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Cartan’s work on isoparametric hypersurfaces

Dfn. Mm−1 immersed into R
m, Sm, or Hm is called an isoparametric hypersurface if its principal curvatures

are constant [⇒ constant mean curvature]. Set p := # of different principal curvatures

Thm. In Sn−1 ⊂ R
n [Cartan 1938-40]:

• If p = 1: Mn−2 is a hypersphere in Sn−1

• If p = 2: Mn−2 = Sp(r) × Sp(s) for p + q = n − 2, r2 + s2 = 1
• If p = 3: Mn−2 is a tube of constant radius over a generalized Veronese embedding of KP

2 into Sn−1 for
K = R, C, H, O Thus, for p = 3, n must be 5, 8, 14, or 26 !

Construction: use harmonic homogeneous polynomial F of degree p on R
n satisfying

‖grad F‖2 = p2‖x‖2p−2

The level sets of F
∣

∣

Sn−1 define an isoparametric hypersurface family. For p = 3, Cartan described explicitly the
polynomial F .
Link to geometry: F can be understood as a symmetric rank p tensor Υ, and each level set M will be invariant
under the stabilizer of Υ!

If Mn−2 ⊂ Sn−1 = SO(n)/SO(n − 1) is an orbit of G ⊂ SO(n), then it is isoparametric (because it is homoge-
neous):

classif. of all G ⊂ SO(n) s.t.
codim

∣

∣

Sn−1 (princ. G-orbit)=1
or, equiv., codim

∣

∣

Rn=2
⇒ classif. of homogeneous

isopar. hypersurfaces in Sn−1

Needed: a classification of all irreducible reps. of G ⊂ SO(n) on R
n with codimension 2 principal orbits.

Thm.[Hsiang2 / Lawson, 1970/71] These are exactly the isotropy representations of rank 2 symmetric spaces.

The proof produces a list, and it turns out to coincide with the list of isotropy representations.

Thm.[Takagi-Takahashi, 1972] Let Mn = G/H compact symmetric space, rk = 2, g = h ⊕ p.
• An H-orbit M of a unit vector in Sn−1 ⊂ p is an isoparametric hypersurface.
• The principal curvatures and their multiplicities are computed from the root data,
for example: The order of the Weyl group is 2p ⇒ only p = 1, 2, 3, 4, 6 are possible

⇒ In the case p = 3, there are 4 symmetric spaces yielding isoparametric hypersurfaces:

SU(3)/SO(3), SU(3), SU(6)/Sp(3), E6/F4

Description of their isotropy representations

Let R
n (n = 5, 8, 14, 26) be Her0(K

3), the Hermitian trace-free endomorphisms on K
3, K = R, C, H, O with the

conjugation action of Hn = SO(3), SU(3), Sp(3), or F4, resp.
Define for X,Y, Z ∈ R

n a symmetric 3-tensor by polarisation from tr :

Υ(X,Y, Z) := 2
√

3[tr X3 + tr Y 3 + tr Z3] − tr(X + Y )3 − tr (X + Z)3 − tr (Y + Z)3 + tr (X + Y + Z)3.

For K = H, O, a second tensor is obtained as Υ̃(X,Y, Z) := Υ(X̄, Ȳ , Z̄) – it is not conjugate to Υ under SO(n).

Thm. For n = 5, 8, 14, 26: Hn = {A ∈ SO(n) : A∗Υ = Υ} and for any basis V1, . . . Vn of R
n ∼= Her0(K

3)
• Υ is totally symmetric,
• Υ is trace-free, i. e.

∑

i Υ(X,Vi, Vi) = 0,

• Υ satisfies the identity (g: metric)
∑

X,Y,Z

c
∑

i

Υ(X,Y, Vi)Υ(Z,U, Vi) =
∑

X,Y,Z

c g(X,Y )g(Z,U)

In particular: Υ determines g!

N.B. For n = 8, 14, ∃ an alternative tensor reducing SO(n) to Hn: n = 8: a 3-form, n = 14: a 5-form

Hn-structures on Riemannian manifolds

Dfn. For n = 5, 8, 14, 26: A n-mnfd with a Hn-structure is a Riemannian mnfd (Mn, g) with a reduction of the
frame bundle R(Mn) to Hn and thus has automatically a 3-tensor Υ with the properties above!

Dfn. A Hn-mnfd is called integrable if ∇gΥ = 0 (∇g: Levi-Civita conn.) (⇒ Hol0(∇g) ⊂ Hn).

Thm. [Nurowski, 2007] An integrable Hn-structure is isometric to one of the symmetric spaces Gn/Hn, i. e.

SU(3)/SO(3), SU(3), SU(6)/Sp(3), E6/F4,

or one of their non-compact dual symmetric spaces.

