Eigenvalue estimates for Dirac operators with torsion

Rauischholzhausen, Juli 2012

Hwajeong Kim
Hannam University
cowork with I. Agricola and J. Becker-Bender

We will investigate the spectrum of the Dirac operator of a metric connection with torsion on a manifold with special geometric structure through a suitable twistor equation.

Plan

1. The square of the Riemannian Dirac operator
2. Special geometries via connections with torsion
3. Twistorial estimates for manifolds with reducible holonomy

1. The square of the Riemannian Dirac operator

(M^{n}, g): compact Riemannian spin mnfd, Σ : spin bdle

Classical Riemannian Dirac operator D^{g} :

$$
\text { Dfn : } \quad D^{g}:\left\ulcorner(\Sigma) \longrightarrow \Gamma(\Sigma), \quad D^{g} \psi:=\sum_{i=1}^{n} e_{i} \cdot \nabla_{e_{i}}^{g} \psi\right.
$$

D^{g} is elliptic differential operator of first order, essentially self-adjoint on $L^{2}(\Sigma)$, pure point spectrum

Schrödinger(1932)-Lichnerowicz(1962)

SL formula : $\quad\left(D^{g}\right)^{2}=\Delta+\frac{1}{4}$ Scal g

- SL formula $\Rightarrow \mathrm{EV}$ of $\left(D^{g}\right)^{2}: \quad \lambda \geq \frac{1}{4}$ Scal ${ }_{\text {min }}^{g}$
- optimal only for spinors with $\langle\Delta \psi, \psi\rangle=\left\|\nabla^{g} \psi\right\|^{2}=0$, i. e. parallel spinors, and then Scal ${ }_{\text {min }}^{g}=0$
- no parallel spinors if Scal ${ }_{\text {min }}^{g}>0$

Friedrich's inequality

Thm. Optimal EV estimate: $\lambda \geq \frac{n}{4(n-1)}$ Scal $_{\text {min }}^{g}$
$"="$ if there exists a Killing spinor (KS) $\psi: \nabla_{X}^{g} \psi=$ const $\cdot X \cdot \psi \quad \forall X$
Link to special geometries:

Thm. $\exists \mathrm{KS} \Leftrightarrow n=5:(M, g)$ is Sasaki-Einstein mnfd [ϵ contact str.]

$$
\begin{aligned}
& \Leftrightarrow n=6:(M, g) \text { nearly Kähler mnfd } \\
& \Leftrightarrow n=7:(M, g) \text { nearly parallel } G_{2} \mathrm{mnfd}
\end{aligned}
$$

[Friedrich, Kath, Grunewald. . .]

Friedrich's inequality has two alternative proofs:

1. by deforming the connection $\quad \nabla_{X}^{g} \psi \rightsquigarrow \nabla_{X}^{g} \psi+c X \cdot \psi$
2. by using twistor theory: the twistor or Penrose operator:

$$
\begin{aligned}
P \psi & :=\sum_{k=1}^{n} e_{k} \otimes\left[\nabla_{e_{k}}^{g} \psi+\frac{1}{n} e_{k} \cdot D^{g} \psi\right] \\
\Rightarrow\|P \psi\|^{2}+\frac{1}{\mathrm{n}}\left\|D^{g} \psi\right\|^{2} & =\left\|\nabla^{g} \psi\right\|^{2}
\end{aligned}
$$

together with the SL formula \Rightarrow integral formula

$$
\int_{M}\left\langle\left(D^{g}\right)^{2} \psi, \psi\right\rangle d M=\frac{n}{n-1} \int_{M}\|P \psi\|^{2} d M+\frac{n}{4(n-1)} \int_{M} \operatorname{Scal}^{g}\|\psi\|^{2} d M
$$

and Friedrich's inequality follows, with equality iff ψ is a twistor spinor,

$$
P \psi=0 \Leftrightarrow \nabla_{X}^{g} \psi+\frac{1}{n} X \cdot D^{g} \psi=0 \quad \forall X
$$

Furthermore, ψ is automatically a Killing spinor.

