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Abelian complex structures

A complex structure J on a real Lie algebra g is called abelian
when it satisfies:

[Jx , Jy ] = [x , y ], ∀x , y ∈ g. (1)

Equivalently, g1,0 is an abelian subalgebra of gC.

If G is a Lie group with Lie algebra g these conditions imply the
vanishing of the Nijenhuis tensor on the invariant almost complex
manifold (G , J), that is, J is integrable on G .
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Relation to HKT geometry

A hyperhermitian structure on a smooth manifold M is
({Jα}α=1,2,3, g), where

1 {Jα}α=1,2,3 are complex structures such that

J1J2 = −J2J1 = J3,

2 g is a Riemannian metric which is Hermitian with respect to
Jα, α = 1, 2, 3.

Given a hyperhermitian structure ({Jα}α=1,2,3, g) on M, g is
called hyper-Kähler with torsion (HKT) if there exists a
connection ∇ on M satisfying

1 ∇g = 0, ∇Jα = 0, α = 1, 2, 3,

2 the torsion tensor c(X ,Y ,Z ) = g(X ,T (Y ,Z )) is
skew-symmetric.
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Relation to HKT geometry

This class of metrics has been introduced by P.S. Howe -
G.Papadopoulos (1996).

Dotti - Fino (2002): If G is a 2-step nilpotent Lie group with
a left invariant HKT structure ({Jα}α=1,2,3, g), then the
hypercomplex structure is abelian.

B - Dotti - Verbitsky (2009): Let (N, {Jα}α=1,2,3, g) be an
HKT nilmanifold such that {Jα} is left invariant. Then the
hypercomplex structure {Jα} is abelian.
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Affine Lie algebras

Let (A, ·) be a finite dimensional associative, commutative
algebra. Set aff(A) := A⊕A with Lie bracket:

[(a, a′), (b, b′)] = (0, a · b′ − b · a′), a, b, a′, b′ ∈ A,

In particular, when A = R or A = C, we obtain the Lie
algebra of the group of affine motions of either R or C.

Let J be the endomorphism of aff(A) defined by

J(a, a′) = (a′,−a), a, a′ ∈ A.

J defines an abelian complex structure on aff(A), which we
will call standard.
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Properties of Lie algebras carrying abelian complex
structures

Let J be an abelian complex structure on the Lie algebra g. Then:

(i) The center z of g is J-stable.

(ii) For any x ∈ g, adJx = −adxJ.

(iii) g′ = [g, g] is abelian, equivalently, g is 2-step solvable
[Petravchuk, 1988].

(iv) Jg′ is an abelian subalgebra.

(v) g′ ∩ Jg′ ⊆ z(g′J), where g′J := g′ + Jg′.
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Abelian double products

[Andrada-Salamon, 2005] Consider a finite dimensional real vector
space A with two structures of commutative associative algebra,
(A, ·) and (A, ∗), with the following compatibility conditions:

a ∗ (b · c) = b ∗ (a · c), a · (b ∗ c) = b · (a ∗ c), (2)

for every a, b, c ∈ A.

Then, A⊕A with the bracket:

[(a, a′), (b, b′)] = (−(a∗b′−b∗a′), a·b′−b·a′), a, b, a′, b′ ∈ A,

is a Lie algebra denoted by (A, ·) ./ (A, ∗) and the endomorphism
J defined by

J(a, a′) = (−a′, a), a, a′ ∈ A, (3)

is an abelian complex structure, called the standard complex
structure on (A, ·) ./ (A, ∗).
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More examples

We show next that there is a large family of Lie algebras with
abelian complex structure which are not abelian double products.

Let g = a⊕ v where a = span{f1, f2} and v is a 2n-dimensional
real vector space. We fix an endomorphism J of g such that
J2 = −I , Jf1 = f2 and v is J-stable. Given a linear isomorphism
T of v commuting with J|v, we define a Lie bracket on g such that
a is an abelian subalgebra, v is an abelian ideal and the bracket
between elements in a and v is given by:

[f1, v ] = TJ(v), [f2, v ] = T (v), for every v ∈ v.

It turns out that J is an abelian complex structure on g.

The Lie algebra g is not an abelian double product, unless n = 1.
In this case, g = aff(C) with an abelian complex structure which is
NOT the standard one.
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Theorem (Andrada -B - Dotti, 2011)

Let g be a solvable Lie algebra with an abelian complex structure J
such that g admits a vector space decomposition g = u + Ju.
Then:

(i) if u is an abelian subalgebra of g then g = a⊕ Ja is an abelian
double product with a ⊂ u;

(ii) if u is an abelian ideal of g and, moreover, g′ ∩ Jg′ = {0},
then (g, J) is holomorphically isomorphic to aff(A) for some
commutative associative algebra (A, ·).

