Extremal Sasakian metrics on S³ bundles over compact Riemann Surfaces

Castle Rauischholzhausen July 2012

Joint work in progress with

• Charles Boyer

Also relies heavily on work

- with and by The ACG Team; Vestislav Apostolov, David Calderbank and Paul Gauduchon
- by Charles Boyer et all.

Christina Tønnesen-Friedman

Union College

New York

Geometrically Ruled Surfaces:

$$(M,J) = P(E) \to \Sigma_g$$

- $E \rightarrow \Sigma_g$: holomorphic rank 2 vector bundle.
- Σ_g compact connected Riemann surface of genus g with a fixed complex structure

Geometrically Ruled Surfaces:

$$(M,J) = P(E) \to \Sigma_g$$

- $E \rightarrow \Sigma_g$: holomorphic rank 2 vector bundle.
- Σ_g compact connected Riemann surface of genus g with a fixed complex structure

A rank 2 holomorphic vector bundle $E \rightarrow \Sigma_g$ is **polystable** if it decomposes as a direct sum of stable vector bundles (in the sense of Mumford) so that if the summants are line bundles their degrees are equal. **Geometrically Ruled Surfaces:**

$$(M,J) = P(E) \to \Sigma_g$$

- $E \rightarrow \Sigma_g$: holomorphic rank 2 vector bundle.
- Σ_g compact connected Riemann surface of genus g with a fixed complex structure

A rank 2 holomorphic vector bundle $E \rightarrow \Sigma_g$ is **polystable** if it decomposes as a direct sum of stable vector bundles (in the sense of Mumford) so that if the summants are line bundles their degrees are equal.

By Narasimhan-Seshadri this is equivalent to E being projectively flat Hermitian.

CASE 1: $E \rightarrow \Sigma_g$ is polystable

CASE 1: $E \rightarrow \Sigma_g$ is polystable

CASE 2: $E = 0 \oplus \mathcal{L} \to \Sigma_g$, where \mathcal{L} is some holomorphic line bundle such that $deg(\mathcal{L}) >$ 0. (up to biholomorphism. *E* is not polystable)

CASE 1: $E \rightarrow \Sigma_g$ is polystable

CASE 2: $E = 0 \oplus \mathcal{L} \to \Sigma_g$, where \mathcal{L} is some holomorphic line bundle such that $deg(\mathcal{L}) >$ 0. (up to biholomorphism. *E* is not polystable)

CASE 3: $E \rightarrow \Sigma_g$ is indecomposable and not (poly)stable.

For a particular Kähler class Ω , let \mathcal{M}_{Ω} denote the set of all Kähler forms in Ω .

For a particular Kähler class Ω , let \mathcal{M}_{Ω} denote the set of all Kähler forms in Ω .

Calabi functional is defined by: $\Phi: \mathcal{M}_\Omega \to \mathbb{R}$

$$\Phi(\omega) := \int_M Scal^2 d\mu$$

where *Scal* and $d\mu$ is the scalar curvature respectively the volume form of the metric corresponding to the Kähler form $\omega \in \Omega$.

For a particular Kähler class Ω , let \mathcal{M}_{Ω} denote the set of all Kähler forms in Ω .

Calabi functional is defined by: $\Phi: \mathcal{M}_\Omega \to \mathbb{R}$

$$\Phi(\omega) := \int_M Scal^2 d\mu$$

where *Scal* and $d\mu$ is the scalar curvature respectively the volume form of the metric corresponding to the Kähler form $\omega \in \Omega$.

Proposition: (Calabi) $\omega \in \mathcal{M}_{\Omega}$ is an extremal point of Φ iff *grad Scal* is a **holomorphic real vector field**, that is,

 $\mathcal{L}_{grad\,Scal}J=0.$

For a particular Kähler class Ω , let \mathcal{M}_{Ω} denote the set of all Kähler forms in Ω .

Calabi functional is defined by: $\Phi: \mathcal{M}_\Omega \to \mathbb{R}$

$$\Phi(\omega) := \int_M Scal^2 d\mu$$

where *Scal* and $d\mu$ is the scalar curvature respectively the volume form of the metric corresponding to the Kähler form $\omega \in \Omega$.

