Pluricomplex geometry and quaternionic manifolds

Roger Bielawski University of Leeds

Geometric structures on manifolds and their applications Schloss Rauischholzhausen, 3.7.2012

<ロ> (四) (四) (三) (三) (三) (三)

- Many gauge-theoretic moduli spaces have natural hyperkähler metrics: moduli spaces of instantons on hyperkähler 4-manifolds, magnetic monopoles on R³, Higgs bundles on Riemann surfaces.
- Monopoles exist also on other 3-manifolds, in particular the hyperbolic space *H*³. The geometry of the moduli spaces has been a long-standing problem.
- The geometry should be a deformation of the hyperkähler geometry. A natural candidate is a quaternion-Kähler geometry.
- At the beginning of the 90's, Hitchin classified *SO*(3)-invariant self-dual Einstein 4-manifolds, and found a large class corresponding to moduli spaces of *centred* hyperbolic *SU*(2)-monopoles of charge 2.
- These metrics are deformations of the Atiyah-Hitchin metric on the moduli space of *centred* Eulidean *SU*(2)-monopoles of charge 2.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- Many gauge-theoretic moduli spaces have natural hyperkähler metrics: moduli spaces of instantons on hyperkähler 4-manifolds, magnetic monopoles on R³, Higgs bundles on Riemann surfaces.
- Monopoles exist also on other 3-manifolds, in particular the hyperbolic space H³. The geometry of the moduli spaces has been a long-standing problem.
- The geometry should be a deformation of the hyperkähler geometry. A natural candidate is a quaternion-Kähler geometry.
- At the beginning of the 90's, Hitchin classified *SO*(3)-invariant self-dual Einstein 4-manifolds, and found a large class corresponding to moduli spaces of *centred* hyperbolic *SU*(2)-monopoles of charge 2.
- These metrics are deformations of the Atiyah-Hitchin metric on the moduli space of *centred* Eulidean *SU*(2)-monopoles of charge 2.

- Many gauge-theoretic moduli spaces have natural hyperkähler metrics: moduli spaces of instantons on hyperkähler 4-manifolds, magnetic monopoles on R³, Higgs bundles on Riemann surfaces.
- Monopoles exist also on other 3-manifolds, in particular the hyperbolic space H³. The geometry of the moduli spaces has been a long-standing problem.
- The geometry should be a deformation of the hyperkähler geometry. A natural candidate is a quaternion-Kähler geometry.
- At the beginning of the 90's, Hitchin classified SO(3)-invariant self-dual Einstein 4-manifolds, and found a large class corresponding to moduli spaces of *centred* hyperbolic SU(2)-monopoles of charge 2.
- These metrics are deformations of the Atiyah-Hitchin metric on the moduli space of *centred* Eulidean *SU*(2)-monopoles of charge 2.

- Many gauge-theoretic moduli spaces have natural hyperkähler metrics: moduli spaces of instantons on hyperkähler 4-manifolds, magnetic monopoles on R³, Higgs bundles on Riemann surfaces.
- Monopoles exist also on other 3-manifolds, in particular the hyperbolic space H³. The geometry of the moduli spaces has been a long-standing problem.
- The geometry should be a deformation of the hyperkähler geometry. A natural candidate is a quaternion-Kähler geometry.
- At the beginning of the 90's, Hitchin classified SO(3)-invariant self-dual Einstein 4-manifolds, and found a large class corresponding to moduli spaces of *centred* hyperbolic SU(2)-monopoles of charge 2.
- These metrics are deformations of the Atiyah-Hitchin metric on the moduli space of *centred* Eulidean *SU*(2)-monopoles of charge 2.

- Many gauge-theoretic moduli spaces have natural hyperkähler metrics: moduli spaces of instantons on hyperkähler 4-manifolds, magnetic monopoles on R³, Higgs bundles on Riemann surfaces.
- Monopoles exist also on other 3-manifolds, in particular the hyperbolic space H³. The geometry of the moduli spaces has been a long-standing problem.
- The geometry should be a deformation of the hyperkähler geometry. A natural candidate is a quaternion-Kähler geometry.
- At the beginning of the 90's, Hitchin classified SO(3)-invariant self-dual Einstein 4-manifolds, and found a large class corresponding to moduli spaces of *centred* hyperbolic SU(2)-monopoles of charge 2.
- These metrics are deformations of the Atiyah-Hitchin metric on the moduli space of *centred* Eulidean SU(2)-monopoles of charge 2.

- Around 2009, Hitchin also constructed quaternion-Kähler metrics on moduli spaces of *centred* hyperbolic SU(3)-monopoles with charge 2 and *minimal* symmetry breaking.
- These are 8-manifolds and the metrics are deformations of Dancer's hyperkähler metric on the moduli spaces of *centred* Euclidean SU(3)-monopoles with charge 2 and *minimal* symmetry breaking. Their symmetry group is SO(3) × SU(2).
- I'll argue that neither "centred", nor "charge 2" are accidental, and we should not expect a quaternion-Kähler structure on other moduli spaces of hyperbolic monopoles.

- Around 2009, Hitchin also constructed quaternion-Kähler metrics on moduli spaces of *centred* hyperbolic SU(3)-monopoles with charge 2 and *minimal* symmetry breaking.
- These are 8-manifolds and the metrics are deformations of Dancer's hyperkähler metric on the moduli spaces of *centred* Euclidean SU(3)-monopoles with charge 2 and *minimal* symmetry breaking. Their symmetry group is SO(3) × SU(2).
- I'll argue that neither "centred", nor "charge 2" are accidental, and we should not expect a quaternion-Kähler structure on other moduli spaces of hyperbolic monopoles.

- In 2008, O. Nash showed, via twistor methods, that the complexification of the natural geometry of hyperbolic moduli space is the same as the complexification of a hyperkähler structure.
- This implies that the underlying real geometry is unlikely to be quaternion-Kähler.
- In 2011, Lorenz Schwachhöfer and I identified this real geometry. It's a new type of geometry, which we call "pluricomplex geometry".
- J. Figueroa-O'Farrill has now obtained the same geometry from the supersymmetric Yang-Mills theory.

- In 2008, O. Nash showed, via twistor methods, that the complexification of the natural geometry of hyperbolic moduli space is the same as the complexification of a hyperkähler structure.
- This implies that the underlying real geometry is unlikely to be quaternion-Kähler.
- In 2011, Lorenz Schwachhöfer and I identified this real geometry. It's a new type of geometry, which we call "pluricomplex geometry".
- J. Figueroa-O'Farrill has now obtained the same geometry from the supersymmetric Yang-Mills theory.

- In 2008, O. Nash showed, via twistor methods, that the complexification of the natural geometry of hyperbolic moduli space is the same as the complexification of a hyperkähler structure.
- This implies that the underlying real geometry is unlikely to be quaternion-Kähler.
- In 2011, Lorenz Schwachhöfer and I identified this real geometry. It's a new type of geometry, which we call "pluricomplex geometry".
- J. Figueroa-O'Farrill has now obtained the same geometry from the supersymmetric Yang-Mills theory.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In 2008, O. Nash showed, via twistor methods, that the complexification of the natural geometry of hyperbolic moduli space is the same as the complexification of a hyperkähler structure.
- This implies that the underlying real geometry is unlikely to be quaternion-Kähler.
- In 2011, Lorenz Schwachhöfer and I identified this real geometry. It's a new type of geometry, which we call "pluricomplex geometry".
- J. Figueroa-O'Farrill has now obtained the same geometry from the supersymmetric Yang-Mills theory.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let *V* be an 2*n*-dimensional real vector space and $\mathcal{J}(V) \simeq GL(2n, \mathbb{R})/GL(n, \mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on *V*.

A hypercomplex structure on V may be viewed as a very special \mathbb{P}^1 inside $\mathcal{J}(V)$.

We define a linear *pluricomplex structure* on *V* as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the subspaces $V_{\zeta}^{1,0}$ corresponding to different $\zeta \in \mathbb{P}^1$ form a holomorphic vector bundle isomorphic to $O(-1) \otimes \mathbb{C}^n$ and the quotient bundle is isomorphic to $O(1) \otimes \mathbb{C}^n$. *n* must be even! Given a pluricomplex structure $K : \mathbb{P}^1 \to \mathcal{J}(V)$, we obtain a second one $\widehat{K} = -K \circ \sigma$, where $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ is the antipodal map. It is also a pluricomplex structure and we write $\widehat{J}_{\zeta} = -J_{\sigma(\zeta)}, \ \widehat{V}_{\zeta}^{1,0}$ for the subspace of vectors of type (1,0) for \widehat{J}_{ζ} . Let *V* be an 2*n*-dimensional real vector space and $\mathcal{J}(V) \simeq GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on *V*. A hypercomplex structure on *V* may be viewed as a very special \mathbb{P}^1

inside $\mathcal{I}(V)$.

