Constructions of Sound-Alike Manifolds

Carolyn Gordon

Department of Mathematics Dartmouth College

July 5, 2012

Carolyn Gordon Constructions of Sound-Alike Manifolds

・ロト ・ 理 ト ・ ヨ ト ・

3

Definition

Let *M* be a compact Riemannian manifold, with or without boundary. The Laplace-Beltrami operator Δ on $C^{\infty}(M)$ is given by

 $\Delta(f) = -div(grad(f)).$

Consider eigenvalue problem:

 $\Delta(f) = \lambda f.$

(If $\partial(M) \neq \emptyset$, impose Dirichlet, Neumann or mixed boundary conditions.)

 $Spec(M): 0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

Let *M* be a compact Riemannian manifold, with or without boundary. The Laplace-Beltrami operator Δ on $C^{\infty}(M)$ is given by

 $\Delta(f) = -div(grad(f)).$

Consider eigenvalue problem:

 $\Delta(f) = \lambda f.$

(If $\partial(M) \neq \emptyset$, impose Dirichlet, Neumann or mixed boundary conditions.)

 $Spec(M): 0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$

ヘロン 人間 とくほ とくほ とう

Inverse Spectral Problem

$\operatorname{spec}(M) \xrightarrow{?} \operatorname{geometry of} M$

Carolyn Gordon Constructions of Sound-Alike Manifolds

直 とう きょう うちょう

э

Outline

- Geometry contained in the spectrum
- Isospectral manifolds with a common covering: Constructions Inaudible geometric properties
- Isospectral manifolds with different local geometry: Constructions Inaudible geometric properties
- Graphs, plane domains, and broken drums
- Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

- Geometry contained in the spectrum
- Isospectral manifolds with a common covering: Constructions Inaudible geometric properties
- Isospectral manifolds with different local geometry: Constructions Inaudible geometric properties
- Graphs, plane domains and broken drums
- Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト …

Laplace Spectrum versus Geodesic Length Spectrum

Riemann Surfaces (H. Huber 1959)

 M_1 and M_2 Riemann surfaces.

 $\operatorname{spec}(M_1) = \operatorname{spec}(M_2)$

 \Leftrightarrow

They have the same geodesic length spectrum.

Generic Manifolds (Y. Colin de Verdière 1973, J. Duistermaat–V. Guillemin 1975)

For generic Riemannian manifolds *M*,

 $\operatorname{spec}(M)$ determines the geodesic length spectrum.

イロト イポト イヨト イヨト

Riemann Surfaces (H. Huber 1959)

 M_1 and M_2 Riemann surfaces.

 $\operatorname{spec}(M_1) = \operatorname{spec}(M_2)$

 \Leftrightarrow

They have the same geodesic length spectrum.

Generic Manifolds (Y. Colin de Verdière 1973, J. Duistermaat–V. Guillemin 1975)

For generic Riemannian manifolds M,

 $\operatorname{spec}(M)$ determines the geodesic length spectrum.

(本間) (本語) (本語)

But . . .

Let $\operatorname{spec}_p(M)$ denote the spectrum of the Hodge Laplacian on *p*-forms.

(Duistermaat–Guillemin) Generically spec_p(*M*) also determines the geodesic length spectrum.

Contrast

(R. Miatello–J.P. Rossetti 2003) Counterexamples: Flat 4-manifolds M_1 and M_2 with spec₁(M_1) = spec₁(M_2) but different lengths of closed geodesics.

・ロット (雪) () () () ()

But . . .

Let $\operatorname{spec}_p(M)$ denote the spectrum of the Hodge Laplacian on *p*-forms. (Duistermaat–Guillemin) Generically $\operatorname{spec}_p(M)$ also determines the geodesic length spectrum.

Contrast

(R. Miatello–J.P. Rossetti 2003) Counterexamples: Flat 4-manifolds M_1 and M_2 with spec₁(M_1) = spec₁(M_2) but different lengths of closed geodesics.

ヘロン ヘアン ヘビン ヘビン

But . . .

Let $\operatorname{spec}_p(M)$ denote the spectrum of the Hodge Laplacian on *p*-forms. (Duistermaat–Guillemin) Generically $\operatorname{spec}_p(M)$ also determines the geodesic length spectrum.

