(b,b')]=(0,a\cdot b'-b\cdot a'), \hspace{1cm} a,b,a',b'\in \mathcal{A},$$

In particular, when $A = \mathbb{R}$ or $A = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

• Let J be the endomorphism of $\mathfrak{aff}(\mathcal{A})$ defined by

$$J(a,a')=(a',-a), \qquad a,a'\in\mathcal{A}.$$

J defines an abelian complex structure on $\mathfrak{aff}(A)$, which we will call standard.

Affine Lie algebras

• Let (\mathcal{A},\cdot) be a finite dimensional associative, commutative algebra. Set $\mathfrak{aff}(\mathcal{A}) := \mathcal{A} \oplus \mathcal{A}$ with Lie bracket:

$$[(a, a'), (b, b')] = (0, a \cdot b' - b \cdot a'),$$
 $a, b, a', b' \in A,$

In particular, when $A = \mathbb{R}$ or $A = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

• Let J be the endomorphism of $\mathfrak{aff}(\mathcal{A})$ defined by

$$J(a,a')=(a',-a), \qquad a,a'\in\mathcal{A}.$$

J defines an abelian complex structure on $\mathfrak{aff}(A)$, which we will call standard.

Affine Lie algebras

• Let (\mathcal{A}, \cdot) be a finite dimensional associative, commutative algebra. Set $\mathfrak{aff}(\mathcal{A}) := \mathcal{A} \oplus \mathcal{A}$ with Lie bracket:

$$[(a, a'), (b, b')] = (0, a \cdot b' - b \cdot a'),$$
 $a, b, a', b' \in A,$

In particular, when $A = \mathbb{R}$ or $A = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

• Let J be the endomorphism of $\mathfrak{aff}(A)$ defined by

$$J(a,a')=(a',-a), \qquad a,a'\in \mathcal{A}.$$

J defines an abelian complex structure on $\mathfrak{aff}(A)$, which we will call standard.

Properties of Lie algebras carrying abelian complex structures

Let J be an abelian complex structure on the Lie algebra \mathfrak{g} . Then:

- (i) The center \mathfrak{z} of \mathfrak{g} is J-stable.
- (ii) For any $x \in \mathfrak{g}$, $\operatorname{ad}_{Jx} = -\operatorname{ad}_x J$.
- (iii) $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ is abelian, equivalently, \mathfrak{g} is 2-step solvable [Petravchuk, 1988].
- (iv) $J\mathfrak{g}'$ is an abelian subalgebra.
- $(\mathsf{v})\ \mathfrak{g}'\cap J\mathfrak{g}'\subseteq \mathfrak{z}(\mathfrak{g}'_J)\text{, where }\mathfrak{g}'_J:=\mathfrak{g}'+J\mathfrak{g}'.$

Abelian double products

[Andrada-Salamon, 2005] Consider a finite dimensional real vector space \mathcal{A} with two structures of commutative associative algebra, (\mathcal{A},\cdot) and $(\mathcal{A},*)$, with the following compatibility conditions:

$$a*(b\cdot c) = b*(a\cdot c), \qquad a\cdot (b*c) = b\cdot (a*c), \qquad (2)$$

for every $a, b, c \in A$.

Then, $A \oplus A$ with the bracket:

$$[(a, a'), (b, b')] = (-(a*b'-b*a'), a\cdot b'-b\cdot a'),$$
 $a, b, a', b' \in A,$

is a Lie algebra denoted by $(\mathcal{A},\cdot)\bowtie(\mathcal{A},*)$ and the endomorphism J defined by

$$J(a,a') = (-a',a), \qquad a,a' \in \mathcal{A}, \tag{3}$$

is an abelian complex structure, called the *standard* complex structure on $(\mathcal{A},\cdot)\bowtie(\mathcal{A},*)$.

Abelian double products

[Andrada-Salamon, 2005] Consider a finite dimensional real vector space \mathcal{A} with two structures of commutative associative algebra, (\mathcal{A}, \cdot) and $(\mathcal{A}, *)$, with the following compatibility conditions:

$$a*(b\cdot c) = b*(a\cdot c), \qquad a\cdot (b*c) = b\cdot (a*c), \qquad (2)$$

for every $a, b, c \in A$.

