## Riemannian 4-manifolds with 'small' holonomy

## SIMON G. CHIOSSI



Marie Curie fellow Torino / Marburg

Geometric structures on manifolds and their applications @ Schloss Rauischholzhausen – July 2012

with Paul-Andi Nagy (Murcia, ES)

## Concern

### surfaces with 1-dimensional Chern holonomy

Key interplay : complex structures *curvature* 

Our work:

- $\textit{Ric} \in \Omega_l^{1,1} \iff \textit{W}^+$  degenerate, yet  $\textit{M}^4$  may still not be lcK
- local classification ~→ explicit constructions! (esp. *non-compact* surfaces)

often arising from Kähler surfaces of Calabi type

- scenario: complex structures in dimension 4
- what small holonomy means
- the classification

Let  $M^4$  be a real, oriented, smooth 4-manifold (a 'surface') with an almost Hermitian structure (g, I) (*I* is an OCS)

$$I^2 = -Id_{TM}, \qquad g(I\cdot, I\cdot) = g(\cdot, \cdot) > 0, \qquad \omega_I = g(I\cdot, \cdot).$$

• The bundle of real 2-forms decomposes as

$$\Omega^2 = \Omega^{1,1} \oplus \Omega^{\{2,0\}} = \mathbb{R}\,\omega_I \oplus \,\Omega_0^{1,1} \oplus \,\mathcal{K}_M$$

Paramount feature

$$\Omega^2=\Omega^+\oplus\Omega^-$$

so

$$\Omega^+ = \mathbb{R}\,\omega_I \oplus K_M, \qquad \Omega^- = \Omega_0^{1,1}$$

Similarly for curvature:  $R = s \oplus Ric_0 \oplus W^+ \oplus W^- \in Sym^2(\Lambda^2)$ .

## Orthogonal complex structures

A Kähler surface  $(M^4, g, J)$  is naturally oriented, say  $\omega_J \in \Omega^-$ .

### Are there 'interesting' structures on $\Omega^+$ ?

cf. hypercomplex, hypersymplectic, ...

[Hitchin 90, Salamon 91, Geiges-Gonzalo 95] [Pontecorvo 97, Kamada 99, Bande-Kotschick 06...]

But what about existence? Well,

if  $W^+$  is co-closed can define an OCS *I* such that  $\omega_I \in \Omega^+$ , plus

- I and J commute
- IcK  $(d\theta = 0)$   $(d\omega_I = \theta \land \omega_I)$
- $\theta$  is preserved by  $I \circ J$

Kähler surfaces with  $\delta W^+ = 0$  are called *weakly self-dual*, and were defined and classified by [Apostolov–Calderbank–Gauduchon 03]

# **Canonical connection**

Geometry of any almost Hermitian  $(M^{2n}, g, I)$  determined by  $(\theta \text{ or })$  $\eta = \frac{1}{2} (\nabla I) I \in \Omega^1 \otimes \Omega^{\{2,0\}}$ 

eg: (g, I) Hermitian  $\iff \eta \in \Omega^{1,1} \otimes \Omega^1$ 

Consider

$$\overline{\nabla} = \nabla + \eta$$

- metric, Hermitian, with torsion  $T(X, Y) = \eta_X Y \eta_Y X$
- called 2<sup>nd</sup> canonical Hermitian connection
- $\overline{\nabla} = \nabla^{\text{Chern}}$  when *M* complex cf. [Gauduchon 97]

Corresponding curvature:  $\overline{R} = W^- + \frac{s}{12} Id_{\Omega^-} + \frac{1}{2} Ric_0^{1,1} + \frac{1}{2} \overline{\gamma} \otimes \omega_I$ 

 $\overline{\gamma} = \rho' + W^+ \omega_I + \frac{1}{2} d^+ \theta - \frac{s}{6} \omega_I$  (essentially, first Chern form)

cf.  $\overline{R}/R$  comparison of [Cleyton-Swann 04]

Holonomy algebra generated by  $\overline{R}(X, Y) \in \Omega^{1,1}$ 

```
Interested in the case: M^4 with
```

$$\mathfrak{hol}(\overline{
abla})\ \subset\ \Omega^{1,1}_0\oplus\mathbb{R}\ \subset\ \Omega^-\oplus\Omega^+$$

of dimension 1 at most:

 $\overline{R} = \frac{1}{2} \overline{\gamma} \otimes (\mathbf{F_0} + \alpha \, \boldsymbol{\omega_I})$ 

Three rather different situations:

$$\begin{cases} \overline{R} \equiv 0 \\ F_0 \equiv 0 \\ F_0 \neq 0 \end{cases}$$

### Proposition

 $(M^4, g, I)$  almost Hermitian with  $\overline{R} = 0 \implies g$  flat.

