Nonnegatively Curved Homogeneous spaces

Megan Kerr
Wellesley College

Workshop on geometric structures on manifolds and their applications
Castle Rauischholzhausen
Marburg Universität
2 July 2012

Table of contents

Introduction

Examples

Submersions: Nonnegative curvature

Key pair of examples

Results

Open Questions

Manifolds of positive and nonnegative curvature: Big Questions

- Question: Which manifolds admit a metric of strictly positive sectional curvature?

Manifolds of positive and nonnegative curvature: Big Questions

- Question: Which manifolds admit a metric of strictly positive sectional curvature?
- Easier question: Which manifolds admit a metric of nonnegative sectional curvature?

Manifolds of positive and nonnegative curvature: Big Questions

- Question: Which manifolds admit a metric of strictly positive sectional curvature?
- Easier question: Which manifolds admit a metric of nonnegative sectional curvature?

For $M^{n}, n \geq 4$, we have no classification.

Obtaining examples

- Quotients: Start with a compact Lie group G with a biinvariant metric: this has sec ≥ 0.

Obtaining examples

- Quotients: Start with a compact Lie group G with a biinvariant metric: this has sec ≥ 0.
- We can mod out by a closed subgroup of G on left:
G
\downarrow
G / H

Obtaining examples

- Quotients: Start with a compact Lie group G with a biinvariant metric: this has $s e c \geq 0$.
- We can mod out by a closed subgroup of G on left:

$$
\begin{gathered}
G \\
\downarrow \\
G / H
\end{gathered}
$$

- We can further mod out by another closed subgroup acting on the right:

$$
\begin{gathered}
G \\
\downarrow \\
K \backslash G / H
\end{gathered}
$$

Spaces of positive sectional curvature

Homogeneous spaces which admit a homogeneous metric of positive sectional curvature are classified:

1. rank one symmetric spaces
2. even-dimensional examples, found by Wallach (1972):

$$
\begin{aligned}
& W^{6}=S U(3) / T^{2}, W^{12}=S p(3) /(S p(1))^{3}, \text { and } \\
& W^{24}=F_{4} / \operatorname{Spin}(8)
\end{aligned}
$$

3. odd-dimensional examples, found by Bérard-Bergery (1976): the Berger spaces $B^{7}=S O(5) / S O(3)$ (here $S O(3)$ is maximal subgroup) and $B^{13}=S U(5) / S p(2) \cdot S^{1}$.

Spaces of positive sectional curvature

Homogeneous spaces which admit a homogeneous metric of positive sectional curvature are classified:

1. rank one symmetric spaces
2. even-dimensional examples, found by Wallach (1972):

$$
\begin{aligned}
& W^{6}=S U(3) / T^{2}, W^{12}=S p(3) /(S p(1))^{3}, \text { and } \\
& W^{24}=F_{4} / \operatorname{Spin}(8)
\end{aligned}
$$

3. odd-dimensional examples, found by Bérard-Bergery (1976): the Berger spaces $B^{7}=S O(5) / S O(3)$ (here $S O(3)$ is maximal subgroup) and $B^{13}=S U(5) / S p(2) \cdot S^{1}$.
Dimensions: $n=6,7,12,13$, and 24 , only (as well as compact rank-one symmetric spaces).

Spaces of nonnegative sectional curvature

There are many more examples of manifolds with nonnegative sectional curvature.

All known examples obtained by one of these constructions:

- Take an isometric quotient of a compact Lie group with a biinvariant metric, or
- Apply a gluing procedure referred to as a Cheeger deformation, generalized by Grove and Ziller.

Spaces of nonnegative sectional curvature

There are many more examples of manifolds with nonnegative sectional curvature.