Contrast

(R. Miatello–J.P. Rossetti 2003) Counterexamples: Flat 4-manifolds M_1 and M_2 with spec₁(M_1) = spec₁(M_2) but different lengths of closed geodesics.

ヘロン 人間 とくほ とくほ とう

Asymptotic expansion as $t \rightarrow 0^+$:

$$\sum_{j=0}^{\infty} e^{-\lambda_j t} \sim (4\pi t)^{-\frac{n}{2}} (a_0 + a_1 t + a_2 t^2 + \dots)$$

So *Spec(M)* determines:

•
$$n = dim(M)$$

•
$$a_0 = vol(M)$$

- $a_1 = \frac{1}{6} \int_M scal_g$. In dimension 2, this gives $\chi(M)$
- $360a_2 = 5\int_M scal_g^2 2\int_M \|Ric_g\|^2 10\int_M \|R_g\|^2$

Contrast

(D. Schueth 2001) The three individual terms in a_2 are **not** spectral invariants.

<ロ> (四) (四) (三) (三) (三)

Asymptotic expansion as $t \rightarrow 0^+$:

$$\sum_{j=0}^{\infty} e^{-\lambda_j t} \sim (4\pi t)^{-\frac{n}{2}} (a_0 + a_1 t + a_2 t^2 + \dots)$$

- So *Spec(M)* determines:
 - *n* = *dim*(*M*)
 - $a_0 = vol(M)$
 - $a_1 = \frac{1}{6} \int_M scal_g$. In dimension 2, this gives $\chi(M)$
 - $360a_2 = 5\int_M scal_g^2 2\int_M \|Ric_g\|^2 10\int_M \|R_g\|^2$

Contrast

(D. Schueth 2001) The three individual terms in a_2 are **not** spectral invariants.

<ロ> (四) (四) (三) (三) (三)

Asymptotic expansion as $t \rightarrow 0^+$:

$$\sum_{j=0}^{\infty} e^{-\lambda_j t} \sim (4\pi t)^{-\frac{n}{2}} (a_0 + a_1 t + a_2 t^2 + \dots)$$

So *Spec(M)* determines:

- *n* = *dim*(*M*)
- $a_0 = vol(M)$
- $a_1 = \frac{1}{6} \int_M scal_g$. In dimension 2, this gives $\chi(M)$
- $360a_2 = 5\int_M scal_g^2 2\int_M \|Ric_g\|^2 10\int_M \|R_g\|^2$

Contrast

(D. Schueth 2001) The three individual terms in a_2 are not spectral invariants.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Asymptotic expansion as $t \rightarrow 0^+$:

$$\sum_{j=0}^{\infty} e^{-\lambda_j t} = (4\pi t)^{-\frac{n}{2}} (a_0 + a_{\frac{1}{2}} t^{\frac{1}{2}} + a_1 t + \dots)$$

•
$$a_{\frac{1}{2}} = const(vol(\partial M_{Dir}) - vol(\partial M_{Neum}))$$

Thus in either the Dirichlet or Neumann cases, the boundary volume is audible.

Contrast

(M. Levitin, L. Parnovsky, and I. Polterovich 2005) For mixed boundary conditions, total boundary volume is **not** audible.

イロト イポト イヨト イヨト

Asymptotic expansion as $t \to 0^+$:

$$\sum_{j=0}^{\infty} e^{-\lambda_j t} = (4\pi t)^{-\frac{n}{2}} (a_0 + a_{\frac{1}{2}} t^{\frac{1}{2}} + a_1 t + \dots)$$

•
$$a_{\frac{1}{2}} = const(vol(\partial M_{Dir}) - vol(\partial M_{Neum}))$$

Thus in either the Dirichlet or Neumann cases, the boundary volume is audible.

Contrast

(M. Levitin, L. Parnovsky, and I. Polterovich 2005) For mixed boundary conditions, total boundary volume is **not** audible.

• Image: A image:

Question

Are the heat invariants the only spectral invariants given by integrals of curvature expressions?

★ 포 ▶ - 포

Outline

- Geometry contained in the spectrum
- Isospectral manifolds with a common covering: Constructions Inaudible geometric properties
- Isospectral manifolds with different local geometry: Constructions Inaudible geometric properties
- Plane domains and broken drums
- Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Direct computation using generating functions Lens spaces (A. Ikeda 1980)
 Flat manifolds (R. Miatello, R. Podestá, J. P. Rossetti)
- Representation theoretic methods Prototype: Sunada's Theorem

★ 문 ► ★ 문 ►

General representation technique

Theorem

(DeTurck-G 1989) (M,g) Riemannian manifold.

