Riemannian 4-manifolds with 'small' holonomy

SIMON G. CHIOSSI

iNSAM
Marie Curie fellow
Torino / Marburg

Geometric structures on manifolds and their applications
@ Schloss Rauischholzhausen - July 2012
with Paul-Andi Nagy (Murcia, ES)

surfaces with 1-dimensional Chern holonomy

Key interplay: complex structures $\downarrow \rightarrow$ curvature
Core results on (M^{4}, g, I) Hermitian:

* Ricci l-invariant, or IcK $\Longrightarrow W^{+}$degenerate

[Apostolov-Gauduchon 97]
* Einstein $\left(W^{+} \not \equiv 0\right) \Longrightarrow$ IcK, \exists Hamiltonian Killing field
[Derdziński 83, Boyer 86, Nurowski 93, AG 97]
Our work:
- Ric $\in \Omega_{,}^{1,1} \Longleftrightarrow W^{+}$degenerate, \quad yet M^{4} may still not be IcK
- local classification \rightsquigarrow explicit constructions!
(esp. non-compact surfaces) often arising from Kähler surfaces of Calabi type

Plan

- scenario: complex structures in dimension 4
- what small holonomy means
- the classification

2-forms in \mathbb{R}^{4}

Let M^{4} be a real, oriented, smooth 4-manifold (a 'surface') with an almost Hermitian structure (g, l)

$$
I^{2}=-l d_{T M}, \quad g(I \cdot, l \cdot)=g(\cdot, \cdot)>0, \quad \omega_{I}=g(I \cdot, \cdot)
$$

- The bundle of real 2-forms decomposes as

$$
\Omega^{2}=\Omega^{1,1} \oplus \Omega^{\{2,0\}}=\mathbb{R} \omega_{I} \oplus \Omega_{0}^{1,1} \oplus K_{M}
$$

- Paramount feature

$$
\Omega^{2}=\Omega^{+} \oplus \Omega^{-}
$$

SO

$$
\Omega^{+}=\mathbb{R} \omega_{l} \oplus K_{M}, \quad \Omega^{-}=\Omega_{0}^{1,1}
$$

Similarly for curvature: $R=s \oplus \operatorname{Ric}_{0} \oplus W^{+} \oplus W^{-} \in \operatorname{Sym}^{2}\left(\Lambda^{2}\right)$.

Orthogonal complex structures

A Kähler surface $\left(M^{4}, g, J\right)$ is naturally oriented, say $\omega_{J} \in \Omega^{-}$.

Are there 'interesting' structures on Ω^{+}?

cf. hypercomplex, hypersymplectic, ...
[Hitchin 90, Salamon 91, Geiges-Gonzalo 95]
[Pontecorvo 97, Kamada 99, Bande-Kotschick 06...]
But what about existence? Well,
if W^{+}is co-closed can define an OCS / such that $\omega_{/} \in \Omega^{+}$, plus

- I and J commute
- IcK $(d \theta=0)$

$$
\left(d \omega_{l}=\theta \wedge \omega_{l}\right)
$$

- θ is preserved by $I \circ J$

Kähler surfaces with $\delta W^{+}=0$ are called weakly self-dual, and were defined and classified by [Apostolov-Calderbank-Gauduchon 03]

Canonical connection

Geometry of any almost Hermitian ($M^{2 n}, g, I$) determined by (θ or)

$$
\begin{aligned}
\eta=\frac{1}{2}(\nabla I) / & \in \Omega^{1} \otimes \Omega^{\{2,0\}} \\
& \text { eg: } \quad(g, I) \text { Hermitian } \Longleftrightarrow \eta \in \Omega^{1,1} \otimes \Omega^{1}
\end{aligned}
$$

