Geometries modelled on some rank two symmetric spaces
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Cartan’s work on isoparametric hypersurfaces

Dfn. M™ 1 immersed into R™, S™ or H™ is called an isoparametric hypersurface if its principal curvatures
are constant [= constant mean curvature|. Set p := #£ of different principal curvatures

Thm. In S~ ¢ R” [Cartan 1938-40]:

o If p=1. M" 2 is a hypersphere in S"~!

o lfp=2 M" 2 =28P(r)x SP(s)forp+q=n—2, r° +s> =1

o If p=3: M2 is a tube of constant radius over a generalized Veronese embedding of KP? into S~ for
K=R,C H, O Thus, for p = 3, n must be 5,8, 14, or 26 !

Construction: use harmonic homogeneous polynomial F' of degree p on R satisfying

|grad F||* = p?||a|| P~
The level sets of F } gn1 define an isoparametric hypersurtace tamily. For p = 3, Cartan described explicitly the
polynomial F'.
Link to geometry: F' can be understood as a symmetric rank p tensor T, and each level set M will be invariant
under the stabilizer of T

If M"=2 c S" 1 =80(n)/SO(n — 1) is an orbit of G C SO(n), then it is isoparametric (because it is homoge-
neous):

classif. of all G C SO(n) s.t.
codim} gn1 (princ. G-orbit)=1 =
or, equiv., Codim|Rn:2

classit. of homogeneous

isopar. hypersurfaces in S"1

Needed: a classification of all irreducible reps. of G C SO(n) on R™ with codimension 2 principal orbits.

Thm.[Hsiang? / Lawson, 1970/71] These are exactly the isotropy representations of rank 2 symmetric spaces.

The proof produces a list, and it turns out to coincide with the list of isotropy representations.

Thm.[Takagi-Takahashi, 1972] Let M"™ = G/H compact symmetric space, Tk =2, g =0h ® p.
e An H-orbit M of a unit vector in S~ C p is an isoparametric hypersurface.

e The principal curvatures and their multiplicities are computed from the root data,

for example: The order of the Weyl group is 2p = only p = 1,2, 3,4, 6 are possible

= In the case p = 3, there are 4 symmetric spaces yielding isoparametric hypersurfaces:

SU(3)/50(3), SU(3), SU(6)/Sp(3), Ee/F)

Description of their isotropy representations

Let R™ (n = 5,8,14, 26) be Herg(K?), the Hermitian trace-free endomorphisms on K3, K = R, C, H, O with the
conjugation action of Hy = SO(3),SU(3), Sp(3), or Fy, resp.
Define for XY, Z € R"™ a symmetric 3-tensor by polarisation from tr:

Y(X,V,Z) =238 X2+ tr Y + 0 Z) —tr( X + V) —tr (X + 2 —tr (Y + 2 + tr (X + YV + 2)°,

For K = H, O, a second tensor is obtained as T(X,Y, Z) := Y(X,Y, Z) - it is not conjugate to T under SO(n).

Thm. Forn =5,8,14,26: H, = {A € SO(n) : A*T =T} and for any basis V], ...V}, of R" = Her(K?)
e T is totally symmetric,

o T is trace-free, i.e. > . T(X,V,,V;) =0,
e T satisfies the identity (¢: metric) ;g Sj T(X,Y,V))Y(Z,U,V;) = E g(X,Y)g(Z,U)

XY.7 i XY.Z

In particular: T determines ¢!

N.B. For n = 8,14, 3 an alternative tensor reducing SO(n) to H,: n = 8: a 3-form, n = 14: a 5-form

H,-structures on Riemannian manifolds

Dfn. For n = 5,8,14,26: A n-mnfd with a Hy-structure is a Riemannian mnfd (M", g) with a reduction of the
frame bundle R(M™") to Hy, and thus has automatically a 3-tensor T with the properties above!

Dfn. A Hy,-mnfd is called integrable it VIT = 0 (VI: Levi-Civita conn.) (= Holy(VY) C H,).

Thm. [Nurowski, 2007] An integrable Hy-structure is isometric to one of the symmetric spaces Gy, /Hp, i.e.
SU(3)/50(3), SU(3), SU(6)/Sp(3), Ee/Fu,

or one of their non-compact dual symmetric spaces.

