Geometries modelled on some rank two symmetric spaces

Ilka Agricola, Julia Becker-Bender, Thomas Friedrich, Jos Höll

Cartan's work on isoparametric hypersurfaces

Dfn. M^{m-1} immersed into \mathbb{R}^m, S^m , or H^m is called an *isoparametric hypersurface* if its principal curvatures are constant [\Rightarrow constant mean curvature]. Set p := # of different principal curvatures

Thm. In $S^{n-1} \subset \mathbb{R}^n$ [Cartan 1938-40]:

• If p = 1: M^{n-2} is a hypersphere in S^{n-1}

• If p = 2: $M^{n-2} = S^p(r) \times S^p(s)$ for p + q = n - 2, $r^2 + s^2 = 1$

• If p = 3: M^{n-2} is a tube of constant radius over a generalized Veronese embedding of \mathbb{KP}^2 into S^{n-1} for $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ Thus, for p = 3, *n* must be 5, 8, 14, or 26 !

Construction: use harmonic homogeneous polynomial F of degree p on \mathbb{R}^n satisfying

 $\|\text{grad }F\|^2 = p^2 \|x\|^{2p-2}$

The level sets of $F|_{S^{n-1}}$ define an isoparametric hypersurface family. For p = 3, Cartan described explicitly the polynomial F.

Link to geometry: F can be understood as a symmetric rank p tensor Υ , and each level set M will be invariant under the stabilizer of Υ !

If $M^{n-2} \subset S^{n-1} = SO(n)/SO(n-1)$ is an orbit of $G \subset SO(n)$, then it is isoparametric (because it is homogeneous):

Topological existence conditions: the case $H_{14} = \text{Sp}(3)$ [AFH12] From $H^*(BSp(3), \mathbb{Z}) = \mathbb{Z}[q_4, q_8, q_{12}]$ (with $q_i \in H^i$), one deduces: **Thm.** Every compact 14-dimensional mnfd with a Sp(3)-structure satisfies $\chi(M) = 0$ and $w_i(M) = 0$ except for i = 4, 8, 12.In particular, it is orientable and spin; for example, S^{14} has no Sp(3)-structure. **Open problem**: sufficient and necessary conditions ! **Some non-compact examples:** use isom. $Spin(5) \cong Sp(2) \subset Sp(3)$ and the decomposition $\mathbb{R}^{14} \stackrel{\text{Spin}(5)}{=} \mathbb{R} \oplus \mathbb{R}^5 \oplus \Delta_5 \text{ (the 5-dim. spin rep.)}$ Every S^1 -bundle M^{14} over one of the following • spin bundle of a 5-dim. spin mnfd X^5 (= 8-dim VB) • associated bundle $\mathcal{R}(Y^8) \times_{\text{Spin}(5)} \mathbb{R}^5$ over an 8-dim. mnfd Y^8 with an Sp(2)-structure (hyper-Kähler, quaternionic-Kähler etc.) carries a Sp(3)-structure.

Characteristic connections and types of H_n -structures

classif. of all $G \subset SO(n)$ s.t. classif. of homogeneous $\operatorname{codim}_{S^{n-1}}(\operatorname{princ.} G\operatorname{-orbit})=1 \Rightarrow$ isopar. hypersurfaces in S^{n-1} or, equiv., $\operatorname{codim}|_{\mathbb{R}^n}=2$

Needed: a classification of all irreducible reps. of $G \subset SO(n)$ on \mathbb{R}^n with codimension 2 principal orbits.

Thm.[Hsiang² / Lawson, 1970/71] These are exactly the isotropy representations of rank 2 symmetric spaces. The proof produces a list, and it turns out to coincide with the list of isotropy representations.

Thm. [Takagi-Takahashi, 1972] Let $M^n = G/H$ compact symmetric space, $\mathrm{rk} = 2$, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}$. • An *H*-orbit *M* of a unit vector in $S^{n-1} \subset \mathfrak{p}$ is an isoparametric hypersurface. • The principal curvatures and their multiplicities are computed from the root data, for example: The order of the Weyl group is $2p \Rightarrow$ only p = 1, 2, 3, 4, 6 are possible

 \Rightarrow In the case p = 3, there are 4 symmetric spaces yielding isoparametric hypersurfaces:

 $SU(3)/SO(3), SU(3), SU(6)/Sp(3), E_6/F_4$

Description of their isotropy representations

Let \mathbb{R}^n (n = 5, 8, 14, 26) be $\operatorname{Her}_0(\mathbb{K}^3)$, the Hermitian trace-free endomorphisms on \mathbb{K}^3 , $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ with the conjugation action of $H_n = SO(3), SU(3), Sp(3), or F_4$, resp. Define for $X, Y, Z \in \mathbb{R}^n$ a symmetric 3-tensor by polarisation from tr:

