Holomorphic Poisson structures in generalized complex geometry

Marco Gualtieri

Department of Mathematics, University of Toronto

July 3, 2012, Schloss Rauischholzhausen

Holomorphic Poisson structures

- -Definition and examples
- -Bondal conjecture for Fano 4-folds

Generalized complex structure

- -Definition and examples
- -Holomorphic Poisson is generalized complex
- -B-field action on holomorphic Poisson structures
- -Local Classification

Holomorphic Poisson structures

Introduction

X complex manifold,
$$\sigma \in H^0(X, \wedge^2 T)$$

 $\{f, g\} = \sigma(df, dg)$
 $\{-, -\}$ is Lie $\Leftrightarrow [\sigma, \sigma] = 0$ in $H^0(X, \wedge^3 T)$

Examples:

- $X = \mathfrak{g}^*$, $\sigma \in \wedge^2 \mathfrak{g}^* \otimes \mathfrak{g}$ such that (\mathfrak{g}, σ) is a Lie algebra. Symplectic leaves: *coadjoint orbits of G*
- $X = \mathbb{C}P^2$ with $\sigma \in H^0(\mathbb{C}P^2, \wedge^2 T)$. Symplectic leaves:
 - dim 0: points on the cubic curve $C = \sigma^{-1}(0)$,
 - dim 2: $X \setminus C$.

Holomorphic Poisson structures

3D Fano example

$$X = \mathbb{C}P^3$$
 and $\sigma = W(f, g)$, where
 $f, g \in H^0(\mathbb{C}P^3, \mathcal{O}(2)),$
 $W(f, g) = fdg - gdf \in H^0(\mathbb{C}P^3, \Omega^1(\mathcal{O}(4)))$

Note that $\Omega^1(K^{-1}) = \wedge^2 T$, and

$$[\sigma,\sigma]=W\wedge dW=0.$$

Symplectic leaves:

- dim 0: points on the base locus C = f⁻¹(0) ∩ g⁻¹(0) (elliptic normal curve of degree 4) and singular points S of quadrics in pencil λf + μg, [λ : μ] ∈ CP¹.
- dim 2: $Q \setminus (C \cup S)$, for Q a quadric in pencil.

Curious property: Expected dimension of $\sigma^{-1}(0)$ is zero.

Theorem (Polishchuk 1997)

On any Fano 3-fold, $\sigma^{-1}(0)$ contains a curve.

Conjecture (Bondal 1993)

For Fano manifolds, the degeneracy locus $D_{2k}(\sigma)$ contains a component of dimension $\geq 2k + 1$.

Theorem (M.G. and Brent Pym arXiv:1203.4293)

The Bondal conjecture is correct for Fano 4-folds.

Main ingredient is a detailed investigation of the geometry of Poisson modules.

Holomorphic Poisson structures 4D Fano example

$$\left\{egin{array}{l} C ext{ a smooth curve of genus 1} \\ \mathcal{L} \in \mathsf{Pic}^5(\mathcal{C}) \end{array}
ight.$$

Then $\mathbb{P}(\mathsf{Ext}^1(\mathcal{L}, \mathcal{O}))$ has a Poisson structure, giving the Feigin-Odesskii Poisson structure on $\mathbb{C}P^4$

Symplectic leaves:

- generically symplectic,
- dim 0: points on elliptic normal curve C of degree 5
- dim 2: $S \setminus C$, for S a surface in the secant variety made from secants with fixed sum in $Pic^{2}(C)$.

Generalized complex manifolds

Introduction

$$\mathbb{J}: T \oplus T^* \longrightarrow T \oplus T^* , \qquad \mathbb{J}^2 = -1$$

compatible with O(n, n) structure and Courant integrable.

$$\mathbb{J}=egin{pmatrix} \mathsf{A} & Q \ \sigma & -\mathsf{A}^* \end{pmatrix}\in\mathfrak{so}(\,T\oplus\,T^*)=\wedge^2 T\oplus(\,T\otimes\,T^*)\oplus\wedge^2 T^*.$$

-Q is a real Poisson structure, Hamiltonian vector fields

$$X_f = \pi_T(\mathbb{J}df)$$

generate singular foliation by (smooth) symplectic leaves.