All known examples obtained by one of these constructions:

- Take an isometric quotient of a compact Lie group with a biinvariant metric, or
- Apply a gluing procedure referred to as a Cheeger deformation, generalized by Grove and Ziller.
A Cheeger deformation is still a quotient, where we mod out by an isometric group action:
G acts by isometries on M. We have a fibration

$$
M \times G \rightarrow(M \times G) / \Delta G \cong M
$$

The action of G (on the product $M \times G)$ is $g \star(p, h)=(g p, g h)$.
On $M \times G$, deform by scaling in the direction of the orbits of
G. Get a submersion metric on the base space M.

Spaces of nonnegative sectional curvature

A piece of the big question:

- On a given manifold, how large is the set of nonnegatively curved metrics?
- Schwachhöfer and Tapp investigated a deformation of a normal homogeneous metric g_{0} on a compact homogeneous space G / H.

Space of invariant metrics

- Schwachhöfer and Tapp prove that the family of invariant metrics is star-shaped with respect to any normal homogeneous metric.
- Invariant metrics are identified with their corresponding symmetric matrices, which are parametrized by their inverses.
- Thus the problem of determining all invariant metrics with nonnegative curvature reduces to determining how long nonnegative curvature is maintained when deforming along a linear path (starting at a normal homogeneous metric).

Riemannian submersions of homogeneous spaces

Joint work with Andreas Kollross

- Start with a homogeneous space G / H with $H<K<G$, where G is a compact, simply connected Lie group (or $G=S O(N)$) endowed with a biinvariant metric g_{0}.

- We have a fibration $K / H \rightarrow G / H \rightarrow G / K$.

Riemannian submersions of homogeneous spaces

Joint work with Andreas Kollross

- Start with a homogeneous space G / H with $H<K<G$, where G is a compact, simply connected Lie group (or $G=S O(N)$) endowed with a biinvariant metric g_{0}.

- We have a fibration $K / H \rightarrow G / H \rightarrow G / K$.
- For parameter t we define a family of metrics on G / H :

$$
g_{t}=\left(\frac{1}{1-t}\right) g_{0}\left(X^{\mathfrak{m}}, Y^{\mathfrak{m}}\right)+g_{0}\left(X^{\mathfrak{s}}, Y^{\mathfrak{s}}\right)
$$

Here $t<1$ means that we are enlarging the fiber.

Fibration metrics

$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{s} \quad$ (\mathfrak{s} is the horizontal component)
$\mathfrak{k}=\mathfrak{h} \oplus \mathfrak{m} \quad$ (\mathfrak{m} is the vertical component)

Theorem
(Schwachhöfer-Tapp) (1) The metric g_{t} has nonnegative curvature for small $t>0$ if and only if there exists some $C>0$ such that for all X and Y in \mathfrak{p},

$$
\begin{equation*}
\left|\left[X^{\mathfrak{m}}, Y^{\mathfrak{m}}\right]^{\mathfrak{m}}\right| \leq C|[X, Y]| \tag{*}
\end{equation*}
$$

(2) In particular, if (K, H) is a symmetric pair, then g_{t} has nonnegative curvature for small $t>0$, and in fact for all $t \in(-\infty, 1 / 4]$.

What does their theorem tell us?

- Part (1) has an 'if and only if': very strong!

What does their theorem tell us?

- Part (1) has an 'if and only if': very strong!
- But we don't know when (*) holds.

What does their theorem tell us?

- Part (1) has an 'if and only if': very strong!
- But we don't know when $(*)$ holds. In fact, for a given triple (H, K, G) we don't know how to find the constant C or even whether any such constant exists.

What does their theorem tell us?

- Part (1) has an 'if and only if': very strong!
- But we don't know when $(*)$ holds. In fact, for a given triple (H, K, G) we don't know how to find the constant C or even whether any such constant exists.
- Part (2) is the observation that (K, H) a symmetric pair means $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h} \Rightarrow[\mathfrak{m}, \mathfrak{m}]^{\mathfrak{m}}=0$, so that the inequality $(*)$ holds trivially.
- Question: When does $(*)$ hold, aside from the case that (K / H) is a symmetric pair?

