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Motivation

Many gauge-theoretic moduli spaces have natural hyperkähler
metrics: moduli spaces of instantons on hyperkähler 4-manifolds,
magnetic monopoles on R3, Higgs bundles on Riemann surfaces.

Monopoles exist also on other 3-manifolds, in particular the
hyperbolic space H3. The geometry of the moduli spaces has
been a long-standing problem.

The geometry should be a deformation of the hyperkähler
geometry. A natural candidate is a quaternion-Kähler geometry.

At the beginning of the 90’s, Hitchin classified SO(3)-invariant
self-dual Einstein 4-manifolds, and found a large class
corresponding to moduli spaces of centred hyperbolic
SU(2)-monopoles of charge 2.

These metrics are deformations of the Atiyah-Hitchin metric on
the moduli space of centred Eulidean SU(2)-monopoles of
charge 2.
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Around 2009, Hitchin also constructed quaternion-Kähler metrics
on moduli spaces of centred hyperbolic SU(3)-monopoles with
charge 2 and minimal symmetry breaking.

These are 8-manifolds and the metrics are deformations of
Dancer’s hyperkähler metric on the moduli spaces of centred
Euclidean SU(3)-monopoles with charge 2 and minimal
symmetry breaking. Their symmetry group is SO(3)×SU(2).

I’ll argue that neither “centred”, nor “charge 2” are accidental, and
we should not expect a quaternion-Kähler structure on other
moduli spaces of hyperbolic monopoles.
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In 2008, O. Nash showed, via twistor methods, that the
complexification of the natural geometry of hyperbolic moduli
space is the same as the complexification of a hyperkähler
structure.

This implies that the underlying real geometry is unlikely to be
quaternion-Kähler.

In 2011, Lorenz Schwachhöfer and I identified this real geometry.
It’s a new type of geometry, which we call “pluricomplex
geometry”.

J. Figueroa-O’Farrill has now obtained the same geometry from
the supersymmetric Yang-Mills theory.
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Pluricomplex structures

Let V be an 2n-dimensional real vector space and
J (V )' GL(2n,R)/GL(n,C) its twistor space, i.e. the space of
(isomorphism classes) of complex structures on V .
A hypercomplex structure on V may be viewed as a very special P1

inside J (V ).
We define a linear pluricomplex structure on V as a much less special
P1 ⊂ J (V ): a holomorphic embedding K : P1→ J (V ) such that the
subspaces V 1,0

ζ
corresponding to different ζ ∈ P1 form a holomorphic

vector bundle isomorphic to O(−1)⊗Cn and the quotient bundle is
isomorphic to O(1)⊗Cn. n must be even!
Given a pluricomplex structure K : P1→ J (V ), we obtain a second
one K̂ =−K ◦σ, where σ : P1→ P1 is the antipodal map. It is also a
pluricomplex structure and we write Ĵζ =−Jσ(ζ), V̂ 1,0

ζ
for the

subspace of vectors of type (1,0) for Ĵζ.

A pluricomplex structure is hypercomplex iff K̂ = K .
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A pluricomplex structure is hypercomplex iff K̂ = K .



Pluricomplex structures

Let V be an 2n-dimensional real vector space and
J (V )' GL(2n,R)/GL(n,C) its twistor space, i.e. the space of
(isomorphism classes) of complex structures on V .
A hypercomplex structure on V may be viewed as a very special P1

inside J (V ).
We define a linear pluricomplex structure on V as a much less special
P1 ⊂ J (V ): a holomorphic embedding K : P1→ J (V ) such that the
subspaces V 1,0

ζ
corresponding to different ζ ∈ P1 form a holomorphic

vector bundle isomorphic to O(−1)⊗Cn and the quotient bundle is
isomorphic to O(1)⊗Cn. n must be even!
Given a pluricomplex structure K : P1→ J (V ), we obtain a second
one K̂ =−K ◦σ, where σ : P1→ P1 is the antipodal map. It is also a
pluricomplex structure and we write Ĵζ =−Jσ(ζ), V̂ 1,0
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Characteristic curve and characteristic sheaf

Let W be a holomorphic bundle on P1×P1, the fibre of which at (ζ,η)
is V 1,0

ζ
⊕ V̂ 1,0

η .
We have a natural map

W → O⊗V C

of vector bundles on P1×P1, which induces an injective map
W → O⊗V C on the sheaves of sections. We denote by F the
cokernel of this map, so that we have an exact sequence

0→W→O⊗V C→ F → 0.

