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Classical Levi problem : characterize domains of holomorphy in Cn

Domain is already holomorphically separable ; in order for it to be
Stein one has to “control” the geometry as one “goes to infinity” in
the domain in order to get holomorphic convexity.

For today’s talk a complex manifold is pseudoconvex if it admits a
continuous plurisubharmonic (psh) exhaustion function.

A complex manifold admitting a smooth strictly plurisubharmonic
exhaustion function is Stein. [Grauert, Ann.of Math. 68 (1958)]

An interesting survey : Y.-T. Siu, Pseudoconvexity and the
problem of Levi, Bull. Amer. Math. Soc. 84 (1978).
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Constructing a Cousin Group

• A connected complex Lie group G with no non-constant
holomorphic functions is called a Cousin group, a toroidal
group, or an HC-group

• Such a G lies in the kernel of Ad : G → GL(n,C) and this
kernel is central in G , i.e., G is Abelian.

• In the Abelian setting : exp : g→ G is a surjective
homomorphism =⇒ G = Cn/Γn+k , 1 ≤ k ≤ n.

• {(1, 0), (0, 1), (i , iα)} ⊂ C2 lin. indep./R ; α ∈ [0, 1] ∩ R \Q.

• Set Γ := 〈(1, 0), (0, 1), (i , iα)〉Z and V := 〈Γ〉R. Note that
C := C2/Γ = K × R, where K = V /Γ = S1 × S1 × S1.
Clearly, K is the maximal compact subgroup of C .
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The complex geometry

Recall V := 〈(1, 0), (0, 1), (i , iα)〉R.
The figure shows a cube that is a
fundamental domain for this lattice
in the real 3-dimensional space V ⊂ C2

and a portion of the maximal complex
subspace m = 〈(1, α)〉C = V ∩ iV of V .

The orbit of M := exp m is dense
in the quotient of V by the lattice.
Reason : the orbit of 〈(1, α)〉R is dense
in 〈(1, 0), (0, 1)〉R/〈(1, 0), (0, 1)〉Z.
(This is a skew line on the torus
S1 × S1 = R2/〈(1, 0), (0, 1)〉Z.)
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O(C ) ' C
Suppose f ∈ O(C ). Define σ : C→ m := V ∩ iV , z 7→ z · (1, α).
Consider the composite holomorphic map

C σ−→ m
exp−→ M

α−→ M/(M ∩ Γ)
f−→ C.

Since M/(M ∩ Γ) lies in K and f (K ) is compact, the holomorphic
function f ◦ α ◦ exp ◦σ is a bounded entire function, and thus is
constant. But the holomorphic maps σ, exp, α are not constant.
Therefore f |M/(M∩Γ) is constant.

Since M/(M ∩ Γ) is dense in K , it follows that f |K is constant.
But K has real codimension one in C and so f is constant.

Remark : A non-compact Cousin group provides an example of a
pseudoconvex homogeneous space of a reductive complex Lie
group that is not holomorphically convex ! Subtlety : we change
groups C2/〈(1, 0), (0, 1)〉Z ' C∗×C∗ ; so C ' C∗×C∗/〈(i , iα)〉Z.
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Holomorphic Reductions of Homogeneous Manifolds

For any connected complex manifold X define x1 ∼ x2 ⇐⇒
f (x1) = f (x2) ∀f ∈ O(X ). This gives an equivalence relation. Does
X/ ∼ have a complex structure ? Is π : X → X/ ∼ holomorphic ?

Let G be a connected complex Lie group with H a closed complex
subgroup that is not necessarily connected. Set X := G/H.

For X = G/H there is a Lie theoretic homogeneous fibration
π : G/H → G/J, gH 7→ gJ, called the holomorphic reduction of X ,
where J := { g ∈ G | f (gH) = f (eH) ∀f ∈ O(G/H) }.

By definition J is a closed complex subgroup of G containing H,
G/J is holomorphically separable and O(G/H) ' π∗O(G/J).

Optimal : X holomorphically convex ⇐⇒ G/J Stein and J/H
compact. This is the Remmert Reduction.

Next Best : G/J Stein and O(J/H) ' C.
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Holomorphic Reductions - some results
G complex Abelian Lie group : then G = Ck × (C∗)p × C , where
C is a Cousin group.