10 / 25



Corollary

Let g be a solvable Lie algebra with an abelian complex structure
J. Then:

1 g′J is an abelian double product and if g′ ∩ Jg′ = {0}, then
(g′J , J) is holomorphically isomorphic to aff(A) for some
commutative associative algebra (A, ·);

2 if g = g′ + Jg′, then g = u⊕ Ju is an abelian double product
for some subalgebra u ⊂ g′.
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Kähler Lie algebras with abelian complex structure

Let (g, J, g) be a Kähler Lie algebra with J abelian. It can be
shown that:

(i) z = (g′J)⊥.

(ii) (g′)⊥ is abelian.

(iii) adz |g′ is symmetric for all z ∈ g.

Theorem (Andrada - B -Dotti, 2011)

Let (g, J, g) be a Kähler Lie algebra with J an abelian complex
structure. Then g is isomorphic to

aff(R)× · · · × aff(R)× R2s ,

and this decomposition is orthogonal and J-stable.
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Corollary

Let G be a simply connected Lie group equipped with a
left-invariant Kähler structure (J, g) such that J is abelian. If the
commutator subgroup is n-dimensional and the center is
2s-dimensional, then

G = H2(−c1)× · · · × H2(−cn)× R2s ,

where ci > 0, i = 1, . . . , n, and H2(−ci ) denotes the 2-dimensional
hyperbolic space of constant curvature −ci .

Corollary

Let M = Γ\G be a compact quotient with a left invariant Kähler
structure (J, g) such that J is abelian. Then M is diffeomorphic to
a torus.
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The first canonical Hermitian connection

Given a Hermitian Lie algebra (g, J, g), consider the connection ∇1

on g defined by

g
(
∇1

xy , z
)

= g (∇g
x y , z) +

1

4
(dω(x , Jy , z) + dω(x , y , Jz)) ,

where ω is the Kähler form. This connection satisfies

∇1g = 0, ∇1J = 0, T 1 is of type (1, 1).

∇1 is known as the first canonical Hermitian connection associated
to (g, J, g) [Lichnerowicz, 1962].
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Another expression for ∇1 [Agricola, 2005]:

∇1
xy := ∇g

xy +
1

2
(∇g

xJ) Jy =
1

2
(∇g

xy − J∇g
xJy),

for x , y ∈ g. We write the above equation with any affine
connection ∇ and define

∇xy := ∇xy +
1

2
(∇xJ) Jy =

1

2
(∇xy − J∇xJy), (4)

for x , y ∈ g.

∇ satisfies:

∇J = 0

if ∇ is torsion-free, then T (x , y) = T (Jx , Jy), i.e. T is of
type (1, 1) with respect to J.

15 / 25



Another expression for ∇1 [Agricola, 2005]:

∇1
xy := ∇g

xy +
1

2
(∇g

xJ) Jy =
1

2
(∇g

xy − J∇g
xJy),

for x , y ∈ g. We write the above equation with any affine
connection ∇ and define

∇xy := ∇xy +
1

2
(∇xJ) Jy =

1

2
(∇xy − J∇xJy), (4)

for x , y ∈ g.

∇ satisfies:

∇J = 0

if ∇ is torsion-free, then T (x , y) = T (Jx , Jy), i.e. T is of
type (1, 1) with respect to J.

15 / 25



Another expression for ∇1 [Agricola, 2005]:

∇1
xy := ∇g

xy +
1

2
(∇g

xJ) Jy =
1

2
(∇g

xy − J∇g
xJy),

for x , y ∈ g. We write the above equation with any affine
connection ∇ and define

∇xy := ∇xy +
1

2
(∇xJ) Jy =

1

2
(∇xy − J∇xJy), (4)

for x , y ∈ g.

∇ satisfies:

∇J = 0

if ∇ is torsion-free, then T (x , y) = T (Jx , Jy), i.e. T is of
type (1, 1) with respect to J.

15 / 25



Lemma

Let ∇ be a torsion-free connection and J a complex structure on g.
Assume that ∇ = 0, that is, ∇xJ = −J∇x for every x ∈ g. Then
J is abelian.