Transverse complex structure

$$T/Q(T^*) = (T \oplus T^*)/(\mathbb{J}T^* + T^*) \cong \mathbb{C}^k$$
 type k

Generalized complex manifolds

Examples

Extreme cases:

$$\mathbb{J}_J = \begin{pmatrix} J & \\ & -J^* \end{pmatrix}, \qquad \mathbb{J}_\omega = \begin{pmatrix} & -\omega^{-1} \\ \omega & \end{pmatrix},$$

for J an integrable complex structure and ω a real symplectic form.

Deformations of \mathbb{J}_J are given by Maurer-Cartan elements $\{\epsilon \in \Gamma^{\infty}(X, \wedge^2(T_{1,0} \oplus T^*_{0,1})) : \overline{\partial}\epsilon + \frac{1}{2}[\epsilon, \epsilon] = 0\}$

Decompose

$$\epsilon = \epsilon^{2,0} + \epsilon^{1,1} + \epsilon^{0,2}$$
$$\wedge^{2} T_{1,0} \qquad \Omega^{0,1}(T_{1,0}) \qquad \Omega^{0,2}$$

Generalized complex manifolds

Deformations of complex manifold

Maurer-Cartan equation:

$$\begin{cases} [\epsilon^{2,0}, \epsilon^{2,0}] = 0\\ \overline{\partial}\epsilon^{2,0} + [\epsilon^{1,1}, \epsilon^{2,0}] = 0\\ \overline{\partial}\epsilon^{1,1} + \frac{1}{2}[\epsilon^{1,1}, \epsilon^{1,1}] + [\epsilon^{2,0}, \epsilon^{0,2}] = 0\\ \overline{\partial}\epsilon^{0,2} + [\epsilon^{1,1}, \epsilon^{0,2}] = 0 \end{cases}$$

– If $\epsilon^{0,2} = \epsilon^{1,1} = 0$, get $\epsilon^{2,0}$ holomorphic Poisson.

- If only
$$\epsilon^{0,2} = 0$$
, get

- $\epsilon^{1,1}$ a deformation of complex structure.
- $\epsilon^{2,0}$ is killed by $\overline{\partial} + [\epsilon^{1,1}, -]$, hence holomorphic Poisson in new complex structure.

If $\epsilon^{2,0} = P + iQ$ is a holomorphic Poisson structure, then we obtain a deformation

$$\begin{pmatrix} J & \\ & -J^* \end{pmatrix} \Rightarrow \begin{pmatrix} J & Q \\ & -J^* \end{pmatrix}$$

In fact we have a whole family

$$\begin{pmatrix} J & tQ \\ & -J^* \end{pmatrix}$$

B-field gauge symmetry

In addition to Diff(M), can apply $B \in \Omega^2(M, \mathbb{R})$, dB = 0 via

$$e^B = \begin{pmatrix} 1 \\ B & 1 \end{pmatrix}$$
 $\begin{cases} \text{in } O(n, n) \\ \text{preserves } [-, -] \end{cases}$

 $\mathbb J$ generalized complex $\Rightarrow e^B \mathbb J e^{-B}$ generalized complex.

For
$$\mathbb{J} = \begin{pmatrix} J & Q \\ & -J^* \end{pmatrix}$$
, $e^B \mathbb{J} e^{-B} = \begin{pmatrix} J - QB & Q \\ BJ + J^*B - BQB & BQ - J^* \end{pmatrix}$

Note that the *B*-transform may not be holomorphic Poisson.

Nondegenerate hol. Poisson \cong_B real symplectic

$$e^{B} \mathbb{J}e^{-B} = \left(egin{array}{cc} J-QB & Q \ BJ+J^{*}B-BQB & BQ-J^{*} \end{array}
ight)$$

If Q is nondegenerate, may take $B = Q^{-1}J$, obtain

$$e^{B} \mathbb{J} e^{-B} = \begin{pmatrix} Q \\ Q^{-1} \end{pmatrix}$$

which is a symplectic structure.