2. Special geometries via connections with torsion

Given a mnfd M^{n} with G-structure $(G \subset S O(n))$, replace ∇^{g} by a metric connection ∇ with torsion that preserves the geometric structure!

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \wedge^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

1. representation theory yields

- a clear answer which G-structures admit such a connection; if existent, it's unique and called the 'characteristic connection'

2. Dirac operator $\not D$ of the metric connection with torsion $T / 3$: ‘characteristic Dirac operator'

- generalizes Dolbeault operator and Kostant's cubic Dirac operator

Some characteristic connections

Ex. 1 - contact mnfd
[Friedrich, Ivanov 2000]

A large class admits a char. connection ∇, and $\operatorname{Hol}_{0}(\nabla) \subset U(n) \subset$ $\mathrm{SO}(2 n+1)$. For Sasaki manifolds, the formula is particularly simple,

$$
g\left(\nabla_{X}^{c} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} \eta \wedge d \eta(X, Y, Z)
$$

and $\nabla T=0$ holds.
[Kowalski-Wegrzynowski, 1987 for Sasaki]

Ex. 2 - almost Hermitian 6-mnfd
[Friedrich, Ivanov 2000]
$(M, g, J), J$ almost complex, compatible with g
\exists a char. connection $\nabla \Leftrightarrow$ Nijenhuis tensor $g(N(X, Y), Z) \in \Lambda^{3}(M)$,

$$
g\left(\nabla_{X}^{c} Y, Z\right):=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2}[g(N(X, Y), Z)+d \Omega(J X, J Y, J Z)]
$$

Example3 - naturally reductive homogeneous space [Agricola 2003]
$M=G / H$ reductive space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m},\langle$,$\rangle a scalar product on \mathfrak{m}$.

The PFB $G \rightarrow G / H$ induces a metric connection ∇ with torsion

$$
T(X, Y, Z):=-\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle
$$

called the 'canonical connection'.

Dfn. $M=G / H$ is called naturally reductive if $T \in \Lambda^{3}(M) ; \nabla$ coincides then with the characteristic connection.

Naturally reductive spaces have the properties $\nabla T=\nabla \mathcal{R}=0$

3. The square of the Dirac operator with torsion

With torsion:
(M, g): mnfd with G-structure and charact. connection ∇^{c}, torsion T, assume $\nabla^{c} T=0$ (for convenience)

DD: Dirac operator of connection with torsion $T / 3$
generalized SL formula:
[Agricola-Friedrich, 2003]

$$
\not D^{2}=\Delta_{T}+\frac{1}{4} \mathrm{Scal}^{g}+\frac{1}{8}\|T\|^{2}-\frac{1}{4} T^{2}
$$

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]

Spectrum of D

For eigenvalue estimates, the action of T on the spinor bundle needs to be known!

Thm. Assume $\nabla^{c} T=0$ and let $\Sigma M=\oplus_{\mu} \Sigma_{\mu}$ be the splitting of the spinor bundle into eigenspaces of T. Then:
a) ∇^{c} preserves the splitting of Σ, i. e. $\nabla^{c} \Sigma_{\mu} \subset \Sigma_{\mu} \forall \mu$,
b) $\not D^{2} \circ T=T \circ \not D^{2}$, i. e. $\not D^{2} \Sigma_{\mu} \subset \Sigma_{\mu} \quad \forall \mu$.
\Rightarrow Estimate on every subbundle of Σ_{μ}
Corollary (universal estimate). The first EV λ of $\not D^{2}$ satisfies

$$
\lambda \geq \frac{1}{4} \text { Scal }_{\min }^{g}+\frac{1}{8}\|T\|^{2}-\frac{1}{4} \max \left(\mu_{1}^{2}, \ldots, \mu_{k}^{2}\right)
$$

where μ_{1}, \ldots, μ_{k} are the eigenvalues of T.