We define a linear *pluricomplex structure* on *V* as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the subspaces $V_{\zeta}^{1,0}$ corresponding to different $\zeta \in \mathbb{P}^1$ form a holomorphic vector bundle isomorphic to $O(-1) \otimes \mathbb{C}^n$ and the quotient bundle is isomorphic to $O(1) \otimes \mathbb{C}^n$. *n* must be even! Given a pluricomplex structure $K : \mathbb{P}^1 \to \mathcal{J}(V)$, we obtain a second one $\widehat{K} = -K \circ \sigma$, where $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ is the antipodal map. It is also a pluricomplex structure and we write $\widehat{J}_{\zeta} = -J_{\sigma(\zeta)}, \ \widehat{V}_{\zeta}^{1,0}$ for the subspace of vectors of type (1,0) for \widehat{J}_{ζ} . A pluricomplex structure is hypercomplex iff $\widehat{K} = K$. Let V be an 2n-dimensional real vector space and $\mathcal{J}(V) \simeq GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on V. A hypercomplex structure on V may be viewed as a very special \mathbb{P}^1 inside $\mathcal{I}(V)$. We define a linear *pluricomplex structure* on V as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the

Let *V* be an 2*n*-dimensional real vector space and $\mathcal{J}(V) \simeq GL(2n, \mathbb{R})/GL(n, \mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on *V*.

A hypercomplex structure on V may be viewed as a very special \mathbb{P}^1 inside $\mathcal{I}(V)$.

We define a linear *pluricomplex structure* on *V* as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the subspaces $V_{\zeta}^{1,0}$ corresponding to different $\zeta \in \mathbb{P}^1$ form a holomorphic vector bundle isomorphic to $O(-1) \otimes \mathbb{C}^n$ and the quotient bundle is isomorphic to $O(1) \otimes \mathbb{C}^n$. The subspace of vector bundle is the antipodal map. It is also a pluricomplex structure and we write $J_{\zeta} = -J_{0}(\zeta)$, V_{ζ} for the subspace of vectors of type (1,0) for J_{ζ} .

A pluricomplex structure is hypercomplex iff $\widehat{K}=K$.

Let V be an 2n-dimensional real vector space and q(1) = 21(2 - m)/21(2 - q)

 $\mathcal{J}(V) \simeq GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on V.

A hypercomplex structure on V may be viewed as a very special \mathbb{P}^1 inside $\mathcal{I}(V)$.

We define a linear *pluricomplex structure* on *V* as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the subspaces $V_{\zeta}^{1,0}$ corresponding to different $\zeta \in \mathbb{P}^1$ form a holomorphic vector bundle isomorphic to $O(-1) \otimes \mathbb{C}^n$ and the quotient bundle is isomorphic to $O(1) \otimes \mathbb{C}^n$. *n* must be even!

Given a pluricomplex structure $K : \mathbb{P}^1 \to \mathcal{J}(V)$, we obtain a second one $\widehat{K} = -K \circ \sigma$, where $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ is the antipodal map. It is also a pluricomplex structure and we write $\widehat{J}_{\zeta} = -J_{\sigma(\zeta)}, \ \widehat{V}_{\zeta}^{1,0}$ for the subspace of vectors of type (1,0) for \widehat{J}_{ζ} .

A pluricomplex structure is hypercomplex iff K = K.

Let *V* be an 2*n*-dimensional real vector space and

 $\mathcal{J}(V) \simeq GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on *V*.

A hypercomplex structure on V may be viewed as a very special \mathbb{P}^1 inside $\mathcal{I}(V)$.

We define a linear *pluricomplex structure* on *V* as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the subspaces $V_{\zeta}^{1,0}$ corresponding to different $\zeta \in \mathbb{P}^1$ form a holomorphic vector bundle isomorphic to $O(-1) \otimes \mathbb{C}^n$ and the quotient bundle is isomorphic to $O(1) \otimes \mathbb{C}^n$. *n* must be even! Given a pluricomplex structure $K : \mathbb{P}^1 \to \mathcal{J}(V)$, we obtain a second one $\widehat{K} = -K \circ \sigma$, where $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ is the antipodal map. It is also a pluricomplex structure and we write $\widehat{J}_{\zeta} = -J_{\sigma(\zeta)}, \ \widehat{V}_{\zeta}^{1,0}$ for the subspace of vectors of type (1,0) for \widehat{J}_{ζ} .

A pluricomplex structure is hypercomplex iff K = K.

Let *V* be an 2*n*-dimensional real vector space and

 $\mathcal{J}(V) \simeq GL(2n,\mathbb{R})/GL(n,\mathbb{C})$ its twistor space, i.e. the space of (isomorphism classes) of complex structures on *V*.

A hypercomplex structure on V may be viewed as a very special \mathbb{P}^1 inside $\mathcal{I}(V)$.

We define a linear *pluricomplex structure* on *V* as a much less special $\mathbb{P}^1 \subset \mathcal{J}(V)$: a holomorphic embedding $K : \mathbb{P}^1 \to \mathcal{J}(V)$ such that the subspaces $V_{\zeta}^{1,0}$ corresponding to different $\zeta \in \mathbb{P}^1$ form a holomorphic vector bundle isomorphic to $O(-1) \otimes \mathbb{C}^n$ and the quotient bundle is isomorphic to $O(1) \otimes \mathbb{C}^n$. *n* must be even! Given a pluricomplex structure $K : \mathbb{P}^1 \to \mathcal{J}(V)$, we obtain a second one $\widehat{K} = -K \circ \sigma$, where $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ is the antipodal map. It is also a pluricomplex structure and we write $\widehat{J_{\zeta}} = -J_{\sigma(\zeta)}, \ \widehat{V_{\zeta}}^{1,0}$ for the subspace of vectors of type (1,0) for $\widehat{J_{\zeta}}$.

A pluricomplex structure is hypercomplex iff $\hat{K} = K$.

Let W be a holomorphic bundle on $\mathbb{P}^1 \times \mathbb{P}^1$, the fibre of which at (ζ, η) is $V_{\zeta}^{1,0} \oplus \widehat{V}_{\eta}^{1,0}$.

We have a natural map

$W \to O \otimes V^{\mathbb{C}}$

of vector bundles on $\mathbb{P}^1 \times \mathbb{P}^1$, which induces an injective map $\mathcal{W} \to \mathcal{O} \otimes V^{\mathbb{C}}$ on the sheaves of sections. We denote by \mathcal{F} the cokernel of this map, so that we have an exact sequence

$$0 \to \mathcal{W} \to \mathcal{O} \otimes V^{\mathbb{C}} \to \mathcal{F} \to 0.$$

Definition

The sheaf \mathcal{F} is called the *characteristic sheaf* and its support *S* the *characteristic curve* of a pluricomplex structure.

S (as a set) is the set of $(\zeta, \eta) \in \mathbb{P}^1 \times \mathbb{P}^1$ such that $V_{\zeta}^{1,0} \cap \widehat{V}_{\eta}^{1,0} \neq 0$. In particular *S* does not intersect the anti-diagonal $\overline{\Delta} = \{(\zeta, \sigma(\zeta))\}$. Also, *S* is invariant under σ , $\sigma(\zeta, \eta) = (-1/\overline{\eta}, -1/\overline{\zeta})$ (and so is \mathcal{F}).

Let W be a holomorphic bundle on $\mathbb{P}^1 \times \mathbb{P}^1$, the fibre of which at (ζ, η) is $V_{\zeta}^{1,0} \oplus \widehat{V}_{\eta}^{1,0}$. We have a natural map

 $W \to O \otimes V^{\mathbb{C}}$

of vector bundles on $\mathbb{P}^1 \times \mathbb{P}^1$, which induces an injective map $\mathcal{W} \to \mathcal{O} \otimes \mathcal{V}^{\mathbb{C}}$ on the sheaves of sections. We denote by \mathcal{F} the cokernel of this map, so that we have an exact sequence

$$0 \to \mathcal{W} \to \mathcal{O} \otimes V^{\mathbb{C}} \to \mathcal{F} \to 0.$$

Definition

The sheaf $\mathcal F$ is called the *characteristic sheaf* and its support *S* the *characteristic curve* of a pluricomplex structure.

