Flat manifolds with holonomy group \mathbb{Z}_{2}^{k} of diagonal type

A. Ga̧sior and A. Szczepański

Maria Curie-Skłodowska University, Lublin, University of Gdańsk, Gdańsk, Poland
anna.gasior @ poczta.umcs.lublin.pl, matas @ univ.gda.pl

1. Summary

We consider relations between two families of flat manifolds with holonomy group $\left(\mathbb{Z}_{2}\right)^{k}$ of diagonal type. The family $\mathcal{R B M}$ of real Bott manifolds and the family $\mathcal{G H} \mathcal{W}$ of generalized Hantzsche-Wendt manifolds. In particular, we prove that the intersection $\mathcal{G H} \mathcal{W} \cap \mathcal{R B} \mathcal{M}$ is not empty. We also consider some class of real Bott manifolds without Spin and Spin ${ }^{\mathbb{C}}$ structure. There are given conditions for the (non)existence of such structures.

2. Introduction

Let M^{n} be a flat manifold of dimension n. By definition, this is a compact connected, Riemannian manifold without boundary with sectional curvature equal to zero. From the theorems of Bieberbach ([2]) the fundamental group $\pi_{1}\left(M^{n}\right)=\Gamma$ determines a short exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}^{n} \rightarrow \Gamma \xrightarrow{p} G \rightarrow 0 \tag{1}
\end{equation*}
$$

where \mathbb{Z}^{n} is a torsion free abelian group of $\operatorname{rank} n$ and G is a finite group which is isomorphic to the holonomy group of M^{n}. The universal covering of M^{n} is the Euclidean space \mathbb{R}^{n} and hence Γ is isomorphic to a discrete cocompact subgroup of the isometry group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=O(n) \times \mathbb{R}^{n}=E(n)$. Conversely, given a short exact sequence of the form (1), it is known that the group Γ is (isomorphic to) the fundamental group of a flat manifold if and only if Γ is torsion free. In this case Γ is called a Bieberbach group. We can define a holonomy representation $\phi: G \rightarrow G L(n, \mathbb{Z})$ by the formula:

$$
\begin{equation*}
\forall g \in G, \phi(g)\left(e_{i}\right)=\tilde{g} e_{i}(\tilde{g})^{-1} \tag{2}
\end{equation*}
$$

where $e_{i} \in \Gamma$ are generators of \mathbb{Z}^{n} for $i=1,2, \ldots, n$, and $\tilde{g} \in \Gamma$ such that $p(\tilde{g})=g$. In this article we shall consider only the case

$$
\begin{equation*}
G=\mathbb{Z}_{2}^{k}, 1 \leq k \leq n-1, \text { with } \phi\left(\mathbb{Z}_{2}^{k}\right) \subset D \subset G L(n, \mathbb{Z}) \tag{3}
\end{equation*}
$$

where D is the group of all diagonal matrices.

3. Generalized Hantzsche-Wendt manifolds

Definition $1 A$ generalized Hantzsche-Wendt manifold ($\mathcal{G H} \mathcal{W}$-manifold) is a flat manifold of dimension n with holonomy group $\left(\mathbb{Z}_{2}\right)^{n-1}$.
Let $M^{n} \in \mathcal{G H} \mathcal{W}$. In [16, Theorem 3.1] it is proved that the holonomy representation (2) of $\pi_{1}\left(M^{n}\right)$ satisfies (3).
The (co)homology groups and cohomology rings with coefficients in \mathbb{Z} or \mathbb{Z}_{2}, of $\mathcal{G H} \mathcal{W}$ manifolds are still not known, see [4] and [5]. We finish this overview with an example of $\mathcal{G H} \mathcal{W}$ manifolds which have been known already in 1974.
Example 1 Let $M^{n}=\mathbb{R}^{n} / \Gamma_{n}, n \geq 2$ be manifolds defined in [11] (see also [16, page 1059]), where $\Gamma_{n} \subset E(n)$ is generated by $\gamma_{0}=(I=i d,(1,0, \ldots, 0))$ and

$$
\gamma_{i}=\left(\left[\begin{array}{ccccccc}
1 & 0 & 0 & . & . & \ldots & 0 \\
0 & 1 & 0 & . & . & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 1 & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & -1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & 1 & \ldots & 0 \\
. & . & . & . & . & \ldots \\
0 & . & \ldots & 0 & 0 & 0 & 1
\end{array}\right],\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
0 \\
0 \\
\frac{1}{2} \\
\ldots \\
0
\end{array}\right)\right) \in E(n)
$$

where the -1 is placed in the (i, i) entry and the $\frac{1}{2}$ as an $(i+1)$ entry, $i=1,2, \ldots, n-1 . \Gamma_{2}$ is the fundamental group of the Klein bottle.