Proposition: (Calabi) $\omega \in \mathcal{M}_{\Omega}$ is an extremal point of Φ iff *grad Scal* is a **holomorphic real vector field**, that is,

$$\mathcal{L}_{grad\,Scal}J=0.$$

In this case we call g, corresponding to ω , an **extremal Kähler metric**. A Kähler metric with constant scalar curvature (CSC) is in particular extremal.

4

• Case 1 above admits CSC Kähler metrics in each Kähler class

- Case 1 above admits CSC Kähler metrics in each Kähler class
- Case 2 above admits non-CSC extremal Kähler metrics in each Kähler class for g = 0, 1 and in some, but not all, Kähler classes for g = 2, 3, 4, ...

- Case 1 above admits CSC Kähler metrics in each Kähler class
- Case 2 above admits non-CSC extremal Kähler metrics in each Kähler class for g = 0, 1 and in some, but not all, Kähler classes for g = 2, 3, 4, ...
- Case 3 above admits no extremal Kähler metric

In Case 2, $deg(\mathcal{L}) = 2m$, $m \in \mathbb{Z}^+$.

In Case 2, $deg(\mathcal{L}) = 2m$, $m \in \mathbb{Z}^+$.

Let

$$\omega_{k_1,k_2} = k_1 \omega_g + k_2 \omega_0$$

be the symplectic 2-form on $\Sigma_g \times S^2$, where ω_g and ω_0 are the standard area measures on Σ_g and S^2 , respectively. Let $\alpha_{k_1,k_2} \in H^2(M,\mathbb{R})$ denote the cohomology class of ω_{k_1,k_2} .

In Case 2, $deg(\mathcal{L}) = 2m$, $m \in \mathbb{Z}^+$.

Let

$$\omega_{k_1,k_2} = k_1 \omega_g + k_2 \omega_0$$

be the symplectic 2-form on $\Sigma_g \times S^2$, where ω_g and ω_0 are the standard area measures on Σ_g and S^2 , respectively. Let $\alpha_{k_1,k_2} \in H^2(M,\mathbb{R})$ denote the cohomology class of ω_{k_1,k_2} .

Lemma: For any $(M, J) = P(0 \oplus \mathcal{L}_{2m}) \rightarrow \Sigma_g$, $deg(\mathcal{L}_{2m}) = 2m$ (Case 2) α_{k_1,k_2} is a Kähler class if and only if $k_2 > 0$ and $\frac{k_1}{k_2} > m$.

being even.

In Case 2, $deg(\mathcal{L}) = 2m$, $m \in \mathbb{Z}^+$.

Let

$$\omega_{k_1,k_2} = k_1 \omega_g + k_2 \omega_0$$

be the symplectic 2-form on $\Sigma_g \times S^2$, where ω_g and ω_0 are the standard area measures on Σ_g and S^2 , respectively. Let $\alpha_{k_1,k_2} \in H^2(M,\mathbb{R})$ denote the cohomology class of ω_{k_1,k_2} .

Lemma: For any $(M, J) = P(0 \oplus \mathcal{L}_{2m}) \to \Sigma_g$, $deg(\mathcal{L}_{2m}) = 2m$ (Case 2) α_{k_1,k_2} is a Kähler class if and only if $k_2 > 0$ and $\frac{k_1}{k_2} > m$. For any $(M, J) = P(E) \to \Sigma_g$, from Case 1, α_{k_1,k_2} is a Kähler class if and only if $k_1 > 0$ and $k_2 > 0$.

In Case 2, $deg(\mathcal{L}) = 2m$, $m \in \mathbb{Z}^+$.

Let

$$\omega_{k_1,k_2} = k_1 \omega_g + k_2 \omega_0$$

be the symplectic 2-form on $\Sigma_g \times S^2$, where ω_g and ω_0 are the standard area measures on Σ_g and S^2 , respectively. Let $\alpha_{k_1,k_2} \in H^2(M,\mathbb{R})$ denote the cohomology class of ω_{k_1,k_2} .

Lemma: For any $(M, J) = P(0 \oplus \mathcal{L}_{2m}) \to \Sigma_g$, $deg(\mathcal{L}_{2m}) = 2m$ (Case 2) α_{k_1,k_2} is a Kähler class if and only if $k_2 > 0$ and $\frac{k_1}{k_2} > m$. For any $(M, J) = P(E) \to \Sigma_g$, from Case 1, α_{k_1,k_2} is a Kähler class if and only if $k_1 > 0$ and $k_2 > 0$.