Better: if  $(\sigma_i)$  is a  $\nabla$ -parallel ON basis of  $\Omega^+$ ,  $\omega_I = \sigma_1 \cos \varphi \cos \psi + \sigma_2 \cos \varphi \sin \psi + \sigma_3 \sin \varphi$ where  $d\psi \wedge d\varphi = 0$  (actually  $\psi = \psi(\varphi)$ ).

NB: even not compact

Corollary:  $M^4$  either Hermitian or almost Kähler,  $\overline{R} = 0 \implies$  flat Kähler.

Compare to

 $M^n$  compact almost Kähler,  $\overline{R} = 0 \implies$  flat Kähler [Vezzoni-Di Scala 10]

 $M^n$  compact Hermitian, holom. torsion + CHSC  $\implies$  Kähler or flat

[Balas-Gauduchon 85]

# SDE 4-manifolds

If  $F_0 = 0$ :

### Proposition

$$\overline{R} = \frac{1}{2}\overline{\gamma} \otimes \omega_I \quad \iff \quad \text{Ricci-flat and self-dual.}$$

In particular:

$$g$$
 flat  $\implies \dim \mathfrak{hol}(\overline{\nabla}) \leqslant 1$ 

compact  $\Longrightarrow$  flat Kähler

NB: Self-dual Einstein-Hermitian surfaces classified

[Apostolov–Gauduchon 02]

 $(M^4, g, I)$  Hermitian:

 $\overline{R} = -\frac{1}{4}d(l\theta) \otimes \omega_l \iff$ 

Can always arrange for

 $\exists$  5 symplectic forms:  $\omega_i \wedge \omega_j = \pm \textit{vol}(g)$ 

 $span\{\omega_1, \omega_2, \omega_3\} = \Omega^-, \quad \omega_4, \ \omega_5 \in \Omega^+,$ latter 2 not Kähler if *g* not flat [Armstrong 97] complete frame by  $\omega_l = \omega_6 \in \Omega^+$  (non-closed)

### Proposition

 $(M^4,g)$  non-flat with 5 ON symplectic forms  $\implies$ 

- there exists a tri-holomorphic Killing field
- (M,g) is locally isometric to  $\mathbb{R}^+ imes \mathsf{Nil}^3$  with

 $dt^{2} + (\frac{2}{3}t)^{3/2}(\sigma_{1}^{2} + \sigma_{2}^{2}) + (\frac{2}{3}t)^{-3/2}\sigma_{3}^{2}.$ 

→ quotient of KT mfd with diagonal Bianchi metric of class II, chm = 1

Not complete, or (global) symmetry would force flatness [Bielawski 99]

# Kähler-Hermitian surfaces

If  $F_0 \neq 0$ :

parametrise  $F_0 = \omega_J$  using J with orientation opposite to I

### Proposition

These statements are equivalent:

- $\mathfrak{hol}(\overline{\nabla})$  is generated by  $F \in \Omega^{1,1}$  with  $F_0 \neq 0$ ;
- $\overline{\nabla}$  is not flat and there is a negative Kähler J

such that 
$$\ \overline{\gamma}=lpha
ho^{J}$$
 ( $ho^{J}$  Ricci form).

Either implies 
$$\overline{R} = \frac{\rho^J}{2} \otimes (\omega_J + \alpha \omega_I).$$

Call this a

Kähler-Hermitian surface (M<sup>4</sup>, g, J, I)

To study a KH surface need to understand features of ('vertical' and 'horizontal') distributions

$$\mathcal{V} := \mathsf{Ker}(\mathit{IJ} - \mathit{Id}), \ \mathcal{H} := \mathcal{V}^{\perp} \implies \mathit{TM}^4 = \mathcal{V} \oplus \mathcal{H}$$

## Example

## Hermitian line bundle over a Riemann surface

$$\mathbb{C}^{\times} \hookrightarrow (L, h) \longrightarrow (\Sigma, g_{\Sigma}, l_{\Sigma}, \omega_{\Sigma})$$
  
 $TL^{\times} = \mathcal{H} \oplus \mathcal{V}$ 

For some map *f* of  $r = \text{norm of fibres } \mathcal{V}$ ,

$$\omega_{\Sigma} + dJ_{\mathcal{V}}df(r)$$
 is Kähler on  $M^4 = L^{\times}$ 

Morally: 
$$J = I_{\Sigma} \oplus J_{\mathcal{V}}$$
 Kähler

 $(M^4, g, J)$  is a Kähler surface of Calabi type if

$$I_{|\mathcal{V}} := -J, \quad I_{|\mathcal{H}} := J$$

satisfies  $\theta \in \mathcal{H}$  and  $d\theta = 0$ 

Standard local form c/o [ACG 03]

some compact instances:  $M^4 \xrightarrow{T^2} T^2$ ,  $\mathbb{F}_1 = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-1)) \longrightarrow \mathbb{P}^1 \dots$ 