Definition

The sheaf F is called the characteristic sheaf and its support S the
characteristic curve of a pluricomplex structure.

S (as a set) is the set of (ζ,η) ∈ P1×P1 such that V 1,0
ζ
∩ V̂ 1,0

η 6= 0.

In particular S does not intersect the anti-diagonal ∆ = {(ζ,σ(ζ))}.
Also, S is invariant under σ, σ(ζ,η) = (−1/η̄,−1/ζ̄) (and so is F ).
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The short exact sequence defining F can be written as follows:

0→ O(−1,0)⊗Cn⊕O(0,−1)⊗Cn M−→ O⊗C2n→ F → 0.

It follows that F satisfies also the following cohomological conditions:

h0(F ) = 2n, h1(F ) = 0,

H∗(F (−1,−1)) = H∗(F (0,−2)) = H∗(F (−2,0)) = 0.

There is a 1-1 correspondence between such sheaves on P1×P1 and
linear pluricomplex structures on C2n.
V is the space σ-invariant sections of F |S , and V 1,0

ζ
consists of

sections of F |S vanishing on {ζ×P1}∩S.

Remark: A pluricomplex structure is hypercomplex iff the characteristic
curve S is the diagonal in P1×P1 (and the sheaf F is

L
O(1)).
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Pluricomplex manifolds

We define almost pluricomplex manifolds in the usual way.

A pluricomplex structure on M is said to be integrable if every
Jζ = K (ζ) is integrable. Pluricomplex manifolds = manifolds with
an integrable pluricomplex structure.

Obtain a complexified hypercomplex structure on MC. Projecting
the Obata connection from T 1,0MC onto TM gives a canonical
torsion-free connection.

Hopefully relevant to dynamics of hyperbolic monopoles.

The above integrability condition is too weak to have a good
twistor theory: cannot recover M as a parameter space of curves
in a complex manifold.
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Strongly integrable pluricomplex structures

For a pluricomplex structure on a manifold M, consider the
pointwise sequence defining the characteristic curve, i.e.

0→Wm→ O⊗T C
m M→ Fm→ 0,

for every m ∈M, where Wm|(ζ,η) = T 1,0
ζ
⊕ T̂ 1,0

η . We denote the
support of Fm by Sm.
Consider the following fibration over M

Y = {(m,ζ,η) ∈M×P1×P1; (ζ,η) ∈ Sm}
ν−→M,

and the corresponding map p : Y → P1×P1.
We say that the pluricomplex structure is strongly integrable if this
fibration can be extended to a double fibration

Z
µ←− Y

ν−→M,

so that M is then the parameter space of real curves S̃m ' Sm in
Z ; the normal sheaf of each S̃m in Z is Fm. Z is also equipped
with a map ρ : Z → P1×P1−∆, such that p = ρ◦µ.
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Pluricomplex structures of degree 1

The characteristic curve S ⊂ P1×P1 has bidegree (k ,k). We call k
the degree of a pluricomplex structure.

Let M be equipped with a strongly integrable pluricomplex structure of
degree 1. Then M is the parameter space of σ-invariant rational
curves with normal bundle isomorphic to a direct sum of O(1)’s.
Therefore M is a quaternionic manifold.
At every point m ∈M we have a P1 of almost complex structures,
which behave algebraically as the P1 of unit imaginary quaternions.
The twistor spaces of the pluricomplex structure and of the
quaternionic structure coincide. If we view Z as the twistor space of
the quaternionic structure, then Z is equipped with a projection onto
M, the fibres of which are the σ-invariant P1-s.
Having a pluricomplex structure as well means that this fibration is
trivial, Z 'M×P1, and the projection π : Z → P1 is holomorphic (but
π◦σ 6= σ◦π, unless M is hypercomplex). The map
ρ : Z → P1×P1−∆ is given by ρ(z) =

(
π(z),σ◦π◦σ(z)

)
.
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Pluricomplex structure of hyperbolic monopoles

The moduli space Mk ,m of hyperbolic SU(2)-monopoles of
charge k and mass m has a natural strongly integrable
pluricomplex structure (at least on an open dense subset;
vanishing of H∗(S,F (−2,0)) everywhere needed).