 $\Upsilon(X,Y,Z) := 2\sqrt{3}[\operatorname{tr} X^3 + \operatorname{tr} Y^3 + \operatorname{tr} Z^3] - tr(X+Y)^3 - \operatorname{tr} (X+Z)^3 - \operatorname{tr} (Y+Z)^3 + \operatorname{tr} (X+Y+Z)^3.$

For $\mathbb{K} = \mathbb{H}, \mathbb{O}$, a second tensor is obtained as $\widetilde{\Upsilon}(X, Y, Z) := \Upsilon(\overline{X}, \overline{Y}, \overline{Z})$ – it is not conjugate to Υ under SO(n). **Thm.** For n = 5, 8, 14, 26: $H_n = \{A \in SO(n) : A^* \Upsilon = \Upsilon\}$ and for any basis V_1, \ldots, V_n of $\mathbb{R}^n \cong Her_0(\mathbb{K}^3)$ • Υ is totally symmetric,

• Υ is trace-free, i.e. $\sum_{i} \Upsilon(X, V_i, V_i) = 0$, $\sum c \sum \Upsilon(X, Y, V_i) \Upsilon(Z, U, V_i) = \sum c g(X, Y) g(Z, U)$ • Υ satisfies the identity (g: metric) X,Y,Z i In particular: Υ determines g!

General philosophy: Given a multiplication of the formula of th ∇ with torsion that preserves the geometric structure!

torsion: $T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)$

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

 $\Rightarrow g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z)$

If existent, this connection is called the 'characteristic connection'.

Thm: [AFH12] The characteristic connection is unique if the action of G on \mathbb{R}^n is not the adjoint representation (proof makes heavy use of skew holonomy theorem).

Let $T \in \Lambda^3(M)$ be the torsion of the char. connection ∇ . Decompose $\Lambda^3(\mathbb{R}^n)$ under H_n -action, for example:

 $\Lambda^3(\mathbb{R}^5) \cong \Lambda^2(\mathbb{R}^5) \cong \mathfrak{so}(5) = \mathfrak{so}(3)_{\mathrm{ir}} \oplus V^7, \quad \Lambda^3(\mathbb{R}^{14}) \cong \mathfrak{sp}(3) \oplus V^{70} \oplus V^{84} \oplus V^{189}$

We say that a H_n -structure is of type $X, Y \oplus Z \dots$ if $T \in X, Y \oplus Z \dots \subset \Lambda^3(M)$ and of general type if T has contributions in all parts of $\Lambda^3(M)$.

Homogeneous examples: the case $H_5 = SO(3)$

Exa 1: 'twisted' Stiefel mnfd $V_{2,4}^{\text{ir}} = \text{SO}(3) \times \text{SO}(3)/\text{SO}(2)_{\text{ir}}$ Recall: classical Stiefel manifold $V_{24}^{\text{st}} = \text{SO}(4)/\text{SO}(2)$: Carries an $\text{SO}(3)_{\text{st}}$ structure, an Einstein-Sasaki metric, 2 Riemannian Killing spinors [Jensen 75, Friedrich 1981]

Consider now $H := \mathrm{SO}(2) \subset \mathrm{SO}(3)_{\mathrm{ir}}, H \ni A \longmapsto (A, A^2) \in \mathrm{SO}(3) \times \mathrm{SO}(3) =: G, V_{2,4}^{\mathrm{ir}} := \mathrm{SO}(3) \times \mathrm{SO}(3)/\mathrm{SO}(2)_{\mathrm{ir}}.$ With $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, its isotropy rep. decomposes $\mathfrak{m} = \mathfrak{n} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$, thus the metric has three parameters $\alpha, \beta, \gamma > 0$.

Thm.[ABF11]

• If $\alpha\beta + 4\gamma\alpha - 25\beta\gamma = 0$, there exists a characteristic connection for the SO(3)_{ir} structure. • Its holonomy is $SO(2)_{ir}$ and its torsion is parallel.

• The metric of a SO(3)_{ir} structure with char. conn. is naturally reductive if and only if $\alpha = 5\beta = 5\gamma$.

• \exists_1 Einstein metric, not nat. reductive.

N.B. For $n = 8, 14, \exists$ an alternative tensor reducing SO(n) to H_n : n = 8: a 3-form, n = 14: a 5-form

H_n -structures on Riemannian manifolds

Dfn. For n = 5, 8, 14, 26: A *n*-mnfd with a H_n -structure is a Riemannian mnfd (M^n, g) with a reduction of the frame bundle $\mathcal{R}(M^n)$ to H_n and thus has automatically a 3-tensor Υ with the properties above!

