Invertible Dirac operators and handle attachments

Nadine Große

Universität Leipzig

(joint work with Mattias Dahl) Rauischholzhausen, 03.07.2012

Motivation

- Not every closed manifold admits a metric of positive scalar curvature.
- In contrast, on every closed manifold the space of metric wirth negative scalar curvature is nonempty and contractable.
- Topological obstruction for psc-metrics:
 (M, g) closed spin, Dirac operator D^g

Lichnerowicz formula

$$(D^g)^2 = \Delta_g + \frac{\mathsf{scal}_g}{4}$$

 $scal_g > 0 \Rightarrow D^g$ is invertible

Motivation

- Not every closed manifold admits a metric of positive scalar curvature.
- Topological obstruction for psc-metrics:
 (M, g) closed spin, Dirac operator D^g

Lichnerowicz formula

$$(D^g)^2 = \Delta_g + rac{\operatorname{scal}_g}{4}$$

 $\mathsf{scal}_g > 0 \Rightarrow D^g$ is invertible

• $Metr(M)^{psc} \subset Metr(M)^{inv} \subset Metr(M)$

Obstruction for psc metrics

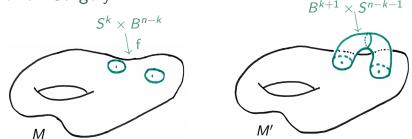
From index theory

$$\dim \ker D^g \ge \begin{cases} |\hat{A}(M)| & \text{if } n \equiv 0 \mod 4\\ 1 & \text{if } n \equiv 1 \mod 8, \quad \alpha(M) \neq 0\\ 2 & \text{if } n \equiv 2 \mod 8, \quad \alpha(M) \neq 0\\ 0 & \text{otherwise} \end{cases}$$

where \hat{A} and α are determined only by the topology of the underlying manifold.

E.g. if
$$\hat{A}(M^4) \neq 0$$
, $Metr(M^4)^{psc} \subset Metr(M^4)^{inv} = \varnothing$.

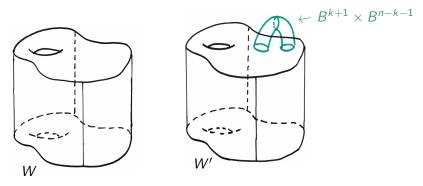
 $\operatorname{Metr}(M)^{\operatorname{psc}} \subset \operatorname{Metr}(M)^{\operatorname{inv}} \subset \operatorname{Metr}(M)$



embedding f: S^k × B^{n-k} → M S := f(S^k × {0}) - surgery sphere
∂(M \ f(S^k × B^{n-k})) ≅ S^{k-1} × S^{n-k-1}

•
$$M' = (M \setminus f(S^k \times B^{n-k})) \sqcup_{\sim} B^{k+1} \times S^{n-k-1}$$

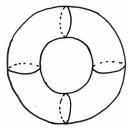
M' is obtained from M by a surgery of dim $k / \operatorname{codim} n - k$.



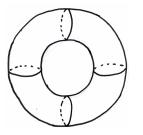
- ► View the cylinder W := M × [0, 1] as a bordism from M to itself
- Attach $B^{k+1} \times B^{n-k-1}$ to $M \times \{1\}$
- W' is a bordism from M to M' the trace of the surgery.

W' is obtained from W by attaching a (k + 1)-handle.

Each closed manifold has a handle decomposition.



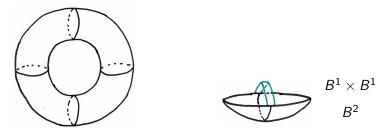
Each closed manifold has a handle decomposition.



The torus is obtained as:

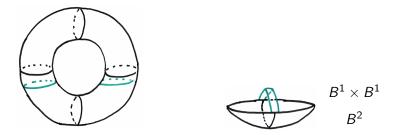
 $B^{2} +$

Each closed manifold has a handle decomposition.



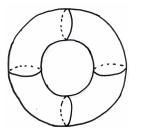
$$B^2$$
 + a 1-handle

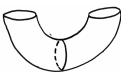
Each closed manifold has a handle decomposition.



$$B^2$$
 + a 1-handle

Each closed manifold has a handle decomposition.





$$B^2$$
 + a 1-handle

Each closed manifold has a handle decomposition.