S (as a set) is the set of $(\zeta, \eta) \in \mathbb{P}^1 \times \mathbb{P}^1$ such that $V_{\zeta}^{1,0} \cap \widehat{V}_{\eta}^{1,0} \neq 0$. In particular *S* does not intersect the anti-diagonal $\overline{\Delta} = \{(\zeta, \sigma(\zeta))\}$. Also, *S* is invariant under σ , $\sigma(\zeta, \eta) = (-1/\overline{\eta}, -1/\overline{\zeta})$ (and so is \mathcal{F}).

Let W be a holomorphic bundle on $\mathbb{P}^1 \times \mathbb{P}^1$, the fibre of which at (ζ, η) is $V_{\zeta}^{1,0} \oplus \widehat{V}_{\eta}^{1,0}$. We have a natural map

 $W \to O \otimes V^{\mathbb{C}}$

of vector bundles on $\mathbb{P}^1 \times \mathbb{P}^1$, which induces an injective map $\mathcal{W} \to \mathcal{O} \otimes \mathcal{V}^{\mathbb{C}}$ on the sheaves of sections. We denote by \mathcal{F} the cokernel of this map, so that we have an exact sequence

$$0 \to \mathcal{W} \to \mathcal{O} \otimes V^{\mathbb{C}} \to \mathcal{F} \to 0.$$

Definition

The sheaf \mathcal{F} is called the *characteristic sheaf* and its support S the *characteristic curve* of a pluricomplex structure.

S (as a set) is the set of $(\zeta, \eta) \in \mathbb{P}^1 \times \mathbb{P}^1$ such that $V_{\zeta}^{1,0} \cap \widehat{V}_{\eta}^{1,0} \neq 0$.

Also, *S* is invariant under σ , $\sigma(\zeta, \eta) = (-1/\bar{\eta}, -1/\bar{\zeta})$ (and so is \mathcal{F}).

Let W be a holomorphic bundle on $\mathbb{P}^1 \times \mathbb{P}^1$, the fibre of which at (ζ, η) is $V_{\zeta}^{1,0} \oplus \widehat{V}_{\eta}^{1,0}$. We have a natural map

 $W \to O \otimes V^{\mathbb{C}}$

of vector bundles on $\mathbb{P}^1 \times \mathbb{P}^1$, which induces an injective map $\mathcal{W} \to \mathcal{O} \otimes \mathcal{V}^{\mathbb{C}}$ on the sheaves of sections. We denote by \mathcal{F} the cokernel of this map, so that we have an exact sequence

$$0 \to \mathcal{W} \to \mathcal{O} \otimes V^{\mathbb{C}} \to \mathcal{F} \to 0.$$

Definition

The sheaf \mathcal{F} is called the *characteristic sheaf* and its support *S* the *characteristic curve* of a pluricomplex structure.

S (as a set) is the set of $(\zeta, \eta) \in \mathbb{P}^1 \times \mathbb{P}^1$ such that $V_{\zeta}^{1,0} \cap \widehat{V}_{\eta}^{1,0} \neq 0$. In particular *S* does not intersect the anti-diagonal $\overline{\Delta} = \{(\zeta, \sigma(\zeta))\}$. Also, *S* is invariant under $\sigma, \sigma(\zeta, \eta) = (-1/\eta, -1/\zeta)$ (and so is 7).

Let W be a holomorphic bundle on $\mathbb{P}^1 \times \mathbb{P}^1$, the fibre of which at (ζ, η) is $V_{\zeta}^{1,0} \oplus \widehat{V}_{\eta}^{1,0}$. We have a natural map

 $W \to O \otimes V^{\mathbb{C}}$

of vector bundles on $\mathbb{P}^1 \times \mathbb{P}^1$, which induces an injective map $\mathcal{W} \to \mathcal{O} \otimes \mathcal{V}^{\mathbb{C}}$ on the sheaves of sections. We denote by \mathcal{F} the cokernel of this map, so that we have an exact sequence

$$0 \to \mathcal{W} \to \mathcal{O} \otimes V^{\mathbb{C}} \to \mathcal{F} \to 0.$$

Definition

The sheaf \mathcal{F} is called the *characteristic sheaf* and its support *S* the *characteristic curve* of a pluricomplex structure.

S (as a set) is the set of $(\zeta, \eta) \in \mathbb{P}^1 \times \mathbb{P}^1$ such that $V_{\zeta}^{1,0} \cap \widehat{V}_{\eta}^{1,0} \neq 0$. In particular *S* does not intersect the anti-diagonal $\overline{\Delta} = \{(\zeta, \sigma(\zeta))\}$. Also, *S* is invariant under σ , $\sigma(\zeta, \eta) = (-1/\overline{\eta}, -1/\overline{\zeta})$ (and so is \mathcal{F}). The short exact sequence defining $\mathcal F$ can be written as follows:

$$0 \to \mathcal{O}(-1,0) \otimes \mathbb{C}^n \oplus \mathcal{O}(0,-1) \otimes \mathbb{C}^n \xrightarrow{M} \mathcal{O} \otimes \mathbb{C}^{2n} \to \mathcal{F} \to 0.$$

It follows that ${\mathcal F}$ satisfies also the following cohomological conditions:

 $h^0(\mathcal{F})=2n, \ h^1(\mathcal{F})=0,$

 $H^*(\mathcal{F}(-1,-1)) = H^*(\mathcal{F}(0,-2)) = H^*(\mathcal{F}(-2,0)) = 0.$

There is a 1-1 correspondence between such sheaves on $\mathbb{P}^{+} \times \mathbb{P}^{+}$ and linear pluricomplex structures on \mathbb{C}^{2n} . *V* is the space σ -invariant sections of $\mathcal{F}|_{S}$, and $V_{\zeta}^{1,0}$ consists of sections of $\mathcal{F}|_{S}$ vanishing on $\{\zeta \times \mathbb{P}^{1}\} \cap S$.

Remark: A pluricomplex structure is hypercomplex iff the characteristic curve *S* is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$ (and the sheaf \mathcal{F} is $\bigoplus O(1)$).

The short exact sequence defining \mathcal{F} can be written as follows:

$$0 \to \mathcal{O}(-1,0) \otimes \mathbb{C}^n \oplus \mathcal{O}(0,-1) \otimes \mathbb{C}^n \xrightarrow{M} \mathcal{O} \otimes \mathbb{C}^{2n} \to \mathcal{F} \to 0.$$

It follows that \mathcal{F} satisfies also the following cohomological conditions:

 $h^0(\mathcal{F}) = 2n, h^1(\mathcal{F}) = 0,$

 $H^*(\mathcal{F}(-1,-1)) = H^*(\mathcal{F}(0,-2)) = H^*(\mathcal{F}(-2,0)) = 0.$

There is a 1-1 correspondence between such sheaves on $\mathbb{P}^+ \times \mathbb{P}^+$ and linear pluricomplex structures on \mathbb{C}^{2n} . *V* is the space σ -invariant sections of $\mathcal{F}|_S$, and $V_{\zeta}^{1,0}$ consists of sections of $\mathcal{F}|_S$ vanishing on $\{\zeta \times \mathbb{P}^1\} \cap S$.

Remark: A pluricomplex structure is hypercomplex iff the characteristic curve *S* is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$ (and the sheaf \mathcal{F} is $\bigoplus O(1)$).

The short exact sequence defining \mathcal{F} can be written as follows:

$$0 \to \mathcal{O}(-1,0) \otimes \mathbb{C}^n \oplus \mathcal{O}(0,-1) \otimes \mathbb{C}^n \xrightarrow{M} \mathcal{O} \otimes \mathbb{C}^{2n} \to \mathcal{F} \to 0.$$

It follows that $\mathcal F$ satisfies also the following cohomological conditions:

 $h^0(\mathcal{F}) = 2n, h^1(\mathcal{F}) = 0,$

 $H^*(\mathcal{F}(-1,-1)) = H^*(\mathcal{F}(0,-2)) = H^*(\mathcal{F}(-2,0)) = 0.$

There is a 1-1 correspondence between such sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ and linear pluricomplex structures on \mathbb{C}^{2n} . *V* is the space σ -invariant sections of $\mathcal{F}|_S$, and $V_{\zeta}^{1,0}$ consists of sections of $\mathcal{F}|_S$ vanishing on $\{\zeta \times \mathbb{P}^1\} \cap S$.

Remark: A pluricomplex structure is hypercomplex iff the characteristic curve *S* is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$ (and the sheaf \mathcal{F} is $\bigoplus O(1)$).