 $I = I_{\Sigma} \oplus -J_{\mathcal{V}}$  lcK

# Dichotomy

 $(M^4, g, J, I)$  Kähler-Hermitian, with  $\mathfrak{hol}(\overline{\nabla}) = \langle \alpha \omega_I + \omega_J \rangle$ 

### Proposition (the KH balance)

 $\bigcirc If \alpha \neq \pm 1$ 

- $W^+$  degenerate  $(\iff Ric \in \Omega_l^{1,1})$
- compact ⇒ Calabi type (I lcK)

$$\bigcirc If \alpha = \pm 1 \qquad (\mathcal{V} flat)$$

• 
$$T^2 \hookrightarrow M \to \Sigma$$

ocompact ⇒ I Kähler (M local product)

Flippin' sign corresponds to reversing I on  $\mathcal{H}, \mathcal{V}$ 

 $(M^4, g, J, I)$  is said normal if

 $(d \log |\theta|)_{\mathcal{V}} = V(|\theta|) \, \theta$ 

for some smooth  $V: \mathbb{R}^+ \to \mathbb{R}$ 

Kähler of Calabi type => normal

>  $W^+$  degenerate  $\implies$  normal

(apparently-obnoxious technical property that solves a lot of problems)

### Proposition

A Kähler-Hermitian  $(M^4, g, J, I)$  is, locally, either

- a torus bundle, or
- a deformed Calabi-type structure  $(g_0, J_0, I_0)$  • or
- 'normalisable' with

$$V = -rac{1}{4}\left(1+rac{2s^+}{| heta|^2}
ight)$$
 and  ${\cal V}$  of CSC  $s^+$ 

Normality sets up the construction

Kähler-Hermitian +++> deformed Calabi-type

### Theorem (gist)

A non-degenerate, normal  $(M^4, g, J, I)$  is locally obtained from

- a Hermitian line bundle  $L \longrightarrow (\Sigma, g_{\Sigma}, J_{\Sigma}, \omega_{\Sigma})$  with  $c_1(L) = -[\omega_{\Sigma}]$
- **(2)** a constant  $s^+ \in \mathbb{R}$
- $\bigcirc \xi \in \Omega^{0,1}(\Sigma, L^m)$  giving a Calabi-type structure  $(g_0, J_0, I_0)$

$$\partial_{l_{\Sigma}}\xi = 0$$
 and  $(1 - \frac{s^+}{2m}|\xi|^2)\omega_{\Sigma}$  calibrates  $J_{\Sigma}$ 

- $J_{\Sigma}$ ,  $\xi$  are lifted *horizontally*,  $I_{\Sigma}$  important only to choose  $\xi$  and fix  $\omega_{\Sigma}$ .
- $J_{\Sigma} = I_{\Sigma}, \xi = 0$  yields Calabi-type surface  $(g_0, J_0, I_0)$ .

•  $Symp(\Sigma, \omega_{\Sigma})$  acts on  $\mathcal{M}$  ('rough' space of data) by connections preserving lifts to *L* 

- When  $(M^4, g, J, I)$  is not lcK nor ASD:
  - Goldberg-Sachs ensures [g] has no Einstein metric

•  $J_{\Sigma} = I_{\Sigma} \Longrightarrow (d\theta)^+ = 0$  and *Ric* has double eigenvalue  $s^+$  (!)

#### Theorem

 $(M^4, g, J, I)$  with  $\mathfrak{hol}(\overline{\nabla}) = \langle \alpha \omega_I + \omega_J \rangle$ ,  $\alpha \neq \pm 1$ , are locally in 1-1 correspondence with

• when 
$$s^+ = 0$$
:  $(\Sigma, g_{\Sigma}, I_{\Sigma})$  with  $s_{\Sigma} = \frac{2\alpha m}{1-\alpha}$  and  $\xi \in H^{0,1}(\Sigma, L^m)$ 

• when 
$$\alpha = -\frac{1}{3}$$
:

local solutions  $u(x, y) \in \mathbb{R}^2$  to  $\Delta u = \frac{m}{2}(e^{-u} + \frac{s^+}{2m}e^{2u})$ Tzitzéica equation  $\rightsquigarrow$  Chimaera?