For complex Lie groups : the base of the holomorphic reduction is
Stein and its fiber is a Cousin group, see [Morimoto (1964)]

G nilpotent :

1. G/J is Stein and O(J/H) ' C ; [G–Huckleberry (1978) ]

2. J/H is a Cousin group tower ; Akhiezer/K. Oeljeklaus (1980’s)

3. Every nilmanifold is pseudoconvex [Huckleberry (2011)]

G solvable :

1. G/J is Stein, see [Huckleberry–E. Oeljeklaus (1986) ]

2. fiber J/H can itself be Stein ; Coeuré-Loeb example
G/H → G/J with G/J ' C∗ and J/H ' C∗ × C∗

3. provides a homogeneous counterexample to the Serre
problem : with fiber and base Stein, total space not !
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Reductive Groups

Consider G = K C = S × Z a complex reductive Lie group.
G carries a (unique) structure of an algebraic group.

Remark : One has GL(n,C) = SL(n,C) · C∗ with finite intersection
{ αIn | αn = 1 }. A finite covering is a direct product.

Here S is a connected complex semisimple Lie group and
Z ∼= (C∗)k is the center of G . Note that G ′ = S .

Important Observations :

G/J is Stein iff J is reductive : Matsushima/Onishchik (1960)

For G reductive one has H ⊂ J, where H denotes the Zariski
closure of H in G : [Barth–Otte (1973)]
In particular, the isotropy subgroup J of the holomorphic reduction
of G/H is algebraic.
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Motivating Example

Example : Set Γ =

{(
1 k
0 1

)
| k ∈ Z

}
⊂ SL(2,C) =: S and

J =

{(
1 z
0 1

)
| z ∈ C

}
.

Note that J = Γ is the Zariski closure of Γ in S .

Then S/Γ
C∗
→ S/J = C2 − {(0, 0)} is the holomorphic reduction of

G/Γ ; follows, since C2 − {(0, 0)} is holomorphically separable and
J is the smallest algebraic subgroup of S containing Γ.

Note that S/J is not Stein.

One has O(J/Γ) 6' C. Here J/Γ = C∗ is even Stein itself ; see
[Barth–Otte (1973)].
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Theorem (G-Miebach-K. Oeljeklaus ; 2012)

Suppose G/H is pseudoconvex and let G/H → G/J be its
holomorphic reduction.

1. For G reductive :

a) G/J is Stein and O(J/H) ' C.
b) G/H also Kähler =⇒ the fiber
J/H = H/H × J/H, where H/H is a Cousin
group and J/H is a flag manifold.

2. For G solvable : J/H is a Cousin group tower ; in particular,
O(J/H) ' C.

Remark : 1) b) extends Matsushima ’57 and Borel–Remmert ’62 :
every compact homogeneous Kähler manifold is a product T × Q,
where T is a compact complex torus and Q is a flag manifold
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Theorem (G-Miebach-K. Oeljeklaus ; 2012)

Suppose p : D → X is a pseudoconvex domain spread over
X = G/H such that eH ∈ p(D). If D is not Stein, then there
exists a connected complex Lie subgroup Ĥ of G containing H0

with dim Ĥ > dim H and a foliation F of D such that

1. every leaf of F is a relatively compact complex manifold
immersed in D

2. every inner integral curve in D passing through a point x ∈ D
lies in the leaf Fx containing x

3. the leaves are homogeneous under a covering group of Ĥ and
the restriction of p to a leaf is a finite covering map onto a
leaf in X

Remark : Generalizes Kim-Levenberg-Yamaguchi (2011) : they
consider pseudoconvex, relatively compact domains D ⊂ G/H with
smooth boundary – not useful for non–compact G/H !
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Steps in the proof

1.) Let p : D → X := G/H with x0 ∈ D and p(x0) = eH. Note
that Tx0(D) is generated by holo vector fields ξ̃X for ξ ∈ g.

2.) Finding the “queen bee” :
ĥ := {ξ ∈ g | ξ̃Xϕ(x0) = 0 ∀ϕ continuous psh functions on D }

3.) Show that ĥ is a complex Lie subalgebra of g containing h.

4.) Hirschowitz [1975] : D not Stein =⇒ D contains an inner
integral curve, i.e, a relatively compact integral curve of a
holomorphic vector field coming from g =⇒ dim ĥ > dim h.