I. Agricola, J. Becker-Bender, M. Bobinski, S. Chiossi, A. Fino, T. Friedrich and P. Nurowski looked at the case
n = 5. The case n = 8 was studied by N. Hitchin, C. Puhle and I. Witt. I. Agricola, T. Friedrich and J. Hoell
looked at the 14 dimensional case.

Topological existence conditions: the case H5 = SO(3)

∃ two non-equivalent embeddings SO(3) → SO(5): as upper diagonal block matrices: ‘SO(3)st’ and by the irre-
ducible 5-dim. representation of SO(3): ‘SO(3)ir’.
Dfn. Kervaire semi-characteristics:

k(M5) :=

2
∑

i=0

dimR

(

H2i(M5; R)
)

mod 2 , χ̂2(M
5) :=

2
∑

i=0

dimZ2

(

Hi(M
5; Z2)

)

mod 2 .

Thm. [Lusztig-Milnor-Peterson 1969] k(M5) − χ̂2(M
5) = w2(M

5) ∪ w3(M
5).

In particular, if M5 is spin, then k(M5) = χ̂2(M
5).

Thm. [Thomas 1967; Atiyah 1969] A cpt. oriented 5-mnfd admits a SO(3)st-structure iff w4(M
5) = 0, k(M5) = 0.

Topological existence conditions for SO(3)ir-structures were investigated in [ABF11]:

Exa: M5 = SU(3)/SO(3) has an SO(3)ir-structure and k(M5) = 1 and χ̂2(M
5) = 0. In particular,

M5 = SU(3)/SO(3) does not admit any SO(3)st-structure!

Prop. M5 admits an SO(3)ir-structure iff there exists a 3-dim. real bundle E3 such that T (M5) = S2
0(E3).

Thm. Suppose that T (M5) = S2
0(E3). Then p1(M

5) = 5 · p1(E
3); in particular, p1(M

5)/5 ∈ H4(M5; Z) is

integral. w1(M
5) = w4(M

5) = w5(M
5) = 0, w2(M

5) = w2(E
3) and w3(M

5) = w3(E
3).

Conjecture: M5 admits an SO(3)ir-structure iff w4(M
5) = 0, χ̂2(M

5) = 0,
p1(M

5)
5 ∈ H4(M5; Z).

Can only prove: Thm. A compact, s.c. spin mnfd admitting a SO(3)ir- or SO(3)st-str. is parallelizable.

Cor. S5 has none of both SO(3)-structures.
Exa: The connected sums (2l + 1)#(S2 × S3) are s.c., spin and admit a SO(3)st-structure.

A rather sophisticated construction yields:

Thm. There exist mnfds p CP
2#q CP2 such that every S1-bundle over them admits a SOir-structure. (for

example: (p, q) = (21, 1), (43, 3), (197, 17) . . .)

Topological existence conditions: the case H14 = Sp(3) [AFH12]

From H∗(BSp(3), Z) = Z[q4, q8, q12] (with qi ∈ Hi), one deduces:

Thm. Every compact 14-dimensional mnfd with a Sp(3)-structure satisfies χ(M ) = 0 and wi(M ) = 0 except for
i = 4, 8, 12.

In particular, it is orientable and spin; for example, S14 has no Sp(3)-structure.

Open problem: sufficient and necessary conditions !

Some non-compact examples: use isom. Spin(5) ∼= Sp(2) ⊂ Sp(3) and the decomposition

R
14 Spin(5)

= R ⊕ R
5 ⊕ ∆5 (the 5-dim. spin rep.)

Every S1-bundle M14 over one of the following
• spin bundle of a 5-dim. spin mnfd X5 (= 8-dim VB)
• associated bundle R(Y 8) ×Spin(5) R

5 over an 8-dim. mnfd Y 8 with an Sp(2)-structure (hyper-Kähler,

quaternionic-Kähler etc.) carries a Sp(3)-structure.

Characteristic connections and types of Hn-structures

General philosophy: Given a mnfd Mn with G-structure (G ⊂ SO(n)), replace ∇g by a metric connection

∇ with torsion that preserves the geometric structure!

torsion: T (X,Y, Z) := g(∇XY −∇Y X − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY, Z) = g(∇g
XY, Z) + 1

2 T (X,Y, Z)

If existent, this connection is called the ‘characteristic connection’.

Thm:[AFH12] The characteristic connection is unique if the action of G on R
n is not the adjoint representation

(proof makes heavy use of skew holonomy theorem).

Let T ∈ Λ3(M ) be the torsion of the char. connection ∇. Decompose Λ3(Rn) under Hn-action, for example:

Λ3(R5) ∼= Λ2(R5) ∼= so(5) = so(3)ir ⊕ V 7, Λ3(R14) ∼= sp(3) ⊕ V 70 ⊕ V 84 ⊕ V 189

We say that a Hn-structure is of type X,Y ⊕ Z . . . if T ∈ X,Y ⊕ Z . . . ⊂ Λ3(M ) and of general type if T has
contributions in all parts of Λ3(M ).

