Universität

Ilka Agricola, Julia Becker-Bender, Thomas Friedrich, Jos Höll

Cartan's work on isoparametric hypersurfaces

Dfn. M^{m-1} immersed into \mathbb{R}^{m}, S^{m}, or H^{m} is called an isoparametric hypersurface if its principal curvatures are constant $[\Rightarrow$ constant mean curvature]. Set $p:=\#$ of different principal curvatures
Thm. In $S^{n-1} \subset \mathbb{R}^{n}[$ Cartan 1938-40]:

- If $p=1: M^{n-2}$ is a hypersphere in S^{n-1}
- If $p=2: M^{n-2}=S^{p}(r) \times S^{p}(s)$ for $p+q=n-2, r^{2}+s^{2}=1$
- If $p=3: M^{n-2}$ is a tube of constant radius over a generalized Veronese embedding of $\mathbb{K P}^{2}$ into S^{n-1} for
$\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O} \quad$ Thus, for $p=3, n$ must be $5,8,14$, or 26
Construction: use harmonic homogeneous polynomial F of degree p on \mathbb{R}^{n} satisfying
$\|\operatorname{grad} F\|^{2}=p^{2}\|x\|^{2 p-2}$
The level sets of $\left.F\right|_{S^{n-1}}$ define an isoparametric hypersurface family. For $p=3$, Cartan described explicitly the polynomial F.
Link to geometry: F can be understood as a symmetric rank p tensor Υ, and each level set M will be invariant under the stabilizer of $\Upsilon!$
If $M^{n-2} \subset S^{n-1}=\operatorname{SO}(n) / S O(n-1)$ is an orbit of $G \subset \operatorname{SO}(n)$, then it is isoparametric (because it is homogeneous):

| classif. of all $G \subset \operatorname{SO}(n)$ s.t.
 codim $\left.\right\|_{S n-1}($ princ. G-orbit) $)=1$
 or, equiv., codim $\left.\right\|_{\mathbb{R}^{n}}=2$ |
| :---: |\Rightarrow| classif. of homogeneous |
| :---: |
| isopar. hypersurfaces in S^{n-1} |

Needed: a classification of all irreducible reps. of $G \subset \operatorname{SO}(n)$ on \mathbb{R}^{n} with codimension 2 principal orbits.
Thm.[Hsiang ${ }^{2}$ / Lawson, 1970/71] These are exactly the isotropy representations of rank 2 symmetric spaces.
The proof produces a list, and it turns out to coincide with the list of isotropy representations.
Thm. [Takagi-Takahashi, 1972] Let $M^{n}=G / H$ compact symmetric space, $\mathrm{rk}=2, \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$.

- An H-orbit M of a unit vector in $S^{n-1} \subset \mathfrak{p}$ is an isoparametric hypersurface
- The principal curvatures and their multiplicities are computed from the root data,
for example: The order of the Weyl group is $2 p \Rightarrow$ only $p=1,2,3,4,6$ are possible
\Rightarrow In the case $p=3$, there are 4 symmetric spaces yielding isoparametric hypersurfaces: $\operatorname{SU}(3) / S O(3), \operatorname{SU}(3), \operatorname{SU}(6) / \operatorname{Sp}(3), E_{6} / F_{4}$

Description of their isotropy representations

Let $\mathbb{R}^{n}(n=5,8,14,26)$ be $\operatorname{Her}_{0}\left(\mathbb{K}^{3}\right)$, the Hermitian trace-free endomorphisms on $\mathbb{K}^{3}, \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ with the conjugation action of $H_{n}=\mathrm{SO}(3), \mathrm{SU}(3), \mathrm{Sp}(3)$, or F_{4}, resp. Define for $X, Y, Z \in \mathbb{R}^{n}$ a symmetric 3 -tensor by polarisation from tr

$$
\Upsilon(X, Y, Z):=2 \sqrt{3}\left[\operatorname{tr} X^{3}+\operatorname{tr} Y^{3}+\operatorname{tr} Z^{3}\right]-\operatorname{tr}(X+Y)^{3}-\operatorname{tr}(X+Z)^{3}-\operatorname{tr}(Y+Z)^{3}+\operatorname{tr}(X+Y+Z)^{3} .
$$