Consider

$$
\bar{\nabla}=\nabla+\eta
$$

- metric, Hermitian, with torsion $T(X, Y)=\eta_{X} Y-\eta_{Y} X$
- called $2^{\text {nd }}$ canonical Hermitian connection
- $\bar{\nabla}=\nabla^{\text {Chern }} \quad$ when M complex
cf. [Gauduchon 97]
Corresponding curvature: $\bar{R}=W^{-}+\frac{s}{12} / d_{\Omega^{-}}+\frac{1}{2} R i c_{0}^{1,1}+\frac{1}{2} \bar{\gamma} \otimes \omega_{l}$

$$
\bar{\gamma}=\rho^{\prime}+W^{+} \omega_{I}+\frac{1}{2} d^{+} \theta-\frac{s}{6} \omega_{l} \quad \text { (essentially, first Chern form) }
$$

cf. \bar{R} / R comparison of [Cleyton-Swann 04]

"Small" curvature

Holonomy algebra generated by $\bar{R}(X, Y) \in \Omega^{1,1}$
Interested in the case: M^{4} with

$$
\mathfrak{h o l}(\bar{\nabla}) \subset \Omega_{0}^{1,1} \oplus \mathbb{R} \subset \Omega^{-} \oplus \Omega^{+}
$$

of dimension 1 at most:

$$
\bar{R}=\frac{1}{2} \bar{\gamma} \otimes\left(\mathbf{F}_{0}+\alpha \omega_{1}\right)
$$

Three rather different situations: $\left\{\begin{array}{l}\bar{R} \equiv 0 \\ F_{0} \equiv 0 \\ F_{0} \neq 0\end{array}\right.$

Chern-flat surfaces

Proposition

$\left(M^{4}, g, I\right)$ almost Hermitian with $\bar{R}=0 \Longrightarrow g$ flat.
Better: if $\left(\sigma_{i}\right)$ is a ∇-parallel ON basis of Ω^{+},

$$
\omega_{l}=\sigma_{1} \cos \varphi \cos \psi+\sigma_{2} \cos \varphi \sin \psi+\sigma_{3} \sin \varphi
$$

where $d \psi \wedge d \varphi=0$ (actually $\psi=\psi(\varphi)$).
NB: even not compact
Corollary: M^{4} either Hermitian or almost Kähler, $\bar{R}=0 \Longrightarrow$ flat Kähler.

Compare to
M^{n} compact almost Kähler, $\bar{R}=0 \Longrightarrow$ flat Kähler
M^{n} compact Hermitian, holom. torsion $+\mathrm{CHSC} \Longrightarrow$ Kähler or flat
[Balas-Gauduchon 85]

SDE 4-manifolds

If $F_{0}=0$:
Proposition

$$
\bar{R}=\frac{1}{2} \bar{\gamma} \otimes \omega_{I} \quad \Longleftrightarrow \quad \text { Ricci-flat and self-dual. }
$$

In particular:

$$
g \text { flat } \Longrightarrow \operatorname{dimhol}(\bar{\nabla}) \leqslant 1
$$

$$
\text { compact } \Longrightarrow \text { flat Kähler }
$$

NB: Self-dual Einstein-Hermitian surfaces classified
[Apostolov-Gauduchon 02]

Example: a symplectic army

($\left.M^{4}, g, l\right)$ Hermitian:

$$
\bar{R}=-\frac{1}{4} d(I \theta) \otimes \omega_{l}
$$

$\exists 5$ symplectic forms:

$$
\omega_{i} \wedge \omega_{j}= \pm \operatorname{vol}(g)
$$

Can always arrange for

$$
\operatorname{span}\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}=\Omega^{-}, \quad \omega_{4}, \omega_{5} \in \Omega^{+},
$$ latter 2 not Kähler if g not flat [Armstrong 97] complete frame by $\omega_{I}=\omega_{6} \in \Omega^{+}$(non-closed)

Proposition

$\left(M^{4}, g\right)$ non-flat with 5 ON symplectic forms

- there exists a tri-holomorphic Killing field
- (M, g) is locally isometric to $\mathbb{R}^{+} \times \mathrm{Nil}^{3}$ with

$$
d t^{2}+\left(\frac{2}{3} t\right)^{3 / 2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\left(\frac{2}{3} t\right)^{-3 / 2} \sigma_{3}^{2} .
$$

\rightsquigarrow quotient of KT mfd with diagonal Bianchi metric of class II, chm $=1$
Not complete, or (global) symmetry would force flatness