The torus is obtained as:

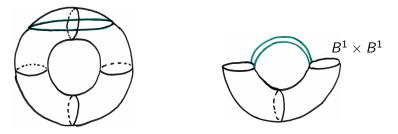
B^2 + a 1-handle + a 1-handle

Each closed manifold has a handle decomposition.

The torus is obtained as:

B^2 + a 1-handle + a 1-handle

Each closed manifold has a handle decomposition.

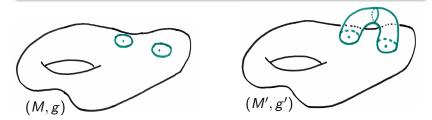


The torus is obtained as:

 B^2 + a 1-handle + a 1-handle + B^2 = T^2

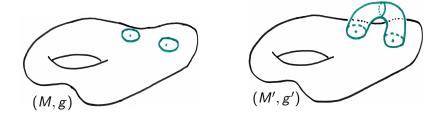
Construction of manifolds admitting psc-metrics

Theorem (Gromov, Lawson / Schoen, Yau; '80) Let (M,g) be a closed Riemannian manifold with $g \in Metr(M)^{psc}$. Let M' be obtained from M by a surgery of codimension ≥ 3 . Then, M' admits a psc-metric g'.



g' can be chosen such that it coincides with g outside a small neighbourhood around the surgery sphere.

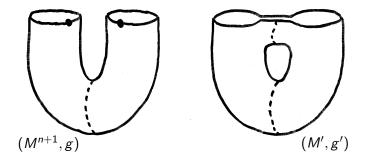
Construction of manifolds admitting psc-metrics

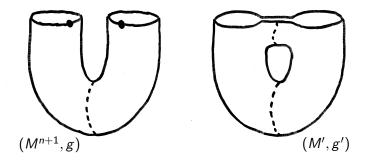


- psc is a local property
- codim $n k \ge 3$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 2}$
- ▶ standard product structure on $B^{k+1} \times S^{n-k-1 \ge 2}$ has psc

Theorem (Carr '88 / Gajer '87)

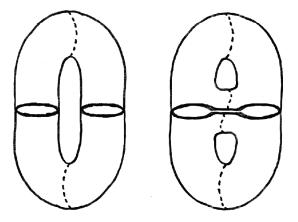
Let (M^{n+1}, g) be a compact Riemannian manifold with closed boundary ∂M , $g \in Metr(M)^{psc}$ and g having product structure near ∂M . Let M' be obtained from M by adding a (k + 1)-handle of codimension $n - k \ge 3$. Then, M' admits a psc-metric g' that is again product near the (new) boundary.



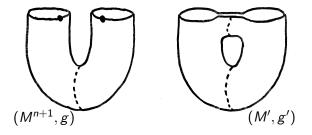


Intuition

• On the boundary: surgery of codim $n - k \ge 3$



- On the boundary: surgery of codim $n k \ge 3$
- On the double: surgery of codim $n k \ge 3$



Intuition

- On the boundary: surgery of codim $n k \ge 3$
- On the double: surgery of codim $n k \ge 3$

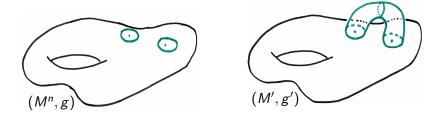
Implication

▶ Metr^{psc}(S^{4k-1}) has infinitely many components (k ≥ 2) (Metr^{psc}(S³) is connected (Marques, 2011))

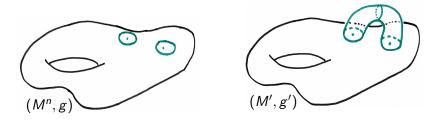
What can be done for metrics with invertible Dirac operators?

What can be done for metrics with invertible Dirac operators?

From now on: Let all manifolds be spin.

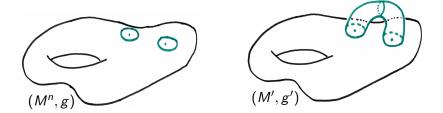


• After the surgery the manifold should still be spin!

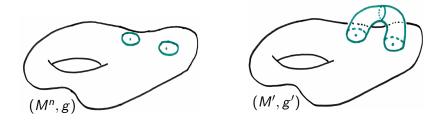


After the surgery the manifold should still be spin!