(This is essentially due to Fujiki)

So with each choice of α_{k_1,k_2} on $M = \Sigma_g \times S^2$ comes from Case 2 a family of complex structures J_{2m} , $m = 1, ..., \lceil \frac{k_1}{k_2} \rceil - 1$. (J_{2m} might not be unique, even up to biholomorphism, unless g = 0, 1.) So with each choice of α_{k_1,k_2} on $M = \sum_g \times S^2$ comes from Case 2 a family of complex structures J_{2m} , $m = 1, ..., \lceil \frac{k_1}{k_2} \rceil - 1$. (J_{2m} might not be unique, even up to biholomorphism, unless g = 0, 1.)

Moreover each J_{2m} defines a natural Hamiltonian S^1 action on (M, ω_{k_1,k_2}) , generated by K_{2m} .

So with each choice of α_{k_1,k_2} on $M = \sum_g \times S^2$ comes from Case 2 a family of complex structures J_{2m} , $m = 1, ..., \lceil \frac{k_1}{k_2} \rceil - 1$. (J_{2m} might not be unique, even up to biholomorphism, unless g = 0, 1.)

Moreover each J_{2m} defines a natural Hamiltonian S^1 action on (M, ω_{k_1,k_2}) , generated by K_{2m} .

Ceiling function: $\lceil x \rceil = \text{smallest integer} \ge x$.

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure

Smooth manifold X of dimension 2n + 1

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure .

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ where

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ where

 η is contact 1-form defining a subbundle (contact bundle) in TM by $\mathcal{D} = \ker \eta$.

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ where

 η is contact 1-form defining a subbundle (contact bundle) in TM by $\mathcal{D} = \ker \eta$.

 ξ is the Reeb vector field of $\eta~[\eta(\xi)=1$ and $\xi \rfloor d\eta=0]$

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure .

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ where

 η is contact 1-form defining a subbundle (contact bundle) in TM by $\mathcal{D} = \ker \eta$.

 ξ is the Reeb vector field of $\eta~[\eta(\xi)=1$ and $\xi \rfloor d\eta=0]$

 Φ is an endomorphism field which annihilates ξ and satisfies $J = \Phi|_{\mathcal{D}}$ is a complex structure on the contact bundle

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ where

 η is contact 1-form defining a subbundle (contact bundle) in TM by $\mathcal{D} = \ker \eta$.

 ξ is the Reeb vector field of η $[\eta(\xi)=1$ and $\xi \rfloor d\eta=0]$

 Φ is an endomorphism field which annihilates ξ and satisfies $J = \Phi|_{\mathcal{D}}$ is a complex structure on the contact bundle $(d\eta(J\cdot, J\cdot) = d\eta(\cdot, \cdot))$

 $g := d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$ is a Riemannian metric

Sasakian geometry: odd dimensional version of Kählerian geometry and special case of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadruple $\mathcal{S} = (\xi, \eta, \Phi, g)$ where

 η is contact 1-form defining a subbundle (contact bundle) in TM by $\mathcal{D} = \ker \eta$.

 ξ is the Reeb vector field of $\eta~[\eta(\xi)=1$ and $\xi \rfloor d\eta=0]$

 Φ is an endomorphism field which annihilates ξ and satisfies $J = \Phi|_{\mathcal{D}}$ is a complex structure on the contact bundle $(d\eta(J\cdot, J\cdot) = d\eta(\cdot, \cdot))$

 $g := d\eta \circ (\Phi \otimes \mathbb{1}) + \eta \otimes \eta$ is a Riemannian metric

and ξ is a Killing vector field of g which generates a one dimensional foliation \mathcal{F}_{ξ} of M whose transverse structure is Kähler.

One may define **extremal Sasakian structures** in a way such that $S = (\xi, \eta, \Phi, g)$ is extremal if and only if the transverse Kähler structure is extremal (Boyer, Galicki, Simanca). One may define **extremal Sasakian structures** in a way such that $S = (\xi, \eta, \Phi, g)$ is extremal if and only if the transverse Kähler structure is extremal (Boyer, Galicki, Simanca).

