Holomorphic Poisson structures in generalized complex geometry

Marco Gualtieri
Department of Mathematics, University of Toronto

July 3, 2012, Schloss Rauischholzhausen

Outline

Holomorphic Poisson structures
-Definition and examples
-Bondal conjecture for Fano 4-folds

Generalized complex structure
-Definition and examples
-Holomorphic Poisson is generalized complex
-B-field action on holomorphic Poisson structures
-Local Classification

Holomorphic Poisson structures

Introduction

X complex manifold, $\sigma \in H^{0}\left(X, \wedge^{2} T\right)$

$$
\begin{gathered}
\{f, g\}=\sigma(d f, d g) \\
\{-,-\} \text { is Lie } \Leftrightarrow[\sigma, \sigma]=0 \text { in } H^{0}\left(X, \wedge^{3} T\right)
\end{gathered}
$$

Examples:
$-X=\mathfrak{g}^{*}, \sigma \in \wedge^{2} \mathfrak{g}^{*} \otimes \mathfrak{g}$ such that (\mathfrak{g}, σ) is a Lie algebra.
Symplectic leaves: coadjoint orbits of G

- $X=\mathbb{C} P^{2}$ with $\sigma \in H^{0}\left(\mathbb{C} P^{2}, \wedge^{2} T\right)$.

Symplectic leaves:

- $\operatorname{dim} 0$: points on the cubic curve $C=\sigma^{-1}(0)$,
$-\operatorname{dim}$ 2: $X \backslash C$.

Holomorphic Poisson structures

3D Fano example

$X=\mathbb{C} P^{3}$ and $\sigma=W(f, g)$, where

$$
\begin{aligned}
f, g & \in H^{0}\left(\mathbb{C} P^{3}, \mathcal{O}(2)\right) \\
W(f, g) & =f d g-g d f \in H^{0}\left(\mathbb{C} P^{3}, \Omega^{1}(\mathcal{O}(4))\right)
\end{aligned}
$$

Note that $\Omega^{1}\left(K^{-1}\right)=\wedge^{2} T$, and

$$
[\sigma, \sigma]=W \wedge d W=0
$$

Symplectic leaves:

- $\operatorname{dim} 0$: points on the base locus $C=f^{-1}(0) \cap g^{-1}(0)$ (elliptic normal curve of degree 4) and singular points S of quadrics in pencil $\lambda f+\mu g,[\lambda: \mu] \in \mathbb{C} P^{1}$.
- dim 2: $Q \backslash(C \cup S)$, for Q a quadric in pencil.

Curious property: Expected dimension of $\sigma^{-1}(0)$ is zero.

Holomorphic Poisson structures

Theorem (Polishchuk 1997)
On any Fano 3-fold, $\sigma^{-1}(0)$ contains a curve.
Conjecture (Bondal 1993)
For Fano manifolds, the degeneracy locus $D_{2 k}(\sigma)$ contains a component of dimension $\geq 2 k+1$.

Theorem (M.G. and Brent Pym arXiv:1203.4293)
The Bondal conjecture is correct for Fano 4-folds.
Main ingredient is a detailed investigation of the geometry of Poisson modules.

Holomorphic Poisson structures

4D Fano example

$$
\left\{\begin{array}{l}
C \text { a smooth curve of genus } 1 \\
\mathcal{L} \in \operatorname{Pic}^{5}(C)
\end{array}\right.
$$

Then $\mathbb{P}\left(\operatorname{Ext}^{1}(\mathcal{L}, \mathcal{O})\right)$ has a Poisson structure, giving the Feigin-Odesskii Poisson structure on $\mathbb{C} P^{4}$

Symplectic leaves:

- generically symplectic,
- dim 0: points on elliptic normal curve C of degree 5
- dim 2: $S \backslash C$, for S a surface in the secant variety made from secants with fixed sum in $\operatorname{Pic}^{2}(C)$.

Generalized complex manifolds

Introduction

$$
\mathbb{J}: T \oplus T^{*} \longrightarrow T \oplus T^{*}, \quad \mathbb{J}^{2}=-1
$$

compatible with $O(n, n)$ structure and Courant integrable.

$$
\mathbb{J}=\left(\begin{array}{cc}
A & Q \\
\sigma & -A^{*}
\end{array}\right) \in \mathfrak{s o}\left(T \oplus T^{*}\right)=\wedge^{2} T \oplus\left(T \otimes T^{*}\right) \oplus \wedge^{2} T^{*}
$$

- Q is a real Poisson structure, Hamiltonian vector fields

$$
X_{f}=\pi_{T}(\mathbb{J} d f)
$$

generate singular foliation by (smooth) symplectic leaves.