G Lie group acting isometrically on M.

 H_1 and H_2 discrete subgroups of G acting freely and properly discontinuously on M with $H_i \setminus M$ compact.

Assume H₁ and H₂ are representation equivalent; i.e.,

 $L^2(H_1 \setminus G) \simeq L^2(H_2 \setminus G)$

as G-modules. Then

$$spec(H_1 \setminus M) = spec(H_2 \setminus M).$$

Proposition

(Gassman) Assume G is finite. Then H_1 and H_2 are representation equivalent subgroups of G

H_1 and H_2 are almost conjugate in G; i.e.,

 $\#([x] \cap H_1) = \#([x] \cap H_2)$

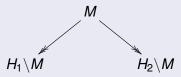
avery G conjugacy class [x]

for every G-conjugacy class [x].

・ 同 ト ・ ヨ ト ・ ヨ ト …

Sunada's Theorem (1985)

Let M be a compact Riemannian manifold and let G be a finite group of isometries of M. Suppose H_1 and H_2 are almost conjugate subgroups of G.



Then

- spec $(\Gamma_1 \setminus M) = \operatorname{spec} (\Gamma_2 \setminus M)$.
- ② $H_1 \setminus M$ and $H_2 \setminus M$ have the same geodesic length spectrum.

We will say $H_1 \setminus M$ and $H_2 \setminus M$ are Sunada isospectral.

ヘロア ヘビア ヘビア・

$$G = SL(3, \mathbf{Z}_2)$$

$$H_{1} = \begin{bmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$
$$H_{2} = \begin{bmatrix} 1 & 0 & 0 \\ * & * & * \\ * & * & * \end{bmatrix}$$

 $[G:H_i]=7$

G can be generated by two elements.

ヘロト 人間 とくほとくほとう

2

$$G = SL(3, \mathbf{Z}_2)$$

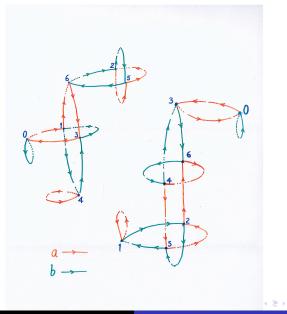
$$H_{1} = \begin{bmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix}$$
$$H_{2} = \begin{bmatrix} 1 & 0 & 0 \\ * & * & * \\ * & * & * \end{bmatrix}$$

 $[G:H_i]=7$

G can be generated by two elements.

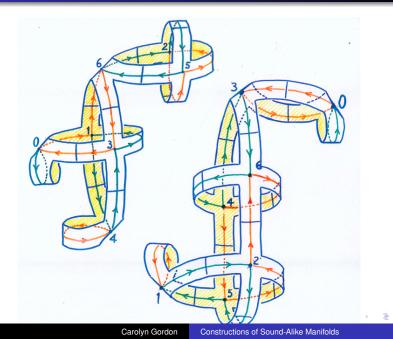
æ

Schreier graphs



■ ▶ ■ ■

Isospectral flat surfaces (P. Buser)



Isospectral Riemann Surfaces and Other Locally Symmetric Spaces

- (Brooks-Gornet-Gustafson 1998) Collections of g^{c log(g)} mutually isospectral Riemann surfaces of genus g.
- (D. B. McReynolds, preprint) Analogous result for locally symmetric spaces of every noncompact type.

Contrast

(P. Buser) Any collection of mutually isospectral Riemann surfaces of genus g has at most $exp(720g^2)$ members.

ヘロア ヘビア ヘビア・

Isospectral Riemann Surfaces and Other Locally Symmetric Spaces

- (Brooks-Gornet-Gustafson 1998) Collections of g^{c log(g)} mutually isospectral Riemann surfaces of genus g.
- (D. B. McReynolds, preprint) Analogous result for locally symmetric spaces of every noncompact type.

Contrast

(P. Buser) Any collection of mutually isospectral Riemann surfaces of genus g has at most $exp(720g^2)$ members.