If ξ is **regular**, the transverse Kähler structure lives on a smooth manifold. One may define **extremal Sasakian structures** in a way such that $S = (\xi, \eta, \Phi, g)$ is extremal if and only if the transverse Kähler structure is extremal (Boyer, Galicki, Simanca).

If ξ is **regular**, the transverse Kähler structure lives on a smooth manifold.

If ξ is **quasi-regular**, the transverse Kähler structure has orbifold singularities.

$$(\xi,\eta,\Phi_J,g)$$

whose contact form η satisfies $d\eta = \pi^* \omega_{l,1}$ where π is the natural bundle projection.

 (ξ,η,Φ_J,g)

whose contact form η satisfies $d\eta = \pi^* \omega_{l,1}$ where π is the natural bundle projection.

From now on we will assume g > 0, since the g = 0 has been treated by Boyer and Pati as well as Legendre.

 (ξ,η,Φ_J,g)

whose contact form η satisfies $d\eta = \pi^* \omega_{l,1}$ where π is the natural bundle projection.

From now on we will assume g > 0, since the g = 0 has been treated by Boyer and Pati as well as Legendre.

Diffeomorphically the 5 dimensional manifold is just $\Sigma_g \times S^3$.

$$(\xi,\eta,\Phi_J,g)$$

whose contact form η satisfies $d\eta = \pi^* \omega_{l,1}$ where π is the natural bundle projection.

From now on we will assume g > 0, since the g = 0 has been treated by Boyer and Pati as well as Legendre.

Diffeomorphically the 5 dimensional manifold is just $\Sigma_g \times S^3$.

This is seen by viewing $(X, \xi, \eta, \Phi_J, g)$ as arising from a Wang–Ziller join construction and using topological arguments and a recent result by Kreck and Lück. When the Kähler class $\alpha_{l,1}$ on (M, J) admits extremal Kähler metrics, the Sasaki Structure (ξ, η, Φ_J, g) is extremal up to a suitable deformation of the Sasakian structure $(\eta \mapsto$ $\eta + t\chi, \chi$ a basic 1-form of the foliation defined by ξ , new contact structure isotopic to old). It is convention still to call (ξ, η, Φ_J, g) extremal. When the Kähler class $\alpha_{l,1}$ on (M, J) admits extremal Kähler metrics, the Sasaki Struc-

extremal Kähler metrics, the Sasaki Structure (ξ, η, Φ_J, g) is extremal up to a suitable deformation of the Sasakian structure $(\eta \mapsto$ $\eta + t\chi, \chi$ a basic 1-form of the foliation defined by ξ , new contact structure isotopic to old). It is convention still to call (ξ, η, Φ_J, g) extremal.

For J from Case 1 (and there are many of those!), there is a constant scalar curvature (CSC) Kähler metric in each Kähler class of the Kähler cone on $\Sigma_g \times \mathbb{CP}^1$. It is simply a local product of the constant curvature Kähler metrics on Σ_g and \mathbb{CP}^1 respectively.

When the Kähler class $\alpha_{l,1}$ on (M, J) admits extremal Kähler metrics, the Sasaki Structure (ξ, η, Φ_J, g) is extremal up to a suitable deformation of the Sasakian structure $(\eta \mapsto$ $\eta + t\chi, \chi$ a basic 1-form of the foliation defined by ξ , new contact structure isotopic to old). It is convention still to call (ξ, η, Φ_J, g) extremal.

For J from Case 1 (and there are many of those!), there is a constant scalar curvature (CSC) Kähler metric in each Kähler class of the Kähler cone on $\Sigma_g \times \mathbb{CP}^1$. It is simply a local product of the constant curvature Kähler metrics on Σ_g and \mathbb{CP}^1 respectively.

For J_{2m} , m = 1, ..., k-1 from Case 2, IF there is an extremal Kähler metric (non-CSC) in the Kähler class $\alpha_{l,1}$ THEN it must arise from a Calabi type construction (joint work with ACG).