The short exact sequence defining \mathcal{F} can be written as follows:

$$0 \to \mathcal{O}(-1,0) \otimes \mathbb{C}^n \oplus \mathcal{O}(0,-1) \otimes \mathbb{C}^n \xrightarrow{M} \mathcal{O} \otimes \mathbb{C}^{2n} \to \mathcal{F} \to 0.$$

It follows that $\mathcal F$ satisfies also the following cohomological conditions:

 $h^0(\mathcal{F}) = 2n, h^1(\mathcal{F}) = 0,$

 $H^*(\mathcal{F}(-1,-1)) = H^*(\mathcal{F}(0,-2)) = H^*(\mathcal{F}(-2,0)) = 0.$

There is a 1-1 correspondence between such sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ and linear pluricomplex structures on \mathbb{C}^{2n} . *V* is the space σ -invariant sections of $\mathcal{F}|_S$, and $V_{\zeta}^{1,0}$ consists of sections of $\mathcal{F}|_S$ vanishing on $\{\zeta \times \mathbb{P}^1\} \cap S$.

Remark: A pluricomplex structure is hypercomplex iff the characteristic curve *S* is the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1$ (and the sheaf \mathcal{F} is $\bigoplus O(1)$).

• We define almost pluricomplex manifolds in the usual way.

- A pluricomplex structure on *M* is said to be *integrable* if every $J_{\zeta} = K(\zeta)$ is integrable. Pluricomplex manifolds = manifolds with an integrable pluricomplex structure.
- Obtain a complexified hypercomplex structure on $M^{\mathbb{C}}$. Projecting the Obata connection from $T^{1,0}M^{\mathbb{C}}$ onto TM gives a canonical torsion-free connection.
- Hopefully relevant to dynamics of hyperbolic monopoles.
- The above integrability condition is too weak to have a good twistor theory: cannot recover *M* as a parameter space of curves in a complex manifold.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- We define almost pluricomplex manifolds in the usual way.
- A pluricomplex structure on *M* is said to be *integrable* if every $J_{\zeta} = K(\zeta)$ is integrable. Pluricomplex manifolds = manifolds with an integrable pluricomplex structure.
- Obtain a complexified hypercomplex structure on M^C. Projecting the Obata connection from T^{1,0}M^C onto TM gives a canonical torsion-free connection.
- Hopefully relevant to dynamics of hyperbolic monopoles.
- The above integrability condition is too weak to have a good twistor theory: cannot recover *M* as a parameter space of curves in a complex manifold.

- We define almost pluricomplex manifolds in the usual way.
- A pluricomplex structure on *M* is said to be *integrable* if every $J_{\zeta} = K(\zeta)$ is integrable. Pluricomplex manifolds = manifolds with an integrable pluricomplex structure.
- Obtain a complexified hypercomplex structure on $M^{\mathbb{C}}$. Projecting the Obata connection from $T^{1,0}M^{\mathbb{C}}$ onto TM gives a canonical torsion-free connection.
- Hopefully relevant to dynamics of hyperbolic monopoles.
- The above integrability condition is too weak to have a good twistor theory: cannot recover *M* as a parameter space of curves in a complex manifold.

- We define almost pluricomplex manifolds in the usual way.
- A pluricomplex structure on *M* is said to be *integrable* if every $J_{\zeta} = K(\zeta)$ is integrable. Pluricomplex manifolds = manifolds with an integrable pluricomplex structure.
- Obtain a complexified hypercomplex structure on $M^{\mathbb{C}}$. Projecting the Obata connection from $T^{1,0}M^{\mathbb{C}}$ onto TM gives a canonical torsion-free connection.
- Hopefully relevant to dynamics of hyperbolic monopoles.
- The above integrability condition is too weak to have a good twistor theory: cannot recover *M* as a parameter space of curves in a complex manifold.

- We define almost pluricomplex manifolds in the usual way.
- A pluricomplex structure on *M* is said to be *integrable* if every $J_{\zeta} = K(\zeta)$ is integrable. Pluricomplex manifolds = manifolds with an integrable pluricomplex structure.
- Obtain a complexified hypercomplex structure on $M^{\mathbb{C}}$. Projecting the Obata connection from $T^{1,0}M^{\mathbb{C}}$ onto TM gives a canonical torsion-free connection.
- Hopefully relevant to dynamics of hyperbolic monopoles.
- The above integrability condition is too weak to have a good twistor theory: cannot recover *M* as a parameter space of curves in a complex manifold.

Strongly integrable pluricomplex structures

• For a pluricomplex structure on a manifold *M*, consider the pointwise sequence defining the characteristic curve, i.e.

 $0 \to \mathcal{W}_m \to \mathcal{O} \otimes \mathcal{T}_m^{\mathbb{C}} M \to \mathcal{F}_m \to 0,$

for every $m \in M$, where $W_m|_{(\zeta,\eta)} = T_{\zeta}^{1,0} \oplus \widehat{T}_{\eta}^{1,0}$. We denote the support of \mathcal{F}_m by S_m .

• Consider the following fibration over M

 $Y = \{ (m, \zeta, \eta) \in M \times \mathbb{P}^1 \times \mathbb{P}^1; \ (\zeta, \eta) \in S_m \} \stackrel{v}{\longrightarrow} M,$

and the corresponding map $p: Y \to \mathbb{P}^1 \times \mathbb{P}^1$.

• We say that the pluricomplex structure is *strongly integrable* if this fibration can be extended to a double fibration

$$Z \xleftarrow{\mu} Y \xrightarrow{\nu} M,$$

so that *M* is then the parameter space of real curves $\tilde{S}_m \simeq S_m$ in *Z*; the normal sheaf of each \tilde{S}_m in *Z* is \mathcal{F}_m . *Z* is also equipped with a map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, such that $\rho = \rho \circ \mu$.

Strongly integrable pluricomplex structures

• For a pluricomplex structure on a manifold *M*, consider the pointwise sequence defining the characteristic curve, i.e.

 $0 \to \mathcal{W}_m \to \mathcal{O} \otimes \mathcal{T}_m^{\mathbb{C}} M \to \mathcal{F}_m \to 0,$

for every $m \in M$, where $W_m|_{(\zeta,\eta)} = T_{\zeta}^{1,0} \oplus \widehat{T}_{\eta}^{1,0}$. We denote the support of \mathcal{F}_m by S_m .

• Consider the following fibration over M

 $Y = \{ (m, \zeta, \eta) \in M \times \mathbb{P}^1 \times \mathbb{P}^1; \ (\zeta, \eta) \in S_m \} \stackrel{\nu}{\longrightarrow} M,$

and the corresponding map $p: Y \to \mathbb{P}^1 \times \mathbb{P}^1$.

 We say that the pluricomplex structure is strongly integrable if this fibration can be extended to a double fibration

$$Z \xleftarrow{\mu} Y \xrightarrow{\nu} M,$$

so that *M* is then the parameter space of real curves $\tilde{S}_m \simeq S_m$ in *Z*; the normal sheaf of each \tilde{S}_m in *Z* is \mathcal{F}_m . *Z* is also equipped with a map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, such that $\rho = \rho \circ \mu$.

Strongly integrable pluricomplex structures

• For a pluricomplex structure on a manifold *M*, consider the pointwise sequence defining the characteristic curve, i.e.

 $0 \to \mathcal{W}_m \to \mathcal{O} \otimes T_m^{\mathbb{C}} M \to \mathcal{F}_m \to 0,$

for every $m \in M$, where $W_m|_{(\zeta,\eta)} = T_{\zeta}^{1,0} \oplus \widehat{T}_{\eta}^{1,0}$. We denote the support of \mathcal{F}_m by S_m .

Consider the following fibration over M

 $Y = \{ (m, \zeta, \eta) \in M \times \mathbb{P}^1 \times \mathbb{P}^1; \ (\zeta, \eta) \in S_m \} \stackrel{\nu}{\longrightarrow} M,$

and the corresponding map $p: Y \to \mathbb{P}^1 \times \mathbb{P}^1$.

• We say that the pluricomplex structure is *strongly integrable* if this fibration can be extended to a double fibration

 $Z \xleftarrow{\mu} Y \xrightarrow{\nu} M,$

so that *M* is then the parameter space of real curves $\tilde{S}_m \simeq S_m$ in *Z*; the normal sheaf of each \tilde{S}_m in *Z* is \mathcal{F}_m . *Z* is also equipped with a map $\rho: Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \Delta$, such that $\rho = \rho \circ \mu$.

Strongly integrable pluricomplex structures

• For a pluricomplex structure on a manifold *M*, consider the pointwise sequence defining the characteristic curve, i.e.

 $0 \to \mathcal{W}_m \to \mathcal{O} \otimes \mathcal{T}_m^{\mathbb{C}} M \to \mathcal{F}_m \to 0,$

for every $m \in M$, where $W_m|_{(\zeta,\eta)} = T_{\zeta}^{1,0} \oplus \widehat{T}_{\eta}^{1,0}$. We denote the support of \mathcal{F}_m by S_m .