- Transverse complex structure

$$
T / Q\left(T^{*}\right)=\left(T \oplus T^{*}\right) /\left(\mathbb{J} T^{*}+T^{*}\right) \cong \mathbb{C}^{k}
$$

Generalized complex manifolds

Examples

Extreme cases:

$$
\mathbb{J}_{J}=\left(\begin{array}{cc}
J & \\
& -J^{*}
\end{array}\right), \quad \mathbb{J}_{\omega}=\left(\begin{array}{ll}
& -\omega^{-1} \\
\omega &
\end{array}\right)
$$

for J an integrable complex structure and ω a real symplectic form.

Deformations of \mathbb{J}_{J} are given by Maurer-Cartan elements

$$
\left\{\epsilon \in \Gamma^{\infty}\left(X, \wedge^{2}\left(T_{1,0} \oplus T_{0,1}^{*}\right)\right): \bar{\partial} \epsilon+\frac{1}{2}[\epsilon, \epsilon]=0\right\}
$$

Decompose

$$
\begin{aligned}
& \epsilon=\epsilon^{2,0}+\epsilon^{1,1}+\epsilon^{0,2} \\
& \wedge^{2} T_{1,0} \quad \Omega^{0,1}\left(T_{1,0}\right) \quad \Omega^{0,2}
\end{aligned}
$$

Generalized complex manifolds

Deformations of complex manifold

Maurer-Cartan equation:

$$
\left\{\begin{array}{l}
{\left[\epsilon^{2,0}, \epsilon^{2,0}\right]=0} \\
\bar{\partial} \epsilon^{2,0}+\left[\epsilon^{1,1}, \epsilon^{2,0}\right]=0 \\
\bar{\partial} \epsilon^{1,1}+\frac{1}{2}\left[\epsilon^{1,1}, \epsilon^{1,1}\right]+\left[\epsilon^{2,0}, \epsilon^{0,2}\right]=0 \\
\bar{\partial} \epsilon^{0,2}+\left[\epsilon^{1,1}, \epsilon^{0,2}\right]=0
\end{array}\right.
$$

- If $\epsilon^{0,2}=\epsilon^{1,1}=0$, get $\epsilon^{2,0}$ holomorphic Poisson.
- If only $\epsilon^{0,2}=0$, get
- $\epsilon^{1,1}$ a deformation of complex structure.
- $\epsilon^{2,0}$ is killed by $\bar{\partial}+\left[\epsilon^{1,1},-\right]$, hence holomorphic Poisson in new complex structure.

Holomorphic Poisson is generalized complex

If $\epsilon^{2,0}=P+i Q$ is a holomorphic Poisson structure, then we obtain a deformation

$$
\left(\begin{array}{cc}
J & \\
& -J^{*}
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
J & Q \\
& -J^{*}
\end{array}\right)
$$

In fact we have a whole family

$$
\left(\begin{array}{cc}
J & t Q \\
& -J^{*}
\end{array}\right)
$$

B-field gauge symmetry

In addition to $\operatorname{Diff}(M)$, can apply $B \in \Omega^{2}(M, \mathbb{R}), d B=0$ via

$$
e^{B}=\left(\begin{array}{ll}
1 & \\
B & 1
\end{array}\right) \quad\left\{\begin{array}{l}
\text { in } O(n, n) \\
\text { preserves }[-,-]
\end{array}\right.
$$

\mathbb{J} generalized complex $\Rightarrow e^{B} \mathbb{J} e^{-B}$ generalized complex.

For $\mathbb{J}=\left(\begin{array}{cc}J & Q \\ & -J^{*}\end{array}\right), \quad e^{B} \mathbb{J} e^{-B}=\left(\begin{array}{ll}J-Q B & Q \\ B J+J^{*} B-B Q B & B Q-J^{*}\end{array}\right)$
Note that the B-transform may not be holomorphic Poisson.

Nondegenerate hol. Poisson \cong_{B} real symplectic

$$
e^{B} J e^{-B}=\left(\begin{array}{ll}
J-Q B & Q \\
B J+J^{*} B-B Q B & B Q-J^{*}
\end{array}\right)
$$

If Q is nondegenerate, may take $B=Q^{-1} J$, obtain

$$
e^{B} \mathbb{J} e^{-B}=\left(\begin{array}{ll}
& Q \\
Q^{-1} &
\end{array}\right)
$$

which is a symplectic structure.
E.g.: hol. Poisson structure ($\mathbb{C} P^{2}, \sigma$), is B-equivalent to a symplectic structure outside the complex locus $\sigma^{-1}(0)$.