ヘロン ヘアン ヘビン ヘビン

Isospectral Riemann Surfaces and Other Locally Symmetric Spaces

- (Brooks-Gornet-Gustafson 1998) Collections of g^{c log(g)} mutually isospectral Riemann surfaces of genus g.
- (D. B. McReynolds, preprint) Analogous result for locally symmetric spaces of every noncompact type.

Contrast

(P. Buser) Any collection of mutually isospectral Riemann surfaces of genus g has at most $exp(720g^2)$ members.

く 同 と く ヨ と く ヨ と

Examples of isospectral manifolds with a common covering tell us that:

You can't hear:

- π₁(*M*) (Vignéras, 1982)
- diameter (Buser, 1988)
- whether *M* (with boundary) is orientable (P. Bérard–D. Webb, 1995)
- Betti numbers (R. Miatello–J.P. Rossetti, 2001)
- whether *M* has a spin structure (R. Miatello and R. Podestà, 2004)

・ 同 ト ・ ヨ ト ・ ヨ ト …

- whether (M, g) is K\u00e4hler. In fact a K\u00e4hler manifold can be isospectral to a manifold that is not topologically K\u00e4hler. (R. Miatello–J.P. Rossetti, 2001)
- whether (*M*, *g*) is hyper-Kähler (R. Miatello–J.P. Rossetti, 2001)
- whether the geodesic flow of (*M*, *g*) is completely integrable (D. Schueth 2008)

・ 同 ト ・ 臣 ト ・ 臣 ト …

Outline

- Geometry contained in the spectrum
- Isospectral manifolds with a common covering: Constructions Inaudible geometric properties
- Isospectral manifolds with different local geometry: Constructions Inaudible geometric properties
- Graphs, plane domains, and broken drums
- Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Representation theoretic method Sunada modified (C. Sutton)
- Torus action technique (G, D. Schueth ...)

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Spectrum of a submersion with totally geodesic fibers

M

 $H \setminus M$ is a Riemannian submersion with totally geodesic fibers. Then eigenfunctions on $H \setminus M$ lift to *G*-invariant eigenfunctions on *M*, so

 π

 $\operatorname{spec}(H \setminus M) \subset \operatorname{spec}(M)$

→ Ξ → < Ξ →</p>

Theorem

(Sutton 2002) Let G be a compact Lie group acting by isometries on a compact Riemannian manifold (M, g). Let H_1 and H_2 be closed subgroups of G that act freely on M. Give $H_i \setminus M$ the Riemannian metric induced by g. Assume:

- H_1 and H_2 are representation equivalent in G.
- The fibers of $M \to H_i \setminus M$ are totally geodesic.

Then

$$spec(H_1 \setminus M) = spec(H_2 \setminus M).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

(Sutton 2002) Isospectral, simply-connected normal homogeneous spaces $H_1 \setminus SU(n)$ and $H_2 \setminus SU(n)$.

Dimension $\sim 10^{10}!$

Example

(Jinpeng An, Jun Yu, Jiu-Kang Yu 2011) New examples:

dimension 26

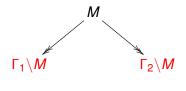
Different Homotopy Type!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Idea of Torus Action Method

We will show a pair of manifolds M_1 and M_2 are isospectral by showing that they have *enough isospectral quotients* of the form:

Contrast with Sunada's technique In Sunada's Theorem, one fixes *M* and finds isospectral quotients.



Lemma

Let T be a torus and suppose ρ is a representation of T on a (complex) vector space V.

Then

$$V = \sum_{K < T \text{ of codim 1}} V^K.$$

(The sum is over closed subgroups K, i.e. "subtori". Here V^K denotes the K-fixed vectors in V.)

Proof.

May assume ρ is irreducible. Since *T* is abelian, dim(*V*) = 1. Thus

Let $K = \text{ker}(\rho)$. Then K has co-dimension one and $V = V^K$

イロト イポト イヨト イヨト

Lemma

Let T be a torus and suppose ρ is a representation of T on a (complex) vector space V.

Then

$$V = \sum_{K < T \text{ of codim 1}} V^K.$$

(The sum is over closed subgroups K, i.e. "subtori". Here V^K denotes the K-fixed vectors in V.)

Proof.

May assume ρ is irreducible. Since *T* is abelian, dim(*V*) = 1. Thus

Let $K = \ker(\rho)$. Then K has co-dimension one and $V = V^{K}$.