5.) Fx0 is an immersed complex manifold in D that contains all
integral curves through the point x0 – this is a leaf of the foliation.

6.) Move Fx0 by the local action of G to get a foliation F of D.
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Characterization of Holomorphic Convexity

Theorem (GMO ; 2012)

Suppose p : D → X is a pseudoconvex domain spread over
X = G/H. The complex group HĤ is closed in G iff D is
holomorphically convex. Then the Remmert reduction of D is a
holomorphic fiber bundle D → D0 induced by the bundle
G/H → G/HĤ.

The idea is to define D0 := D/F and show that this works !

By a result of H. Holmann the leaf space D/F has a canonical
complex structure whenever this leaf space is Hausdorff.

One needs existence of open saturated neighborhoods inside every
open neighborhood of a leaf that contain the leaf – this follows
easily from compactness.
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Projective orbits

Theorem (GMO ; 2012)

Suppose G is a complex linear group and H is a closed complex
subgroup of G, i.e., G/H is an orbit in some projective space CPN .
If G/H is pseudoconvex, then G/H is holomorphically convex.
Hence G/J is Stein and J/H is a homogeneous rational manifold.

1.) Theorem of Chevalley ’51 : g′ = g′ and so G ′ = G
′

and thus
the G ′–action on CPN is algebraic. So G ′ has closed orbits.

2.) Additional important fact : G/HG ′ ↪→ G/HG
′ ' Cp × (C∗)q,

so Ĥ ⊂ G ′ and one can reduce to the case G = G ′.

3.) In this setting H is algebraic and Ĥ is also algebraic.

4.) Then Ĥ-orbits are closed. So the Ĥ-orbits are homogeneous
rational manifolds with Stein quotient G/HĤ by previous slide.
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Main Theorem in semi-simple case
RTP : G semisimple, G/H pseudoconvex =⇒ G/H
holomorphically convex ; i.e., J/H is compact and G/J is Stein.

X = G/H
π //

%%JJJJJJJJJ
G/J

G/H

<<yyyyyyyy

The holomorphic reductions of G/H and G/H are both G/J !

For G semi-simple, every right H-invariant plurisubharmonic
function on G is also right H-invariant =⇒ G/H is pseudoconvex
and H/H is compact ; see [Berteloot (1987)] and [Berteloot–K.
Oeljeklaus (1988) Now in an algebraic setting – use previous result.

Example : Set S := SL(3,C) ⊃ T := C∗×C∗ ⊃ H := Z with T/H
a non-compact Cousin group. Hol. red. : S/H → S/T . Then S/H
is not pseudoconvex, because it is not holomorphically convex.
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Extension of Kiselman Minimum Principle
Let u : Cp × Cq → R be an Rq–invariant psh function. Then the
function û(w) := minz∈Cq u(w , z) is psh on Cp.

Lemma (GMO ; 2012)

Suppose X is pseudoconvex and X → Y is a holomorphic fiber
bundle with fiber a Cousin group. Then Y is pseudoconvex.

On a local trivialization W × Cn/Γn+k let u : W × Cn/Γn+k → R
be a psh function. Pull back u(w , .) to a Γn+k–invariant function v
on Cn for w ∈W . Let M be the Lie subgroup of Cn/Γn+k with
algebra m := 〈Γn+k〉R ∩ i〈Γn+k〉R. Its orbit is dense in the maximal
compact subgroup 〈Γn+k〉R/Γn+k . So v is 〈Γn+k〉R–invariant and
pushes down to a function on Cn/m that is 〈Γn+k〉R/m–invariant .
Apply Kiselman, noting 〈Γn+k〉R/m is a real form of Cn/m.

Remark : An analogue of the Lemma also holds for (C∗)k–principal
bundles. Choose an (S1)k -invariant psh exhaustion of X , etc.
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Main Theorem in reductive case

Step 1 : Show G/J is Stein.

Let N be those connected components of the normalizer of H in G
that meet H. Note that N/H is a connected complex Lie group.

Let N/H → N/I be its holomorphic reduction ; I/H is a Cousin
group by Morimoto’s result.

Apply Kiselman’s minimum principle for Cousin fibrations in order
to push down the psh exhaustion to G/I , i.e., previous Lemma

Apply induction if dim G/I < dim G/H ; same holo reductions !

Otherwise, dim G/I = dim G/H =⇒ I/H is Stein. Note Z ⊂ N.