A clue

Consider two chains:

$$
\mathrm{SU}(2) \subset \mathrm{SO}(4) \subset \mathrm{G}_{2} \quad \widetilde{\mathrm{SU}(2)} \subset \mathrm{SO}(4) \subset \mathrm{G}_{2}
$$

Here $S U(2) \subset S U(3) \subset G_{2}$, and $S U(2), \widetilde{S U(2)}$ are not conjugate in G_{2}. For both, the base is $\mathrm{G}_{2} / \mathrm{SO}(4)$; the fibers are isometric to S^{3}.

A clue

Consider two chains:

$$
\mathrm{SU}(2) \subset \mathrm{SO}(4) \subset \mathrm{G}_{2} \quad \widehat{\mathrm{SU}(2)} \subset \mathrm{SO}(4) \subset \mathrm{G}_{2}
$$

Here $\operatorname{SU}(2) \subset S U(3) \subset G_{2}$, and $S U(2), \widetilde{S U(2)}$ are not conjugate in G_{2}. For both, the base is $\mathrm{G}_{2} / \mathrm{SO}(4)$; the fibers are isometric to S^{3}.

Condition $(*)$ holds for the first chain and cannot hold for the second chain.

Some results: $\operatorname{Rank}(G)=\operatorname{Rank}(G / K)$

In this class, the Satake diagram of G / K is the same as the Dynkin diagram of G, but with uniform multiplicity one. That is, \mathfrak{s} contains a maximal abelian subalgebra of \mathfrak{g}.
Theorem (1)
Assume (G, K) is a symmetric pair such that $\mathrm{rk}(G / K)=\mathrm{rk}(G)$ and let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{s}$ be the corresponding Cartan decomposition. Let $\mathfrak{t} \subset \mathfrak{s}$ be a maximal abelian subalgebra of \mathfrak{g}. [Choose a root space decomposition as above and assume there is a subset $S_{+} \subset R_{+}$such that the Lie algebra \mathfrak{h} is spanned by $\left.X_{\alpha}, \alpha \in S_{+}.\right]$Then the triple (H, K, G) satisfies condition $(*)$ if and only if (K, H) is a symmetric pair.

More about the $\operatorname{rank}(G / K)=\operatorname{rank}(G)$ case

- In fact, the case above exactly corresponds to the existence of a closed symmetric subalgebra $\mathfrak{l} \subset \mathfrak{g}$, such that $\mathfrak{h}=\mathfrak{l} \cap \mathfrak{k}$ and $\mathrm{rk}(\mathfrak{l})=\mathrm{rk}(\mathfrak{g})$.
- While condition $(*)$ fails for the triples $H \subsetneq K \subsetneq G$ where (K, H) is not a symmetric pair, it must hold for the triples $H \subsetneq L \subsetneq G$, since (L, H) is a symmetric pair.
- Thus the total space G / H has a direction in which nonnegative curvature can be extended, but only by deforming in the direction of fibers L / H over base G / L, not by deforming in the direction of fibers K / H over base G / K.

A corollary of examples

The following chains (H, K, G) of compact Lie groups do not fulfill condition (*):