• Consider the following fibration over M

 $Y = \{ (m, \zeta, \eta) \in M \times \mathbb{P}^1 \times \mathbb{P}^1; \ (\zeta, \eta) \in S_m \} \stackrel{v}{\longrightarrow} M,$

and the corresponding map $p: Y \to \mathbb{P}^1 \times \mathbb{P}^1$.

• We say that the pluricomplex structure is *strongly integrable* if this fibration can be extended to a double fibration

 $Z \xleftarrow{\mu} Y \xrightarrow{\nu} M,$

so that *M* is then the parameter space of real curves $\tilde{S}_m \simeq S_m$ in *Z*; the normal sheaf of each \tilde{S}_m in *Z* is \mathcal{F}_m . *Z* is also equipped with a map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, such that $p = \rho \circ \mu$.

The characteristic curve $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ has bidegree (k, k). We call k the degree of a pluricomplex structure.

Let *M* be equipped with a strongly integrable pluricomplex structure of degree 1. Then *M* is the parameter space of σ -invariant rational curves with normal bundle isomorphic to a direct sum of O(1)'s. Therefore *M* is a quaternionic manifold. At every point $m \in M$ we have a \mathbb{P}^1 of almost complex structures, which behave algebraically as the \mathbb{P}^1 of unit imaginary quaternions. The twistor spaces of the pluricomplex structure and of the quaternionic structure, then *Z* is equipped with a projection onto *M*, the fibres of which are the σ -invariant \mathbb{P}^1 -s.

Having a pluricomplex structure as well means that this fibration is trivial, $Z \simeq M \times \mathbb{P}^1$, and the projection $\pi : Z \to \mathbb{P}^1$ is holomorphic (but $\pi \circ \sigma \neq \sigma \circ \pi$, unless *M* is hypercomplex). The map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$ is given by $\rho(z) = (\pi(z), \sigma \circ \pi \circ \sigma(z))$. **Example** $H^3 \times S^1$ (a.k.a. moduli space of hyperbolic monopoles of charge 1).

The characteristic curve $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ has bidegree (k, k). We call k the degree of a pluricomplex structure.

Let *M* be equipped with a strongly integrable pluricomplex structure of degree 1. Then *M* is the parameter space of σ -invariant rational curves with normal bundle isomorphic to a direct sum of *O*(1)'s. Therefore *M* is a quaternionic manifold.

At every point $m \in M$ we have a \mathbb{P}^1 of almost complex structures, which behave algebraically as the \mathbb{P}^1 of unit imaginary quaternions. The twistor spaces of the pluricomplex structure and of the quaternionic structure coincide. If we view *Z* as the twistor space of the quaternionic structure, then *Z* is equipped with a projection onto *M*, the fibres of which are the σ -invariant \mathbb{P}^1 -s.

Having a pluricomplex structure as well means that this fibration is trivial, $Z \simeq M \times \mathbb{P}^1$, and the projection $\pi : Z \to \mathbb{P}^1$ is holomorphic (but $\pi \circ \sigma \neq \sigma \circ \pi$, unless *M* is hypercomplex). The map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$ is given by $\rho(z) = (\pi(z), \sigma \circ \pi \circ \sigma(z))$. **Example** $H^3 \times S^1$ (a.k.a. moduli space of hyperbolic monopoles of charge 1).

The characteristic curve $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ has bidegree (k, k). We call k the degree of a pluricomplex structure.

Let *M* be equipped with a strongly integrable pluricomplex structure of degree 1. Then *M* is the parameter space of σ -invariant rational curves with normal bundle isomorphic to a direct sum of *O*(1)'s. Therefore *M* is a quaternionic manifold.

At every point $m \in M$ we have a \mathbb{P}^1 of almost complex structures, which behave algebraically as the \mathbb{P}^1 of unit imaginary quaternions. The twistor spaces of the pluricomplex structure and of the quaternionic structure coincide. If we view *Z* as the twistor space of the quaternionic structure, then *Z* is equipped with a projection onto *M*, the fibres of which are the σ -invariant \mathbb{P}^1 -s.

Having a pluricomplex structure as well means that this fibration is trivial, $Z \simeq M \times \mathbb{P}^1$, and the projection $\pi : Z \to \mathbb{P}^1$ is holomorphic (but $\pi \circ \sigma \neq \sigma \circ \pi$, unless *M* is hypercomplex). The map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$ is given by $\rho(z) = (\pi(z), \sigma \circ \pi \circ \sigma(z))$. **Example** $H^3 \times S^1$ (a.k.a. moduli space of hyperbolic monopoles of charge 1).

The characteristic curve $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ has bidegree (k, k). We call k the degree of a pluricomplex structure.

Let *M* be equipped with a strongly integrable pluricomplex structure of degree 1. Then *M* is the parameter space of σ -invariant rational curves with normal bundle isomorphic to a direct sum of *O*(1)'s. Therefore *M* is a quaternionic manifold.

At every point $m \in M$ we have a \mathbb{P}^1 of almost complex structures, which behave algebraically as the \mathbb{P}^1 of unit imaginary quaternions. The twistor spaces of the pluricomplex structure and of the quaternionic structure coincide. If we view *Z* as the twistor space of the quaternionic structure, then *Z* is equipped with a projection onto *M*, the fibres of which are the σ -invariant \mathbb{P}^1 -s.

Having a pluricomplex structure as well means that this fibration is trivial, $Z \simeq M \times \mathbb{P}^1$, and the projection $\pi : Z \to \mathbb{P}^1$ is holomorphic (but $\pi \circ \sigma \neq \sigma \circ \pi$, unless *M* is hypercomplex). The map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$ is given by $\rho(z) = (\pi(z), \sigma \circ \pi \circ \sigma(z))$. Example $H^0 \times S^1$ (a.k.a. moduli space of hyperbolic monopoles of charge 1)

The characteristic curve $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ has bidegree (k, k). We call k the degree of a pluricomplex structure.

Let *M* be equipped with a strongly integrable pluricomplex structure of degree 1. Then *M* is the parameter space of σ -invariant rational curves with normal bundle isomorphic to a direct sum of *O*(1)'s. Therefore *M* is a quaternionic manifold.

At every point $m \in M$ we have a \mathbb{P}^1 of almost complex structures, which behave algebraically as the \mathbb{P}^1 of unit imaginary quaternions. The twistor spaces of the pluricomplex structure and of the quaternionic structure coincide. If we view *Z* as the twistor space of the quaternionic structure, then *Z* is equipped with a projection onto *M*, the fibres of which are the σ -invariant \mathbb{P}^1 -s.

Having a pluricomplex structure as well means that this fibration is trivial, $Z \simeq M \times \mathbb{P}^1$, and the projection $\pi : Z \to \mathbb{P}^1$ is holomorphic (but $\pi \circ \sigma \neq \sigma \circ \pi$, unless *M* is hypercomplex). The map $\rho : Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$ is given by $\rho(z) = (\pi(z), \sigma \circ \pi \circ \sigma(z))$. **Example** $H^3 \times S^1$ (a.k.a. moduli space of hyperbolic monopoles of charge 1).

Pluricomplex structure of hyperbolic monopoles

- The moduli space $\mathcal{M}_{k,m}$ of hyperbolic SU(2)-monopoles of charge *k* and mass *m* has a natural strongly integrable pluricomplex structure (at least on an open dense subset; vanishing of $H^*(S, \mathcal{F}(-2, 0))$ everywhere needed).
- Its twistor space Z is the total space of the line bundle O(2m+k, -2m-k) over ℙ¹ × ℙ¹ − Δ with the zero section removed (a ℂ*-principal bundle).
- Similarly, moduli spaces of hyperbolic *SU*(3)-monopoles with minimal symmetry breaking have a natural strongly integrable pluricomplex structure. This time Z is the total space of an *GL*(2, ℂ)-principal bundle over ℙ¹ × ℙ¹ − Δ.

Pluricomplex structure of hyperbolic monopoles

- The moduli space $\mathcal{M}_{k,m}$ of hyperbolic SU(2)-monopoles of charge *k* and mass *m* has a natural strongly integrable pluricomplex structure (at least on an open dense subset; vanishing of $H^*(S, \mathcal{F}(-2, 0))$ everywhere needed).
- Its twistor space Z is the total space of the line bundle O(2m+k, -2m-k) over ℙ¹ × ℙ¹ − Δ with the zero section removed (a ℂ*-principal bundle).
- Similarly, moduli spaces of hyperbolic *SU*(3)-monopoles with minimal symmetry breaking have a natural strongly integrable pluricomplex structure. This time Z is the total space of an *GL*(2, ℂ)-principal bundle over ℙ¹ × ℙ¹ − Δ.