Kähler-Hermitian surfaces

If $F_{0} \neq 0$:
parametrise $F_{0}=\omega_{J}$ using J with orientation opposite to I

Proposition

These statements are equivalent:

- $\mathfrak{h o l}(\bar{\nabla})$ is generated by $F \in \Omega^{1,1}$ with $F_{0} \neq 0$;
- $\bar{\nabla}$ is not flat and there is a negative Kähler J

$$
\text { such that } \bar{\gamma}=\alpha \rho^{J} \quad\left(\rho^{J}\right. \text { Ricci form). }
$$

Either implies $\quad \bar{R}=\frac{\rho^{J}}{2} \otimes\left(\omega_{\mathrm{J}}+\alpha \omega_{l}\right)$.

Call this a Kähler-Hermitian surface ($\left.\mathbf{M}^{4}, \mathbf{g}, \mathbf{J}, \mathrm{I}\right)$
To study a KH surface need to understand features of ('vertical' and 'horizontal') distributions

$$
\mathcal{V}:=\operatorname{Ker}(I J-I d), \mathcal{H}:=\mathcal{V}^{\perp} \quad \Longrightarrow \quad T M^{4}=\mathcal{V} \oplus \mathcal{H}
$$

Example

Hermitian line bundle over a Riemann surface
[Calabi 82]

$$
\begin{aligned}
\mathbb{C}^{\times} \hookrightarrow(L, h) & \longrightarrow\left(\Sigma, g_{\Sigma}, l_{\Sigma}, \omega_{\Sigma}\right) \\
T L^{\times} & =\mathcal{H} \oplus \mathcal{V}
\end{aligned}
$$

For some map f of $r=$ norm of fibres \mathcal{V},

$$
\begin{gathered}
\omega_{\Sigma}+d J_{\mathcal{V}} d f(r) \text { is Kähler on } M^{4}=L^{\times} \\
\text {Morally: } J=I_{\Sigma} \oplus J_{\mathcal{V}} \quad \text { Kähler }
\end{gathered}
$$

$\left(M^{4}, g, J\right)$ is a Kähler surface of Calabi type if

$$
I_{\mid \mathcal{V}}:=-J, \quad \quad_{\mathcal{H}}:=J
$$

satisfies $\theta \in \mathcal{H}$ and $d \theta=0$

$$
I=I_{\Sigma} \oplus-J_{\mathcal{V}} \quad I_{c} K
$$

Standard local form c/o [ACG 03]
some compact instances: $M^{4} \xrightarrow{T^{2}} T^{2}, \quad \mathbb{F}_{1}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right) \longrightarrow \mathbb{P}^{1} \ldots$

Dichotomy

$\left(M^{4}, g, J, I\right)$ Kähler-Hermitian, with $\mathfrak{h o l}(\bar{\nabla})=\left\langle\boldsymbol{\alpha} \omega_{l}+\omega_{J}\right\rangle$

Proposition (the KH balance)

(If $\alpha \neq \pm 1$

- W^{+}degenerate $\quad\left(\Longleftrightarrow\right.$ Ric $\left.\in \Omega^{1,1}\right)$
- compact \Longrightarrow Calabi type (I IcK)
(2) If $\alpha= \pm 1 \quad(\mathcal{V}$ flat)
- $T^{2} \hookrightarrow M \rightarrow \Sigma$
- W^{+}degenerate \Longleftrightarrow I IcK
- compact \Longrightarrow I Kähler (M local product)

Flippin' sign corresponds to reversing I on \mathcal{H}, \mathcal{V}

Normalisation

$\left(M^{4}, g, J, l\right)$ is said normal if

$$
(d \log |\theta|)_{\mathcal{V}}=V(|\theta|) \theta
$$

for some smooth $V: \mathbb{R}^{+} \rightarrow \mathbb{R}$
$>$ Kähler of Calabi type \Longrightarrow normal
$>W^{+}$degenerate \Longrightarrow normal
(apparently-obnoxious technical property that solves a lot of problems)

