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Holomorphic Poisson structures
Introduction

X complex manifold, σ ∈ H0(X ,∧2T )

{f , g} = σ(df , dg)

{−,−} is Lie ⇔ [σ, σ] = 0 in H0(X ,∧3T )

Examples:

– X = g∗, σ ∈ ∧2g∗ ⊗ g such that (g, σ) is a Lie algebra.
Symplectic leaves: coadjoint orbits of G

– X = CP2 with σ ∈ H0(CP2,∧2T ).
Symplectic leaves:

- dim 0: points on the cubic curve C = σ−1(0),
- dim 2: X \ C .



Holomorphic Poisson structures
3D Fano example

X = CP3 and σ = W (f , g), where

f , g ∈ H0(CP3,O(2)),

W (f , g) = fdg − gdf ∈ H0(CP3,Ω1(O(4)))

Note that Ω1(K−1) = ∧2T , and

[σ, σ] = W ∧ dW = 0.

Symplectic leaves:

- dim 0: points on the base locus C = f −1(0) ∩ g−1(0) (elliptic
normal curve of degree 4) and singular points S of quadrics in
pencil λf + µg , [λ : µ] ∈ CP1.

- dim 2: Q \ (C ∪ S), for Q a quadric in pencil.

Curious property: Expected dimension of σ−1(0) is zero.



Holomorphic Poisson structures

Theorem (Polishchuk 1997)

On any Fano 3-fold, σ−1(0) contains a curve.

Conjecture (Bondal 1993)

For Fano manifolds, the degeneracy locus D2k(σ) contains a
component of dimension ≥ 2k + 1.

Theorem (M.G. and Brent Pym arXiv:1203.4293)

The Bondal conjecture is correct for Fano 4-folds.

Main ingredient is a detailed investigation of the geometry of
Poisson modules.



Holomorphic Poisson structures
4D Fano example

{
C a smooth curve of genus 1

L ∈ Pic5(C )

Then P(Ext1(L,O)) has a Poisson structure, giving the
Feigin-Odesskii Poisson structure on CP4

Symplectic leaves:

– generically symplectic,

– dim 0: points on elliptic normal curve C of degree 5

– dim 2: S \ C , for S a surface in the secant variety made from
secants with fixed sum in Pic2(C ).



Generalized complex manifolds
Introduction

J : T ⊕ T ∗ // T ⊕ T ∗ , J2 = −1

compatible with O(n, n) structure and Courant integrable.

J =

(
A Q
σ −A∗

)
∈ so(T ⊕ T ∗) = ∧2T ⊕ (T ⊗ T ∗)⊕ ∧2T ∗.

– Q is a real Poisson structure, Hamiltonian vector fields

Xf = πT (Jdf )

generate singular foliation by (smooth) symplectic leaves.

– Transverse complex structure

T/Q(T ∗) = (T ⊕ T ∗)/(JT ∗ + T ∗) ∼= Ck type k



Generalized complex manifolds
Examples

Extreme cases:

JJ =

(
J
−J∗

)
, Jω =

(
−ω−1

ω

)
,

for J an integrable complex structure and ω a real symplectic form.

Deformations of JJ are given by Maurer-Cartan elements

{ε ∈ Γ∞(X ,∧2(T1,0 ⊕ T ∗0,1)) : ∂ε+ 1
2 [ε, ε] = 0}

Decompose

ε = ε2,0 + ε1,1 + ε0,2

∧2T1,0 Ω0,1(T1,0) Ω0,2



Generalized complex manifolds
Deformations of complex manifold

Maurer-Cartan equation:
[ε2,0, ε2,0] = 0

∂ε2,0 + [ε1,1, ε2,0] = 0

∂ε1,1 + 1
2 [ε1,1, ε1,1] + [ε2,0, ε0,2] = 0

∂ε0,2 + [ε1,1, ε0,2] = 0

– If ε0,2 = ε1,1 = 0, get ε2,0 holomorphic Poisson.

– If only ε0,2 = 0, get

- ε1,1 a deformation of complex structure.
- ε2,0 is killed by ∂ + [ε1,1,−], hence holomorphic Poisson in new

complex structure.



Holomorphic Poisson is generalized complex

If ε2,0 = P + iQ is a holomorphic Poisson structure, then we obtain
a deformation (

J
−J∗

)
⇒
(

J Q
−J∗

)

In fact we have a whole family(
J tQ
−J∗

)



B-field gauge symmetry

In addition to Diff(M), can apply B ∈ Ω2(M,R), dB = 0 via

eB =

(
1
B 1

) {
in O(n, n)

preserves [−,−]

J generalized complex ⇒ eBJe−B generalized complex.

For J =

(
J Q
−J∗

)
, eBJe−B =

(
J − QB Q
BJ + J∗B − BQB BQ − J∗

)
Note that the B-transform may not be holomorphic Poisson.



Nondegenerate hol. Poisson ∼=B real symplectic

eBJe−B =

(
J − QB Q
BJ + J∗B − BQB BQ − J∗

)
If Q is nondegenerate, may take B = Q−1J, obtain

eBJe−B =

(
Q

Q−1

)
which is a symplectic structure.
E.g.: hol. Poisson structure (CP2, σ), is B-equivalent to a
symplectic structure outside the complex locus σ−1(0).

Surgery into symplectic manifolds:

Theorem (M.G. and G. Cavalcanti, arXiv:0806.0872)

There are gen. cx. structures on mCP2#nCP2 iff almost complex.

