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Motivations

Projective geometry and conformal geometry both play an
important role in riemannian geometry.

In complex geometry,
conformal hermitian structures have provided insight, but the
impact has been limited. This raises the question:

How does projective geometry illuminate complex
(hermitian and Kähler) geometry?

My contention is that projective geometry, with a
kählerian interpretation, is more deeply embedded in
Kähler geometry than conformal geometry is, and has
interesting links with other special geometric structures.

This case cannot be made in the usual context of (holomorphic)
complex projective geometry, because holomorphic unitary
connections are flat. H-projective geometry instead concerns
aspects of complex projective geometry which are not holomorphic.

Irony: the “H” originally stood for “holomorphic”!
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The literature (name dropping)

Projective geometry: classical (Lie, Cartan,...)

H-projective geometry: large Japanese and former soviet schools
(Otsuki, Tashiro, Ishihara, Tachibana, Yashimatsu, Mikes,
Domashev,...).

Projective and H-projective metrics: recent works by R. Bryant, M.
Dunajski, V. Matveev, S. Rosemann,...

Quaternionic geometries: S. Salamon, A. Swann,...

Parabolic geometries: A. Cap, J. Slovak, V. Soucek, T. Diemer, M.
Eastwood, R. Gover, M. Hammerl,...

H-projective case: S. Armstrong, J. Hrdina,...
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Projective structures

Let D be a torsion-free connection on an n-manifold M (e.g.,
D = ∇g for a riemannian metric g on M).

I A curve c in M is a geodesic wrt. D iff for all T tangent to c ,
DTT ∈ span{T}.

I Torsion-free connections D and D̃ have the same geodesics iff
∃ γ ∈ Ω1(M), a 1-form, with

D̃X − DX = [[X , γ]]r ∈ C∞(M, gl(TM)),

[[X , γ]]r (Y ) := γ(X )Y + γ(Y )X .where

Then D and D̃ are said to be projectively equivalent.
We write D̃ = D + γ for short (instead of D̃ = D + [[·, γ]]r ).

I A projective structure on Mn (n > 1) is a projective class
Πr = [D] of torsion-free connections.
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H-projective structures

Let (M, J) be a complex manifold of real dimension n = 2m and
let D be a torsion-free connection on M (a smooth n-manifold)
with DJ = 0 (e.g., D = ∇g for a Kähler metric g on M).

I A curve c is an H-planar geodesic wrt. D iff for all T tangent
to c , DTT ∈ span{T , JT}.

I Torsion-free complex connections D and D̃ have the same
H-planar geodesics iff ∃ γ ∈ Ω1(M), a (real) 1-form, with

D̃X − DX = [[X , γ]]c ∈ C∞(M, gl(TM, J)),

[[X , γ]]c(Y ) := 1
2

(
γ(X )Y + γ(Y )X − γ(JX )JY − γ(JY )JX

)
.

Then D and D̃ are said to be H-projectively equivalent.
We write D̃ = D + γ for short.

I An H-projective structure on M2m (m > 1) is an H-projective
class Πc = [D] of torsion-free complex connections.
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Quaternionic structures
Let (M,Q) be a quaternionic manifold of real dimension n = 4`
(thus Q ⊂ gl(TM), with fibres isomorphic to sp(1), spanned by
imaginary quaternions J1, J2, J3) and let D be a torsion-free
connection on M preserving Q (e.g., D = ∇g for a quaternion
Kähler metric g on M).

I A curve c is a Q-planar geodesic wrt. D iff for all T tangent
to c , DTT ∈ span{T , JT : J ∈ Q}.

I Fact. Any two torsion-free quaternionic connections D and D̃
have the same Q-planar geodesics: ∃ γ ∈ Ω1(M) with

D̃X − DX = [[X , γ]]q ∈ C∞(M, gl(TM,Q)),

[[X , γ]]q(Y ) := 1
2

(
γ(X )Y + γ(Y )X

−
∑
i

(
γ(JiX )JiY + γ(JiY )JiX

))
.

I The class of torsion-free quaternionic connections may be
denoted analogously by Πq = [D].
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Common framework: parabolic geometries

Projective, H-projective and quaternionic classes Π of torsion-free
connections are affine spaces modelled on 1-forms. Torsion-free
conformal connections (“Weyl connections”) on a conformal
manifold (Mn, c) also form such an affine space.

These are all parabolic geometries with abelian nilradical which
have a well developed invariant theory.