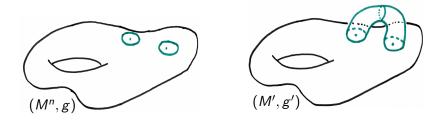
- $S^k \times B^{n-k}$ induces spin structure on $S^k \times S^{n-k-1}$
- ▶ glue in B^{k+1} × S^{n-k-1}
 Its boundary should carry same spin structure.
- For k > 1, the spin structure on S^k is unique and bounds the disk. No Problem here.
- For k = 1, two spin structures on S¹ we only allow the one that bounds the disk.



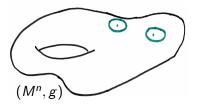
• $f: S^k \times B^{n-k} \to M$ spin-preserving embedding.

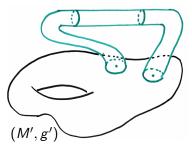


- Invertible Dirac operator is a global condition.
- codim $n k \ge 3$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 2}$
- ► standard product structure on ℝ^{k+1} × S^{n-k-1≥2} has invertible Dirac operator



- Invertible Dirac operator is a global condition.
- codim $n k \ge 2$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 1}$
- ► standard product structure on ℝ^{k+1} × S^{n-k-1≥1} has invertible Dirac operator ('When taking the right S¹')





- ► Invertible Dirac operator is a global condition.
- codim $n k \ge 2$ = gluing in $B^{k+1} \times S^{n-k-1 \ge 1}$
- ► standard product structure on ℝ^{k+1} × S^{n-k-1≥1} has invertible Dirac operator ('When taking the right S¹')
- 'If the inserted cylinder is large enough, invertibility survives.'

Construction for manifolds admitting inv-metrics

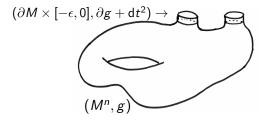
Theorem (Ammann, Dahl, Humbert; 2009)

Let (M^n, g) be a closed Riemannian spin manifold with $g \in Metr(M)^{inv}$. Let M' be obtained from M by a surgery of codimension ≥ 2 . Then, M' admits an inv-metric g'. Moreover, g' can be chosen such that it coincides with g outside a small neighbourhood around the surgery sphere.

Consequences (Ammann, Dahl, Humbert; 2009)

For a generic metric g, dim ker D^g is no larger than forced by the index theorem.

Inv-metrics on manifolds with boundary



When do we call D^g invertible?

Inv-metrics on manifolds with boundary

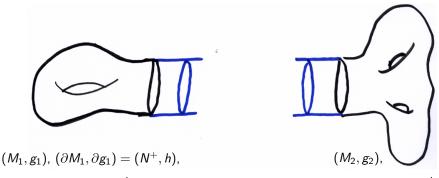
$$(\partial M \times [0,\infty), \partial g + dt^2) \rightarrow$$

$$(\partial M \times [-\epsilon, 0], \partial g + dt^2) \rightarrow$$

$$(M_{\infty}, g_{\infty})$$

 $g \in \operatorname{Metr}(M)^{\operatorname{inv}}$ iff $D^{g_{\infty}}$ is invertible as operator on $L^2(M_{\infty},S)$

Inv-metrics on manifolds with boundary

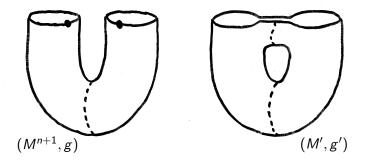


 $g_1 \in \operatorname{Metr}(M_1)^{\operatorname{inv}}$ $(\partial M_2, \partial g_2) = (N^-, h), g_2 \in \operatorname{Metr}(M_2)^{\operatorname{inv}}$

If M_1 and M_2 are glued together using a large enough cylinder $(N \times [-R, R], h + dt^2)$, the resulting metric has again invertible Dirac operator.

Theorem (Dahl, G. 2012)

Let (M^{n+1}, g) be a compact Riemannian spin manifold with closed boundary ∂M , $g \in Metr(M)^{inv}$ and g having product structure near ∂M . Let M' be obtained from M by adding a (k + 1)-handle of codimension $n - k \ge 2$. Then, M' admits an inv-metric g' that is again product near the (new) boundary.