Then, $A \oplus A$ with the bracket:

$$[(a,a'),(b,b')] = (-(a*b'-b*a'),a\cdot b'-b\cdot a'), \qquad a,b,a',b' \in \mathcal{A},$$

is a Lie algebra denoted by $(\mathcal{A},\cdot)\bowtie(\mathcal{A},*)$ and the endomorphism J defined by

$$J(a,a')=(-a',a), \qquad a,a'\in\mathcal{A}, \tag{3}$$

is an abelian complex structure, called the *standard* complex structure on $(A, \cdot) \bowtie (A, *)$.

More examples

We show next that there is a large family of Lie algebras with abelian complex structure which are not abelian double products.

Let $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{v}$ where $\mathfrak{a}=\operatorname{span}\{f_1,f_2\}$ and \mathfrak{v} is a 2n-dimensional real vector space. We fix an endomorphism J of \mathfrak{g} such that $J^2=-I,\ Jf_1=f_2$ and \mathfrak{v} is J-stable. Given a linear isomorphism T of \mathfrak{v} commuting with $J|_{\mathfrak{v}}$, we define a Lie bracket on \mathfrak{g} such that \mathfrak{a} is an abelian subalgebra, \mathfrak{v} is an abelian ideal and the bracket between elements in \mathfrak{a} and \mathfrak{v} is given by:

$$[f_1,v]=TJ(v), \qquad [f_2,v]=T(v), \qquad ext{ for every } v\in \mathfrak{v}.$$

It turns out that J is an abelian complex structure on \mathfrak{g} .

The Lie algebra \mathfrak{g} is not an abelian double product, unless n=1. In this case, $\mathfrak{g}=\mathfrak{aff}(\mathbb{C})$ with an abelian complex structure which is NOT the standard one.

More examples

We show next that there is a large family of Lie algebras with abelian complex structure which are not abelian double products.

Let $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{v}$ where $\mathfrak{a}=\operatorname{span}\{f_1,f_2\}$ and \mathfrak{v} is a 2n-dimensional real vector space. We fix an endomorphism J of \mathfrak{g} such that $J^2=-I$, $Jf_1=f_2$ and \mathfrak{v} is J-stable. Given a linear isomorphism T of \mathfrak{v} commuting with $J|_{\mathfrak{v}}$, we define a Lie bracket on \mathfrak{g} such that \mathfrak{a} is an abelian subalgebra, \mathfrak{v} is an abelian ideal and the bracket between elements in \mathfrak{a} and \mathfrak{v} is given by:

$$[f_1, v] = TJ(v),$$
 $[f_2, v] = T(v),$ for every $v \in \mathfrak{v}.$

It turns out that J is an abelian complex structure on \mathfrak{g} .

The Lie algebra \mathfrak{g} is not an abelian double product, unless n=1. In this case, $\mathfrak{g}=\mathfrak{aff}(\mathbb{C})$ with an abelian complex structure which is NOT the standard one.

Theorem (Andrada -B - Dotti, 2011)

Let $\mathfrak g$ be a solvable Lie algebra with an abelian complex structure J such that $\mathfrak g$ admits a vector space decomposition $\mathfrak g=\mathfrak u+J\mathfrak u$. Then:

- (i) if $\mathfrak u$ is an abelian subalgebra of $\mathfrak g$ then $\mathfrak g=\mathfrak a\oplus J\mathfrak a$ is an abelian double product with $\mathfrak a\subset\mathfrak u;$
- (ii) if $\mathfrak u$ is an abelian ideal of $\mathfrak g$ and, moreover, $\mathfrak g'\cap J\mathfrak g'=\{0\}$, then $(\mathfrak g,J)$ is holomorphically isomorphic to $\mathfrak aff(\mathcal A)$ for some commutative associative algebra $(\mathcal A,\cdot)$.