Key feature: an algebraic bracket

[[, ]] : TM × T ∗M → g0(M) ⊆ gl(TM)

such that D 7→ D + γ ∈ Π is given by D + γ := D + [[·, γ]].

Why “parabolic”, and what is really going on?
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The Cartan connection
Parabolic geometries are “Cartan geometries” modelled on a
“generalized flag variety” G/P, where G is a semisimple Lie group
and P a parabolic subgroup of G , i.e., its Lie algebra p is
parabolic: p = g0 n p⊥ with g0 reductive and p⊥ nilpotent.

I Projective case: G = PGL(n + 1,R) (with complexification
PGL(n + 1,C)) acting on RPn.

I H-projective case: G = PGL(m + 1,C) (real, with
complexification PGL(m + 1,C)× PGL(m + 1,C)) acting on
CPm.

I Quaternionic case: G = PGL(`+ 1,H) (with complexification
PGL(2`+ 2,C)) acting on HP`.

Such a Cartan geometry on M, where dimM = dim g/p, is a
principal G -bundle with a principal G -connection and a reduction
to P satisfying the Cartan condition: the induced 1-form on M
with values in the bundle associated to g/p is an isomorphism on
each fibre. Thus M inherits the first order geometry of G/P, and
in particular, a bundle of parabolic subalgebras g0(M) n T ∗M.
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Computing with projective connections

A function F on Π is an invariant if it is constant, i.e.,
∀D ∈ Π, γ ∈ Ω1(M), ∂γF (D) := d

dtF (D + tγ)|t=0 is zero.

For a section s of a vector bundle E associated to the frame
bundle, ∂γDX s = [[X , γ]] · s (the natural action of g0(M) on E ).

Variation of the second derivative:

∂γD
2
X ,Y s = [[X , γ]] ·DY s + [[Y , γ]] ·DX s −D[[X ,γ]]·Y s + [[Y ,DXγ]] · s.

Hence the curvature RD ∈ Ω2(M, g0(TM)) of D, given by
D2
X ,Y s − D2

Y ,X s = RD
X ,Y · s, satisfies

∂γR
D
X ,Y = −[[Id ∧ Dγ]]X ,Y := −[[X ,DY γ]] + [[Y ,DXγ]].

Can write: RD = W + [[Id ∧ rD ]], where W is invariant
(∂γW = 0), and the normalized Ricci tensor rD ∈ Ω1(M,T ∗M)
satisfies ∂γr

D = −Dγ.
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Projective and H-projective hessians
Consequence:

∂γ(D2
X ,Y s + [[Y , rDX ]] · s) = [[X , γ]] ·DY s + [[Y , γ]] ·DX s −D[[X ,γ]]·Y s

so D2
X ,Y s + [[X , rDY ]] · s is algebraic in D.

On densities of weight k (sections of a certain line bundle O(k))
this simplifies to

∂γ(D2
X ,Y s + krDX (Y )s) = kγ(X )DY s + kγ(Y )DX s − D[[X ,γ]]·Y s.

In (real or holomorphic) projective geometry this gives a natural
hessian operator on sections of O(1), whose solutions yield affine
coordinates. In the H-projective case, the corresponding equation
describes functions with J-invariant natural hessian: in Kähler
geometry, these are hamiltonians for Killing vector fields!

A Hessian operator of Hill’s equation can be used to define
projective structures on 1-manifolds, and similarly H-projective
structures on Riemann surfaces, also known as Möbius structures.
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Compatible metrics

Q: Given a parabolic geometry with torsion-free connections Π,
describe the space of compatible metrics g with Levi-Civita
connection ∇g ∈ Π. Is it nonempty?

In projective geometry, this equation linearizes for the inverse
metric h in S2TM ⊗O(−1), and is an overdetermined first order
equation of finite type.

The same is true in the H-projective case, where one can work with
the corresponding J-invariant 2-vector
φ = h(J·, ·) ∈ ∧1,1TM ⊗O(−1), which satisfies...

DXφ = X ∧ KD + JX ∧ JKD

for some, hence any, D ∈ Πc ; KD determined by the trace of Dφ.

If D = ∇g for a Kähler metric g , this means that the 2-form dual
to φ with respect to g is a hamiltonian 2-form!
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H-projective metrics and hamiltonian 2-forms
The mobility of an H-projective structure is the dimension of the
space of solutions of the linear equation for compatible Kähler
metrics.

I Generically the mobility will be zero, and it remains open to
characterize when it is positive, and when an H-projective
structure is Kählerian.