(i)
$$\Theta(\mathfrak{z}) > 0, \quad -1 < \mathfrak{z} < 1,$$

$$egin{aligned} (i) \ \Theta(\mathfrak{z}) > 0, & -1 < \mathfrak{z} < 1, \ (ii) \ \Theta(\pm 1) = 0, \ (iii) \ \Theta'(\pm 1) = \mp 2, \end{aligned}$$

For 0 < m < l and $r = \frac{m}{l}$, any smooth real function $\Theta : [-1, 1] \to \mathbb{R}^+$ satisfying

$$egin{aligned} (i) \ \Theta(\mathfrak{z}) > 0, & -1 < \mathfrak{z} < 1, \ (ii) \ \Theta(\pm 1) = 0, \ (iii) \ \Theta'(\pm 1) = \mp 2, \end{aligned}$$

defines a Kähler metric on (M, J_{2m}) with Kähler class equal to $\alpha_{l,1}$.

For 0 < m < l and $r = \frac{m}{l}$, any smooth real function $\Theta : [-1, 1] \rightarrow \mathbb{R}^+$ satisfying

(i)
$$\Theta(\mathfrak{z}) > 0, \quad -1 < \mathfrak{z} < 1,$$

(ii) $\Theta(\pm 1) = 0,$ (1)
(iii) $\Theta'(\pm 1) = \mp 2,$

defines a Kähler metric on (M, J_{2m}) with Kähler class equal to $\alpha_{l,1}$.

Writing $F(\mathfrak{z}) = \Theta(\mathfrak{z})(1+r\mathfrak{z})$, the corresponding metric is extremal exactly when $F(\mathfrak{z})$ is a polynomial of degree at most 4 and F''(-1/r) = $2r(\frac{1-g}{m})$. This, as well as the endpoint conditions of (1), is satisfied precisely when $F(\mathfrak{z})$ is given by

$$F(\mathfrak{z}) = \frac{(1-\mathfrak{z}^2)h(\mathfrak{z})}{4(3-r^2)},$$

$$F(\mathfrak{z}) = \frac{(1-\mathfrak{z}^2)h(\mathfrak{z})}{4(3-r^2)},$$

$$h(\mathfrak{z}) = (12 - 8r^2 + 2r^3(\frac{1-g}{m})) + 4r(3 - r^2)\mathfrak{z} + 2r^2(2 - r(\frac{1-g}{m}))\mathfrak{z}^2.$$

$$F(\mathfrak{z}) = \frac{(1-\mathfrak{z}^2)h(\mathfrak{z})}{4(3-r^2)},$$

$$h(\mathfrak{z}) = (12 - 8r^2 + 2r^3(\frac{1-g}{m})) + 4r(3 - r^2)\mathfrak{z} + 2r^2(2 - r(\frac{1-g}{m}))\mathfrak{z}^2.$$

CSC solutions would correspond to $h(\mathfrak{z})$ being a linear function and this is clearly never possible.

$$F(\mathfrak{z}) = \frac{(1 - \mathfrak{z}^2)h(\mathfrak{z})}{4(3 - r^2)},$$
(2)

$$h(\mathfrak{z}) = (12 - 8r^2 + 2r^3(\frac{1-g}{m})) + 4r(3 - r^2)\mathfrak{z} + 2r^2(2 - r(\frac{1-g}{m}))\mathfrak{z}^2.$$

CSC solutions would correspond to $h(\mathfrak{z})$ being a linear function and this is clearly never possible.

Conversely, $\Theta(\mathfrak{z}) = F(\mathfrak{z})/(1+r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2)satisfies conditions (ii) and (iii) in (1) and thus we have an extremal Kähler metric precisely when $\Theta(\mathfrak{z})$ also satisfies (i).

It is now a calculus exercise to check that

Proposition

1. For any choice of genus g = 1, 2, ..., 19, any choice of l = 2, 3, ..., and any choice of complex structures J_{2m} with m = 1, ..., l - $1 \Theta(\mathfrak{z}) = F(\mathfrak{z})/(1 + r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2) satisfies (i). It is now a calculus exercise to check that

Proposition

- 1. For any choice of genus g = 1, 2, ..., 19, any choice of l = 2, 3, ..., and any choice of complex structures J_{2m} with m = 1, ..., l - $1 \Theta(\mathfrak{z}) = F(\mathfrak{z})/(1 + r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2) satisfies (i).
- 2. For any choice of genus g = 20, 21, ...there exists a $l_g \in \{2, 3, 4...\}$ such that for any choice of $l = l_g, l_g + 1, ...,$ and any choice of complex structure J_{2m} with $m = 1, ..., l - 1 \ \Theta(\mathfrak{z}) = F(\mathfrak{z})/(1 + r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2)satisfies (i).