The Tzitzéica equation has to do with

- Abelian vortex eqns
- hyperbolic affine spheres
- $SL(3,\mathbb{R})$  ADSYM eqns
- $\bullet$  minimal Lagrangian surfaces in  $\mathbb{C}\mathcal{H}^2$
- $\bullet$  SL cones in  $\mathbb{C}^3$



(Phoenix rising from its ashes)

# appendix: holomorphic distributions

A distribution  $\mathcal{D}$  on an *almost complex* surface  $(M^4, I)$  is holomorphic if

 $I\mathscr{D} = \mathscr{D}$  and  $(L_{\mathscr{D}}I)TM \subseteq \mathscr{D}$ 

(so *I* integrable  $\implies \mathscr{D}$  is locally spanned by  $T_I^{1,0}M$ )

#### Proposition

 (M<sup>4</sup>, g, J, I) KH surface ⇒ V = Ker(IJ – Id) totally geodesic, both I- and J-holomorphic.

**(** $M^4$ , g, J) Kähler with a holomorphic  $\mathcal{D}$ , define the OCS

$$I_{|\mathscr{D}} = -J, \quad I_{|\mathscr{D}^{\perp}} = J.$$

Then  $\mathscr{D}$  is I-holo,  $\theta \in \mathscr{D}$ , I integrable  $\iff \mathscr{D}$  tot. geodesic (superminimal)

cf. [Wood 92]

Given a Hermitian line bundle  $L \to (\Sigma, g_{\Sigma})$  over a Riemann surface, there is  $(g_0, J_0)$  Kähler on  $TL^{\times} = \mathcal{V} \oplus \mathcal{H}$  [Calabi 82]

▶ Reverse orientation on fibres  $\mathcal{V} \rightsquigarrow$  get OCS  $(g_0, I_0)$ 

Let  $w : \Sigma \to \mathbb{D}$  be holomorphic, and  $T \in End TL^{\times}$  such that  $T_{|\mathcal{V}} = \begin{pmatrix} Re \ w & Im \ w \\ Im \ w & -Re \ w \end{pmatrix}, \qquad T_{|\mathcal{H}} = 0.$ 

> Deform  $(g_0, J_0, I_0)$  (vertically, and canonically):

$$J_{w} = (1 - T)J_{0}(1 - T)^{-1}$$
$$I_{w} = (1 - T)I_{0}(1 - T)^{-1}$$
$$g_{w}(\cdot, \cdot) = g_{0}((1 + T)(1 - T)^{-1} \cdot, \cdot)$$

Note

$$\omega_{J_{\rm W}}=\omega_{J_0}\ ,\ \omega_{I_{\rm W}}=\omega_{I_0}$$

(ロ) (部) (注) (注) (注) ()

# Refs

#### authored by P.-A.Nagy and myself

Systems of symplectic forms on four-manifolds Complex homothetic foliations on Kähler manifolds Hermitian surfaces with 1-dimensional holonomy soon in Ann SNS Pisa BLMS (2012) in progress ...

Also cited here:

- V. Apostolov, P. Gauduchon, The Riemannian Goldberg-Sachs theorem, Int. J. Math. (1997)
- V. Apostolov, P. Gauduchon, Selfdual Einstein Hermitian four-manifolds, Ann. SNS Pisa Cl. Sci. (2002)
- V. Apostolov, D. M. J. Calderbank, P. Gauduchon, The geometry of weakly selfdual Kähler surfaces, Compositio Math. (2003)
- J. Armstrong, On four-dimensional almost Kähler manifolds, Quart. J. Math. Oxford (1997)

A.Balas, P.Gauduchon, Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler, Math. Z. (1985)

- G. Bande, D. Kotschick, The geometry of symplectic pairs, TAMS (2006)
- R. Bielawski, Complete hyperkähler 4n-manifolds with local tri-Hamiltonian  $\mathbb{R}^n$ -action, Math. Ann. (1999)
- C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. (1986)
- E. Calabi, Extremal Kähler metrics, in: Seminar on Differential Geometry, Princeton Univ. Press, 1982
- R. Cleyton, A. F. Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. (2004)
- A. Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. (1983)
- A. J. Di Scala, L. Vezzoni, Gray identities, canonical connection and integrability, Proc. Edinburgh Math. Soc. (2010)
- P. Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (1997)
- H. Geiges, J. Gonzalo Pérez, Contact geometry and complex surfaces, Invent. Math. (1995)
- N. J. Hitchin, Complex manifolds and Einstein equations, in: Lecture Notes in Mathematics vol. 970, Springer, Berlin, 1982
- D. Kotschick, Orientations and geometrisations of compact complex surfaces, BLMS (1997)
- P. Nurowski, Einstein equations and Cauchy-Riemann geometry, Doctor Philosophiae thesis, SISSA (Trieste), 1993.
- M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. (1997)
- S. M. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma (1991)
- J. C. Wood, Harmonic morphisms and Hermitian structures on Einstein 4-manifolds, Int. J. Math. (1992)