Corollary

Let $\mathfrak g$ be a solvable Lie algebra with an abelian complex structure J. Then:

- \mathfrak{g}'_J is an abelian double product and if $\mathfrak{g}' \cap J\mathfrak{g}' = \{0\}$, then (\mathfrak{g}'_J, J) is holomorphically isomorphic to $\mathfrak{aff}(\mathcal{A})$ for some commutative associative algebra (\mathcal{A}, \cdot) ;
- ② if $\mathfrak{g} = \mathfrak{g}' + J\mathfrak{g}'$, then $\mathfrak{g} = \mathfrak{u} \oplus J\mathfrak{u}$ is an abelian double product for some subalgebra $\mathfrak{u} \subset \mathfrak{g}'$.

Kähler Lie algebras with abelian complex structure

Let (\mathfrak{g}, J, g) be a Kähler Lie algebra with J abelian. It can be shown that:

- (i) $\mathfrak{z} = (\mathfrak{g}_J')^{\perp}$.
- (ii) $(\mathfrak{g}')^{\perp}$ is abelian.
- (iii) $\operatorname{ad}_{z}|_{\mathfrak{g}'}$ is symmetric for all $z \in \mathfrak{g}$.

Theorem (Andrada - B -Dotti, 2011)

Let (g, J, g) be a Kähler Lie algebra with J an abelian complex structure. Then g is isomorphic to

$$\mathfrak{aff}(\mathbb{R}) \times \cdots \times \mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2s}$$

and this decomposition is orthogonal and J-stable.

Kähler Lie algebras with abelian complex structure

Let (\mathfrak{g}, J, g) be a Kähler Lie algebra with J abelian. It can be shown that:

- (i) $\mathfrak{z} = (\mathfrak{g}_J')^{\perp}$.
- (ii) $(\mathfrak{g}')^{\perp}$ is abelian.
- (iii) $\operatorname{ad}_{z}|_{\mathfrak{g}'}$ is symmetric for all $z\in\mathfrak{g}$.

Theorem (Andrada - B -Dotti, 2011)

Let (g, J, g) be a Kähler Lie algebra with J an abelian complex structure. Then g is isomorphic to

$$\mathfrak{aff}(\mathbb{R}) \times \cdots \times \mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2s}$$

and this decomposition is orthogonal and J-stable.

Kähler Lie algebras with abelian complex structure

Let (\mathfrak{g}, J, g) be a Kähler Lie algebra with J abelian. It can be shown that:

- (i) $\mathfrak{z} = (\mathfrak{g}_J')^{\perp}$.
- (ii) $(\mathfrak{g}')^{\perp}$ is abelian.
- (iii) $\operatorname{ad}_{z}|_{\mathfrak{g}'}$ is symmetric for all $z\in\mathfrak{g}$.

Theorem (Andrada - B -Dotti, 2011)

Let (g, J, g) be a Kähler Lie algebra with J an abelian complex structure. Then g is isomorphic to

$$\mathfrak{aff}(\mathbb{R}) \times \cdots \times \mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2s}$$

and this decomposition is orthogonal and J-stable.

Corollary

Let G be a simply connected Lie group equipped with a left-invariant Kähler structure (J,g) such that J is abelian. If the commutator subgroup is n-dimensional and the center is 2s-dimensional, then

$$G = H^2(-c_1) \times \cdots \times H^2(-c_n) \times \mathbb{R}^{2s},$$

where $c_i > 0$, i = 1, ..., n, and $H^2(-c_i)$ denotes the 2-dimensional hyperbolic space of constant curvature $-c_i$.

Corollary

Let $M = \Gamma \backslash G$ be a compact quotient with a left invariant Kähler structure (J, g) such that J is abelian. Then M is diffeomorphic to a torus.

Corollary

Let G be a simply connected Lie group equipped with a left-invariant Kähler structure (J,g) such that J is abelian. If the commutator subgroup is n-dimensional and the center is 2s-dimensional, then

$$G = H^2(-c_1) \times \cdots \times H^2(-c_n) \times \mathbb{R}^{2s},$$

where $c_i > 0$, i = 1, ..., n, and $H^2(-c_i)$ denotes the 2-dimensional hyperbolic space of constant curvature $-c_i$.