Dfn. A H_n -much is called *integrable* if $\nabla^g \Upsilon = 0$ (∇^g : Levi-Civita conn.) (\Rightarrow Hol₀(∇^g) $\subset H_n$).

Thm. [Nurowski, 2007] An integrable H_n -structure is isometric to one of the symmetric spaces G_n/H_n , i.e. $SU(3)/SO(3), SU(3), SU(6)/Sp(3), E_6/F_4,$

or one of their non-compact dual symmetric spaces.

I. Agricola, J. Becker-Bender, M. Bobinski, S. Chiossi, A. Fino, T. Friedrich and P. Nurowski looked at the case n = 5. The case n = 8 was studied by N. Hitchin, C. Puhle and I. Witt. I. Agricola, T. Friedrich and J. Hoell looked at the 14 dimensional case.

Topological existence conditions: the case $H_5 = SO(3)$

 \exists two non-equivalent embeddings SO(3) \rightarrow SO(5): as upper diagonal block matrices: 'SO(3)_{st}' and by the irreducible 5-dim. representation of SO(3): 'SO(3)_{ir}'. **Dfn.** Kervaire semi-characteristics:

$$k(M^{5}) := \sum_{i=0}^{2} \dim_{\mathbb{R}} \left(H^{2i}(M^{5}; \mathbb{R}) \right) \mod 2 , \qquad \hat{\chi}_{2}(M^{5}) := \sum_{i=0}^{2} \dim_{\mathbb{Z}_{2}} \left(H_{i}(M^{5}; \mathbb{Z}_{2}) \right) \mod 2 .$$

Thm. [Lusztig-Milnor-Peterson 1969] $k(M^{5}_{i}) - \hat{\chi}_{2}(M^{5}_{i}) = w_{2}(M^{5}) \cup w_{3}(M^{5}).$

• \exists two invariant almost contact metric structures. Both admit a unique characteristic connection.

• The contact structure is Sasakian (but never Einstein) if and only if $\alpha = 25\beta^2 = 100\gamma^2$; it is in addition an SO(3)_{ir} structure for $(\alpha, \beta, \gamma) = (\frac{25}{36}, \frac{1}{6}, \frac{1}{12})$.

Exa 2: $W^{\text{ir}} = \mathbb{R} \times (\text{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^2) / \text{SO}(2)_{\text{ir}}$ Decompose again $\mathfrak{m} = \mathfrak{n}^{\mu} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$ with the same Ansatz for the metric.

Thm.[ABF11]

• $\forall \alpha, \beta, \gamma > 0$ s.t. $\alpha \ge 12\gamma$, the SO(3)_{ir} structure admits a characteristic connection. • Its holonomy is $SO(3)_{ir} \subset SO(5)$. Its torsion is *not* parallel, but it is divergence-free, $\delta T^{\alpha\beta\gamma} = 0$. • The metric of the $SO(3)_{ir}$ str. with char. conn. is never naturally reductive and never Einstein. • \square a compatible contact structure.

Consequence: $SO(3)_{ir}$ structures are different from contact str. and define a new type of geometry on 5-mnfds.

Homogeneous examples: the case $H_{14} = Sp(3)$

Exa 1: Higher Aloff-Wallach mnfd $M^{14} = SU(4)/S^1$ Embed S^1 as diag $(e^{-it}, e^{-it}, e^{it}, e^{-it}) \subset SU(4)$. The splitting $\mathfrak{su}(4) = \mathbb{R} \oplus \mathfrak{m}^{14}$ leads to the decomposition $\mathfrak{m}^{14} = \bigoplus V_i \oplus \bigoplus W_j$, dim $V_i = 2$, dim $W_j = 1$

under the action of S^1 . There are invariant metrics g depending on $\alpha_1, \ldots, \alpha_{10}$.

Thm.[AFH12]

• \exists a 3-dim. space of metrics, depending on $\alpha, \beta, \gamma > 0$, such that the Sp(3)-structure admits a char. connection. • If there exists a characteristic connection, its torsion is parallel.

• The Sp(3)- structure is always of general type, i.e. its torsion has contributions in all summands of $\Lambda^3(M)$. • The Riemannian Ricci curvature has Eigenvalues $6\alpha - \beta$, $6\alpha - \gamma$, $6\alpha - \beta - \gamma$, each with multiplicity 4 and 4β , 4γ with mult. 1. Thus its scalar curvature is

and the metric is never Einstein.

$$scal^{g_{\alpha,\beta,\gamma}} = \frac{2(18\alpha - \beta - \gamma)}{\alpha^2}$$

In particular, if M^5 is spin, then $k(M^5) = \hat{\chi}_2(M^5)$.