Its twistor space Z is the total space of the line bundle
O(2m + k ,−2m− k) over P1×P1−∆ with the zero section
removed (a C∗-principal bundle).

Similarly, moduli spaces of hyperbolic SU(3)-monopoles with
minimal symmetry breaking have a natural strongly integrable
pluricomplex structure. This time Z is the total space of an
GL(2,C)-principal bundle over P1×P1−∆.



Pluricomplex structure of hyperbolic monopoles

The moduli space Mk ,m of hyperbolic SU(2)-monopoles of
charge k and mass m has a natural strongly integrable
pluricomplex structure (at least on an open dense subset;
vanishing of H∗(S,F (−2,0)) everywhere needed).

Its twistor space Z is the total space of the line bundle
O(2m + k ,−2m− k) over P1×P1−∆ with the zero section
removed (a C∗-principal bundle).

Similarly, moduli spaces of hyperbolic SU(3)-monopoles with
minimal symmetry breaking have a natural strongly integrable
pluricomplex structure. This time Z is the total space of an
GL(2,C)-principal bundle over P1×P1−∆.



Pluricomplex structure of hyperbolic monopoles

The moduli space Mk ,m of hyperbolic SU(2)-monopoles of
charge k and mass m has a natural strongly integrable
pluricomplex structure (at least on an open dense subset;
vanishing of H∗(S,F (−2,0)) everywhere needed).

Its twistor space Z is the total space of the line bundle
O(2m + k ,−2m− k) over P1×P1−∆ with the zero section
removed (a C∗-principal bundle).

Similarly, moduli spaces of hyperbolic SU(3)-monopoles with
minimal symmetry breaking have a natural strongly integrable
pluricomplex structure. This time Z is the total space of an
GL(2,C)-principal bundle over P1×P1−∆.



Hitchin’s QK metric from pluricomplex structures

Let V be a vector space equipped with a pluricomplex structure of
degree 2, i.e. its characteristic curve is elliptic. This is the case for
hyperbolic monopoles of charge 2. We have V C ' H0(S,F ).
Suppose that OS(1/2,−1/2) 6' OS , so that h0(OS(1/2,1/2)) = 2.
Then the exact sequence

0→ F (−1,−1)→ F (−1/2,−1/2)⊗H0(S,O(1/2,1/2))→ F → 0,

yields a canonical isomorphism

H0(S,F
)
' H0(S,F (−1/2,−1/2)

)
⊗H0(S,OS(1/2,1/2)),

i.e. V C ' C2r ⊗C2. Both factors have a quaternionic involution
compatible with the real involution on V C.
If M is a pluricomplex manifold, so that each Sm is elliptic and
OSm (1/2,−1/2) 6' OSm , we obtain an almost quaternionic structure on
M.
I do not know yet under which conditions this is integrable.
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To make a connection with the construction of Hitchin, consider the
holomorphic involution τ on P1×P1, which interchanges the two
factors. If τ can be lifted to an involution on M, then (under reasonable
assumptions) the above almost quaternionic structure will give an
integrable quaternionic structure on Mτ.
I’ll show that this quaternionic structure is integrable: it arises from a
twistor space Z̃ , i.e. a complex manifold, equipped with a
fixed-point-free antiholomorphic involution σ, such that Mτ is the
parameter space of a family of σ-invariant holomorphic P1 with normal
bundle O(1)⊗C2n. If, additionaly, we want a quaternion-Kähler
metric, then we need a complex contact structure on Z̃ , i.e. a section θ

of K 1/(n+1) such that θ∧dθn is nonzero on each twistor line (plus
positivity).
Let M be a strongly pluricomplex manifold M with twistor space Z ,
ρ : Z → P1×P1−∆, with each Sm an elliptic curve. The quotient of
P1×P1 by τ is P2, and we have a double covering

π : P1×P1→ P2.