Theorem (Andrada - B - Dotti, 2011)

Let (g, J, g) be a Hermitian Lie algebra such that its associated
first canonical connection ∇1 satisfies ∇1

xy = 0 for every x , y ∈ g,
that is, ∇1 coincides with the (−)-connection. Then g is abelian.
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Corollary

Let M = Γ\G be a compact quotient of a simply connected Lie
group G by a discrete subgroup Γ. If (J, g) is a left invariant
Hermitian structure on M such that its first canonical connection
∇1 coincides with the connection ∇0, then M is diffeomorphic to a
torus.
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Flat first canonical connection

Lemma

Let (g, J, g) be a Hermitian Lie algebra with J abelian. If the
associated first canonical connection ∇1 is flat, then z ∩ g′ = {0}.

Theorem

Let (g, J, g) be a Hermitian Lie algebra with J abelian. If the
associated first canonical connection ∇1 is flat, then g is abelian.
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Let ∇ be an affine connection on a manifold M with torsion tensor
field T and J an almost complex structure on M. The Nijenhuis
tensor of J can be calculated as follows:

N(X ,Y ) = (∇JX J) Y − (∇JY J) X + (∇X J) JY − (∇Y J) JX

+ T (X ,Y )− T (JX , JY ) + J (T (JX ,Y ) + T (X , JY )) ,

for all X ,Y vector fields on M.

Lemma

Let (M, J) be an almost complex manifold with a complex
connection ∇. Then J is integrable if and only if the torsion T of
∇ satisfies:

T (X ,Y )− T (JX , JY ) + J (T (JX ,Y ) + T (X , JY )) = 0,

for all vector fields X ,Y on M.
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Proposition

Let (M, J) be an almost complex manifold.

(i) If ∇ is a complex connection on M whose torsion is of type
(1, 1) with respect to J, then J is integrable.

(ii) If J is integrable, then there exists a complex connection ∇
whose torsion is of type (1, 1) with respect to J.
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Complex connections with trivial holonomy

Let M be an n-dimensional connected manifold and ∇ an affine
connection on M with trivial holonomy. Then the space P∇ of
parallel vector fields on M is an n-dimensional real vector space.

T (X ,Y ) = −[X ,Y ], for all X ,Y ∈ P∇.

Well known result:

Lemma

The space P∇ of parallel vector fields is a Lie subalgebra of X(M)
if and only if the torsion T of ∇ is parallel.
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The next result gives equivalent conditions for an affine connection
with trivial holonomy on an almost complex manifold to be
complex.

Lemma

Let M, dim M = 2n, be a connected manifold with an almost
complex structure J. Assume that there exists an affine connection
∇ on M with trivial holonomy. Then the following conditions are
equivalent:

(i) ∇J = 0;

(ii) the space P∇ of parallel vector fields is J-stable;

(iii) there exist parallel vector fields X1, . . . ,Xn, JX1, . . . , JXn,
linearly independent at every point of M.
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Flat complex connections with (1, 1)-torsion

Proposition

Let M be a connected 2n-dimensional manifold with an almost
complex structure J. Then the following conditions are equivalent:

(i) there exist vector fields X1, . . . ,Xn, JX1, . . . , JXn, linearly
independent at every point of M, such that

[Xk ,Xl ] = [JXk , JXl ], [JXk ,Xl ] = −[Xk , JXl ], k < l ;

(ii) there exist n commuting vector fields Z1, . . . ,Zn which are
linearly independent sections of T 1,0M at every point of M;

(iii) there exist n linearly independent (1, 0)-forms α1, . . . , αn on
M such that dαi is a section of Λ1,1M for every i ;

(iv) there exists a complex connection ∇ on M with trivial
holonomy whose torsion tensor field T is of type (1, 1).

Moreover, any of the above conditions implies that J is integrable.
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An affine connection ∇ on a connected almost complex manifold
(M, J) is called an abelian connection if it satisfies condition (iv)
of the previous Proposition.

Corollary

Let (M, J) be a connected complex manifold and ∇ an affine
connection with trivial holonomy. Then ∇ is an abelian connection
on (M, J) if and only if the space P∇ of parallel vector fields is
J-stable and J satisfies

[JX , JY ] = [X ,Y ] for any X ,Y ∈ P∇.
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Complete abelian connections with parallel torsion

Theorem

Let ∇ be an abelian connection on a connected complex manifold
(M, J) such that ∇ is complete and the torsion tensor field T is
parallel. Then (M, J,∇) is equivalent to (Γ\G , J0,∇0), where G is
a simply connected Lie group equipped with a left invariant abelian
complex structure and Γ ⊂ G is a discrete subgroup.
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