Proposition

- 1. For any choice of genus g = 1, 2, ..., 19, any choice of l = 2, 3, ..., and any choice of complex structures J_{2m} with m = 1, ..., l - $1 \Theta(\mathfrak{z}) = F(\mathfrak{z})/(1 + r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2) satisfies (i).
- 2. For any choice of genus g = 20, 21, ...there exists a $l_g \in \{2, 3, 4...\}$ such that for any choice of $l = l_g, l_g + 1, ...,$ and any choice of complex structure J_{2m} with $m = 1, ..., l - 1 \Theta(\mathfrak{z}) = F(\mathfrak{z})/(1 + r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2)satisfies (i).
- 3. For any choice of genus g = 20, 21, ...there exist at least one pair (l, m) with $1 \le m \le l-1$ such that $\Theta(\mathfrak{z}) = F(\mathfrak{z})/(1+r\mathfrak{z})$ with $F(\mathfrak{z})$ defined by (2) does not satisfy (i).

Corollary

For any genus $g \ge 1$, $\Sigma_g \times S^3$ has regular Sasakian Structures with CSC as well as regular extremal non-CSC Sasakian Structures.

Corollary

For any genus $g \ge 1$, $\Sigma_g \times S^3$ has regular Sasakian Structures with CSC as well as regular extremal non-CSC Sasakian Structures.

What about the non-trivial S^3 -bundle over Σ_g ?

Let $\omega_{(p,q)}$ be the standard area measure on $\mathbb{CP}_{(p,q)}$.

By the Boothby-Wang construction the total space X of the S^1 orbibundle over $\Sigma_g \times \mathbb{CP}_{(p,q)}$ corresponding to the cohomology class $\alpha_{l,1} = l\omega_g + \omega_{(p,q)}$ (is smooth and) has natural Sasakian structures

$$(\xi,\eta,\Phi_J,g)$$

whose contact form η satisfies $d\eta = \pi^* \omega_{l,1}$ where π is the natural bundle projection. Let $\omega_{(p,q)}$ be the standard area measure on $\mathbb{CP}_{(p,q)}$.

By the Boothby-Wang construction the total space X of the S^1 orbibundle over $\Sigma_g \times \mathbb{CP}_{(p,q)}$ corresponding to the cohomology class $\alpha_{l,1} = l\omega_g + \omega_{(p,q)}$ (is smooth and) has natural Sasakian structures

$$(\xi,\eta,\Phi_J,g)$$

whose contact form η satisfies $d\eta = \pi^* \omega_{l,1}$ where π is the natural bundle projection.

Diffeomorphically the 5 dimensional manifold is $\Sigma_g \times S^3$ if l(p+q) is even and the non-trivial S^3 -bundle over Σ_g if l(p+q) is odd. Take the regular ray in the Sasaki cone.

Proposition (Boyer, T-F): n = l(q - p)

Proposition (Boyer, T-F): n = l(q - p)

Suppose l(q-p) is odd, so n is odd (and the Sasaki manifold is the non-trivial S^3 -bundle over Σ_g).

Proposition (Boyer, T-F): n = l(q - p)

Suppose l(q-p) is odd, so n is odd (and the Sasaki manifold is the non-trivial S^3 -bundle over Σ_g).

Remark: The Kähler class $[\omega]$ as well as n should be completely determined by (g, l, p, q) (work in progress)

Proposition (Boyer, T-F):

The non-trivial S^3 -bundle over T^2 has a regular extremal non-CSC Sasakian Structure.

Proposition (Boyer, T-F):

The non-trivial S^3 -bundle over T^2 has a regular extremal non-CSC Sasakian Structure.

We would like to/expect to replace this with

Proposition (Boyer, T-F):

The non-trivial S^3 -bundle over T^2 has a regular extremal non-CSC Sasakian Structure.

We would like to/expect to replace this with

"For any genus $g \ge 1$, the non-trivial S^3 bundle over Σ_g has a regular extremal non-CSC Sasakian Structure."