Thm. [Thomas 1967; Atiyah 1969] A cpt. oriented 5-mnfd admits a SO(3)_{st}-structure iff $w_4(M^5) = 0$, $k(M^5) = 0$.

Topological existence conditions for $SO(3)_{ir}$ -structures were investigated in [ABF11]:

Exa: $M^5 = SU(3)/SO(3)$ has an $SO(3)_{ir}$ -structure and $k(M^5) = 1$ and $\hat{\chi}_2(M^5) = 0$. In particular, $M^5 = SU(3)/SO(3)$ does not admit any $SO(3)_{st}$ -structure!

Prop. M^5 admits an SO(3)_{*ir*}-structure iff there exists a 3-dim. real bundle E^3 such that $T(M^5) = S_0^2(E^3)$.

Thm. Suppose that $T(M^5) = S_0^2(E^3)$. Then $p_1(M^5) = 5 \cdot p_1(E^3)$; in particular, $p_1(M^5)/5 \in H^4(M^5;\mathbb{Z})$ is integral. $w_1(M^5) = w_4(M^5) = w_5(M^5) = 0$, $w_2(M^5) = w_2(E^3)$ and $w_3(M^5) = w_3(E^3)$.

Conjecture: M^5 admits an SO(3)_{*ir*}-structure iff $w_4(M^5) = 0$, $\hat{\chi}_2(M^5) = 0$, $\frac{p_1(M^5)}{5} \in H^4(M^5; \mathbb{Z})$.

Can only prove: **Thm.** A compact, s.c. spin mnfd admitting a $SO(3)_{ir}$ - or $SO(3)_{st}$ -str. is parallelizable. **Cor.** S^5 has none of both SO(3)-structures. **Exa:** The connected sums $(2l+1)\#(S^2 \times S^3)$ are s.c., spin and admit a SO(3)_{st}-structure.

A rather sophisticated construction yields:

Thm. There exist mnfds $p \mathbb{CP}^2 \# q \overline{\mathbb{CP}^2}$ such that every S¹-bundle over them admits a SO_{ir}-structure. (for example: (p,q) = (21,1), (43,3), (197,17)...)

Exa 2: The homogeneous space $M^{14} = SU(5)/Sp(2)$ as a multiplicative state of M^{14} is the same as SU(6)/Sp(3), but not symmetric. • $\mathfrak{su}(5) = \mathfrak{sp}(2) \oplus \mathfrak{m}^{14}, \ \mathfrak{m}^{14} = \mathbb{R} \oplus \mathbb{R}^5 \oplus \Delta_5 \text{ (recall Sp(2))} \cong \text{Spin}(5))$

• 3 deformation parameters α, β, γ in the metric.

Thm.[AFH12]

• All metrics admit a characteristic connection for the Sp(3)-structures. • The characteristic connection has full holonomy Sp(3) if $\alpha \neq \beta$. • The Sp(3)-structure is of type $\mathfrak{sp}(3)$ if $\alpha = \frac{1}{4}(\sqrt{15\beta\gamma} - \beta)$, of type V^{189} if $\alpha = \frac{1}{12}(9\beta - \sqrt{15\beta\gamma})$, integrable if $\beta = 2\alpha$ and $\gamma = \frac{6}{5}\alpha$, and of general type otherwise. • The torsion is parallel if either $\beta = \alpha$ or $(\beta = 2\alpha \text{ and } \gamma = \frac{6}{5}\alpha)$. • The Riemannian curvature tensor has then 3 EV's of mult. 1, 5 and 8 given by 5γ , $\frac{8\alpha^2 + \beta^2}{\beta}$ and $10\alpha - \frac{5}{4}(\beta + \gamma)$. In particular, the metric is Einstein if $\beta = \sqrt{2\alpha} = \frac{1}{\sqrt{8}-1}\gamma$. In this case the Ricci tensor is $Ric^{g_{\alpha\beta\gamma}} = \frac{5}{2\alpha^2}g_{\alpha\beta\gamma}.$

[ABF11] I. Agricola, J. Becker-Bender, T. Friedrich On the topology and the geometry of SO(3)-manifolds, Ann. Global Anal. Geom. 40 (2011), pp. 67-84. [AFH12] I. Agricola, T. Friedrich, J. Höll, Sp(3) structures on 14-manifolds to appear.