Pluricomplex structure of hyperbolic monopoles

- The moduli space $\mathcal{M}_{k,m}$ of hyperbolic SU(2)-monopoles of charge k and mass m has a natural strongly integrable pluricomplex structure (at least on an open dense subset; vanishing of $H^*(S, \mathcal{F}(-2, 0))$ everywhere needed).
- Its twistor space Z is the total space of the line bundle O(2m+k, -2m-k) over ℙ¹ × ℙ¹ − Δ with the zero section removed (a ℂ*-principal bundle).
- Similarly, moduli spaces of hyperbolic *SU*(3)-monopoles with minimal symmetry breaking have a natural strongly integrable pluricomplex structure. This time Z is the total space of an *GL*(2, ℂ)-principal bundle over ℙ¹ × ℙ¹ − Δ.

Let V be a vector space equipped with a pluricomplex structure of degree 2, i.e. its characteristic curve is elliptic. This is the case for hyperbolic monopoles of charge 2. We have V be a vector solution of the state of the second sec

 $0 \rightarrow \mathcal{F}(-1,-1) \rightarrow \mathcal{F}(-1/2,-1/2) \otimes H^0(S,\mathcal{O}(1/2,1/2)) \rightarrow \mathcal{F} \rightarrow 0,$

yields a canonical isomorphism

 $H^0(S,\mathcal{F})\simeq H^0(S,\mathcal{F}(-1/2,-1/2))\otimes H^0(S,\mathcal{O}_S(1/2,1/2)),$

i.e. $V^{\mathbb{C}} \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^2$. Both factors have a quaternionic involution compatible with the real involution on $V^{\mathbb{C}}$.

If *M* is a pluricomplex manifold, so that each S_m is elliptic and $O_{S_m}(1/2, -1/2) \not\simeq O_{S_m}$, we obtain an almost quaternionic structure on *M*.

Let *V* be a vector space equipped with a pluricomplex structure of degree 2, i.e. its characteristic curve is elliptic. This is the case for hyperbolic monopoles of charge 2. We have $V^{\mathbb{C}} \simeq H^0(S, \mathcal{F})$. Suppose that $O_S(1/2, 1/2) \cong O_S$ so that $H^0(O_S(1/2, 1/2)) \cong O_S$. Then the exact sequence

 $0 \to \mathcal{F}(-1,-1) \to \mathcal{F}(-1/2,-1/2) \otimes H^0(S,\mathcal{O}(1/2,1/2)) \to \mathcal{F} \to 0,$

yields a canonical isomorphism

 $H^0(S,\mathcal{F})\simeq H^0(S,\mathcal{F}(-1/2,-1/2))\otimes H^0(S,O_S(1/2,1/2)),$

i.e. $V^{\mathbb{C}} \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^2$. Both factors have a quaternionic involution compatible with the real involution on $V^{\mathbb{C}}$.

If *M* is a pluricomplex manifold, so that each S_m is elliptic and $O_{S_m}(1/2, -1/2) \not\simeq O_{S_m}$, we obtain an almost quaternionic structure or *M*.

Let *V* be a vector space equipped with a pluricomplex structure of degree 2, i.e. its characteristic curve is elliptic. This is the case for hyperbolic monopoles of charge 2. We have $V^{\mathbb{C}} \simeq H^0(S, \mathcal{F})$. Suppose that $\mathcal{O}_S(1/2, -1/2) \not\simeq \mathcal{O}_S$, so that $h^0(\mathcal{O}_S(1/2, 1/2)) = 2$. Then the exact sequence

 $0 \rightarrow \mathcal{F}(-1,-1) \rightarrow \mathcal{F}(-1/2,-1/2) \otimes H^0(S,\mathcal{O}(1/2,1/2)) \rightarrow \mathcal{F} \rightarrow 0,$

yields a canonical isomorphism

 $H^0(S, \mathcal{F}) \simeq H^0(S, \mathcal{F}(-1/2, -1/2)) \otimes H^0(S, O_S(1/2, 1/2)),$

i.e. $V^{\mathbb{C}} \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^2$. Both factors have a quaternionic involution compatible with the real involution on $V^{\mathbb{C}}$.

If *M* is a pluricomplex manifold, so that each S_m is elliptic and $O_{S_m}(1/2, -1/2) \not\simeq O_{S_m}$, we obtain an almost quaternionic structure on *M*.

Let *V* be a vector space equipped with a pluricomplex structure of degree 2, i.e. its characteristic curve is elliptic. This is the case for hyperbolic monopoles of charge 2. We have $V^{\mathbb{C}} \simeq H^0(S, \mathcal{F})$. Suppose that $\mathcal{O}_S(1/2, -1/2) \not\simeq \mathcal{O}_S$, so that $h^0(\mathcal{O}_S(1/2, 1/2)) = 2$. Then the exact sequence

 $0 \rightarrow \mathcal{F}(-1,-1) \rightarrow \mathcal{F}(-1/2,-1/2) \otimes H^0(\mathcal{S},\mathcal{O}(1/2,1/2)) \rightarrow \mathcal{F} \rightarrow 0,$

yields a canonical isomorphism

 $H^0\big(\mathcal{S},\mathcal{F}\big)\simeq H^0\big(\mathcal{S},\mathcal{F}(-1/2,-1/2)\big)\otimes H^0(\mathcal{S},\mathcal{O}_{\mathcal{S}}(1/2,1/2)),$

i.e. $V^{\mathbb{C}} \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^2$. Both factors have a quaternionic involution compatible with the real involution on $V^{\mathbb{C}}$.

If *M* is a pluricomplex manifold, so that each S_m is elliptic and $O_{S_m}(1/2, -1/2) \not\simeq O_{S_m}$, we obtain an almost quaternionic structure on *M*.

Let *V* be a vector space equipped with a pluricomplex structure of degree 2, i.e. its characteristic curve is elliptic. This is the case for hyperbolic monopoles of charge 2. We have $V^{\mathbb{C}} \simeq H^0(S, \mathcal{F})$. Suppose that $\mathcal{O}_S(1/2, -1/2) \not\simeq \mathcal{O}_S$, so that $h^0(\mathcal{O}_S(1/2, 1/2)) = 2$. Then the exact sequence

 $0 \rightarrow \mathcal{F}(-1,-1) \rightarrow \mathcal{F}(-1/2,-1/2) \otimes H^0(\mathcal{S},\mathcal{O}(1/2,1/2)) \rightarrow \mathcal{F} \rightarrow 0,$

yields a canonical isomorphism

 $H^0(\mathcal{S},\mathcal{F})\simeq H^0\big(\mathcal{S},\mathcal{F}(-1/2,-1/2)\big)\otimes H^0(\mathcal{S},\mathcal{O}_{\mathcal{S}}(1/2,1/2)),$

i.e. $V^{\mathbb{C}} \simeq \mathbb{C}^{2r} \otimes \mathbb{C}^2$. Both factors have a quaternionic involution compatible with the real involution on $V^{\mathbb{C}}$. If *M* is a pluricomplex manifold, so that each S_m is elliptic and $O_{S_m}(1/2, -1/2) \not\simeq O_{S_m}$, we obtain an almost quaternionic structure on *M*.

I'll show that this quaternionic structure is integrable: it arises from a twistor space \tilde{Z} , i.e. a complex manifold, equipped with a fixed-point-free antiholomorphic involution σ , such that M^{τ} is the parameter space of a family of σ -invariant holomorphic \mathbb{P}^1 with normal bundle $O(1) \otimes \mathbb{C}^{2n}$. If, additionaly, we want a quaternion-Kähler metric, then we need a complex contact structure on \tilde{Z} , i.e. a section θ of $K^{1/(n+1)}$ such that $\theta \wedge d\theta^n$ is nonzero on each twistor line (plus positivity).

Let *M* be a strongly pluricomplex manifold *M* with twistor space *Z*, $\rho: Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, with each *S_m* an elliptic curve. The quotient of $\mathbb{P}^1 \times \mathbb{P}^1$ by τ is \mathbb{P}^2 , and we have a double covering

 $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2.$

We can define the "direct image" π_*Z of Z.

I'll show that this quaternionic structure is integrable: it arises from a twistor space \tilde{Z} , i.e. a complex manifold, equipped with a fixed-point-free antiholomorphic involution σ , such that M^{τ} is the parameter space of a family of σ -invariant holomorphic \mathbb{P}^1 with normal bundle $O(1) \otimes \mathbb{C}^{2n}$. If, additionally, we want a quaternion-Kähler metric, then we need a complex contact structure on \tilde{Z} , i.e. a section 9 of $K^{1/(n-1)}$ such that $\theta \wedge d\theta^n$ is nonzero on each twistor line (plus positivity).