イロト イポト イヨト イヨト

Theorem

Let M_1 and M_2 be compact Riemannian manifolds. Suppose a torus T acts isometrically and (freely) on M_1 and M_2 and that the (orbits are totally geodesic).

• Assume: For all subtori $K \leq T$ of codimension ≤ 1 ,

 $Spec(K \setminus M_1) = Spec(K \setminus M_2).$

Then $Spec(M_1) = Spec(M_2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof

- Key Hypothesis: For all subtori K ≤ T of codimension ≤ 1, Spec(K\M₁) = Spec(K\M₂).
 To show: spec(M₁) = spec(M₂)
- *T* acts on $C^{\infty}(M_i)$ and commutes with Δ_i . By the lemma

$$C^{\infty}(M_{i}) = \sum_{K < T \text{ of codim 1}} C^{\infty}(M_{i})^{K}, \text{ so}$$

$$spec(M_{1}) = \prod_{K} \operatorname{spec}(\Delta_{M_{1}}|_{C^{\infty}(M_{1})^{K}}) = \prod_{K} \operatorname{spec}(K \setminus M_{i}).$$

$$||$$

$$spec(M_{2}) = \prod_{K} \operatorname{spec}(\Delta_{M_{2}}|_{C^{\infty}(M_{2})^{K}}) = \prod_{K} \operatorname{spec}(K \setminus M_{2}).$$

$$\square \lor (\mathfrak{G}) \lor (\mathfrak{g}) \lor (\mathfrak{g}) \lor (\mathfrak{g}) \lor (\mathfrak{g})$$

Proof

- Key Hypothesis: For all subtori K ≤ T of codimension ≤ 1, Spec(K\M₁) = Spec(K\M₂).
 To show: spec(M₁) = spec(M₂)
- *T* acts on $C^{\infty}(M_i)$ and commutes with Δ_i . By the lemma,

Proof

- Key Hypothesis: For all subtori K ≤ T of codimension ≤ 1, Spec(K\M₁) = Spec(K\M₂).
 To show: spec(M₁) = spec(M₂)
- *T* acts on $C^{\infty}(M_i)$ and commutes with Δ_i . By the lemma,

Examples

- (G 2003, Schueth 2003) Isospectral deformations of metrics on spheres and balls
- (Schueth 2001, Proctor 2005) Isospectral deformations of left-invariant metrics on the classical compact simple Lie groups
- (Szabo-G 2003) Isospectral deformations of negatively curved metrics on a manifold with boundary

Contrast

(V. Guillemin–D. Kazhdan 1980, C. Croke–V. Sharafutdinov 1998) Can't isospectrally deform a negatively curved metric on a closed manifold.

(4回) (1日) (日)

Examples

- (G 2003, Schueth 2003) Isospectral deformations of metrics on spheres and balls
- (Schueth 2001, Proctor 2005) Isospectral deformations of left-invariant metrics on the classical compact simple Lie groups
- (Szabo-G 2003) Isospectral deformations of negatively curved metrics on a manifold with boundary

Contrast

(V. Guillemin–D. Kazhdan 1980, C. Croke–V. Sharafutdinov 1998) Can't isospectrally deform a negatively curved metric on a closed manifold.

・ 回 ト ・ ヨ ト ・ ヨ ト

The following properties are not spectral invariants:

- (Z. Szabo 1999) homogeneity
- (Szabo-G 2003) constant scalar curvature
- (Szabo-G) (for manifolds with boundary) constant Ricci curvature
- (Schueth–T. Arias-Marco 2010) local symmetry, weak local symmetry, D'Atri, probablistic commutativity, type A, type C.

・ 同 ト ・ ヨ ト ・ ヨ ト …

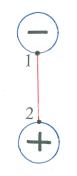
Outline

- Geometry contained in the spectrum
- Isospectral manifolds with a common covering: Constructions Inaudible geometric properties
- Isospectral manifolds with different local geometry: Constructions Inaudible geometric properties
- Graphs, plane domains, and broken drums
- Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト …

Colored loop-signed Graphs (Peter Herbrich)

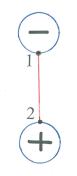
(Motivation: Substantial generalization of Sunada's theorem by R. Band–O. Parzanchevsky 2011.)