I The theory of hamiltonian 2-forms provides local and global
classification results for mobility ≥ 2, i.e., of H-projectively
equivalent Kähler metrics which are not affinely equivalent.

I Within this classification, the mobility ≥ 3 case can be
identified; such metrics are rare, and in the compact case,
have constant holomorphic sectional curvature.

The complicated geometry of these metrics can be illuminated via
cone constructions, which represent Cartan connections as affine
connections on a (generalized) cone manifold, but there is still
much to be understood.
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H-projective structures and Cartan holonomy

RP2m+1 is a circle bundle over CPm (the Hopf fibration), given by
a choice of complex structure on the fundamental representation
R2m+2 of GL(2m + 2,R) (yielding the fundamental representation
Cm+1 of GL(m + 1,C)).

In general, any H-projective manifold M2m has a circle bundle
N2m+1 with a projective structure on it, and the projective Cartan
connection preserves a complex structure in its fundamental
representation.

Conversely, a projective structure on a (2m + 1)-manifold whose
Cartan connection has such a holonomy reduction is locally a circle
bundle over an H-projective manifold.

There are results about the interplay of Cartan holonomy with
other structures (compatible metrics, quaternionic structures), but
much remains unexplored.
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Totally complex submanifolds of quaternionic manifolds
Q. Are H-projective structures interesting beyond the realm of
Kähler geometry?

Observation. Let (N4m,Q) be a quaternionic manifold and M2m

a maximal totally complex submanifold, i.e., each tangent space of
M is invariant under some J ∈ Q, but for any I ∈ Q
anticommuting with J, I (TM) is complementary to TM.

Then (M, J) inherits an H-projective structure from (N,Q).

Indeed, we just project the quaternionic connections onto TM
(along the complement, which is independent of I ), observing that
for X ,Y ∈ TM, the projection onto TM of [[X , γ]]q(Y ) is
[[X , i∗γ]]c(Y ), where i : M → N is the inclusion.

This prompts a further question: when does an H-projective
structure arise this way?

If it does then the quaternionic manifold N is locally a
neighbourhood of the zero section in TM ⊗ L for a unitary line
bundle L (why?).
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A generalized Feix–Kaledin construction

In the early 2000’s, B. Feix and D. Kaledin gave independent
constructions of hyperkähler metrics on cotangent bundles of real
analytic Kähler manifolds. The metrics were defined on a
neighbourhood of the zero section. They placed these
constructions within a more general context: hypercomplex
structures on the tangent bundle of a complex manifold equipped
with a real analytic torsion-free hermitian connection whose
curvature has type (1,1).

Theorem. Let (M2m, J,Πc) be a real analytic H-projective
manifold whose H-projective Weyl curvature W has type (1,1).
Then there is a natural quaternionic structure Q on a
neighbourhood N4m of the zero section in TM ⊗ L for a certain
unitary line bundle L.
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Construction via the twistor space

Idea for proof (following Feix). We construct the twistor space of
(N,Q), which is a complex 2m + 1 manifold with real structure,
containing real “twistor lines” (rational curves with normal bundle
O(1)⊗ C 2m): N is the space of such twistor lines.

Flat model. When M = CPm, its complexification is CPm ×CPm

and the total space of P(O ⊕O(1,−1)) is birational to CP2m+1

by a partial blow down of the zero and infinity sections (inversely,
write C2m+2 = Cm+1 ⊕Cm+1 and blow up two projective m-spaces
in CP2m+1). This is the twistor space of HPm, and the fibres of
P(O ⊕O(1,−1)) project to twistor lines.

We make the same construction over the complexification Mc of
M (a neighbourhood of the diagonal in M ×M).
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The blow-down

Mc has two complementary foliations integrating the (1, 0) and
(0, 1) distributions (which restrict to T 1,0M and T 0,1M in
TM ⊗ C along M).

The analogue of P(O ⊕O(1,−1)) is obtained by gluing the line
bundles O(1)⊗O(−1) and O(−1)⊗O(1) by inversion on the
complement of their zero sections. We then need to blow-down the
zero sections along corresponding foliations.

The model for this blow-down is based on the blow-up of Cm+1 at
the origin, which is the total space of O(−1) over CPm. Inversely,
we reconstruct Cm+1 as the dual space to the space of affine
sections of O(1) over CPm.

This is where the type (1,1) curvature condition on M enters: it
implies that the two foliations of Mc have projectively flat leaves.
Hence the hessian equation for affine sections of O(1) is
completely integrable and we can integrate it leafwise to obtain
rank m + 1 vector bundles over the leaf spaces.
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