Theorem (Dahl, G. 2012)

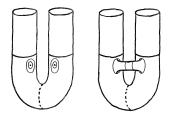
Let (M^{n+1}, g) be a compact Riemannian spin manifold with closed boundary ∂M , $g \in Metr(M)^{inv}$ and g having product structure near ∂M . Let M' be obtained from M by adding a (k + 1)-handle of codimension $n - k \ge 2$. Then, M' admits an inv-metric g' that is again product near the (new) boundary.

Implication

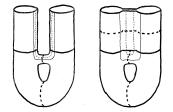
• $Metr(S^{4k-1})^{inv}$ has infinitely many components for all $k \ge 1$

Strategy and Methods

'Topological strategy' - Decompose the handle attachment

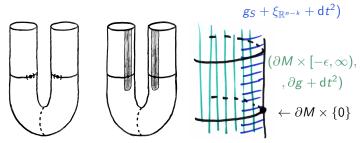


'half' surgery of codim n - k + 1glue in ' $\frac{1}{2}B^{k+1} \times S^{n-k}$ '



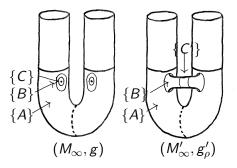
Metric strategy

► Approximation by 'double' product metrics near the surgery sphere $(U_{\delta}(S \times [-\epsilon, \infty))),$



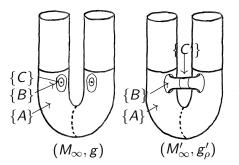
If δ small enough, still $g_{\delta} \in Metr(M)^{inv}$. (' C^1 -continuity of the spectrum')

► First surgery



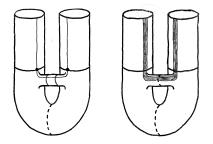
- 'Parameter for tuning': ρ 'diameter of $\{B\}$ '
- ▶ For ρ small enough, $g_{\rho} \in Metr(M')^{inv}$ proof by contradiction

First surgery

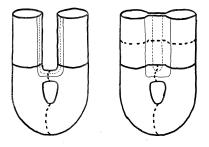


▶ For ρ small enough, $g_{\rho} \in Metr(M')^{inv}$ - proof by contradiction ▶ $\rho_i \to 0, g_{\rho_i} \notin Metr(M')^{inv}$ $\sim g_{\rho_i}$ has a harmonic spinor: $D^{g_{\rho_i}}\varphi_i = 0, \|\varphi_i\|_{L^2(M',g_{\rho_i})} = 1$ (regularity) $\sim \phi_i \to \phi$ in $C^1_{loc}(M \setminus (S \times [-\epsilon, \infty)))$ (removal of singularities) $\sim D^g \phi = 0$ on $M, \|\phi\|_{L^2(M,g)} \leq 1$ a priori estimates on the L^2 -norm of ϕ_i on $\{A\}$ vs $\{C\}$.

Again approximating by 'double' product metrics



Second surgery



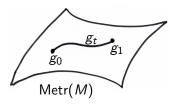
Theorem (Dahl, G.; 2012)

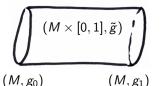
Let *M* be a closed 3-dimensional Riemannian spin manifold and $g \in Metr(M)^{inv}$. Then there are metrics $g^i \in Metr(M)^{inv}$, $i \in \mathbb{Z}$, such that g^i is bordant to g but g^i is not concordant to g^j for $i \neq j$.

In particular, Metr(M)^{inv} has infinitely many connected components.

Notations

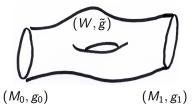
 $g_0, g_1 \in Metr(M)^{inv}$ are isotopic if \exists smooth family $g_t \in Metr(M)^{inv}$ with $g_t = g_0$ for $t \leq 0$, $g_t = g_1$ for $t \geq 1$.





 $g_i \in \operatorname{Metr}(M_i)^{\operatorname{inv}}$ (i = 0, 1) are bordant if $\exists (W, \tilde{g})$ with $\partial W = M_0 \sqcup (M_1)^-$, $\tilde{g} \in \operatorname{Metr}(W)^{\operatorname{inv}}$, $\tilde{g}|_{M_i} = g_i$.