프 🖌 🔺 프 🔸

Colored loop-signed Graphs (Peter Herbrich)

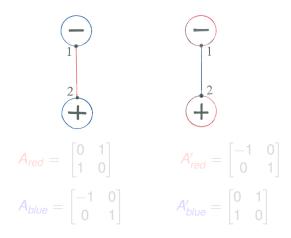
(Motivation: Substantial generalization of Sunada's theorem by R. Band–O. Parzanchevsky 2011.)



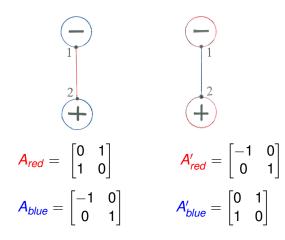
 $A_{red} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$A_{blue} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Isospectral Loop-signed edge-colored graphs (Peter Herbrich)

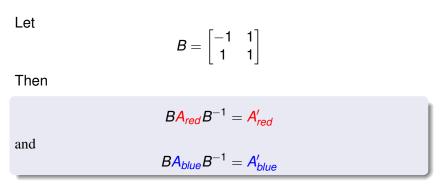


Isospectral Loop-signed edge-colored graphs (Peter Herbrich)



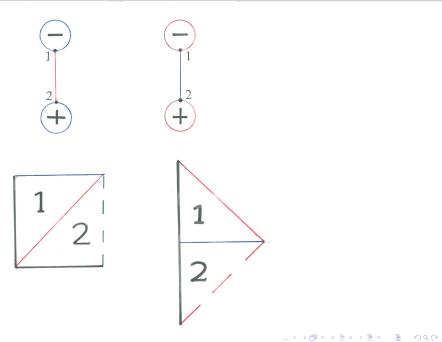
프 🖌 🛪 프 🛌

э

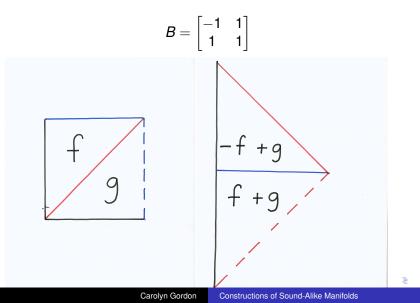


We say that these loop-signed edge color graphs G and G' are isospectral.

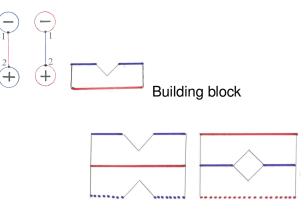
◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○



Sound-alike Broken Drums (Levitin–Parnovsky–Polterovich))



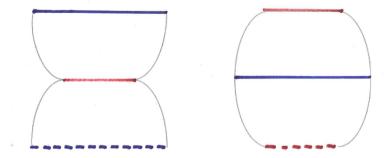
Sound-alike Broken Drums (Levitin–Parnovski–Polterovich 2006)



One has a hole; the other doesn't.

This can't happen with pure boundary conditions.

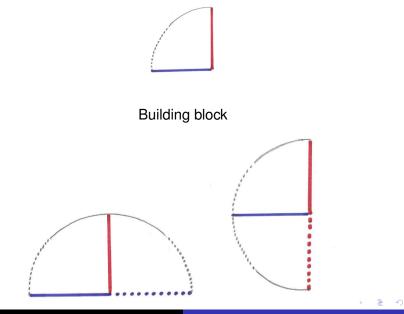
Sound-alike Broken Drums (Levitin–Parnovski–Polterovich 2006))



One is convex; the other not. One is smooth; the other not.

Can this happen with pure boundary conditions?

Jakobson–Levitin–Nadirashvili–Polterovich 2005



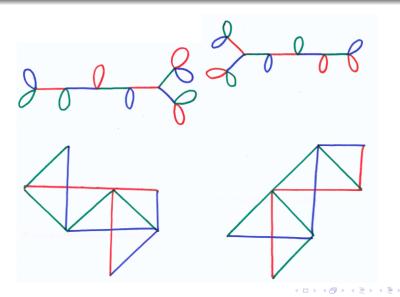
Jakobson–Levitin–Nadirashvili–Polterovich 2005

Same membrane but boundary conditions switched.