4. Real Bott manifolds

We follow [3], [10] and [14]. To define the second family let us introduce a sequence of $\mathbb{R} P^{1}$-bundles

$$
\begin{equation*}
M_{n} \xrightarrow{\mathbb{R} P^{1}} M_{n-1} \xrightarrow{\mathbb{R} P^{1}} \xrightarrow{ } \xrightarrow{\mathbb{R} P^{1}} M_{1} \xrightarrow{\mathbb{R} P^{1}} M_{0}=\{\text { apoint }\} \tag{5}
\end{equation*}
$$

such that $M_{i} \rightarrow M_{i-1}$ for $i=1,2, \ldots, n$ is the projective bundle of a Whitney sum of a real line bundle L_{i-1} and the trivial line bundle over M_{i-1}. We call the sequence (5) a real Bott tower of height n, [3].
Definition 2 ([10]) The top manifold M_{n} of a real Bott tower (5) is called a real Bott manifold ($\mathcal{R B M}$).
Let γ_{i} be the canonical line bundle over M_{i} and set $x_{i}=w_{1}\left(\gamma_{j}\right)$. Since $H^{1}\left(M_{i-1}, \mathbb{Z}_{2}\right)$ is additively generated by $x_{1}, x_{2}, . ., x_{i-1}$ and L_{i-1} is a line bundle over M_{i-1}, one can uniquely write

$$
\begin{equation*}
w_{1}\left(L_{i-1}\right)=\sum_{k=1}^{i-1} a_{k, i} x_{k} \tag{6}
\end{equation*}
$$

with $a_{k, i} \in \mathbb{Z}_{2}=\{0,1\}$ and $i=2,3, \ldots, n$. From above $A=\left[a_{k i}\right]$ is an upper triangular matrix, $a_{k, i}=0$ unless $k<i$, of size n whose diagonal entries are 0 and other entries are either 0 or 1 . Summing up, we can say that the tower (5) (1) is completely determine by the matrix A.

From [10, Lemma 3.1] we can consider any $\mathcal{R B M} M(A)$ in the following way. Let $M(A)=\mathbb{R}^{n} / \Gamma(A)$, where $\Gamma(A) \subset E(n)$ is generated by elements

$$
\left.s_{i}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & . & . & \ldots & 0 \tag{7}\\
0 & 1 & 0 & . & . & \ldots & 0 \\
. & \cdot & . & . & . & \ldots & \\
0 & \ldots & 0 & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & (-1)^{a_{i, i+1}} & \ldots & 0 \\
. & . & . & . & . & \ldots & \\
0 & \ldots & 0 & 0 & 0 & \ldots & (-1)^{a_{i, n}}
\end{array}\right],\left(\begin{array}{c}
0 \\
. \\
0 \\
\frac{1}{2} \\
0 \\
. \\
0 \\
0
\end{array}\right)\right) \in E(n)
$$

where $(-1)^{a_{i, i+1}}$ is placed in $(i+1, i+1)$ entry and $\frac{1}{2}$ as an (i) entry, $i=1,2, \ldots, n-1 . s_{n}=(I,(0,0, \ldots, 0,1)) \in E(n)$. From [10, Lemma 3.2,3.3] $s_{1}^{2}, s_{2}^{2}, \ldots, s_{n}^{2}$ commute with each other and generate a free abelian subgroup \mathbb{Z}^{n}. It is easy to see that it is not always a maximal abelian subgroup of $\Gamma(A)$. Moreover, we have the following commutative diagram

