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1. Abstract

We present a notion of Einstein manifolds with skew torsion on Riemannian
manifolds for all dimensions, initiated by the doctoral work of the second
author in dimension four.

2. Overview

• Torsion, and in particular skew torsion, has been a topic of interest to both
mathematicians and physicists in recent decades.
• The first attempts to introduce torsion in general relativity go back to the
1920’s with the work of É. Cartan. More recently, torsion makes its appearance
in string theory, where the basic model for type II consists of a Riemannian
manifold, a connection with skew torsion, a spinorial field and a dilaton func-
tion.
• From the mathematical point of view, skew torsion has played a signifi-
cant role in the work of Bismut and his local index theorem for non-Kähler
manifolds. Skew torsion is also an important feature in generalized geometry,
where there are two natural connections with skew torsion that come from the
exterior derivative of the B-field.
• Torsion is also ubiquitous in the theory of non-integrable geometries. The
idea is to choose a G-structure so that the G-connection with torsion admits
desired parallel objects, in particular spinors, interpreted as supersymmetry
transformations. As a first step in this investigation, T. Friedrich and S.
Ivanov proved that many non-integrable geometric structures admit a unique
invariant connection with parallel totally anti-symmetric torsion, thus being a
natural replacement for the Levi-Civita connection.

3. Metric connections with skew torsion

Definition, existence and uniqueness

• Let (M, g) be a Riemannian manifold. Suppose that ∇ is a connection on
TM and let T be its (1,2) torsion tensor. If we contract T with the metric
we get a (0,3) tensor which we still call the torsion of ∇ . If T is a three-form
then we say that ∇ is a connection with skew-symmetric torsion.
• Given any three-form H on M then there exists a unique metric connection
with skew torsion H which is defined explicitly by

g(∇XY, Z) = g(∇g
XY, Z) +

1

2
H(X,Y, Z)

where ∇g is the Levi-Civita connection.

4. Motivation and definition

The obvious way to define the Einstein equations with skew torsion is simply
to set Ric∇ = λg for some function λ. This, however, presents two immediate
problems. The first is that the function λ might not be constant, and also
that Ric∇ might not be symmetric since

Ric∇(X,Y ) = Ricg(X,Y )− 1

4
g(H(ei, X), H(ei, Y ))− 1

2
d∗H(X,Y ),

where {ei} is an orthonormal frame of the tangent bundle; and requiring H
to be co-closed is, a priori, too restrictive.
The standard Einstein equations of Riemannian geometry can be obtain by a
variational argument. They are the critical points of the Hilbert functional

g 7−→
∫
M

(sg − 2Λ) dvolg,

where Λ is the cosmological constant.
So one way of obtaining Einstein equations with skew torsion is to look for
the critical points of the following functional

(g,H) 7−→
∫
M

(
s∇ − 2Λ

)
dvolg =

∫
M

(
sg − 3

2
∥H∥2 − 2Λ

)
dvolg.

Proposition 1: The critical points of the functional

L(g,H) =

∫
M

(
s∇ − 2Λ

)
dvolg

are given by pairs (g,H) such that the Ricci tensor Ric∇ is symmetric
and satisfies the equation

−Ric∇ +
1

2
s∇g − Λg = 0.

In the context of non-integrable geometries, requiring that H is ∇ parallel is
a natural condition and this will then imply that H is co-closed. Also, under
the assumption that ∇H = 0, the ∇-curvature tensor simplifies to

R∇(X,Y, Z,W ) = Rg(X,Y, Z,W ) + 1
4g(H(X,Y ), H(Z,W )) + 1

8dH(X,Y, Z,W )

Following the classical theory of decomposition of algebraic curvature tensors,
if ⊙ denotes the Kulkarni-Nomizu product, we have the following:

Proposition 2: Under the action of the orthogonal group, the
∇-curvature tensor decomposes as

R∇ = W∇ +
1

n− 2
(Z∇ ⊙ g) +

s∇

n(n− 1)
g ⊙ g +

1

12
dH

So it is natural to set:

Definition: Let (M, g,H) be a Riemannian manifold equipped with
a three-from H. We say that (M, g,H) is Einstein with skew torsion
H if the trace free part of the Ricci-tensor

Z∇ = Ric∇ − s∇

n
g,

where ∇ is the metric connection with skew torsion H, vanishes.

We also have the following remarkable property:

Theorem 1: If (M, g,H) is Einstein with parallel skew torsion H
then the scalar curvature s∇ is constant.