For $\mathbb{K}=\mathbb{H}, \mathbb{O}$, a second tensor is obtained as $\tilde{\Upsilon}(X, Y, Z):=\Upsilon(\bar{X}, \bar{Y}, \bar{Z})$ - it is not conjugate to Υ under $\operatorname{SO}(n)$
Thm. For $n=5,8,14,26: \quad H_{n}=\left\{A \in \mathrm{SO}(n): A^{*} \Upsilon=\Upsilon\right\}$ and for any basis $V_{1}, \ldots V_{n}$ of $\mathbb{R}^{n} \cong \operatorname{Her}_{0}\left(\mathbb{K}^{3}\right)$ - Υ is totally symmetric,

- Υ is trace-free, i. e. $\sum_{i} \Upsilon\left(X, V_{i}, V_{i}\right)=0$

In particular: Y determines 9 !
N.B. For $n=8,14, \exists$ an alternative tensor reducing $\mathrm{SO}(n)$ to $H_{n}: n=8$: a 3 -form, $n=14$: a 5 -form

H_{n}-structures on Riemannian manifolds

Dfn. For $n=5,8,14,26$: A n-mnfd with a H_{n}-structure is a Riemannian $\operatorname{mnfd}\left(M^{n}, g\right)$ with a reduction of the frame bundle $\mathcal{R}\left(M^{n}\right)$ to H_{n} and thus has automatically a 3 -tensor Υ with the properties above!
Dfn. A H_{n}-mnfd is called integrable if $\nabla^{g} \Upsilon=0\left(\nabla^{g}\right.$: Levi-Civita conn.) $\left(\Rightarrow \operatorname{Hol}_{0}\left(\nabla^{g}\right) \subset H_{n}\right)$.
Thm. [Nurowski, 2007] An integrable H_{n}-structure is isometric to one of the symmetric spaces G_{n} / H_{n}, i. e. $\operatorname{SU}(3) / S O(3), \mathrm{SU}(3), \operatorname{SU}(6) / \operatorname{Sp}(3), E_{6} / F_{4}$,
or one of their non-compact dual symmetric spaces.
I. Agricola, J. Becker-Bender, M. Bobinski, S. Chiossi, A. Fino, T. Friedrich and P. Nurowski looked at the case $n=5$. The case $n=8$ was studied by N. Hitchin, C. Puhle and I. Witt. I. Agricola, T. Friedrich and J. Hoell looked at the 14 dimensional case

Topological existence conditions: the case $H_{5}=\mathrm{SO}(3)$
\exists two non-equivalent embeddings $\mathrm{SO}(3) \rightarrow \mathrm{SO}(5)$: as upper diagonal block matrices: ' $\mathrm{SO}(3)_{\mathrm{st}}$ ' and by the irreducible 5 -dim. representation of $\mathrm{SO}(3)$: ' $\mathrm{SO}(3)_{\text {ir }}$ '
Dfn. Kervaire semi-characteristics:

$$
k\left(M^{5}\right):=\sum_{i=0}^{2} \operatorname{dim}_{\mathbb{R}}\left(H^{2 i}\left(M^{5} ; \mathbb{R}\right)\right) \quad \bmod 2, \quad \hat{\chi}_{2}\left(M^{5}\right):=\sum_{i=0}^{2} \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{i}\left(M^{5} ; \mathbb{Z}_{2}\right)\right) \quad \bmod 2 .
$$