Corollary

Let $M = \Gamma \setminus G$ be a compact quotient with a left invariant Kähler structure (J, g) such that J is abelian. Then M is diffeomorphic to a torus.

The first canonical Hermitian connection

Given a Hermitian Lie algebra (\mathfrak{g},J,g) , consider the connection ∇^1 on \mathfrak{g} defined by

$$g\left(\nabla_{x}^{1}y,z\right)=g\left(\nabla_{x}^{g}y,z\right)+\frac{1}{4}\left(d\omega(x,Jy,z)+d\omega(x,y,Jz)\right),$$

where ω is the Kähler form. This connection satisfies

$$abla^1 g = 0, \quad
abla^1 J = 0, \quad T^1 \ ext{ is of type } (1,1).$$

 ∇^1 is known as the first canonical Hermitian connection associated to (g, J, g) [Lichnerowicz, 1962].

The first canonical Hermitian connection

Given a Hermitian Lie algebra (\mathfrak{g},J,g) , consider the connection ∇^1 on \mathfrak{g} defined by

$$g\left(\nabla_{x}^{1}y,z\right)=g\left(\nabla_{x}^{g}y,z\right)+\frac{1}{4}\left(d\omega(x,Jy,z)+d\omega(x,y,Jz)\right),$$

where ω is the Kähler form. This connection satisfies

$$\nabla^1 g = 0, \quad \nabla^1 J = 0, \quad \mathit{T}^1 \ \text{ is of type } (1,1).$$

 ∇^1 is known as the first canonical Hermitian connection associated to (\mathfrak{g}, J, g) [Lichnerowicz, 1962].

Another expression for ∇^1 [Agricola, 2005]:

$$\nabla_x^1 y := \nabla^g_x y + \frac{1}{2} (\nabla^g_x J) Jy = \frac{1}{2} (\nabla^g_x y - J \nabla^g_x Jy),$$

for $x, y \in \mathfrak{g}$. We write the above equation with any affine connection ∇ and define

$$\overline{\nabla}_{x}y := \nabla_{x}y + \frac{1}{2} (\nabla_{x}J) Jy = \frac{1}{2} (\nabla_{x}y - J\nabla_{x}Jy), \tag{4}$$

for $x, y \in \mathfrak{g}$.

 $\overline{\nabla}$ satisfies:

- $\overline{\nabla} J = 0$
- if ∇ is torsion-free, then $\overline{T}(x,y) = \overline{T}(Jx,Jy)$, i.e. \overline{T} is of type (1,1) with respect to J.

Another expression for ∇^1 [Agricola, 2005]:

$$\nabla_x^1 y := \nabla^g_x y + \frac{1}{2} (\nabla^g_x J) Jy = \frac{1}{2} (\nabla^g_x y - J \nabla^g_x Jy),$$

for $x, y \in \mathfrak{g}$. We write the above equation with any affine connection ∇ and define

$$\overline{\nabla}_{x}y := \nabla_{x}y + \frac{1}{2}(\nabla_{x}J)Jy = \frac{1}{2}(\nabla_{x}y - J\nabla_{x}Jy), \tag{4}$$

for $x, y \in \mathfrak{g}$.

 $\overline{\nabla}$ satisfies:

- $\overline{\nabla} J = 0$
- if ∇ is torsion-free, then $\overline{T}(x,y) = \overline{T}(Jx,Jy)$, i.e. \overline{T} is of type (1,1) with respect to J.

Another expression for ∇^1 [Agricola, 2005]:

$$\nabla_x^1 y := \nabla^g_x y + \frac{1}{2} (\nabla^g_x J) Jy = \frac{1}{2} (\nabla^g_x y - J \nabla^g_x Jy),$$

for $x, y \in \mathfrak{g}$. We write the above equation with any affine connection ∇ and define

$$\overline{\nabla}_{x}y := \nabla_{x}y + \frac{1}{2}(\nabla_{x}J)Jy = \frac{1}{2}(\nabla_{x}y - J\nabla_{x}Jy), \tag{4}$$

for $x, y \in \mathfrak{g}$.

