Riemannian Geometries with Parallel Torsion

Geometric structures on manifolds and their applications Castle Rauischholzhausen

Joint work w Andrei Moroianu, Ecole Polytechnique.

RC supported by the Volkswagen Foundation

Outline of talk

- Problem
- Definitions
- Main results
- Special cases and examples
- To do

Problem:

Characterize the geometry of a Riemannian manifold admitting a metric connection with parallel torsion

All statements are local

Definitions

- (M^n, g) Riemannian manifold
- τ one-form with values in $\mathfrak{so}(n)$: torsion
- $\nabla^{\tau} := \nabla^g \tau$: torsion connection
- $\nabla^{\tau} \tau = 0$ parallel torsion

(M, g, τ) a torsion geometry:

• Skew torsion geometry: Same as above but $\tau_X Y = -\tau_Y X$

Associated structures

- $G = \operatorname{Stab}(\tau) \subset O(n)$
- Bundle of frames adapted to τ

$$egin{array}{c} Q \ \downarrow^G \ M \end{array}$$

• Holonomy of $\nabla^{\tau} \subset G$

Decomposition Lemma

The torsion τ is a section of $T^*M \otimes \mathfrak{so}(TM)$.

Suppose $TM = V_1 \bigoplus V_2$ w.r.t G such that

 $\tau \in (V_1^* \otimes \mathfrak{so}(V_1)) \oplus (V_2^* \otimes \mathfrak{so}(V_2))$

Then *M* is the Riemannian product of two torsion geometries.

Cf. Nagy 2007 (nearly Kähler case) Kowalski & Vanhecke 1983 (naturally reductive spaces)

Structure of skew-torsion geometries

Here on: skew torsion only

Suppose (M^n, g, τ) a torsion geometry

Then

$$\gg K/G \longrightarrow M$$

Locally homogeneous space

 π totally geodesic Riemannian submersion

Sketch of proof, I

The 'totally geodesic part'

- $TM = V \bigoplus H$, V maximal G-bundle s.t. $g \cap \mathfrak{so}(V)$ is trivial.
- Key observation $\tau = \tau_V + \tau_{mix} + \tau_H, \tau_{mix} \in V^* \land \mathfrak{so}(H)$
- *V* involutive
- Calculate O'Neill tensors

Sketch of proof, II

The 'locally homogeneous' fibre part:

- Restriction of R^{τ} to V is parallel w.r.t. ∇^{τ} , using Berger algebra of g
- Infinitesimal model $\mathfrak{k} = \mathfrak{g} \bigoplus V$
- Fiber is isometric to quotient K/G
 Warning: Locally homogeneous, non-global quotient,
 cf.: papers by Kowalski, Tricerri, Vanhecke 1990's

Notes

Decomposition lemma not used in proof of structural theorem

Obs: (M, g, τ) irreducible & non-trivial V $\Rightarrow \tau_{mix}$ is 'non-degenerate' i.e. V $\hookrightarrow^{\tau} \Lambda^2(H)$

Special cases & Examples

• V trivial and (M, g, τ) irreducible \Rightarrow H irreducible w.r.t g

Classification (Swann,-,2004)

- 7-dim weak holonomy
- 6-dim nearly Kaehler
- Isotropy irreducible homogeneous spaces
- M homogeneous: Results by Nagy 2008, Olmos & Regianni 2008 on full isometry group of nat. reductive spaces

Special cases & Examples

- Sasakian manifolds: $\tau = \xi \land \phi$, B Kähler
- 3-Sasakian manifolds: $\tau = \xi_1 \wedge \phi_1 + \xi_2 \wedge \phi_2 + \xi_3 \wedge \phi_3 c \xi_1 \wedge \xi_2 \wedge \xi_3$, B quaternionic Kähler
- Classifications in low-dimensions [Friedrich, Puhle, Schoeman,...]
- Clifford structures(?)
 [Moroianu & Semmelmann, 2011]

Structure of skew-torsion geom's, II Speculative: global structure of skew torsion geometries

More problems

- New problem: What conditions on (B, K, G, Q) give a torsion geometry on M = Q/G ?
- Classification of irreducible skew torsion geometries? (with non-trivial Berger algebra)

Geometric structures on manifolds and their applications

- Einstein metrics \checkmark
- Sasakian geometry ✓
- Almost Hermitian geometry \checkmark
- G_2 structures ✓
- Holonomy theory \checkmark
- Dirac operators ÷
- Spin geometry (✓)
- generalized K\u00e4hler geometry calibrated geometry - applications to super strings & mathematical physics - etc. +