[. Agricola, J. Becker-Bender, M. Bobinski, S. Chiossi, A. Fino, T. Friedrich and P. Nurowski looked at the case
n = 5. The case n = 8 was studied by N. Hitchin, C. Puhle and I. Witt. 1. Agricola, T. Friedrich and J. Hoell
looked at the 14 dimensional case.

Topological existence conditions: the case H; = SO(3)

3 two non-equivalent embeddings SO(3) — SO(5): as upper diagonal block matrices: ‘SO(3)y" and by the irre-
ducible 5-dim. representation of SO(3): ‘SO(3);,".
Din. Kervaire semi-characteristics:

2 2
B(M?) = " dimg (H*(M”R)) mod 2,  xa(M?):=> dimg, (H;(M":Zy)) mod 2
=0

1=0 1
Thm. [Lusztig-Milnor-Peterson 1969 /-C(M5) — )QQ(ME)) — wQ(M5) U wg(M5>.
In particular, if M? is spin, then k(M?°) = xo(M?).

Thm. [Thomas 1967; Ativah 1969] A cpt. oriented 5-mnfd admits a SO(3)g-structure iff wy(M°) = 0, k(M) = 0.

Topological existence conditions for SO(3);,-structures were investigated in [ABF11]:

Exa: M° = SU(3)/SO(3) has an SO(3);-structure and k(M°) = 1 and xo(M°) = 0. In particular,
M? = SU(3)/SO(3) does not admit any SO(3)gm-structure!

Prop. M® admits an SO(3);,-structure iff there exists a 3-dim. real bundle E? such that T(M?) = S3(E?).

Thm. Suppose that T(M?) = S5(E?). Then py(M?) = 5 - p1(E%); in particular, p1(M°)/5 € HY(M?;7) is
integral. wy(M?) = wy(M?>) = ws(M?) = 0, wo(M?) = wa( E3) and ws(M°) = w3(E?).

5
Conjecture: M° admits an SO(3);,-structure iff wy(M°) =0, x2(M?>) =0, % c HYM>: 7).

Can only prove:  Thm. A compact, s.c. spin mnfd admitting a SO(3);,- or SO(3)g-str. is parallelizable.

Cor. S° has none of both SO(3)-structures.
Exa: The connected sums (20 4+ 1)#(S? x S3) are s.c., spin and admit a SO(3)g-structure.

A rather sophisticated construction yields:

Thm. There exist mnfds p CP?#q CP? such that every S'-bundle over them admits a SO;,-structure. (for
example: (p,q) = (21, 1), (43,3), (197,17)...)

Topological existence conditions: the case Hi4 = Sp(3) [AFH12]

From H*(BSp(3),7Z) = Z]q4, g, q12] (with ¢; € H"), one deduces:

Thm. Every compact 14-dimensional mnfd with a Sp(3)-structure satisfies x(M) = 0 and w;(M) = 0 except for
i— 4,812

In particular, it is orientable and spin; for example, S'* has no Sp(3)-structure.
Open problem: sufficient and necessary conditions !

Some non-compact examples: use isom. Spin(5) = Sp(2) C Sp(3) and the decomposition

Spin(b
R4 PI(®) R & R @ As (the 5-dim. spin rep.)

Every S1-bundle M over one of the following
e spin bundle of a 5-dim. spin mnfd X° (= 8-dim VB)

e associated bundle R(Y®) X Spin(5) R° over an 8-dim. mnfd Y® with an Sp(2)-structure (hyper-Kahler,
quaternionic-Kahler etc.) carries a Sp(3)-structure.

Characteristic connections and types of H,-structures

General philosophy: Given a mnfd M" with G-structure (G C SO(n)), replace VI by a metric connection
V with torsion that preserves the geometric structure!

torsion: T(X,Y,Z) = g(VxY —VyX — [X,Y],2)
Special case: require T € A3(M™) (< same geodesics as V)
= 9(VxY,Z) = g(V4Y. 2) +5T(X,Y, Z)

If existent, this connection is called the ‘characteristic connection’.

Thm:[AFH12] The characteristic connection is unique if the action of G on R" is not the adjoint representation

(proof makes heavy use of skew holonomy theorem).