$$
\begin{aligned}
& \text { 1. } \mathrm{SO}\left(n_{1}\right) \times \mathrm{SO}\left(n_{2}\right) \times \mathrm{SO}\left(n_{3}\right) \subset \mathrm{SO}(n) \subset \mathrm{SU}(n), n_{i} \geq 1, \\
& n_{1}+n_{2}+n_{3}=n \text {. } \\
& \text { 2. } \\
& {\left[\mathrm{SO}\left(n_{1}+1\right) \times \mathrm{SO}\left(n_{2}\right) \times \mathrm{SO}\left(n_{3}\right)\right] \times\left[\mathrm{SO}\left(n_{1}\right) \times \mathrm{SO}\left(n_{2}\right) \times \mathrm{SO}\left(n_{3}\right)\right] \subset} \\
& \mathrm{SO}(n+1) \times \mathrm{SO}(n) \subset \mathrm{SO}(2 n+1), n_{i} \geq 1, n_{1}+n_{2}+n_{3}=n . \\
& \text { 3. } \mathrm{U}\left(n_{1}\right) \times \mathrm{U}\left(n_{2}\right) \times \mathrm{U}\left(n_{3}\right) \subset \mathrm{U}(n) \subset \mathrm{Sp}(n), n_{i} \geq 1, n_{1}+n_{2}+n_{3}=n \\
& \text { 4. } \\
& \left.\mathrm{SO}\left(n_{1}\right) \times \mathrm{SO}\left(n_{2}\right) \times \mathrm{SO}\left(n_{3}\right)\right] \times\left[\mathrm{SO}\left(n_{1}\right) \times \mathrm{SO}\left(n_{2}\right) \times \mathrm{SO}\left(n_{3}\right)\right] \subset \\
& \mathrm{SO}(n) \times \mathrm{SO}(n) \subset \mathrm{SO}(2 n) \text { where } n_{i} \geq 1, n_{1}+n_{2}+n_{3}=n . \\
& \text { 5. } \mathrm{SO}(3) \cdot \mathrm{SO}(3) \cdot \mathrm{SO}(3) \subset \mathrm{Sp}(4) \subset \mathrm{E}_{6} . \\
& \text { 6. } \mathrm{SO}(3) \cdot \mathrm{SO}(6) \subset \mathrm{SU}(8) /\{ \pm 1\} \subset \mathrm{E}_{7} . \\
& \text { 7. } \mathrm{SO}(3) \cdot \mathrm{Sp}(4) \subset \mathrm{SO}^{\prime}(16) \subset \mathrm{E}_{8} . \\
& \text { 8. } \mathrm{SO}(3) \cdot \mathrm{SO}(3) \subset \mathrm{Sp}(3) \cdot \mathrm{Sp}(1) \subset \mathrm{F}_{4} \text {. }
\end{aligned}
$$

Some results: $\operatorname{Rank}(H)=\operatorname{Rank}(K)=\operatorname{Rank}(G)$

Theorem (2)
Let G be a simple compact Lie group and let $H \subsetneq K \subsetneq G$ be closed subgroups. If $\mathrm{rk}(H)=\mathrm{rk}(K)=\mathrm{rk}(G)$ then either (K, H) is a symmetric pair or there exist elements $X, Y \in \mathfrak{p}$ such that $[X, Y]=0$ and $\left[X^{m}, Y^{m}\right]^{m} \neq 0$.

A simple observation: Extending beyond equal ranks

Lemma

Let $H \subsetneq K \subsetneq G$ be a chain of compact groups for which there exists a pair of vectors $X, Y \in \mathfrak{p}$ such that $[X, Y]=0$ but $\left[X^{\mathfrak{m}}, Y^{\mathfrak{m}}\right]^{\mathfrak{m}} \neq 0$. Let $G \subseteq G^{\prime}$ and $H^{\prime} \subsetneq H$ each be closed subgroups. Then condition (*) fails for the chain $H^{\prime}<K<G^{\prime}$. The same pair of commuting vectors $X, Y \in \mathfrak{p}$ is also a pair of commuting vectors in \mathfrak{p}^{\prime}, with $\left[X^{\mathfrak{m}^{\prime}}, Y^{\mathfrak{m}^{\prime}}\right]^{\mathfrak{m}^{\prime}} \neq 0$.

Regular subgroups

Theorem (3)

Let G be a compact Lie group. Let $H \subsetneq K \subsetneq G$ be connected compact Lie groups such that H, K are regular subgroups of G. If the triple (H, K, G) satisfies condition (*) then for each simple ideal $\mathfrak{g}_{\text {i }}$ of \mathfrak{g} one of the following is true.