The bundle G/H → G/HZ is a principal (C∗)k–bundle =⇒ G/HZ
pseudoconvex =⇒ G/HZ = S/S ∩ H holomorphically convex

Not done ! Don’t know how O(G/H) and O(G/HZ ) are related.
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G/H //

(C∗)k

��

(C∗)m

%%LLLLLLLLLL G/H

��

G/H ∩ HZ

cpt
99rrrrrrrrrr

yyrrrrrrrrrr

%%LLLLLLLLLL

G/HZ
cpt

cf. semisimple case
// G/HZ

Consider H/H → H/H ∩ HZ . Torus H ∩ Z transitive on fiber
=⇒ (C∗)m–principal bundle =⇒ G/H ∩ HZ pseudoconvex

HZ/HZ = HZ/HZ compact =⇒ H/H ∩ HZ = HZ/HZ compact

Thus G/H is pseudoconvex and hence holomorphically convex and
G/H and G/H have the same holomorphic reduction.

The base G/J of the holomorphic reduction of G/H is Stein
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Remarks on the fiber

Step 2 : Show O(J/H) ' C with G/H → G/J the holomorphic
reduction of a pseudoconvex G/H and G is reductive.

For G reductive G/J is Stein iff J is reductive
Matsushima and Onishchik, both 1960

Let J/H → J/I be the holomorphic reduction ; note that J/H
inherits pseudoconvexity and J is reductive

Step 1 implies J/I is Stein and thus I is reductive

Apply Matsushima–Onishchik to conclude that G/I is Stein and
thus I = J ; in other words O(J/H) ' C in the first place !
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The Kähler setting

Use characterization of Kähler reductive homogeneous manifolds.

Theorem (G-Miebach-K. Oeljeklaus ; Math. Ann. 349 (2011))

Suppose G is a complex reductive Lie group and H is a closed
complex subgroup of G. Then G/H is Kähler if and only if
S ∩ H is algebraic and SH is closed in G

NG (S ∩ H) algebraic =⇒ H ⊂ NG (S ∩ H) =⇒ H/S ∩ H group

H/S ∩ H Abelian ; since H/S ∩ H = H/S ∩ H and H ′ ⊂ S ∩ H.
Thus H/H is an Abelian group without any C factor.

G/H pseudoconvex =⇒ G/H pseudoconvex ; Kiselman minimality
type Lemma for Cousin bundles and principal (C∗)k–bundles

Then G/H pseudoconvex =⇒ G/H holomorphically convex.
Finally O(G/H) ' C =⇒ G/H compact, thus a flag manifold.
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Continuation of proof in Kähler case

Claim : there are no C∗’s in H/H

Lemma : A pseudoconvex holomorphic (C∗)k -principal bundle over
a flag manifold is trivial.

Idea underlying the proof : unless the bundle is trivial, construct a
closed embedding of a finite quotient of C2 − {(0, 0} in the bundle
space - this quotient inherits the pseudoconvexity, a contradiction.

Finally, show the triviality of the fibration G/H → G/H

The algebraic variety G ′ ∩ H/G ′ ∩ H is closed subgroup of Cousin
group H/H ; recall G ′ = S and S ∩ H is algebraic.

=⇒ [G ′ ∩ H : G ′ ∩ H] <∞. But G ′ ∩ H parabolic implies it is
connected ; i.e., the bundle has trivial structure group.
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An example that is not Kähler

Let Γ ⊂ SL(2,C) be a cocompact discrete subgroup such that Γ/Γ′

contains an element of infinite order. [Millson, Ann. of Math. 1976]

Let ϕ : Γ→ C∗ be a homomorphism with dense image in S1.

Let ΓG be the graph of ϕ in G := SL(2,C)×C∗ ; set X := G/ΓG .

CLAIM : X is pseudoconvex. Choose ρ to be an S1-invariant
strictly plurisubharmonic exhaustion function on C∗.

The function G → R≥0, (s, z) 7→ ρ(z) is ΓG -invariant and psh ; so
defines a psh function on X . Since the closure of every S-orbit is a
compact real hypersurface in X , this function is an exhaustion on
X and so X is pseudoconvex.

Note that O(X ) ' C and the group Γ̂G = S has no locally closed
orbits in X . It follows that X is not Kähler and also not
holomorphically convex, because it is not compact.
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