Let T € A’(M) be the torsion of the char. connection V. Decompose A3(R™) under Hy-action, for example:
A(R®) =2 A%(R°) Zs0(5) =so(3), @ VI, AR =ep3)aV Ve Ve yI®

We say that a H,-structure is of type X,V @ Z.. . if T € X,Y & Z... C A3(M) and of general type if T has
contributions in all parts of A3(M).

Homogeneous examples: the case H; = SO(3)

Exa 1: ‘twisted’ Stiefel mnfd V%, = SO(3) x SO(3)/SO(2);
Recall: classical Stiefel manifold V3% = SO(4)/SO(2): Carries an SO(3)g structure, an Einstein-Sasaki metric, 2
Riemannian Killing spinors [Jensen 75, Friedrich 1981]

Consider now H := SO(2) C SO(3);;,H 2 A+ (A, AQ) e SO(3) x SO(3) =: G, ‘/211"4 = S0(3) x SO(3)/SO(2);;-
With g = h @ m, its isotropy rep. decomposes m = n@ my G mo, thus the metric has three parameters a, 3, v > 0.

Thm.[ABF11]

o If aff +4~vya — 256~ = 0, there exists a characteristic connection for the SO(3);, structure.

e Its holonomy is SO(2);; and its torsion is parallel.

e The metric of a SO(3);; structure with char. conn. is naturally reductive if and only if o = 58 = 57.

e i Einstein metric, not nat. reductive.

e 1 two invariant almost contact metric structures. Both admit a unique characteristic connection.

e The contact structure is Sasakian (but never Einstein) if and only if a = 2552 = 10072; it is in addition an

SO(3);, structure for (a, 3,7) = (%, %, 1—12)

Exa 2: W" =R x (SL(2,R) x R?)/SO(2);,
Decompose again m = n* @ my @ my with the same Ansatz for the metric.

Thm.[ABF11]

oV a,3,v>0st a>12v, the SO(3); structure admits a characteristic connection.

e [ts holonomy is SO(3);, C SO(5). Its torsion is not parallel, but it is divergence-free, STP = 0.

e The metric of the SO(3);; str. with char. conn. is never naturally reductive and never Einstein.

e A a compatible contact structure.

Consequence: SO(3);, structures are different from contact str. and define a new type of geometry on 5-mnfds.

Homogeneous examples: the case Hi4 = Sp(3)

Exa 1: Higher Aloff-Wallach mnfd M™ = SU(4)/5!

Embed St as diag(e ™", e, ", e c SU(4). A .

The splitting su(4) = R @ ml? leads to the decomposition mlt = GB Vi @ @ Wi, dimV; =2, dimW; =1
i=1 j=1

under the action of S1. There are invariant metrics ¢ depending on a7, . . ., aqp.

Thm.[AFH12]

e 7 a 3-dim. space of metrics, depending on «, 3,y > 0, such that the Sp(3)-structure admits a char. connection.
e If there exists a characteristic connection, its torsion is parallel.

o The Sp(3)- structure is always of general type, i.e. its torsion has contributions in all summands of A3(M).

e The Riemannian Ricci curvature has Eigenvalues 6ac — 3, 6 — 7, 6 — (3 — 7y, each with multiplicity 4 and 44,
4~ with mult. 1. Thus its scalar curvature is

2(18a — 3 — )
o2

scal9etn =
and the metric 1s never Einstein.

Exa 2: The homogeneous space M = SU(5)/Sp(2) as a mnfd M is the same as SU(6)/Sp(3), but not
symmetric.

o su(5) =sp(2) @m!* m!* =R PR @ Aj (recall Sp(2) = Spin(5))

e 3 deformation parameters «, 3,7 in the metric.

Thm.[AFH12]

e All metrics admit a characteristic connection for the Sp(3)-structures.

e The characteristic connection has full holonomy Sp(3) if a # .

e The Sp(3)-structure is of type sp(3) if a = %(\/1567 — 1), of type V¥ if o = 1—12(95 — /1507), integrable if
[ =2a and v = goz, and of general type otherwise.

e The torsion is parallel if either § = « or (8 = 2« and v = goz).

e The Riemannian curvature tensor has then 3 EV’s of mult. 1, 5 and 8 given by 57, 80‘25 F and 10a — %(ﬁ + 7).

In particular, the metric is Einstein if 8 = v/2a = ﬁfy. In this case the Ricci tensor is
chgaﬁ’)/ — i
B 2@29@57 ‘
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