Universal estimate:

- follows from generalized SL formula
- does not yield Friedrich's inequality for $T \rightarrow 0$
- optimal iff \exists a ∇^{c}-parallel spinor:

This sometimes happens on mnfds with Scal $_{\min }^{g}>0$!
deformation techniques: yield often estimates quadratic in Scal ${ }^{g}$, require subtle case by case discussion, often restriced curvature range [Agricola, Friedrich, Kassuba [PhD], 2008]

Results

twistor techniques:
-estimate always linear in Scal ${ }^{g}$, no curvature restriction, rather universal,

- lead to a twistor eq. with torsion and sometimes to a Killing eq. with torsion
-yield another twistorial estimate for manifolds with reducible holonomy
- submitted -
[Agricola, Becker-Bender [PhD], Kim 2010-11]

Twistors with torsion

$m: T M \otimes \Sigma M \rightarrow \Sigma M:$ Clifford multiplication
$p=$ projection on ker $m: p(X \otimes \psi)=X \otimes \psi+\frac{1}{n} \sum_{i=1}^{n} e_{i} \otimes e_{i} \cdot X \cdot \psi$

$$
\nabla_{X}^{s} Y:=\nabla_{X}^{g} Y+2 s T(X, Y,-)
$$

($s=1 / 4$ is the standard normalisation, $\nabla^{1 / 4}=$ char. conn.)
twistor operator: $P^{s}=p \circ \nabla^{s}$
Fundamental relation: $\left\|P^{s} \psi\right\|^{2}+\frac{1}{n}\left\|D^{s} \psi\right\|^{2}=\left\|\nabla^{s} \psi\right\|^{2}$
ψ is called s-twistor spinor $\Leftrightarrow \psi \in \operatorname{ker} P^{s} \Leftrightarrow \nabla_{X}^{s} \psi+\frac{1}{n} X D^{s} \psi=0$.
Idea: to play with the parameter " s "! different scaling in $\nabla\left[s=\frac{1}{4}\right]$ and $\not D\left[s=\frac{1}{4 \cdot 3}\right]$

Thm (twistor integral formula). Any spinor φ satisfies

$$
\begin{aligned}
\int_{M}\left\langle D^{2} \varphi, \varphi\right\rangle d M & =\frac{n}{n-1} \int_{M}\left\|P^{s} \varphi\right\|^{2} d M+\frac{n}{4(n-1)} \int_{M} \text { Scal }^{g}\|\varphi\|^{2} d M \\
& +\frac{n(n-5)}{8(n-3)^{2}}\|T\|^{2} \int\|\varphi\|^{2} d M-\frac{n(n-4)}{4(n-3)^{2}} \int_{M}\left\langle T^{2} \varphi, \varphi\right\rangle d M
\end{aligned}
$$

where $s=\frac{n-1}{4(n-3)}$.
Thm (twistor estimate). The first EV λ of D^{2} satisfies $(n>3)$

$$
\lambda \geq \frac{n}{4(n-1)} \text { Scal }_{\min }^{g}+\frac{n(n-5)}{8(n-3)^{2}}\|T\|^{2}-\frac{n(n-4)}{4(n-3)^{2}} \max \left(\mu_{1}^{2}, \ldots, \mu_{k}^{2}\right)
$$

where μ_{1}, \ldots, μ_{k} are the eigenvalues of T, and " $=$ " iff

- Scal ${ }^{g}$ is constant,
- ψ is a twistor spinor for $s_{n}=\frac{n-1}{4(n-3)}$,
- ψ lies in Σ_{μ} corresponding to the largest eigenvalue of T^{2}.

Twistor estimate:

- reduces to Friedrich's estimate for $T \rightarrow 0$
- estimate is good for Scal ${ }_{\text {min }}^{g}$ dominant (compared to $\|T\|^{2}$) Ex. $\left(M^{6}, g\right)$ of class \mathcal{W}_{3} (" balanced"), $\operatorname{Stab}(T)$ abelian

Known: $\mu=0, \pm \sqrt{2}\|T\|$, no ∇^{c}-parallel spinors
twistor estimate: $\quad \lambda \geq \frac{3}{10} \mathrm{Scal}_{\text {min }}^{g}-\frac{7}{12}\|T\|^{2}$
universal estimate: $\quad \lambda \geq \frac{1}{4}$ Scal ${ }_{\text {min }}^{g}-\frac{3}{8}\|T\|^{2}$

- better than anything obtained by deformation

On the other hand:
Ex. $\left(M^{5}, g\right)$ Sasaki: deformation technique yielded better estimates.