We can define the “direct image“ π∗Z of Z .
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Direct image of manifolds

Let X be the quotient of a complex manifold Y by a holomorphic
involution τ, and let p : Z → Y be a holomorphic submersion. Consider
the fibred product

Z 2
π = Z ×p τ

∗Z = {(z,w) ∈ Z ×Z ; p(z) = τ(p(w))},

with the induced submersion p̄ : Z 2
π → Y , p̄(z,w) = p(z). We have a

Z2-action on Z 2
π given by t : (z,w) 7→ (w ,z). Let Z [2]

π denote the
manifold obtained by blowing up the fixed point set of t and quotienting
the result by the induced Z2, and let C̃ ⊂ Z [2]

π be the proper transform
of C = p̄−1(Y τ). Then

π∗Z = Z [2]
π − C̃.

Observe that π∗Z is precisely the subset of Z [2]
π where the induced

projection Z [2]
π → X is a submersion.



Let us go back to the case of π : P1×P1→ P2 and Z the twistor space
of a strongly integrable pluricomplex structure of degree 2.
We obtain the direct image π∗Z . If the involution τ can be lifted to Z ,
we obtain a holomorphic involution τ̃ on π∗Z .
Let Z̃ be the τ̃-invariant part of π∗Z . A τ-invariant Sm in Z will
descend to a rational curve in Z̃ , and its normal bundle is a sum of
O(1)’s. Moreover, if the lift of τ is compatible with the real structure σ

on Z , then we obtain a real structure on Z̃ .

Thus Z̃ is the twistor space of an integrable quaternionic structure on
Mτ. To obtain a qK metric, we need a contact structure θ on Z̃ . I do
not know (yet) what one needs on Z to get θ on Z̃ .

What I just described is precisely the situation when M is a moduli
space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with
minimal symmetry breaking). Mτ is then the corresponding moduli
space of centred monopoles, and the resulting qK metrics are the
ones due to Hitchin.
One more example: charge 2 SU(4)-monopoles with minimal
symmetry breaking ((λ,λ,−λ,−λ)). Dimension 12; isometry group:
SO(3)×SU(2)×SU(2).
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What I just described is precisely the situation when M is a moduli
space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with
minimal symmetry breaking). Mτ is then the corresponding moduli
space of centred monopoles, and the resulting qK metrics are the
ones due to Hitchin.
One more example: charge 2 SU(4)-monopoles with minimal
symmetry breaking ((λ,λ,−λ,−λ)). Dimension 12; isometry group:
SO(3)×SU(2)×SU(2).



Deformations of ALF gravitational instantons of type Dk

Hitchin’s self-dual Einstein metrics on moduli spaces of centred
hyperbolic monopoles of charge 2 are deformations of the
Atiyah-Hitchin metric, which can be viewed as an ALF gravitational
instanton of type D0.
There are complete ALF gravitational instantons of type Dk , for any
k ∈ N, first constructed by Cherkis and Kapustin (1999) (k = 2 is due
to Hitchin, 1983); also Cherkis & Hitchin (2005).

The next example of the construction I just described (pluricomplex
=⇒ quaternionic) produces self-dual deformations of Dk ALF
instantons.

Essentially, we consider singular hyperbolic monopoles of charge 2.
The location of singularities is given by k points in H3, which
corresponds to k sections qi of O(1,1) on P1×P1. Let ψ = ∏qi - a
section of O(k ,k), and let Lm be the line bundle O(m,−m) on P1×P1.
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Set
Zm,k =

{
(u,v) ∈ Lm(k ,0)⊕L−m(0,k); uv = ψ

}
.

After resolving singularities, we obtain a twistor space of a strongly
integrable pluricomplex structure in dimension 8.
If ψ is invariant w.r.t. the involution τ, we can apply the above
construction and obtain a family of 4-dimensional conformal self-dual
metrics.
These converge to the ALF gravitational instantons of type Dk as
m→ ∞.

Perhaps these are not Einstein, after all, by analogy with what
happens for singular hyperbolic monopoles of charge 1.
As observed by Nash (2008, also Atiyah & LeBrun, 2012), singular
monopoles of charge 1 produce a 1-dimensional family of self-dual
deformations of ALF gravitational instantons of type Ak

(multi-Taub-NUT). These are LeBrun’s self-dual metrics on
P2#P2# . . .#P2, and so not Einstein.
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