E.g.: hol. Poisson structure ($\mathbb{C}P^2, \sigma$), is B-equivalent to a symplectic structure outside the complex locus $\sigma^{-1}(0)$.

Surgery into symplectic manifolds:

Theorem (M.G. and G. Cavalcanti, arXiv:0806.0872) There are gen. cx. structures on $m\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$ iff almost complex. Theorem (Rafael Torres, arXiv:1104.3480) Many more examples, including $m(S^2 \times S^2)$, sum with $S^1 \times S^3$... (g, I, J, K) hyperKähler \Rightarrow pair of holomorphic Poisson structures:

$$(I, \omega_J^{-1} + i\omega_K^{-1}) (J, -\omega_I^{-1} + i\omega_K^{-1})$$

While these may be non-isomorphic as hol. Poisson manifolds, the B-field transform by $B = \omega_I + \omega_J$ gives

$$e^{B}\begin{pmatrix}I & \omega_{\kappa}^{-1}\\ & -I^{*}\end{pmatrix}e^{-B} = \begin{pmatrix}J & \omega_{\kappa}^{-1}\\ & -J^{*}\end{pmatrix}$$

Local Classification

Theorem (M.G. '04) Near a regular point of Q,

$$\mathbb{J}\cong_B \mathbb{C}^k \times (\mathbb{R}^{2n-2k}, \omega_0).$$

Theorem (Abouzaid-Boyarchenko '06) *Near any point*,

$$\mathbb{J}\cong_B (\mathbb{R}^{2k},\mathbb{J}')\times (\mathbb{R}^{2n-2k},\omega_0),$$

 \mathbb{J}' of complex type at 0.

Theorem (Michael Bailey arXiv:1201.4887) *Near any point,*

$$\mathbb{J}\cong_B (\mathbb{C}^k,\sigma)\times (\mathbb{R}^{2n-2k},\omega_0),$$

where σ is a holomorphic Poisson structure.

For any $\mathbb J$ on a neighbourhood of 0 in $\mathbb C^n,$ complex type at 0, find a smooth family $\mathbb J_t$ such that

$$\mathbb{J}_1 = \mathbb{J}$$
 and $\mathbb{J}_0 = \mathbb{C}^n$.

Analogy: *X* vector field on vector space. Try pulling it back by rescaling $\rho_t : v \mapsto tv$:

$$(\rho_t)_*^{-1}X = \frac{1}{t}X(0) + X_{lin} \mod t$$

If X(0) = 0, then $X_t = (\rho_t)^{-1}_* X$ extends smoothly to t = 0, giving

$$X_0 = X_{lin}$$

where $X_{lin} = i_E(dX|_0)$.

Proof Step 1: scaling problem

Same idea fails for
$$\mathbb{J} = \begin{pmatrix} A & Q \\ \sigma & -A^* \end{pmatrix}$$
 because the pullback
$$\Phi_t^* = \begin{pmatrix} (\rho_t)_*^{-1} \\ \rho_t^* \end{pmatrix}$$

applied to $\mathbb J$ blows up as $t\to 0$:

$$\wedge^{2}T \oplus T \otimes T^{*} \oplus \wedge^{2}T^{*}$$

$$\Phi_{t}^{*} \text{ scaling: } t^{-2}Q \qquad t^{0}A \qquad t^{2}\sigma$$

Proof Step 1: scaling remedy

Use additional symmetry of $T \oplus T^*$: for $t \neq 0$,

$$\lambda_t = \begin{pmatrix} 1 & \\ & t \end{pmatrix}$$

is a symmetry of the Courant bracket, though not orthogonal. Scaling action is

$$\wedge^2 T \oplus T \otimes T^* \oplus \wedge^2 T^*$$

 λ_t scaling: $t^{-1}Q = t^0 A = t^1 \sigma$

Compatibility with *B*-field action:

$$\lambda_t e^B \lambda_t^{-1} = e^{tB}.$$

Apply both pullback and scaling

$$\begin{split} \mathbb{J}_t &= \lambda_{t^{-2}} \Phi_t^* \mathbb{J} \\ & \wedge^2 T \quad \oplus \quad T \otimes T^* \quad \oplus \quad \wedge^2 T^* \\ \lambda_{t^2} \Phi_t^* \text{ scaling:} \quad t^0 Q \qquad t^0 A \qquad t^0 \sigma \end{split}$$

First order parts left alone, higher order components killed.