Thm. [Lusztig-Milnor-Peterson 1969] $k\left(M^{5}\right)-\hat{\chi}_{2}\left(M^{5}\right)=w_{2}\left(M^{5}\right) \cup w_{3}\left(M^{i=0}\right)$.
In particular, if M^{5} is spin, then $k\left(M^{5}\right)=\hat{\chi}_{2}\left(M^{5}\right)$.
Thm. [Thomas 1967; Atiyah 1969] A cpt. oriented 5-mnfd admits a $\operatorname{SO}(3)_{s t}$-structure iff $w_{4}\left(M^{5}\right)=0, k\left(M^{5}\right)=0$.
Topological existence conditions for $\mathrm{SO}(3)_{i r}$-structures were investigated in [ABF11]:
Exa: $\quad M^{5}=\mathrm{SU}(3) / \mathrm{SO}(3)$ has an $\mathrm{SO}(3)_{i r}$-structure and $k\left(M^{5}\right)=1$ and $\hat{\chi}_{2}\left(M^{5}\right)=0$. In particular,
$M^{5}=\mathrm{SU}(3) / \mathrm{SO}(3)$ does not admit any $\mathrm{SO}(3)_{s t}$-structure!
Prop. M^{5} admits an $\mathrm{SO}(3)_{i r}$-structure iff there exists a 3-dim. real bundle E^{3} such that $T\left(M^{5}\right)=S_{0}^{2}\left(E^{3}\right)$.
Thm. Suppose that $T\left(M^{5}\right)=S_{0}^{2}\left(E^{3}\right)$. Then $p_{1}\left(M^{5}\right)=5 \cdot p_{1}\left(E^{3}\right)$; in particular, $p_{1}\left(M^{5}\right) / 5 \in H^{4}\left(M^{5} ; \mathbb{Z}\right)$ is integral. $w_{1}\left(M^{5}\right)=w_{4}\left(M^{5}\right)=w_{5}\left(M^{5}\right)=0, w_{2}\left(M^{5}\right)=w_{2}\left(E^{3}\right)$ and $w_{3}\left(M^{5}\right)=w_{3}\left(E^{3}\right)$.
Conjecture: M^{5} admits an $\mathrm{SO}(3)_{i r}$-structure iff $w_{4}\left(M^{5}\right)=0, \quad \hat{\chi}_{2}\left(M^{5}\right)=0, \quad \frac{p_{1}\left(M^{5}\right)}{5} \in H^{4}\left(M^{5} ; \mathbb{Z}\right)$.
Can only prove: Thm. A compact, s.c. spin mnfd admitting a $\mathrm{SO}(3)_{i r^{-}}$or $\mathrm{SO}(3)_{s t^{-} \text {-str. is parallelizable. }}$. Cor. S^{5} has none of both $\mathrm{SO}(3)$-structures.
Exa: The connected sums $(2 l+1) \#\left(S^{2} \times S^{3}\right)$ are s.c., spin and admit a $\mathrm{SO}(3)_{s t}$-structure.
A rather sophisticated construction yields:
Thm. There exist mnfds $p \mathbb{C P}^{2} \# q \overline{\mathbb{C P}^{2}}$ such that every S^{1}-bundle over them admits a $\mathrm{SO}_{i r}$-structure. (for

Topological existence conditions: the case $H_{14}=\mathrm{Sp}(3)$ [AFH12]

From $H^{*}(B \operatorname{Sp}(3), \mathbb{Z})=\mathbb{Z}\left[q_{4}, q_{8}, q_{12}\right]$ (with $q_{i} \in H^{i}$), one deduces:
Thm. Every compact 14 -dimensional mnfd with a $\operatorname{Sp}(3)$-structure satisfies $\chi(M)=0$ and $w_{i}(M)=0$ except for $i=4,8,12$.
In particular, it is orientable and spin; for example, S^{14} has no $\mathrm{Sp}(3)$-structure.
Open problem: sufficient and necessary conditions !
Some non-compact examples: use isom. $\operatorname{Spin}(5) \cong \operatorname{Sp}(2) \subset \operatorname{Sp}(3)$ and the decomposition $\mathbb{R}^{14} \stackrel{\text { Spin(5) }}{=} \mathbb{R} \oplus \mathbb{R}^{5} \oplus \Delta_{5}$ (the 5-dim. spin rep.)
Every S^{1}-bundle M^{14} over one of the following

- spin bundle of a 5 -dim. spin $\operatorname{mnfd} X^{5}$ (=8-dim VB)
- associated bundle $\mathcal{R}\left(Y^{8}\right) \times_{\operatorname{Spin}(5)} \mathbb{R}^{5}$ over an 8 -dim. mnfd Y^{8} with an $\operatorname{Sp}(2)$-structure (hyper-Kähler quaternionic-Kähler etc.) carries a $\operatorname{Sp}(3)$-structure.

Characteristic connections and types of H_{n}-structures
General philosophy: Given a mnfd M^{n} with G-structure $(G \subset S O(n))$, replace ∇^{g} by a metric connection ∇ with torsion that preserves the geometric structure!