Homogeneous examples: the case H5 = SO(3)

Exa 1: ‘twisted’ Stiefel mnfd V ir
2,4 = SO(3) × SO(3)/SO(2)ir

Recall: classical Stiefel manifold V st
2,4 = SO(4)/SO(2): Carries an SO(3)st structure, an Einstein-Sasaki metric, 2

Riemannian Killing spinors [Jensen 75, Friedrich 1981]

Consider now H := SO(2) ⊂ SO(3)ir,H ∋ A 7−→ (A,A2) ∈ SO(3)× SO(3) =: G, V ir
2,4 := SO(3)× SO(3)/SO(2)ir.

With g = h⊕m, its isotropy rep. decomposes m = n⊕m1⊕m2, thus the metric has three parameters α, β, γ > 0.

Thm.[ABF11]

• If αβ + 4 γα − 25 βγ = 0, there exists a characteristic connection for the SO(3)ir structure.
• Its holonomy is SO(2)ir and its torsion is parallel.
• The metric of a SO(3)ir structure with char. conn. is naturally reductive if and only if α = 5β = 5γ.
• ∃1 Einstein metric, not nat. reductive.
• ∃ two invariant almost contact metric structures. Both admit a unique characteristic connection.
• The contact structure is Sasakian (but never Einstein) if and only if α = 25β2 = 100γ2; it is in addition an
SO(3)ir structure for (α, β, γ) = (25

36,
1
6,

1
12).

Exa 2: W ir = R × (SL(2, R) ⋉ R
2)/SO(2)ir

Decompose again m = nµ ⊕ m1 ⊕ m2 with the same Ansatz for the metric.

Thm.[ABF11]

• ∀ α, β, γ > 0 s.t. α ≥ 12γ, the SO(3)ir structure admits a characteristic connection.
• Its holonomy is SO(3)ir ⊂ SO(5). Its torsion is not parallel, but it is divergence-free, δTαβγ = 0.
• The metric of the SO(3)ir str. with char. conn. is never naturally reductive and never Einstein.
• 6 ∃ a compatible contact structure.
Consequence: SO(3)ir structures are different from contact str. and define a new type of geometry on 5-mnfds.

Homogeneous examples: the case H14 = Sp(3)

Exa 1: Higher Aloff-Wallach mnfd M14 = SU(4)/S1

Embed S1 as diag(e−it, e−it, eit, e−it) ⊂ SU(4).

The splitting su(4) = R ⊕ m14 leads to the decomposition m14 =

4
⊕

i=1

Vi ⊕
6

⊕

j=1

Wj, dim Vi = 2, dim Wj = 1

under the action of S1. There are invariant metrics g depending on α1, . . . , α10.

Thm.[AFH12]

• ∃ a 3-dim. space of metrics, depending on α, β, γ > 0, such that the Sp(3)-structure admits a char. connection.
• If there exists a characteristic connection, its torsion is parallel.
• The Sp(3)- structure is always of general type, i. e. its torsion has contributions in all summands of Λ3(M ).
• The Riemannian Ricci curvature has Eigenvalues 6α − β, 6α − γ, 6α − β − γ, each with multiplicity 4 and 4β,
4γ with mult. 1. Thus its scalar curvature is

scalgα,β,γ =
2(18α − β − γ)

α2
and the metric is never Einstein.

Exa 2: The homogeneous space M14 = SU(5)/Sp(2) as a mnfd M14 is the same as SU(6)/Sp(3), but not
symmetric.
• su(5) = sp(2) ⊕ m14, m14 = R ⊕ R

5 ⊕ ∆5 (recall Sp(2) ∼= Spin(5))
• 3 deformation parameters α, β, γ in the metric.

Thm.[AFH12]

• All metrics admit a characteristic connection for the Sp(3)-structures.
• The characteristic connection has full holonomy Sp(3) if α 6= β.
• The Sp(3)-structure is of type sp(3) if α = 1

4(
√

15βγ − β), of type V 189 if α = 1
12(9β −

√
15βγ), integrable if

β = 2α and γ = 6
5α, and of general type otherwise.

• The torsion is parallel if either β = α or (β = 2α and γ = 6
5α).

• The Riemannian curvature tensor has then 3 EV’s of mult. 1, 5 and 8 given by 5γ, 8α2+β2

β and 10α − 5
4(β + γ).

In particular, the metric is Einstein if β =
√

2α = 1√
8−1

γ. In this case the Ricci tensor is

Ricgαβγ =
5

2α2
gαβγ.
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