 \mathbb{J}_t is smooth in t, integrable $\forall t$, and

$$\mathbb{J}_0 = \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}$$

Proof Step 2: Implicit function theorem

View \mathbb{J}_t as deformation ϵ_t of $\mathbb{J}_0 = \mathbb{C}^n$.

For sufficiently small t > 0 find B = dA on a small ball such that

$$(e^B\epsilon_t)^{0,2}=0.$$

$$\begin{cases} (e^{B}\epsilon)^{0,2} = \epsilon^{0,2} + B^{0,2} + B^{1,1}\epsilon^{1,1} - \epsilon^{1,1}B^{1,1} - B^{1,1}\epsilon^{2,0}B^{1,1} - \epsilon^{1,1}B^{2,0}\epsilon^{1,1} + \cdots \\ \overline{\partial}\epsilon^{0,2} + [\epsilon^{1,1},\epsilon^{0,2}] = 0 \end{cases}$$

Linearized equations about a Poisson structure are

$$\begin{cases} \epsilon^{0,2} + B^{0,2} = 0\\ \overline{\partial} \epsilon^{0,2} = 0 \end{cases}$$

Solvable by Dolbeault lemma. Appropriate implcit function gives $\exists B$ for the nonlinear equation.

Details follow papers of J. Conn, Ann. of Math. '84, '85, based on Nash-Moser implicit function theorem interpreted by R. Hamilton.

Theorem (Conn, 1984-5)

If P is Poisson on \mathbb{R}^n , with P(0) = 0, and P_{lin} is semisimple and compact, then \exists neighbourhood with $P \cong P_{lin}$.

Recent work of Miranda-Monnier-Zung packages J. Conn's use of Nash-Moser techniques in a convenient way for finding normal forms for various geometric problems.

```
In the output of Bailey's theorem,
```

$$\mathbb{J}\cong_B (\mathbb{C}^k,\sigma)\times (\mathbb{R}^{2n-2k},\omega_0),$$

is σ uniquely defined?

Theorem (M. Bailey, M.G.)

The holomorphic Poisson local model of a gen. cx. structure is unique up to icthyomorphism.

If \mathbb{J} is locally *B*-equivalent to two hol. Poisson structures (I_0, σ_0) , (I_1, σ_1) , apply a version of Bailey's theorem in families to obtain a path of Poisson structures (I_t, σ_t) which are all *B*-equivalent.

Proof

Part 2: exchange B-transform with Diffeomorphism

Recall that B acts on holomorphic Poisson via

$$e^{B}\begin{pmatrix} J & Q \\ & -J^{*} \end{pmatrix} e^{-B} = \begin{pmatrix} J - QB & Q \\ BJ + J^{*}B - BQB & BQ - J^{*} \end{pmatrix}$$

The infinitesimal action by \dot{B} is

$$\left(\begin{array}{cc} -Q\dot{B} & 0\\ \dot{B}J + J^*\dot{B} & \dot{B}Q \end{array}\right)$$

this remains hol. Poisson iff \dot{B} is of type (1,1). This implies $\dot{B}(t)=dd^cf_t$ for

$$f_t \in C^{\infty}(M,\mathbb{R}).$$

The complex structure J_t changes via $\dot{J}_t = -Q\dot{B}_t$, but we have

$$Q(dd^c f_t) = \mathcal{L}_{Qdf_t} J,$$

proving that the time-1 flow of the Hamiltonian vector field of f_t takes (I_0, σ_0) to (I_1, σ_1) .

Conclusion

- Local structure of a generalized complex manifold is governed by a canonical holomorphic Poisson structure
- Complexity is hidden in the holomorphic Poisson structure itself, as well as in the gluing by *B*-field transforms.
- Quantization? Branes? Groupoids?