5. ∇g-Einstein and ∇-Einstein

An interesting question is what is the relation between the standard Einstein
condition and the Einstein condition with skew torsion. By looking at the
formulas for the Ricci tensors, we see that if (M, g) is Einstein then (M, g,H)
being Einstein depends only on the algebraic type of the three-form H . Up
to dimension 6, we have a classification provided by Schouten which can be
easily illustrated by the following graphs.

It can be checked by direct computation that type I. works in dimension 3,
and types IV. and V. work in dimension 6. Types II. and III. never work, so in
particular an Einstein metric never gives an Einstein metric with skew torsion
in dimensions 4 and 5.

Example: Consider the 3-dimensional sphere S3 and take g to be the
round metric. Then (S3, g) is Einstein with sg = 6. Consider a global
frame {e1, e2, e3} of TS3, f any non-constant smooth function and define
the three-form H by

H = 2fe1 ∧ e2 ∧ e3.

Then the connection given by ∇ = ∇g+ 1
2H is Einstein with skew torsion

and

s∇ = sg − 3

2
∥H∥2 = 6− 6f (x)2

which is clearly not a constant.

6. Special geometries

Lie groups
Classical examples of manifolds where skew torsion arises naturally are those
of Lie groups equipped with a bi-invariant inner product on the corresponding
Lie algebra. They provide many examples of Einstein manifolds with skew
torsion.

Theorem 2: LetG be a Lie group equipped with a bi-invariant metric.
Consider the 1-parameter family of connections with skew torsion

∇t
XY = t[X,Y ].

Then for t = 0 and t = 1, ∇t is Einstein (it is in fact flat) and for t ̸= 0
and t ̸= 1, ∇t is Einstein if and only if ∇g is Einstein.

Nearly Kähler in dimension 6
S6 ⊂ R7 has an almost complex structure J inherited from the “cross prod-
uct” on R7. J is not integrable and it is still an open problem whether or not
S6 admits a complex structure. Here is the analogous picture for the 2-sphere
in R3:

Even though J is not integrable, ∇gJ ̸= 0, we have that J is an example of
a nearly Kähler structure: ∇g

XJ(X) = 0 (g is the round metric).
For any nearly Kähler manifold, the Gray connection

∇XY +
1

2
(∇g

XJ)JY

is a connection with totally skew symmetric torsion. In dimension 6, all nearly
Kähler manifolds are Einstein and of constant type so it can be easily proved
that the Gray connection is Einstein with skew torsion (as observed by T.
Friedrich and S. Ivanov ’02).

G2 T-manifolds in dimension 7
A G2 structure can be seen as a triple (M7, g, ω) where ω is a 3-form of gen-
eral type at any point. A G2 T -manifold - G2 manifold with (skew) torsion -
is such that there exists a one-form θ such that d ∗ ω = θ ∧ ∗ω. In this case,
there exists a unique connection with totally skew symmetric torsion which
preserves both the metric g and the three-form ω:

∇ = ∇g +
1

2

(
− ∗ dω − 1

6
g(dω, ∗ω)ω + ∗(θ ∧ ω)

)
.

Furthermore, its torsion is proportional to ω and thus it is ∇-parallel. (T.
Friedrich and S. Ivanov ’02)
Let (M, g, ω) be a G2 T -manifold which is also nearly parallel, that is,
dω = λ ∗ω, for some λ ∈ R. Then the M7 is Einstein and ∇ is Einstein with
skew torsion.

Einstein-Sasaki in odd dimensions
Let (M2k+1, g, φ, ξ, η) be a Sasaki manifold. Then it admits a connection ∇
with skew torsion H such that

∇g = ∇η = ∇φ = 0

given by the torsion H = η ∧ dη and also we have that H is ∇-parallel.
In this particular instance, it is not too difficult to check that a Sasaki-Einstein
metric never gives that ∇ is Einstein with skew torsion.
However, if we consider the Tanno deformation gt = tg+(t2−t)η⊗η, t > 0, of
g in the direction of ξ, then (M2k+1, gt, ξt, φ, ηt), where ξt =

1
tξ and ηt = tη,

is also a Sasaki manifold and we can prove:

Theorem 3: Let (M, g, ξ, φ, η) be an Einstein-Sasaki manifold. Con-
sidering the 1-parameter family (M, gt, ξt, φ, ηt) described above, there
exists a t > 0 such that the connection

∇t = ∇gt +
1

2
ηt ∧ dηt

is ∇t-Ricci flat (but not flat).
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