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \Lambda^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

If existent, this connection is called the 'characteristic connection'.
Thm:[AFH12] The characteristic connection is unique if the action of G on \mathbb{R}^{n} is not the adjoint representation (proof makes heavy use of skew holonomy theorem).
Let $T \in \Lambda^{3}(M)$ be the torsion of the char. connection ∇. Decompose $\Lambda^{3}\left(\mathbb{R}^{n}\right)$ under $H_{n^{-}}$action, for example: $\Lambda^{3}\left(\mathbb{R}^{5}\right) \cong \Lambda^{2}\left(\mathbb{R}^{5}\right) \cong \mathfrak{s o}(5)=\mathfrak{s o}(3)_{\text {ir }} \oplus V^{7}, \quad \Lambda^{3}\left(\mathbb{R}^{14}\right) \cong \mathfrak{s p}(3) \oplus V^{70} \oplus V^{84} \oplus V^{189}$
 contributions in all parts of $\Lambda^{3}(M)$.

Homogeneous examples: the case $H_{5}=\mathrm{SO}(3)$

Exa 1: 'twisted' Stiefel mnfd $V_{2,4}^{\mathrm{ir}}=\mathrm{SO}(3) \times \mathrm{SO}(3) / \mathrm{SO}(2)_{\mathrm{ir}}$
Recall: classical Stiefel manifold $V_{2,4}^{\text {st }}=\mathrm{SO}(4) / \mathrm{SO}(2)$: Carries an $\mathrm{SO}(3)_{\text {st }}$ structure, an Einstein-Sasaki metric, 2 Riemannian Killing spinors [Jensen 75, Friedrich 1981]
Consider now $H:=\mathrm{SO}(2) \subset \mathrm{SO}(3)_{\mathrm{ir}}, H \ni A \longmapsto\left(A, A^{2}\right) \in \mathrm{SO}(3) \times \mathrm{SO}(3)=: G, V_{2,4}^{\mathrm{ir}}:=\mathrm{SO}(3) \times \mathrm{SO}(3) / \mathrm{SO}(2)$ ir With $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, its isotropy rep. decomposes $\mathfrak{m}=\mathfrak{n} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$, thus the metric has three parameters $\alpha, \beta, \gamma>0$.
Thm.[ABF11]