18

What about the quasi-regular CSC Sasakian Structures?

in the Calabi Con

Changing the rules in the Calabi Construction

If we allow for orbifold singularities along the zero and infinity sections of $P(0 \oplus \mathcal{L}) \rightarrow \Sigma_g$ we may tinker a bit with (1):

(i)
$$\Theta(\mathfrak{z}) > 0, \quad -1 < \mathfrak{z} < 1,$$

(ii) $\Theta(\pm 1) = 0,$
(iii) $\Theta'(-1) = 2/p$ and $\Theta'(1) = -2/q,$
(3)

where p and q are positive co-prime integers. Then the extremal solution $\Theta(\mathfrak{z})$ is

$$\frac{(1-\mathfrak{z}^2)h(\mathfrak{z})}{(1+r\mathfrak{z})(4pq(3-r^2))}$$

where

$$h(\mathfrak{z}) = q(6 - 3r - 4r^2 + r^3) + p(6 + 3r - 4r^2 - r^3)$$

+ 2(3 - r^2)(q(r - 1) + p(1 + r))\mathfrak{z}
+ $r(p(3 + 2r - r^2) - q(3 - 2r - r^2))\mathfrak{z}^2$
+ $2pqr^3(\frac{1-g}{m})(1 - \mathfrak{z}^2),$

Conversely, such $\Theta(\mathfrak{z})$ satisfies conditions (ii) and (iii) in (3) and thus we have an extremal Kähler metric precisely when $\Theta(\mathfrak{z})$ also satisfies (i). Further, a CSC metric arise whenever deg $h \leq 1$. Conversely, such $\Theta(\mathfrak{z})$ satisfies conditions (ii) and (iii) in (1) and thus we have an extremal Kähler metric precisely when $\Theta(\mathfrak{z})$ also satisfies (i). Further, a CSC metric arise whenever deg $h \leq 1$. And this is now quite possible! Conversely, such $\Theta(\mathfrak{z})$ satisfies conditions (ii) and (iii) in (1) and thus we have an extremal Kähler metric precisely when $\Theta(\mathfrak{z})$ also satisfies (i). Further, a CSC metric arise whenever deg $h \leq 1$. And this is now quite possible!

For example when

•
$$g = 1$$
, $m/l = 1/2$, $p = 7$, and $q = 15$

•
$$g = 1$$
, $m/l = 1/2$, $p = 7$, and $q = 15$

•
$$g = 1$$
, $m/l = 1/3$, $p = 5$, and $q = 8$

- g = 1, m/l = 1/2, p = 7, and q = 15
- g = 1, m/l = 1/3, p = 5, and q = 8
- $g \ge 2$, m = g 1, l = (p + 1)(g 1), q = p + 2, and p is any odd positive integer.

- g = 1, m/l = 1/2, p = 7, and q = 15
- g = 1, m/l = 1/3, p = 5, and q = 8
- $g \ge 2$, m = g 1, l = (p + 1)(g 1), q = p + 2, and p is any odd positive integer.
- $g \ge 2$ and even, m = g 1, l = 3(g 1), p = 5 and q = 16.

- g = 1, m/l = 1/2, p = 7, and q = 15
- g = 1, m/l = 1/3, p = 5, and q = 8
- $g \ge 2$, m = g 1, l = (p + 1)(g 1), q = p + 2, and p is any odd positive integer.
- $g \ge 2$ and even, m = g 1, l = 3(g 1), p = 5 and q = 16.
- $g \ge 3$ and odd, m = gp(g-2), $l = pg^2$, p = 3g - 2, and q = 2g(g - 1).

The orbifolds (M, J_{2m}) above are complex $\mathbb{CP}(p,q)$ -orbibundles over Σ_g arising by introducing orbifold singularities along the zero and infinity sections of the ruled surfaces. The orbifolds (M, J_{2m}) above are complex $\mathbb{CP}(p,q)$ -orbibundles over Σ_g arising by introducing orbifold singularities along the zero and infinity sections of the ruled surfaces.

They should arise as quotients of quasi-regular vector fields in the Sasaki cones of the above constructions...technical details to follow...

The orbifolds (M, J_{2m}) above are complex $\mathbb{CP}(p,q)$ -orbibundles over Σ_g arising by introducing orbifold singularities along the zero and infinity sections of the ruled surfaces.

They should arise as quotients of quasi-regular vector fields in the Sasaki cones of the above constructions...technical details to follow...

DANKESCHÖN!!!

THANKS FOR A GREAT WORKSHOP!!!