 $\overline{\nabla}$ satisfies:

- $\overline{\nabla}J=0$
- if ∇ is torsion-free, then $\overline{T}(x,y) = \overline{T}(Jx,Jy)$, i.e. \overline{T} is of type (1,1) with respect to J.

Lemma

Let ∇ be a torsion-free connection and J a complex structure on \mathfrak{g} . Assume that $\overline{\nabla}=0$, that is, $\nabla_{x}J=-J\nabla_{x}$ for every $x\in\mathfrak{g}$. Then J is abelian.

Theorem (Andrada - B - Dotti, 2011)

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra such that its associated first canonical connection ∇^1 satisfies $\nabla^1_{\mathbf{x}} y = 0$ for every $\mathbf{x}, y \in \mathfrak{g}$, that is, ∇^1 coincides with the (-)-connection. Then \mathfrak{g} is abelian.

Lemma

Let ∇ be a torsion-free connection and J a complex structure on \mathfrak{g} . Assume that $\overline{\nabla}=0$, that is, $\nabla_{x}J=-J\nabla_{x}$ for every $x\in\mathfrak{g}$. Then J is abelian.

Theorem (Andrada - B - Dotti, 2011)

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra such that its associated first canonical connection ∇^1 satisfies $\nabla^1_x y = 0$ for every $x, y \in \mathfrak{g}$, that is, ∇^1 coincides with the (-)-connection. Then \mathfrak{g} is abelian.

Corollary

Let $M = \Gamma \backslash G$ be a compact quotient of a simply connected Lie group G by a discrete subgroup Γ . If (J,g) is a left invariant Hermitian structure on M such that its first canonical connection ∇^1 coincides with the connection ∇^0 , then M is diffeomorphic to a torus.

Flat first canonical connection

Lemma

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra with J abelian. If the associated first canonical connection ∇^1 is flat, then $\mathfrak{z} \cap \mathfrak{g}' = \{0\}$.

Theorem

Let $(\mathfrak{g}, J, \mathfrak{g})$ be a Hermitian Lie algebra with J abelian. If the associated first canonical connection ∇^1 is flat, then \mathfrak{g} is abelian.

Flat first canonical connection

Lemma

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra with J abelian. If the associated first canonical connection ∇^1 is flat, then $\mathfrak{z} \cap \mathfrak{g}' = \{0\}$.

Theorem

Let (\mathfrak{g}, J, g) be a Hermitian Lie algebra with J abelian. If the associated first canonical connection ∇^1 is flat, then \mathfrak{g} is abelian.

Let ∇ be an affine connection on a manifold M with torsion tensor field T and J an almost complex structure on M. The Nijenhuis tensor of J can be calculated as follows:

$$N(X,Y) = (\nabla_{JX}J) Y - (\nabla_{JY}J) X + (\nabla_XJ) JY - (\nabla_YJ) JX + T(X,Y) - T(JX,JY) + J(T(JX,Y) + T(X,JY)),$$

for all X, Y vector fields on M.

Lemma

Let (M, J) be an almost complex manifold with a complex connection ∇ . Then J is integrable if and only if the torsion T of ∇ satisfies:

$$T(X,Y) - T(JX,JY) + J(T(JX,Y) + T(X,JY)) = 0,$$

for all vector fields X.Y on M

Let ∇ be an affine connection on a manifold M with torsion tensor field T and J an almost complex structure on M. The Nijenhuis tensor of J can be calculated as follows:

$$N(X,Y) = (\nabla_{JX}J) Y - (\nabla_{JY}J) X + (\nabla_X J) JY - (\nabla_Y J) JX + T(X,Y) - T(JX,JY) + J(T(JX,Y) + T(X,JY)),$$

for all X, Y vector fields on M.

Lemma

Let (M, J) be an almost complex manifold with a complex connection ∇ . Then J is integrable if and only if the torsion T of ∇ satisfies:

$$T(X,Y) - T(JX,JY) + J(T(JX,Y) + T(X,JY)) = 0,$$

for all vector fields X, Y on M.

Proposition

Let (M, J) be an almost complex manifold.