- If $\alpha \beta+4 \gamma \alpha-25 \beta \gamma=0$, there exists a characteristic connection for the $\mathrm{SO}(3)_{\text {ir }}$ structure.
- Its holonomy is $\mathrm{SO}(2)_{\text {ir }}$ and its torsion is parallel.
- The metric of a $\mathrm{SO}(3)$ ir structure with char. conn. is naturally reductive if and only if $\alpha=5 \beta=5 \gamma$.
- \exists_{1} Einstein metric, not nat. reductive.
- \exists two invariant almost contact metric structures. Both admit a unique characteristic connection.
- The contact structure is Sasakian (but never Einstein) if and only if $\alpha=25 \beta^{2}=100 \gamma^{2}$; it is in addition an
$\mathrm{SO}(3)_{\text {ir }}$ structure for $(\alpha, \beta, \gamma)=\left(\frac{25}{36}, \frac{1}{6}, \frac{1}{12}\right)$.
Exa 2: $W^{\text {ir }}=\mathbb{R} \times\left(\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}\right) / \mathrm{SO}(2)_{\text {ir }}$
Decompose again $\mathfrak{m}=\mathfrak{n}^{\mu} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ with the same Ansatz for the metric.
Thm.[ABF11]
$\bullet \forall \alpha, \beta, \gamma>0$ s.t. $\alpha \geq 12 \gamma$, the $\mathrm{SO}(3)_{\text {ir }}$ structure admits a characteristic connection.
- $\forall \alpha, \beta, \gamma>0$ s.t. $\alpha \geq 12 \gamma$, the $\mathrm{SO}(3)_{\text {ir }}$ structure admits a characteristic connection.
- Its holonomy is $\mathrm{SO}(3)_{\text {ir }} \subset \mathrm{SO}(5)$. Its torsion is not parallel, but it is divergence-free, $\delta T^{\alpha \beta \gamma}=0$.
- The metric of the $\mathrm{SO}(3)_{\text {ir }}$ str. with char. conn. is never naturally reductive and never Einstein.
- \nexists a compatible contact structure.
$\underline{\text { Consequence: } \mathrm{SO}(3)_{\text {ir }} \text { structures are different from contact str. and define a new type of geometry on } 5 \text {-mnfds }}$
Homogeneous examples: the case $H_{14}=\operatorname{Sp}(3)$
Exa 1: Higher Aloff-Wallach mnfd $M^{14}=\operatorname{SU}(4) / S^{1}$
Embed S^{1} as $\operatorname{diag}\left(e^{-i t}, e^{-i t}, e^{i t}, e^{-i t}\right) \subset \operatorname{SU}(4)$.
Embed S^{1} as $\operatorname{diag}\left(e^{-i t}, e^{-i t}, e^{i t}, e^{-i t}\right) \subset S U(4)$.
The splitting $\mathfrak{s u}(4)=\mathbb{R} \oplus \mathfrak{m}^{14}$ leads to the decomposition $\mathfrak{m}^{14}=\bigoplus_{i=1}^{4} V_{i} \oplus \bigoplus_{j=1}^{6} W_{j}, \quad \operatorname{dim} V_{i}=2, \quad \operatorname{dim} W_{j}=1$
under the action of S^{1}. There are invariant metrics g depending on $\alpha_{1}, \ldots, \alpha_{10}$.
Thm. [AFH12]
$-\exists$ a 3-dim. space of metrics, depending on $\alpha, \beta, \gamma>0$, such that the $\operatorname{Sp}(3)$-structure admits a char. connection.
- If there exists a characteristic connection, its torsion is parallel.
- The $S p(3)$ - structure is always of general type, i. e. its torsion has contributions in all summands of $\Lambda^{3}(M)$
- The Riemannian Ricci curvature has Eigenvalues $6 \alpha-\beta, 6 \alpha-\gamma, 6 \alpha-\beta-\gamma$, each with multiplicity 4 and 4β, 4γ with mult. 1. Thus its scalar curvature is
and the metric is never Einstein. $\quad s^{c a l}{ }^{g_{\alpha, \beta, \gamma}}=\frac{2(18 \alpha-\beta-\gamma)}{\alpha^{2}}$
Exa 2: The homogeneous space $M^{14}=\operatorname{SU}(5) / \operatorname{Sp}(2)$ as a $\operatorname{mnfd} M^{14}$ is the same as $\operatorname{SU}(6) / \operatorname{Sp}(3)$, but not symmetric.
$\bullet \mathfrak{s u}(5)=\mathfrak{s p}(2) \oplus \mathfrak{m}^{14}, \mathfrak{m}^{14}=\mathbb{R} \oplus \mathbb{R}^{5} \oplus \Delta_{5}($ recall $\operatorname{Sp}(2) \cong \operatorname{Spin}(5))$
- 3 deformation parameters α, β, γ in the metric.

Thm. [AFH12]

- All metrics admit a characteristic connection for the $\operatorname{Sp}(3)$-structures.
- The characteristic connection has full holonomy $\operatorname{Sp}(3)$ if $\alpha \neq \beta$.
- The $\operatorname{Sp}(3)$-structure is of type $\mathfrak{s p}(3)$ if $\alpha=\frac{1}{4}(\sqrt{15 \beta \gamma}-\beta)$, of type V^{189} if $\alpha=\frac{1}{12}(9 \beta-\sqrt{15 \beta \gamma})$, integrable if
$\beta=2 \alpha$ and $\gamma=\frac{6}{5} \alpha$, and of general type otherwise.
- The torsion is parallel if either $\beta=\alpha$ or $\left(\beta=2 \alpha\right.$ and $\left.\gamma=\frac{6}{5} \alpha\right)$.
- The Riemannian curvature tensor has then 3 EV's of mult. 1,5 and 8 given by $5 \gamma, \frac{8 \alpha^{2}+\beta^{2}}{\beta}$ and $10 \alpha-\frac{5}{4}(\beta+\gamma)$ In particular, the metric is Einstein if $\beta=\sqrt{2} \alpha=\frac{1}{\sqrt{8}-1} \gamma$. In this case the Ricci tensor is

$$
\operatorname{Ric}^{g_{\alpha \beta \gamma}}=\frac{5}{2 \alpha^{2}} g_{\alpha \beta \gamma}
$$

[ABF11] I. Agricola, J. Becker-Bender, T. Friedrich On the topology and the geometry of SO(3)-manifolds
Ann. Global Anal. Geom. 40 (2011), pp. 67-84.
[AFH12] I. Agricola, T. Friedrich, J. Höll, $\mathrm{Sp}(3)$ structures on 14-manifolds to appear.