Theorem (Rafael Torres, arXiv:1104.3480)

Many more examples, including m(S2 × S2), sum with S1 × S3...



B-equivalent but non-isomorphic hol. Poisson structures

(g , I , J,K ) hyperKähler ⇒ pair of holomorphic Poisson structures:

(I , ω−1J + iω−1K )

(J,−ω−1I + iω−1K )

While these may be non-isomorphic as hol. Poisson manifolds, the
B-field transform by B = ωI + ωJ gives

eB
(

I ω−1K
−I ∗

)
e−B =

(
J ω−1K
−J∗

)



Local Classification

Theorem (M.G. ’04)

Near a regular point of Q,

J ∼=B Ck × (R2n−2k , ω0).

Theorem (Abouzaid-Boyarchenko ’06)

Near any point,

J ∼=B (R2k , J′)× (R2n−2k , ω0),

J′ of complex type at 0.

Theorem (Michael Bailey arXiv:1201.4887)

Near any point,

J ∼=B (Ck , σ)× (R2n−2k , ω0),

where σ is a holomorphic Poisson structure.



Proof
Step 1: interpolation

For any J on a neighbourhood of 0 in Cn, complex type at 0, find
a smooth family Jt such that

J1 = J and J0 = Cn.

Analogy: X vector field on vector space. Try pulling it back by
rescaling ρt : v 7→ tv :

(ρt)
−1
∗ X = 1

t X (0) + Xlin mod t

If X (0) = 0, then Xt = (ρt)
−1
∗ X extends smoothly to t = 0, giving

X0 = Xlin,

where Xlin = iE (dX |0).



Proof
Step 1: scaling problem

Same idea fails for J =

(
A Q
σ −A∗

)
because the pullback

Φ∗t =

(
(ρt)

−1
∗

ρ∗t

)
applied to J blows up as t → 0:

∧2T ⊕ T ⊗ T ∗ ⊕ ∧2T ∗

Φ∗t scaling: t−2Q t0A t2σ



Proof
Step 1: scaling remedy

Use additional symmetry of T ⊕ T ∗: for t 6= 0,

λt =

(
1

t

)
is a symmetry of the Courant bracket, though not orthogonal.
Scaling action is

∧2T ⊕ T ⊗ T ∗ ⊕ ∧2T ∗

λt scaling: t−1Q t0A t1σ

Compatibility with B-field action:

λte
Bλ−1t = etB .



Proof
Step 1: interpolation

Apply both pullback and scaling

Jt = λt−2Φ∗t J

∧2T ⊕ T ⊗ T ∗ ⊕ ∧2T ∗

λt2Φ∗t scaling: t0Q t0A t0σ

First order parts left alone, higher order components killed.

Jt is smooth in t, integrable ∀t, and

J0 =

(
J 0
0 −J∗

)



Proof
Step 2: Implicit function theorem

View Jt as deformation εt of J0 = Cn.

For sufficiently small t > 0 find B = dA on a small ball such that

(eBεt)
0,2 = 0.{

(eBε)0,2 = ε0,2 + B0,2 + B1,1ε1,1 − ε1,1B1,1 − B1,1ε2,0B1,1 − ε1,1B2,0ε1,1 + · · ·
∂ε0,2 + [ε1,1, ε0,2] = 0

Linearized equations about a Poisson structure are{
ε0,2 + B0,2 = 0

∂ε0,2 = 0

Solvable by Dolbeault lemma. Appropriate implcit function gives
∃B for the nonlinear equation.



Proof
Remarks

Details follow papers of J. Conn, Ann. of Math. ’84, ’85, based on
Nash-Moser implicit function theorem interpreted by R. Hamilton.

Theorem (Conn, 1984-5)

If P is Poisson on Rn, with P(0) = 0, and Plin is semisimple and
compact, then ∃ neighbourhood with P ∼= Plin.

Recent work of Miranda-Monnier-Zung packages J. Conn’s use of
Nash-Moser techniques in a convenient way for finding normal
forms for various geometric problems.



Final local classification problem

In the output of Bailey’s theorem,

J ∼=B (Ck , σ)× (R2n−2k , ω0),

is σ uniquely defined?

Theorem (M. Bailey, M.G.)

The holomorphic Poisson local model of a gen. cx. structure is
unique up to icthyomorphism.



Proof
Part 1: interpolation in families

If J is locally B-equivalent to two hol. Poisson structures (I0, σ0),
(I1, σ1), apply a version of Bailey’s theorem in families to obtain a
path of Poisson structures (It , σt) which are all B-equivalent.



Proof
Part 2: exchange B-transform with Diffeomorphism

Recall that B acts on holomorphic Poisson via

eB
(

J Q
−J∗

)
e−B =

(
J − QB Q
BJ + J∗B − BQB BQ − J∗

)
The infinitesimal action by Ḃ is(

−QḂ 0

ḂJ + J∗Ḃ ḂQ

)
this remains hol. Poisson iff Ḃ is of type (1, 1). This implies
Ḃ(t) = ddc ft for

ft ∈ C∞(M,R).

The complex structure Jt changes via J̇t = −QḂt , but we have

Q(ddc ft) = LQdft J,

proving that the time-1 flow of the Hamiltonian vector field of ft
takes (I0, σ0) to (I1, σ1).



Conclusion

– Local structure of a generalized complex manifold is governed
by a canonical holomorphic Poisson structure

– Complexity is hidden in the holomorphic Poisson structure
itself, as well as in the gluing by B–field transforms.

– Quantization? Branes? Groupoids?
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