- (i) If ∇ is a complex connection on M whose torsion is of type (1,1) with respect to J, then J is integrable.
- (ii) If J is integrable, then there exists a complex connection ∇ whose torsion is of type (1,1) with respect to J.

Proposition

Let (M, J) be an almost complex manifold.

- (i) If ∇ is a complex connection on M whose torsion is of type (1,1) with respect to J, then J is integrable.
- (ii) If J is integrable, then there exists a complex connection ∇ whose torsion is of type (1,1) with respect to J.

Complex connections with trivial holonomy

Let M be an n-dimensional connected manifold and ∇ an affine connection on M with trivial holonomy. Then the space \mathcal{P}^{∇} of parallel vector fields on M is an n-dimensional real vector space.

$$T(X,Y) = -[X,Y],$$
 for all $X,Y \in \mathcal{P}^{\nabla}$.

Well known result:

Lemma

The space \mathcal{P}^{∇} of parallel vector fields is a Lie subalgebra of $\mathfrak{X}(M)$ if and only if the torsion T of ∇ is parallel.

Complex connections with trivial holonomy

Let M be an n-dimensional connected manifold and ∇ an affine connection on M with trivial holonomy. Then the space \mathcal{P}^{∇} of parallel vector fields on M is an n-dimensional real vector space.

$$T(X,Y) = -[X,Y],$$
 for all $X,Y \in \mathcal{P}^{\nabla}$.

Well known result:

Lemma

The space \mathcal{P}^{∇} of parallel vector fields is a Lie subalgebra of $\mathfrak{X}(M)$ if and only if the torsion T of ∇ is parallel.

The next result gives equivalent conditions for an affine connection with trivial holonomy on an almost complex manifold to be complex.

Lemma

Let M, dim M=2n, be a connected manifold with an almost complex structure J. Assume that there exists an affine connection ∇ on M with trivial holonomy. Then the following conditions are equivalent:

- (i) $\nabla J = 0$;
- (ii) the space \mathcal{P}^{∇} of parallel vector fields is J-stable;
- (iii) there exist parallel vector fields $X_1, \ldots, X_n, JX_1, \ldots, JX_n$, linearly independent at every point of M.

Flat complex connections with (1,1)-torsion

Proposition

Let M be a connected 2n-dimensional manifold with an almost complex structure J. Then the following conditions are equivalent:

(i) there exist vector fields $X_1, \ldots, X_n, JX_1, \ldots, JX_n$, linearly independent at every point of M, such that

$$[X_k, X_l] = [JX_k, JX_l],$$
 $[JX_k, X_l] = -[X_k, JX_l],$ $k < l;$

- (ii) there exist n commuting vector fields Z_1, \ldots, Z_n which are linearly independent sections of $T^{1,0}M$ at every point of M;
- (iii) there exist n linearly independent (1,0)-forms $\alpha_1, \ldots, \alpha_n$ on M such that $d\alpha_i$ is a section of $\Lambda^{1,1}M$ for every i;
- (iv) there exists a complex connection ∇ on M with trivial holonomy whose torsion tensor field T is of type (1,1).

Moreover, any of the above conditions implies that J is integrable.

An affine connection ∇ on a connected almost complex manifold (M, J) is called an *abelian* connection if it satisfies condition (iv) of the previous Proposition.

Corollary

Let (M,J) be a connected complex manifold and ∇ an affine connection with trivial holonomy. Then ∇ is an abelian connection on (M,J) if and only if the space \mathcal{P}^{∇} of parallel vector fields is J-stable and J satisfies

$$[JX, JY] = [X, Y]$$
 for any $X, Y \in \mathcal{P}^{\nabla}$.

Complete abelian connections with parallel torsion

Theorem

Let ∇ be an abelian connection on a connected complex manifold (M,J) such that ∇ is complete and the torsion tensor field T is parallel. Then (M,J,∇) is equivalent to $(\Gamma\backslash G,J_0,\nabla^0)$, where G is a simply connected Lie group equipped with a left invariant abelian complex structure and $\Gamma\subset G$ is a discrete subgroup.