Twistor and Killing spinors with torsion

Thm (twistor eq). ψ is an s_{n}-twistor spinor ($P^{s_{n}} \psi=0$) iff

$$
\nabla_{X}^{c} \psi+\frac{1}{n} X \cdot \not D \psi+\frac{1}{2(n-3)}(X \wedge T) \cdot \psi=0
$$

Dfn. ψ is a Killing spinor with torsion if $\nabla_{X}^{s_{n}} \psi=\kappa X \cdot \psi$ for $s_{n}=\frac{n-1}{4(n-3)}$.

$$
\Leftrightarrow \nabla^{c} \psi-\left[\kappa+\frac{\mu}{2(n-3)}\right] X \cdot \psi+\frac{1}{2(n-3)}(X \wedge T) \psi=0 .
$$

In particular:

- ψ is a twistor spinor with torsion for the same value s_{n}
- κ satisfies the quadratic eq.
$n\left[\kappa+\frac{\mu}{2(n-3)}\right]^{2}=\frac{1}{4(n-1)} \mathrm{Scal}^{g}+\frac{n-5}{8(n-3)^{2}}\|T\|^{2}-\frac{n-4}{4(n-3)^{2}} \mu^{2}$
- Scal ${ }^{g}=$ constant.

In general, this twistor equation cannot be reduced to a Killing equation.
... with one exception: $n=6$

Thm. Assume ψ is a s_{6}-twistor spinor for some $\mu \neq 0$. Then:

- ψ is a $\not D$ eigenspinor with eigenvalue

$$
\not D \psi=\frac{1}{3}\left[\mu-4 \frac{\|T\|^{2}}{\mu}\right] \psi
$$

- the twistor equation for s_{6} is equivalent to the Killing equation $\nabla^{s} \psi=$ $\lambda X \cdot \psi$ for the same value of s.

Observation:

The Riemannian Killing / twistor eq. and their analogue with torsion behave very differently depending on the geometry!

Killing spinors on nearly Kähler manifolds

- (M^{6}, g, J) 6-dimensional nearly Kähler manifold
- ∇^{c} its characteristic connection, torsion is parallel
- Einstein, $\|T\|^{2}=\frac{2}{15}$ Scal ${ }^{g}$
- T has EV $\mu=0, \pm 2\|T\|$
- $\exists 2$ Riemannian KS $\varphi_{ \pm} \in \Sigma_{ \pm 2\|T\|}, \nabla^{c}$-parallel
- univ. estimate $=$ twistor estimate, $\lambda \geq \frac{2}{15}$ Scal ${ }^{g}$

Thm. The following classes of spinors coincide:

- Riemannian Killing spinors
- Killing spinors with torsion
- ∇^{c}-parallel spinors
- Twistor spinors with torsion

There is exactly one such spinor $\varphi_{ \pm}$in each of the subbundles $\Sigma_{ \pm 2\|T\|}$.

A 5-dim. ex. with Killing spinors with torsion

- 5-dimensional Stiefel manifold $M=S O(4) / S O(2), \mathfrak{s o}(4)=\mathfrak{s o}(2) \oplus \mathfrak{m}$
- Jensen metric: $\mathfrak{m}=\mathfrak{m}_{4} \oplus \mathfrak{m}_{1}$ (irred. components of isotropy rep.),

$$
\langle(X, a),(Y, b)\rangle_{t}=\frac{1}{2} \beta(X, Y)+2 t \cdot a b, t>0, \beta=\text { Killing form }\left.\right|_{\mathfrak{m}_{4}}
$$