1. $\mathfrak{g}_{i} \cap \mathfrak{k}=\mathfrak{g}_{i}$, i.e. the simple ideal \mathfrak{g}_{i} is contained in \mathfrak{k}.
2. $\mathfrak{g}_{i} \cap \mathfrak{k} \neq \mathfrak{g}_{i}$ and $\left(\mathfrak{g}_{i} \cap \mathfrak{k}, \mathfrak{g}_{i} \cap \mathfrak{h}\right)$ is a symmetric pair, possibly such that $\mathfrak{g}_{i} \cap \mathfrak{k}$ is contained in \mathfrak{h}.
3. $\mathfrak{g}_{i} \cong \mathfrak{s o}(2 n+1), \mathfrak{g}_{i} \cap \mathfrak{k} \cong \mathfrak{s o}(2 n)$ and $\mathfrak{g}_{i} \cap \mathfrak{h} \cong \mathfrak{s u}(n)$.
4. $\mathfrak{g}_{i} \cong \mathfrak{s p}(n)$ where all but one simple ideal of $\mathfrak{g}_{i} \cap \mathfrak{k}$ is contained in \mathfrak{h} and the one simple ideal not contained in \mathfrak{h} is isomorphic to $\mathfrak{s p}(1)$.
5. $\mathfrak{g}_{i} \cong \operatorname{Lie}\left(\mathrm{G}_{2}\right), \mathfrak{g}_{i} \cap \mathfrak{k} \cong \mathfrak{s o}(4)$ and $\mathfrak{g}_{i} \cap \mathfrak{h} \cong \mathfrak{s u}(2)$ such that $\mathfrak{g}_{i} \cap \mathfrak{h}$ is contained in a subalgebra $\mathfrak{s u}(3) \subset \mathfrak{g}_{i}$.

Remark

For items (1), (2) (3) and (5) above, we know that condition (*) holds for the chains $\left(\mathfrak{h} \cap \mathfrak{g}_{i}, \mathfrak{k} \cap \mathfrak{g}_{i}, \mathfrak{g}_{i}\right)$.

If condition $(*)$ holds also for each chain of regular subgroups $(H, K, G)=\left(\operatorname{Sp}(n), \operatorname{Sp}(1)^{n}, \operatorname{Sp}(1)^{n-1}\right)$ with $n \geq 2$, then the previous theorem can be improved to "if and only if".

G simple, low-dimensional

Theorem (4)

Let G be a simple compact Lie group of dimension at most 15 .
Then the homogeneous space G / H with fibration metric g_{t} corresponding to a chain (H, K, G) of nested compact Lie groups admits nonnegative sectional curvature for small $t>0$ if and only if one of the following holds:
(i) (K, H) is a symmetric pair, or more generally, $[\mathfrak{m}, \mathfrak{m}]^{\mathfrak{m}}=0$;
(ii) the chain (H, K, G) is one of $(\mathrm{SU}(2), \mathrm{SO}(4), \mathrm{SO}(5))$ or $\left(\mathrm{SU}(2), \mathrm{SO}(4), \mathrm{G}_{2}\right)$ where in the second case the subgroup $\mathrm{SU}(2)$ is such that $\mathrm{SU}(2) \subset \mathrm{SU}(3) \subset \mathrm{G}_{2}$.

Can we answer our Question?

Aside from the case that (K, H) is a symmetric pair, when does (*) hold?

Can we answer our Question?

Aside from the case that (K, H) is a symmetric pair, when does (*) hold?
We can find chains $H<K<G$ with (K, H) not symmetric, and $(*)$ satisfied. Schwachhöfer and Tapp give these examples:

Can we answer our Question?

Aside from the case that (K, H) is a symmetric pair, when does ($*$) hold?
We can find chains $H<K<G$ with (K, H) not symmetric, and $(*)$ satisfied. Schwachhöfer and Tapp give these examples:

- $\mathrm{SU}(2) \subset \mathrm{SO}(4) \subset \mathrm{G}_{2}$, where $\mathrm{SU}(2)$ is contained in $S U(3) \subset G_{2}$,
- $\mathrm{G}_{2} \subset \operatorname{Spin}(7) \subset \operatorname{Spin}(p+8)$, where $p \in\{0,1\}$, and
- $\mathrm{SU}(3) \subset \mathrm{SO}(6) \subset \mathrm{SO}(7)$.