Surgery into symplectic manifolds:

Theorem (M.G. and G. Cavalcanti, arXiv:0806.0872)
There are gen. cx. structures on $m \mathbb{C} P^{2} \# n \overline{\mathbb{C}} P^{2}$ iff almost complex.
Theorem (Rafael Torres, arXiv:1104.3480)
Many more examples, including $m\left(S^{2} \times S^{2}\right)$, sum with $S^{1} \times S^{3} \ldots$

B-equivalent but non-isomorphic hol. Poisson structures

(g, I, J, K) hyperKähler \Rightarrow pair of holomorphic Poisson structures:

$$
\begin{aligned}
& \left(I, \omega_{J}^{-1}+i \omega_{K}^{-1}\right) \\
& \left(J,-\omega_{I}^{-1}+i \omega_{K}^{-1}\right)
\end{aligned}
$$

While these may be non-isomorphic as hol. Poisson manifolds, the B-field transform by $B=\omega_{l}+\omega_{\jmath}$ gives

$$
e^{B}\left(\begin{array}{cc}
I & \omega_{K}^{-1} \\
& -l^{*}
\end{array}\right) e^{-B}=\left(\begin{array}{cc}
J & \omega_{K}^{-1} \\
& -J^{*}
\end{array}\right)
$$

Local Classification

Theorem (M.G. '04)
Near a regular point of Q,

$$
\mathbb{J} \cong{ }_{B} \mathbb{C}^{k} \times\left(\mathbb{R}^{2 n-2 k}, \omega_{0}\right)
$$

Theorem (Abouzaid-Boyarchenko '06)
Near any point,

$$
\mathbb{J} \cong_{B}\left(\mathbb{R}^{2 k}, \mathbb{J}^{\prime}\right) \times\left(\mathbb{R}^{2 n-2 k}, \omega_{0}\right)
$$

J^{\prime} of complex type at 0 .
Theorem (Michael Bailey arXiv:1201.4887)
Near any point,

$$
\mathbb{J} \cong{ }_{B}\left(\mathbb{C}^{k}, \sigma\right) \times\left(\mathbb{R}^{2 n-2 k}, \omega_{0}\right)
$$

where σ is a holomorphic Poisson structure.

Proof

Step 1: interpolation

For any \mathbb{J} on a neighbourhood of 0 in \mathbb{C}^{n}, complex type at 0 , find a smooth family \mathbb{J}_{t} such that

$$
\mathbb{J}_{1}=\mathbb{J} \text { and } \mathbb{J}_{0}=\mathbb{C}^{n}
$$

Analogy: X vector field on vector space. Try pulling it back by rescaling $\rho_{t}: v \mapsto t v$:

$$
\left(\rho_{t}\right)_{*}^{-1} X=\frac{1}{t} X(0)+X_{\text {lin }} \quad \bmod t
$$

If $X(0)=0$, then $X_{t}=\left(\rho_{t}\right)_{*}^{-1} X$ extends smoothly to $t=0$, giving

$$
X_{0}=X_{l i n},
$$

where $X_{\text {lin }}=i_{E}\left(\left.d X\right|_{0}\right)$.

Proof

Step 1: scaling problem

Same idea fails for $\mathbb{J}=\left(\begin{array}{cc}A & Q \\ \sigma & -A^{*}\end{array}\right)$ because the pullback

$$
\Phi_{t}^{*}=\left(\begin{array}{ll}
\left(\rho_{t}\right)_{*}^{-1} & \\
& \rho_{t}^{*}
\end{array}\right)
$$

applied to \mathbb{J} blows up as $t \rightarrow 0$:

$$
\begin{array}{cccc}
\wedge^{2} T & \oplus \otimes T^{*} \oplus \wedge^{2} T^{*} \\
\Phi_{t}^{*} \text { scaling: } & t^{-2} Q & t^{0} A & t^{2} \sigma
\end{array}
$$

Proof

Step 1: scaling remedy

Use additional symmetry of $T \oplus T^{*}$: for $t \neq 0$,

$$
\lambda_{t}=\left(\begin{array}{ll}
1 & \\
& t
\end{array}\right)
$$

is a symmetry of the Courant bracket, though not orthogonal.
Scaling action is

$$
\begin{array}{cccc}
& \wedge^{2} T & \oplus & T \otimes T^{*} \oplus \wedge^{2} T^{*} \\
\lambda_{t} \text { scaling: } & t^{-1} Q & t^{0} A & \\
t^{1} \sigma
\end{array}
$$

Compatibility with B-field action:

$$
\lambda_{t} e^{B} \lambda_{t}^{-1}=e^{t B}
$$

Proof

Step 1: interpolation

Apply both pullback and scaling

$$
\begin{aligned}
& \mathbb{J}_{t}=\lambda_{t^{-2}} \Phi_{t}^{*} \mathbb{J} \\
& \wedge^{2} T \oplus T \otimes T^{*} \oplus \wedge^{2} T^{*} \\
& \lambda_{t^{2}} \Phi_{t}^{*} \text { scaling: } t^{0} Q \quad t^{0} A \quad t^{0} \sigma
\end{aligned}
$$