Let *M* be a strongly pluricomplex manifold *M* with twistor space *Z*, $\rho: Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, with each *S_m* an elliptic curve. The quotient of $\mathbb{P}^1 \times \mathbb{P}^1$ by τ is \mathbb{P}^2 , and we have a double covering

 $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2.$

We can define the "direct image" π_*Z of Z.

I'll show that this quaternionic structure is integrable: it arises from a twistor space \tilde{Z} , i.e. a complex manifold, equipped with a fixed-point-free antiholomorphic involution σ , such that M^{τ} is the parameter space of a family of σ -invariant holomorphic \mathbb{P}^1 with normal bundle $O(1) \otimes \mathbb{C}^{2n}$. If, additionaly, we want a quaternion-Kähler metric, then we need a complex contact structure on \tilde{Z} , i.e. a section θ of $K^{1/(n+1)}$ such that $\theta \wedge d\theta^n$ is nonzero on each twistor line (plus positivity).

Let *M* be a strongly pluricomplex manifold *M* with twistor space *Z*, $\rho: Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, with each *S_m* an elliptic curve. The quotient of $\mathbb{P}^1 \times \mathbb{P}^1$ by τ is \mathbb{P}^2 , and we have a double covering

 $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2.$

We can define the "direct image" $\pi_* Z$ of Z.

I'll show that this quaternionic structure is integrable: it arises from a twistor space \tilde{Z} , i.e. a complex manifold, equipped with a fixed-point-free antiholomorphic involution σ , such that M^{τ} is the parameter space of a family of σ -invariant holomorphic \mathbb{P}^1 with normal bundle $O(1) \otimes \mathbb{C}^{2n}$. If, additionaly, we want a quaternion-Kähler metric, then we need a complex contact structure on \tilde{Z} , i.e. a section θ of $K^{1/(n+1)}$ such that $\theta \wedge d\theta^n$ is nonzero on each twistor line (plus positivity).

Let *M* be a strongly pluricomplex manifold *M* with twistor space *Z*, $\rho: Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, with each *S_m* an elliptic curve. The quotient of $\mathbb{P}^1 \times \mathbb{P}^1$ by τ is \mathbb{P}^2 , and we have a double covering

 $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We can define the "direct image" π_*Z of Z.

I'll show that this quaternionic structure is integrable: it arises from a twistor space \tilde{Z} , i.e. a complex manifold, equipped with a fixed-point-free antiholomorphic involution σ , such that M^{τ} is the parameter space of a family of σ -invariant holomorphic \mathbb{P}^1 with normal bundle $O(1) \otimes \mathbb{C}^{2n}$. If, additionaly, we want a quaternion-Kähler metric, then we need a complex contact structure on \tilde{Z} , i.e. a section θ of $K^{1/(n+1)}$ such that $\theta \wedge d\theta^n$ is nonzero on each twistor line (plus positivity).

Let *M* be a strongly pluricomplex manifold *M* with twistor space *Z*, $\rho: Z \to \mathbb{P}^1 \times \mathbb{P}^1 - \overline{\Delta}$, with each *S_m* an elliptic curve. The quotient of $\mathbb{P}^1 \times \mathbb{P}^1$ by τ is \mathbb{P}^2 , and we have a double covering

 $\pi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2.$

We can define the "direct image" $\pi_* Z$ of Z.

Let *X* be the quotient of a complex manifold *Y* by a holomorphic involution τ , and let $p : Z \to Y$ be a holomorphic submersion. Consider the fibred product

$$Z^2_{\pi} = Z \times_{\rho} \tau^* Z = \{(z, w) \in Z \times Z; \ \rho(z) = \tau(\rho(w))\},\$$

with the induced submersion $\bar{p} : Z_{\pi}^2 \to Y$, $\bar{p}(z, w) = p(z)$. We have a \mathbb{Z}_2 -action on Z_{π}^2 given by $t : (z, w) \mapsto (w, z)$. Let $Z_{\pi}^{[2]}$ denote the manifold obtained by blowing up the fixed point set of t and quotienting the result by the induced \mathbb{Z}_2 , and let $\tilde{C} \subset Z_{\pi}^{[2]}$ be the proper transform of $C = \bar{p}^{-1}(Y^{\tau})$. Then

$$\pi_*Z=Z_\pi^{[2]}-\tilde{C}.$$

Observe that $\pi_* Z$ is precisely the subset of $Z_{\pi}^{[2]}$ where the induced projection $Z_{\pi}^{[2]} \to X$ is a submersion.

Let us go back to the case of $\pi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^2$ and Z the twistor space of a strongly integrable pluricomplex structure of degree 2.

We obtain the direct image $\pi_* Z$. If the involution τ can be lifted to Z, we obtain a holomorphic involution $\tilde{\tau}$ on $\pi_* Z$.

Let \tilde{Z} be the $\tilde{\tau}$ -invariant part of π_*Z . A τ -invariant S_m in Z will descend to a rational curve in \tilde{Z} , and its normal bundle is a sum of O(1)'s. Moreover, if the lift of τ is compatible with the real structure σ on Z, then we obtain a real structure on \tilde{Z} .

Thus \tilde{Z} is the twistor space of an integrable quaternionic structure on M^{r} . To obtain a qK metric, we need a contact structure θ on \tilde{Z} . I do not know (yet) what one needs on Z to get θ on \tilde{Z} .

What I just described is precisely the situation when *M* is a moduli space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with minimal symmetry breaking). M^{r} is then the corresponding moduli space of centred monopoles, and the resulting qK metrics are the ones due to Hitchin.

Let Z be the $\tilde{\tau}$ -invariant part of π_*Z . A τ -invariant S_m in Z will descend to a rational curve in \tilde{Z} , and its normal bundle is a sum of O(1)'s. Moreover, if the lift of τ is compatible with the real structure σ on Z, then we obtain a real structure on \tilde{Z} .

Thus \tilde{Z} is the twistor space of an integrable quaternionic structure on M^{r} . To obtain a qK metric, we need a contact structure θ on \tilde{Z} . I do not know (yet) what one needs on Z to get θ on \tilde{Z} .

What I just described is precisely the situation when *M* is a moduli space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with minimal symmetry breaking). M^{t} is then the corresponding moduli space of centred monopoles, and the resulting qK metrics are the ones due to Hitchin.

Let \tilde{Z} be the $\tilde{\tau}$ -invariant part of π_*Z . A τ -invariant S_m in Z will descend to a rational curve in \tilde{Z} , and its normal bundle is a sum of O(1)'s. Moreover, if the lift of τ is compatible with the real structure σ on Z, then we obtain a real structure on \tilde{Z} .

Thus \tilde{Z} is the twistor space of an integrable quaternionic structure on $M^{\mathfrak{r}}$. To obtain a qK metric, we need a contact structure 0 on Z. I do not know (yet) what one needs on Z to get 0 on Z.

What I just described is precisely the situation when M is a moduli space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with minimal symmetry breaking). M^{t} is then the corresponding moduli space of centred monopoles, and the resulting qK metrics are the ones due to Hitchin.

Let \tilde{Z} be the $\tilde{\tau}$ -invariant part of π_*Z . A τ -invariant S_m in Z will descend to a rational curve in \tilde{Z} , and its normal bundle is a sum of O(1)'s. Moreover, if the lift of τ is compatible with the real structure σ on Z, then we obtain a real structure on \tilde{Z} .

Thus \tilde{Z} is the twistor space of an integrable quaternionic structure on M^{τ} . To obtain a qK metric, we need a contact structure θ on \tilde{Z} . I do not know (yet) what one needs on Z to get θ on \tilde{Z} .

What I just described is precisely the situation when M is a moduli space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with minimal symmetry breaking). M^{t} is then the corresponding moduli space of centred monopoles, and the resulting qK metrics are the ones due to Hitchin.

Let \tilde{Z} be the $\tilde{\tau}$ -invariant part of π_*Z . A τ -invariant S_m in Z will descend to a rational curve in \tilde{Z} , and its normal bundle is a sum of O(1)'s. Moreover, if the lift of τ is compatible with the real structure σ on Z, then we obtain a real structure on \tilde{Z} .

Thus \tilde{Z} is the twistor space of an integrable quaternionic structure on M^{t} . To obtain a qK metric, we need a contact structure θ on \tilde{Z} . I do not know (yet) what one needs on Z to get θ on \tilde{Z} .

What I just described is precisely the situation when *M* is a moduli space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with minimal symmetry breaking). M^{τ} is then the corresponding moduli space of centred monopoles, and the resulting qK metrics are the ones due to Hitchin.