where $k=r k_{\mathbb{Z}_{2}}(A), N$ is the maximal abelian subgroup of $\Gamma(A)$, and $p: \Gamma(A) / \mathbb{Z}^{n} \rightarrow \Gamma(A) / N$ is a surjection induced by the inclusion $i: \mathbb{Z}^{n} \rightarrow N$. From the first Bieberbach theorem, see [2], N is a subgroup of all translations of $\Gamma(A)$ i.e. $N=\Gamma(A) \cap \mathbb{R}^{n}=\Gamma(A) \cap\left\{(I, a) \in E(n) \mid a \in \mathbb{R}^{n}\right\}$.
Definition 3 ([3]) A binary square matrix A is a Bott matrix if $A=P B P^{-1}$ for a permutation matrix P and a strictly upper triangular binary matrix B.
Let $\mathcal{B}(n)$ be the set of Bott matrices of size n. Since two different upper
triangular matrices A and B may produce (affinely) diffeomorphic (\sim) real Bott manifolds $M(A), M(B)$, see [3] and [10], there are three operations on $\mathcal{B}(n)$, denoted by (Op1), (Op2) and (Op3), such that $M(A) \sim M(B)$ if and only if the matrix A can be transformed into B through a sequence of the above operations, see [3, part 3]. The operation (Op1) is a conjugation by a permutation matrix,
(Op2) is a bijection $\Phi_{k}: \mathcal{B}(n) \rightarrow \mathcal{B}(n)$

$$
\begin{equation*}
\Phi_{k}(A)_{*, j}:=A_{*, j}+a_{k j} A_{*, k} \tag{8}
\end{equation*}
$$

for $k, j \in\{1,2, \ldots, n\}$ such that $\Phi_{k} \circ \Phi_{k}=1_{\mathcal{B}(n)}$.
Finally (Op3) is, for distinct $l, m \in\{1,2, . ., n\}$ and the matrix A with $A_{*, l}=A_{*, m}$

$$
\Phi^{l, m}(A)_{i, *}:= \begin{cases}A_{l, *}+A_{m, *} & \text { if } i=m \tag{9}\\ A_{i, *} & \text { otherwise }\end{cases}
$$

Here $A_{*, j}$ denotes j-th column and $A_{i, *}$ denotes i-th row of the matrix A.

References

[1] L. Auslander, R. H. Szczarba, Characteristic clsses of compact solvmanifolds, Ann. of Math. 4, 76, 1962, 1-8.
[2] Charlap L.S.: Bieberbach Groups and Flat Manifolds. Springer-Verlag, 1986.
[3] S. Choi, M. Masuda, S. Oum, Classification of real Bott manifolds and acyclic digraphs, arXiv:1006.4658
[4] S. Console, R. J. Miatello, J. P. Rossetti, \mathbb{Z}_{2} - cohomology and spectral properties of flat manifolds of diagonal type. J. Geom. Physics 60 (2010), 760-781
[5] K. Dekimpe, N. Petrosyan, Homology of Hantzsche-Wendt groups, Contemporary Mathematics, 501 Amer. Math. Soc. Providence, RI, (2009), $87-102$
[6] A. Ga̧sior, A. Szczepański, Tangent bundles of Hantzsche-Wendt manifolds, preprint 2011
[7] M. Grossberg, Y. Karshon, Bott towers, complete integrability and the extended character of representations, Duke Math. J. 76 (1994), 23-58
[8] W. Hantzsche, H. Wendt, Dreidimensional Euklidische Raumformen, Math. Ann. 110 (1934-35), 593-611.
[9]G. Hiss, A. Szczepański, Spin structures on flat manifolds with cyclic holonomy, Communications in Algebra, 36 (1) (2008), 11-22
[10] Y. Kamishima, M. Masuda, Cohomological rigidity of real Bott manifolds, Alebr. \& Geom. Topol. 9 (2009), 2479-2502
[11] R. Lee, R. H. Szczarba, On the integral Pontrjagin classes of a Riemannian flat manifolds, Geom. Dedicata 3 (1974), 1-9
[12] R. Miatello, R. Podestá, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. A.M.S., 358, Number 10, 2006, 4569 4603
[13] R. Miatello, J. P. Rossetti, Isospectral Hantzsche-Wendt manifolds, J. Reine Angew. Math. 515 (1999), 1-23.
[14] A. Nazra, Diffeomorphism Classes of Real Bott Manifolds, Tokyo J. Math., Vol. 34, No. 1 (2011), 229-260
[15] B. Putrycz, Commutator Subgroups of Hantzsche-Wendt Groups, J. Group Theory, 10 (2007), 401-409
[16] J. P. Rossetti, A.Szczepański, Generalized Hantzsche-Wendt flat manifolds, Rev. Mat. Iberoamericana 21, (2005), no.3, 1053-1070
[17] A. Szczepański, The euclidean representations of the Fibonacci groups, Q. J. Math. 52 (2001), 385-389;
[18] A. Szczepański, Properties of generalized Hantzsche - Wendt groups, J. Group Theory 12,(2009) , 761-769