First order parts left alone, higher order components killed.
\mathbb{J}_{t} is smooth in t, integrable $\forall t$, and

$$
\mathbb{J}_{0}=\left(\begin{array}{cc}
J & 0 \\
0 & -J^{*}
\end{array}\right)
$$

Proof

Step 2: Implicit function theorem

View \mathbb{J}_{t} as deformation ϵ_{t} of $\mathbb{J}_{0}=\mathbb{C}^{n}$.
For sufficiently small $t>0$ find $B=d A$ on a small ball such that

$$
\begin{gathered}
\left(e^{B} \epsilon_{t}\right)^{0,2}=0 . \\
\left\{\begin{array}{l}
\left(e^{B} \epsilon\right)^{0,2}=\epsilon^{0,2}+B^{0,2}+B^{1,1} \epsilon^{1,1}-\epsilon^{1,1} B^{1,1}-B^{1,1} \epsilon^{2,0} B^{1,1}-\epsilon^{1,1} B^{2,0} \epsilon^{1,1}+\cdots \\
\bar{\partial} \epsilon^{0,2}+\left[\epsilon^{1,1}, \epsilon^{0,2}\right]=0
\end{array}\right.
\end{gathered}
$$

Linearized equations about a Poisson structure are

$$
\left\{\begin{array}{l}
\epsilon^{0,2}+B^{0,2}=0 \\
\bar{\partial}^{0,2}=0
\end{array}\right.
$$

Solvable by Dolbeault lemma. Appropriate implcit function gives $\exists B$ for the nonlinear equation.

Proof

Remarks

Details follow papers of J. Conn, Ann. of Math. '84, '85, based on Nash-Moser implicit function theorem interpreted by R. Hamilton.

Theorem (Conn, 1984-5)
If P is Poisson on \mathbb{R}^{n}, with $P(0)=0$, and $P_{\text {lin }}$ is semisimple and compact, then \exists neighbourhood with $P \cong P_{\text {lin }}$.

Recent work of Miranda-Monnier-Zung packages J. Conn's use of Nash-Moser techniques in a convenient way for finding normal forms for various geometric problems.

Final local classification problem

In the output of Bailey's theorem,

$$
\mathbb{J} \cong{ }_{B}\left(\mathbb{C}^{k}, \sigma\right) \times\left(\mathbb{R}^{2 n-2 k}, \omega_{0}\right)
$$

is σ uniquely defined?
Theorem (M. Bailey, M.G.)
The holomorphic Poisson local model of a gen. cx. structure is unique up to icthyomorphism.

Proof

Part 1: interpolation in families

If \mathbb{J} is locally B-equivalent to two hol. Poisson structures $\left(I_{0}, \sigma_{0}\right)$, (I_{1}, σ_{1}), apply a version of Bailey's theorem in families to obtain a path of Poisson structures $\left(I_{t}, \sigma_{t}\right)$ which are all B-equivalent.

Proof

Part 2: exchange B-transform with Diffeomorphism

Recall that B acts on holomorphic Poisson via

$$
e^{B}\left(\begin{array}{cc}
J & Q \\
& -J^{*}
\end{array}\right) e^{-B}=\left(\begin{array}{ll}
J-Q B & Q \\
B J+J^{*} B-B Q B & B Q-J^{*}
\end{array}\right)
$$

The infinitesimal action by \dot{B} is

$$
\left(\begin{array}{ll}
-Q \dot{B} & 0 \\
\dot{B} J+J^{*} \dot{B} & \dot{B} Q
\end{array}\right)
$$

this remains hol. Poisson iff \dot{B} is of type $(1,1)$. This implies $\dot{B}(t)=d d^{c} f_{t}$ for

$$
f_{t} \in C^{\infty}(M, \mathbb{R})
$$

The complex structure J_{t} changes via $\dot{J}_{t}=-Q \dot{B}_{t}$, but we have

$$
Q\left(d d^{c} f_{t}\right)=\mathcal{L}_{Q d f_{t}} J,
$$

proving that the time-1 flow of the Hamiltonian vector field of f_{t} takes $\left(I_{0}, \sigma_{0}\right)$ to $\left(I_{1}, \sigma_{1}\right)$.

Conclusion

- Local structure of a generalized complex manifold is governed by a canonical holomorphic Poisson structure
- Complexity is hidden in the holomorphic Poisson structure itself, as well as in the gluing by B-field transforms.
- Quantization? Branes? Groupoids?