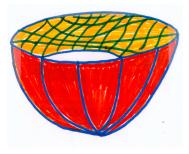
Carolyn Gordon Constructions of Sound-Alike Manifolds

э

P. Bérard, P. Buser–K.D. Semmler (simplication of Webb-Wolpert-G)



A broken drum can sound like an unbroken drum of a different shape! (Peter Herbrich, preprint)



Outline

- Geometry contained in the spectrum
- Isospectral manifolds with a common covering: Constructions Inaudible geometric properties
- Isospectral manifolds with different local geometry: Constructions Inaudible geometric properties
- Graphs, plane domains, and broken drums
- Open questions

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Can you tell from the spectrum whether a metric has constant curvature?

Progress

Constant curvature metrics are spectrally isolated.

- Flat (R. Kuwabara 1980)
- Round (Tanno 1980)
- Hyperbolic (V. Sharafutdinov 2011)

• Can you tell from the spectrum whether a closed manifold is Einstein?

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Can you tell from the spectrum whether a Riemannian manifold is symmetric?

Progress

(D. Schueth–C. Sutton–G 2010) Bi-invariant metrics on compact Lie groups are spectrally isolated among all left-invariant metrics.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

"Local" spectral data

• Let *M* be a possibly noncompact locally homogeneous Riemannian manifold. What information about *M* is contained in the collection of spectra of arbitrarily small geodesic spheres (or balls)?

Example

(D. Schueth and T. Arias-Marco 2010) The collection of spectra of arbitrarily small geodesic spheres (or balls) determines whether a harmonic manifold is locally symmetric.

Contrast

(Szabo-G 2003) There exist a locally symmetric harmonic manifold M (covered by quaternionic hyperbolic space) and a non-symmetric harmonic manifold M' and arbitrarily small domains $\Omega \subset M$ and $\Omega' \subset M'$ such that $spec(\Omega) = spec(\Omega')$.

イロト イポト イヨト イヨト

"Local" spectral data

• Let *M* be a possibly noncompact locally homogeneous Riemannian manifold. What information about *M* is contained in the collection of spectra of arbitrarily small geodesic spheres (or balls)?

Example

(D. Schueth and T. Arias-Marco 2010) The collection of spectra of arbitrarily small geodesic spheres (or balls) determines whether a harmonic manifold is locally symmetric.

Contrast

(Szabo-G 2003) There exist a locally symmetric harmonic manifold M (covered by quaternionic hyperbolic space) and a non-symmetric harmonic manifold M' and arbitrarily small domains $\Omega \subset M$ and $\Omega' \subset M'$ such that $spec(\Omega) = spec(\Omega')$.

イロト イポト イヨト イヨト

"Local" spectral data

• Let *M* be a possibly noncompact locally homogeneous Riemannian manifold. What information about *M* is contained in the collection of spectra of arbitrarily small geodesic spheres (or balls)?

Example

(D. Schueth and T. Arias-Marco 2010) The collection of spectra of arbitrarily small geodesic spheres (or balls) determines whether a harmonic manifold is locally symmetric.

Contrast

(Szabo-G 2003) There exist a locally symmetric harmonic manifold M (covered by quaternionic hyperbolic space) and a non-symmetric harmonic manifold M' and arbitrarily small domains $\Omega \subset M$ and $\Omega' \subset M'$ such that $spec(\Omega) = spec(\Omega')$.

ヨト イヨト

• Can you hear the shape of convex plane domains? smooth plane domains?

Progress

(S. Zelditch 2000) Among analytic convex domains with the symmetries of an ellipse, each domain is uniquely determined by its spectrum.

Remarks. (H. Hezari–S. Zelditch, 2010) Analogous result for domains in \mathbb{R}^n .

There exist isospectral convex (but not smooth) domains in **R**⁴. (D. Webb-G)

・ロト ・ 理 ト ・ ヨ ト ・

э

• Can you hear the shape of convex plane domains? smooth plane domains?

Progress

(S. Zelditch 2000) Among analytic convex domains with the symmetries of an ellipse, each domain is uniquely determined by its spectrum.

Remarks. (H. Hezari–S. Zelditch, 2010) Analogous result for domains in \mathbb{R}^n .

There exist isospectral convex (but not smooth) domains in \mathbf{R}^4 . (D. Webb-G)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Thank you!

Carolyn Gordon Constructions of Sound-Alike Manifolds

▲ 콜 ▶ ▲ 콜 ▶ ...

< 🗇 ▶

æ