Can we answer our Question?

Aside from the case that (K, H) is a symmetric pair, when does
($*$) hold?
We can find chains $H<K<G$ with (K, H) not symmetric, and $(*)$ satisfied. Schwachhöfer and Tapp give these examples:

- $\mathrm{SU}(2) \subset \mathrm{SO}(4) \subset \mathrm{G}_{2}$, where $\mathrm{SU}(2)$ is contained in $S U(3) \subset G_{2}$,
- $\mathrm{G}_{2} \subset \operatorname{Spin}(7) \subset \operatorname{Spin}(p+8)$, where $p \in\{0,1\}$, and
- $\mathrm{SU}(3) \subset \mathrm{SO}(6) \subset \mathrm{SO}(7)$.

The third example is one of a family:

$$
\begin{aligned}
& \mathrm{SO}(2 n) / \mathrm{SU}(n) \longrightarrow \mathrm{SO}(2 n+1) / \mathrm{SU}(n) \\
& \downarrow \\
& \mathrm{SO}(2 n+1) / \mathrm{SO}(2 n)
\end{aligned}
$$

(We prove for all $n \geq 2$.)

Open Questions

Example: $H=(S p(1))^{3} \subset K=(S p(1))^{4} \subset G=\operatorname{Sp}(4)$.
On the Lie algebra level,

$$
\mathfrak{h}=(\mathfrak{s p}(1))^{3} \oplus \mathfrak{l d} \quad \subset \mathfrak{k}=(\mathfrak{s p}(1))^{4} \subset \mathfrak{g}=\mathfrak{s p}(4)
$$

Let \mathfrak{s} denote the complement to \mathfrak{k} in \mathfrak{g}; let \mathfrak{m} denote the complement to \mathfrak{h} in \mathfrak{k}; i.e., $\mathfrak{k} \oplus \mathfrak{s}=\mathfrak{s p}(4)$ and $\mathfrak{h} \oplus \mathfrak{m}=(\mathfrak{s p}(1))^{4}$. Write $\mathfrak{p}=\mathfrak{m} \oplus \mathfrak{s}$. Note that $\mathfrak{m} \cong \mathfrak{s p}(1)$ is itself a subalgebra, so that $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}$.
Does there exist a pair of vectors X and Y in \mathfrak{p} such that $\left[X^{\mathfrak{m}}, Y^{\mathfrak{m}}\right]^{\mathfrak{m}} \neq 0$ yet $[X, Y]=0$?
$X=\left(\begin{array}{cccc}0 & x_{12} & x_{13} & x_{14} \\ -\bar{x}_{12} & 0 & x_{23} & x_{24} \\ -\bar{x}_{13} & -\bar{x}_{23} & 0 & x_{34} \\ -\bar{x}_{14} & -\bar{x}_{24} & -\bar{x}_{34} & x_{44}\end{array}\right) \quad Y=\left(\begin{array}{cccc}0 & y_{12} & y_{13} & y_{14} \\ -\bar{y}_{12} & 0 & y_{23} & y_{24} \\ -\bar{y}_{13} & -\bar{y}_{23} & 0 & y_{34} \\ -\bar{y}_{14} & -\bar{y}_{24} & -\bar{y}_{34} & y_{44}\end{array}\right)$
are elements of \mathfrak{p} where x_{12}, \ldots, x_{34} and y_{12}, \ldots, y_{34} parametrize the \mathfrak{s}-component, while x_{44}, y_{44} parametrize the \mathfrak{m}-component.

Non-regular subgroups

Are there any examples of chains (H, K, G) satisfying condition $(*)$ which contain non-regular subgroups?