 $g_0, g_1 \in Metr(M)^{inv}$ are concordant if $\exists \ \tilde{g} \in Metr(M \times [0, 1])^{inv}$ with $\tilde{g}|_{M \times \{i\}} = g_i.$



An application

Theorem (Dahl, G.; 2012)

Let M be a closed 3-dimensional Riemannian spin manifold and $g \in Metr(M)^{inv}$. Then there are metrics $g^i \in Metr(M)^{inv}$, $i \in \mathbb{Z}$, such that g^i is bordant to g but g^i is not concordant to g^j for $i \neq j$. In particular, $Metr(M)^{inv}$ has infinitely many connected components.

Lemma

There exist 4-manifolds (Y^i, \tilde{h}^i) $(i \in \mathbb{Z})$ with $\tilde{h}^i \in Metr(Y^i)^{inv}$, $\partial Y^i = S^3$ such that $\alpha(Y^i \cup_{S^3} (Y^j)^-) = c(i-j)$ for a constant $c \neq 0$.

An application

Lemma

There exist 4-manifolds (Y^i, \tilde{h}^i) $(i \in \mathbb{Z})$ with $\tilde{h}^i \in Metr(Y^i)^{inv}$, $\partial Y^i = S^3$ such that $\alpha(Y^i \cup_{S^3} (Y^j)^-) = c(i-j)$ for a constant $c \neq 0$.

Construction:

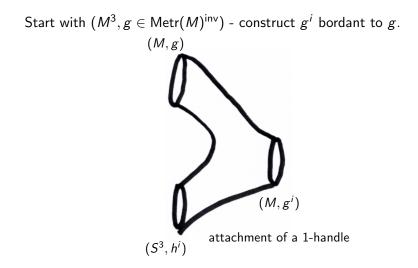
•
$$Y^0$$
 - B^4 with a 'torpedo metric' $\tilde{h}^0 \in \operatorname{Metr}(B^4)^{\operatorname{psc}}$ and $\tilde{h}^0|_{S^3} = \operatorname{standard}$ metric

•
$$Y^{i} = \underbrace{(K3\#K3\#\cdots\#K3)}_{i \text{ times}} \setminus B^{4} = Y^{0} + \text{several 2-handles}$$

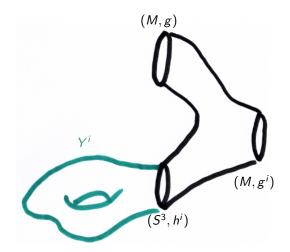
$$\bullet \ \alpha(Y^i \cup_{S^3} (Y^j)^-) = \alpha(\#_{(i-j)} K3) = (i-j)\alpha(K3) \neq 0 \text{ for } i \neq j$$

 $h^i:=\tilde{h}^i|_{S^3}$

Constructions of g^{*i*}

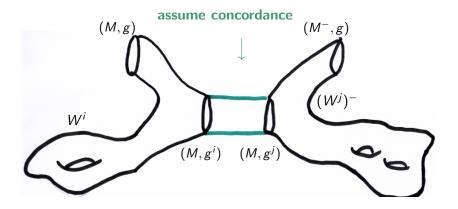


Constructions of g^{*i*}

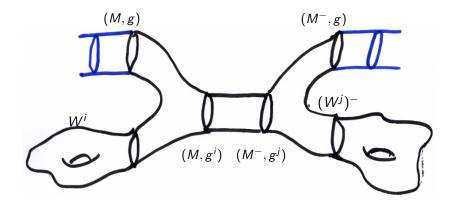


(M,g) and (M,g^i) are bordant. Bordism $(W^i, \tilde{g}^i) \in \operatorname{Metr}(W^i)^{\operatorname{inv}}$

Constructions of g^i



Constructions of g^{*i*}



Closed manifold (W, \tilde{g}) with $\tilde{g} \in Metr(W)^{inv}$ and $\alpha(W) = c(i - j)$.

Theorem (Dahl, G.; 2012)

Let *M* be a closed 3-dimensional Riemannian spin manifold and $g \in Metr(M)^{inv}$. Then there are metrics $g^i \in Metr(M)^{inv}$, $i \in \mathbb{Z}$, such that g^i is bordant to g but g^i is not concordant to g^j for $i \neq j$.

In particular, Metr(M)^{inv} has infinitely many connected components.

Thank you for your attention.