Let \tilde{Z} be the $\tilde{\tau}$ -invariant part of π_*Z . A τ -invariant S_m in Z will descend to a rational curve in \tilde{Z} , and its normal bundle is a sum of O(1)'s. Moreover, if the lift of τ is compatible with the real structure σ on Z, then we obtain a real structure on \tilde{Z} .

Thus \tilde{Z} is the twistor space of an integrable quaternionic structure on M^{t} . To obtain a qK metric, we need a contact structure θ on \tilde{Z} . I do not know (yet) what one needs on Z to get θ on \tilde{Z} .

What I just described is precisely the situation when *M* is a moduli space of charge 2 hyperbolic monopoles (SU(2) or SU(3) with minimal symmetry breaking). M^{τ} is then the corresponding moduli space of centred monopoles, and the resulting qK metrics are the ones due to Hitchin.

There are complete ALF gravitational instantons of type D_k , for any $k \in \mathbb{N}$, first constructed by Cherkis and Kapustin (1999) (k = 2 is due to Hitchin, 1983); also Cherkis & Hitchin (2005).

The next example of the construction I just described (pluricomplex \implies quaternionic) produces self-dual deformations of D_k ALF instantons.

Essentially, we consider singular hyperbolic monopoles of charge 2. The location of singularities is given by *k* points in H^3 , which corresponds to *k* sections q_i of O(1,1) on $\mathbb{P}^1 \times \mathbb{P}^1$. Let $\psi = \prod q_i$ - a section of O(k,k), and let L^m be the line bundle O(m,-m) on $\mathbb{P}^1 \times \mathbb{P}^1$

There are complete ALF gravitational instantons of type D_k , for any $k \in \mathbb{N}$, first constructed by Cherkis and Kapustin (1999) (k = 2 is due to Hitchin, 1983); also Cherkis & Hitchin (2005).

The next example of the construction I just described (pluricomplex \implies quaternionic) produces self-dual deformations of D_k ALF instantons.

Essentially, we consider singular hyperbolic monopoles of charge 2. The location of singularities is given by *k* points in H^3 , which corresponds to *k* sections q_i of O(1,1) on $\mathbb{P}^1 \times \mathbb{P}^1$. Let $\psi = \prod q_i$ - a section of O(k,k), and let L^m be the line bundle O(m, -m) on $\mathbb{P}^1 \times \mathbb{P}^1$

There are complete ALF gravitational instantons of type D_k , for any $k \in \mathbb{N}$, first constructed by Cherkis and Kapustin (1999) (k = 2 is due to Hitchin, 1983); also Cherkis & Hitchin (2005).

The next example of the construction I just described (pluricomplex \implies quaternionic) produces self-dual deformations of D_k ALF instantons.

Essentially, we consider singular hyperbolic monopoles of charge 2. The location of singularities is given by k points in H^3 , which corresponds to k sections q_i of O(1,1) on $\mathbb{P}^1 \times \mathbb{P}^1$. Let $\psi = \prod q_i$ - a section of O(k,k), and let L^m be the line bundle O(m, -m) on $\mathbb{P}^1 \times \mathbb{P}^1$

There are complete ALF gravitational instantons of type D_k , for any $k \in \mathbb{N}$, first constructed by Cherkis and Kapustin (1999) (k = 2 is due to Hitchin, 1983); also Cherkis & Hitchin (2005).

The next example of the construction I just described (pluricomplex \implies quaternionic) produces self-dual deformations of D_k ALF instantons.

Essentially, we consider singular hyperbolic monopoles of charge 2. The location of singularities is given by *k* points in H^3 , which corresponds to *k* sections q_i of O(1,1) on $\mathbb{P}^1 \times \mathbb{P}^1$. Let $\psi = \prod q_i - a$ section of O(k,k), and let L^m be the line bundle O(m, -m) on $\mathbb{P}^1 \times \mathbb{P}^1$.

$Z_{m,k} = \left\{ (u,v) \in L^m(k,0) \oplus L^{-m}(0,k); \, uv = \psi \right\}.$

After resolving singularities, we obtain a twistor space of a strongly integrable pluricomplex structure in dimension 8.

If ψ is invariant w.r.t. the involution τ , we can apply the above construction and obtain a family of 4-dimensional conformal self-dual metrics.

These converge to the ALF gravitational instantons of type D_k as $m \rightarrow \infty$.

Perhaps these are not Einstein, after all, by analogy with what happens for singular hyperbolic monopoles of charge 1. As observed by Nash (2008, also Atiyah & LeBrun, 2012), singular monopoles of charge 1 produce a 1-dimensional family of self-dual deformations of ALF gravitational instantons of type A_k (multi-Taub-NUT). These are LeBrun's self-dual metrics on $\mathbb{P}^2 \# \mathbb{P}^2 \# \ldots \# \mathbb{P}^2$, and so not Einstein.

$Z_{m,k} = \{(u,v) \in L^{m}(k,0) \oplus L^{-m}(0,k); uv = \psi\}.$

After resolving singularities, we obtain a twistor space of a strongly integrable pluricomplex structure in dimension 8.

If ψ is invariant w.r.t. the involution $\tau,$ we can apply the above construction and obtain a family of 4-dimensional conformal self-dual metrics.

These converge to the ALF gravitational instantons of type D_k as $m \rightarrow \infty$.

Perhaps these are not Einstein, after all, by analogy with what happens for singular hyperbolic monopoles of charge 1. As observed by Nash (2008, also Atiyah & LeBrun, 2012), singular monopoles of charge 1 produce a 1-dimensional family of self-dual deformations of ALF gravitational instantons of type A_k (multi-Taub-NUT). These are LeBrun's self-dual metrics on $\mathbb{P}^2 \# \mathbb{P}^2 \# \dots \# \mathbb{P}^2$, and so not Einstein.

$Z_{m,k} = \{(u,v) \in L^m(k,0) \oplus L^{-m}(0,k); uv = \psi\}.$

After resolving singularities, we obtain a twistor space of a strongly integrable pluricomplex structure in dimension 8.

If ψ is invariant w.r.t. the involution τ , we can apply the above construction and obtain a family of 4-dimensional conformal self-dual metrics.

These converge to the ALF gravitational instantons of type D_k as $m \rightarrow \infty$.

Perhaps these are not Einstein, after all, by analogy with what happens for singular hyperbolic monopoles of charge 1. As observed by Nash (2008, also Atiyah & LeBrun, 2012), singular monopoles of charge 1 produce a 1-dimensional family of self-dual deformations of ALF gravitational instantons of type A_k (multi-Taub-NUT). These are LeBrun's self-dual metrics on $\mathbb{P}^2 \# \mathbb{P}^2 \# \dots \# \mathbb{P}^2$, and so not Einstein.

$Z_{m,k} = \{(u,v) \in L^m(k,0) \oplus L^{-m}(0,k); uv = \psi\}.$

After resolving singularities, we obtain a twistor space of a strongly integrable pluricomplex structure in dimension 8.

If ψ is invariant w.r.t. the involution τ , we can apply the above construction and obtain a family of 4-dimensional conformal self-dual metrics.

These converge to the ALF gravitational instantons of type D_k as $m \rightarrow \infty$.

Perhaps these are not Einstein, after all, by analogy with what happens for singular hyperbolic monopoles of charge 1.

As observed by Nash (2008, also Atiyah & LeBrun, 2012), singular monopoles of charge 1 produce a 1-dimensional family of self-dual deformations of ALF gravitational instantons of type A_k (multi-Taub-NUT). These are LeBrun's self-dual metrics on $\mathbb{P}^2 \# \mathbb{P}^2 \# \dots \# \mathbb{P}^2$, and so not Einstein.

$Z_{m,k} = \{(u,v) \in L^m(k,0) \oplus L^{-m}(0,k); \, uv = \psi\}.$

After resolving singularities, we obtain a twistor space of a strongly integrable pluricomplex structure in dimension 8.

If ψ is invariant w.r.t. the involution τ , we can apply the above construction and obtain a family of 4-dimensional conformal self-dual metrics.

These converge to the ALF gravitational instantons of type D_k as $m \rightarrow \infty$.

Perhaps these are not Einstein, after all, by analogy with what happens for singular hyperbolic monopoles of charge 1. As observed by Nash (2008, also Atiyah & LeBrun, 2012), singular monopoles of charge 1 produce a 1-dimensional family of self-dual deformations of ALF gravitational instantons of type A_k (multi-Taub-NUT). These are LeBrun's self-dual metrics on $\mathbb{P}^2 \# \mathbb{P}^2 \# \dots \# \mathbb{P}^2$, and so not Einstein.