Proposition

A Kähler-Hermitian $\left(M^{4}, g, J, I\right)$ is, locally, either

- a torus bundle, or
- a deformed Calabi-type structure $\left(g_{0}, J_{0}, l_{0}\right)$ or
- 'normalisable' with

$$
V=-\frac{1}{4}\left(1+\frac{2 s^{+}}{|\theta|^{2}}\right) \text { and } \mathcal{V} \text { of CSC } s^{+}
$$

Local structure

Normality sets up the construction

Kähler-Hermitian $\leadsto \leadsto$ deformed Calabi-type

Theorem (gist)

A non-degenerate, normal ($\left.M^{4}, g, J, I\right)$ is locally obtained from
(1) a Hermitian line bundle $L \longrightarrow\left(\Sigma, g_{\Sigma}, J_{\Sigma}, \omega_{\Sigma}\right) \quad$ with $c_{1}(L)=-\left[\omega_{\Sigma}\right]$
(2) a constant $s^{+} \in \mathbb{R}$
(0) $\xi \in \Omega^{0,1}\left(\Sigma, L^{m}\right) \quad$ giving a Calabi-type structure $\left(g_{0}, J_{0}, l_{0}\right)$

$$
\partial_{l_{\Sigma}} \xi=0 \quad \text { and } \quad\left(1-\frac{s^{+}}{2 m}|\xi|^{2}\right) \omega_{\Sigma} \text { calibrates } J_{\Sigma}
$$

Remarks

- J_{Σ}, ξ are lifted horizontally, I_{Σ} important only to choose ξ and fix ω_{Σ}.
- $J_{\Sigma}=I_{\Sigma}, \xi=0$ yields Calabi-type surface $\left(g_{0}, J_{0}, l_{0}\right)$.
- $\operatorname{Symp}\left(\Sigma, \omega_{\Sigma}\right)$ acts on \mathcal{M} ('rough' space of data) by connections preserving lifts to L
- When $\left(M^{4}, g, J, I\right)$ is not IcK nor ASD:
- Goldberg-Sachs ensures [g] has no Einstein metric
- $J_{\Sigma}=I_{\Sigma} \Longrightarrow(d \theta)^{+}=0$ and Ric has double eigenvalue s^{+}

Correspondence

Theorem

$\left(M^{4}, g, J, I\right)$ with $\mathfrak{h o l}(\bar{\nabla})=\left\langle\alpha \omega_{I}+\omega_{J}\right\rangle, \alpha \neq \pm 1$, are locally in 1-1 correspondence with

$$
\text { - when } s^{+}=0: \quad\left(\Sigma, g_{\Sigma}, l_{\Sigma}\right) \text { with } s_{\Sigma}=\frac{2 \alpha m}{1-\alpha} \text { and } \xi \in H^{0,1}\left(\Sigma, L^{m}\right)
$$

- when $\alpha=-\frac{1}{3}$:
local solutions $u(x, y) \in \mathbb{R}^{2}$ to

$$
\Delta u=\frac{m}{2}\left(e^{-u}+\frac{s^{+}}{2 m} e^{2 u}\right)
$$

Tzitzéica equation
\rightsquigarrow Chimaera?

Ashes to ashes ?

The Tzitzéica equation has to do with

- Abelian vortex eqns
- hyperbolic affine spheres
- $\operatorname{SL}(3, \mathbb{R})$ ADSYM eqns
- minimal Lagrangian surfaces in $\mathbb{C H}{ }^{2}$
- SL cones in \mathbb{C}^{3}

(Phoenix rising from its ashes)

appendix: holomorphic distributions

A distribution \mathscr{D} on an almost complex surface $\left(M^{4}, I\right)$ is holomorphic if

$$
I \mathscr{D}=\mathscr{D} \quad \text { and } \quad\left(L_{\mathscr{D}} I\right) T M \subseteq \mathscr{D}
$$

(so I integrable $\Longrightarrow \mathscr{D}$ is locally spanned by $T_{l}^{1,0} M$)

Proposition

($\left(M^{4}, g, J, I\right) K H$ surface $\Longrightarrow \mathcal{V}=\operatorname{Ker}(I J-I d)$ totally geodesic, both I- and J-holomorphic.
(2) $\left(M^{4}, g, J\right)$ Kähler with a holomorphic \mathscr{D}, define the OCS

$$
l_{\mathscr{D}}=-J, \quad I_{\mathscr{D}^{\perp}}=J .
$$

Then \mathscr{D} is I-holo, $\theta \in \mathscr{D}$,
I integrable $\Longleftrightarrow \mathscr{D}$ tot. geodesic (superminimal)
cf. [Wood 92]

- KH surfs

appendix: deforming Calabi

Given a Hermitian line bundle $L \rightarrow\left(\Sigma, g_{\Sigma}\right)$ over a Riemann surface, there is $\left(g_{0}, J_{0}\right)$ Kähler on $T L^{\times}=\mathcal{V} \oplus \mathcal{H}$
$>$ Reverse orientation on fibres $\mathcal{V} \rightsquigarrow$ get OCS $\left(g_{0}, l_{0}\right)$
Let $w: \Sigma \rightarrow \mathbb{D}$ be holomorphic, and $T \in$ End $T L^{\times}$such that

$$
T_{\mid \mathcal{V}}=\left(\begin{array}{cc}
\operatorname{Re} w & \operatorname{Im} w \\
\operatorname{lm} w & -\operatorname{Re} w
\end{array}\right), \quad T_{\mid \mathcal{H}}=0 .
$$

$>\operatorname{Deform}\left(g_{0}, J_{0}, I_{0}\right)$ (vertically, and canonically):

$$
\begin{aligned}
J_{w} & =(1-T) J_{0}(1-T)^{-1} \\
I_{w} & =(1-T) I_{0}(1-T)^{-1} \\
g_{w}(\cdot, \cdot) & =g_{0}\left((1+T)(1-T)^{-1} \cdot, \cdot\right)
\end{aligned}
$$

Note

$$
\omega_{J_{w}}=\omega_{J_{0}}, \omega_{l_{w}}=\omega_{l_{0}}
$$

authored by P.-A.Nagy and myself

> Systems of symplectic forms on four-manifolds Complex homothetic foliations on Kähler manifolds Hermitian surfaces with 1-dimensional holonomy

soon in Ann SNS Pisa BLMS (2012)
in progress ...

Also cited here:
V. Apostolov, P. Gauduchon, The Riemannian Goldberg-Sachs theorem, Int. J. Math. (1997)
V. Apostolov, P. Gauduchon, Selfdual Einstein Hermitian four-manifolds, Ann. SNS Pisa CI. Sci. (2002)
V. Apostolov, D. M. J. Calderbank, P. Gauduchon, The geometry of weakly selfdual Kähler surfaces, Compositio Math. (2003)
J. Armstrong, On four-dimensional almost Kähler manifolds, Quart. J. Math. Oxford (1997)
A.Balas, P.Gauduchon, Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler, Math. Z. (1985)
G. Bande, D. Kotschick, The geometry of symplectic pairs, TAMS (2006)
R. Bielawski, Complete hyperkähler 4n-manifolds with local tri-Hamiltonian \mathbb{R}^{n}-action, Math. Ann. (1999)
C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. (1986)
E. Calabi, Extremal Kähler metrics, in: Seminar on Differential Geometry, Princeton Univ. Press, 1982
R. Cleyton, A. F. Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. (2004)
A. Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. (1983)
A. J. Di Scala, L. Vezzoni, Gray identities, canonical connection and integrability, Proc. Edinburgh Math. Soc. (2010)
P. Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (1997)
H. Geiges, J. Gonzalo Pérez, Contact geometry and complex surfaces, Invent. Math. (1995)
N. J. Hitchin, Complex manifolds and Einstein equations, in: Lecture Notes in Mathematics vol. 970, Springer, Berlin, 1982
D. Kotschick, Orientations and geometrisations of compact complex surfaces, BLMS (1997)
P. Nurowski, Einstein equations and Cauchy-Riemann geometry, Doctor Philosophiae thesis, SISSA (Trieste), 1993.
M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. (1997)
S. M. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma (1991)
J. C. Wood, Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Int. J. Math. (1992)