- $t=1 / 2$: undeformed metric: 2 parallel spinors
- $t=2 / 3$: Einstein-Sasaki with 2 Riemannian Killing spinors
- For general t : metric contact structure in direction \mathfrak{m}_{1} with characteristic connection ∇ satisfying $\nabla T=0$
- $\|T\|^{2}=4 t, \mathrm{Scal}^{g}=8-2 t, \quad \mathrm{Ric}^{g}=\operatorname{diag}(2-t, 2-t, 2-t, 2-t, 2 t)$.
- Universal estimate: $\lambda \geq 2(1-t)=: \beta_{\text {univ }}$
- Twistor estimate: $\lambda \geq \frac{5}{2}-\frac{25}{8} t=: \beta_{\text {tw }}$

Result: there exist 2 twistor spinors with torsion for $t=2 / 5$, and these are even Killing spinors with torsion.

4. Twistorial estimates for mfds with reducible holonomy

Parallel distributions

$\mathcal{T} \subset \mathcal{T} M^{n}$ is a parallel distribution $\Rightarrow \nabla_{X} Y \in \mathcal{T}$ for $Y \in \mathcal{T}$ and $X \in \mathcal{T} M^{n}$
$\mathcal{T} M^{n}=\mathcal{T}_{1} \oplus \ldots \oplus \mathcal{T}_{k}$ with $\operatorname{Hol}\left(M^{n} ; \nabla^{s}\right) \subset \mathrm{SO}\left(n_{1}\right) \times \ldots \times \mathrm{SO}\left(n_{k}\right)$, where $\mathcal{T}_{1}, \ldots, \mathcal{T}_{k}$ are the parallel distributions of $\mathcal{T} M^{n}$.

Then the Ricci tensor has block structure:

$$
\text { Ric }=\left[\begin{array}{c|c|c}
\mathrm{Ric}_{1} & 0 & \\
\hline 0 & \ddots & 0 \\
\hline & 0 & \mathrm{Ric}_{k}
\end{array}\right],
$$

i. e. $\operatorname{Ric}(X, Y) \neq 0$ can only happen if $X, Y \in \mathcal{T}_{i}$ for some i.

And $\mathrm{Scal}_{i}:=\operatorname{tr} \mathrm{Ric}_{i} \Rightarrow \mathrm{Scal}=\sum_{i=1}^{k} \mathrm{Scal}_{i}$.

1-parameter family of connections

$$
\nabla_{X}^{s} Y=\nabla_{X}^{g} Y+2 s T(X, Y,-)
$$

Dfn. [Geometry with reducible parallel torsion]
A manifold with s-parameter family of connections with torsion and a parallel distribution of $T M$ as above has a geometry with reducible parallel torsion if

1. there exists a value s_{0} with $\nabla^{s_{0}} T=0$,
2. the torsion splits into a sum $T=\sum_{i=1}^{k} T_{i}, T_{i} \in \wedge^{3}\left(\mathcal{T}_{i}\right)$.
3. the tangent bundle $\mathcal{T} M^{n}=\oplus_{i=1}^{k} \mathcal{T}_{i}$ splits into ∇^{s}-parallel distributions \mathcal{T}_{i} for some parameter s and $\operatorname{Hol}\left(M^{n} ; \nabla^{s}\right) \subset \mathrm{SO}\left(n_{1}\right) \times \ldots \times \mathrm{SO}\left(n_{k}\right)$,
(M^{n}, a geometry with reducible parallel torsion):

- $\left(M^{n}, g\right)$ is locally a product of Riemannian manifolds
- $\nabla^{s}{ }^{s} T_{i}=0$ for each T_{i}
[Cleyton, Moroianu 2012]
$\bullet T^{2}=\Sigma T_{i}^{2}, \quad\|T\|^{2}=\Sigma\left\|T_{i}\right\|^{2}$.
- $\mathcal{R}^{s}(X, Y, Z, V) \neq 0$ if all vectors lie in the same subspace \mathcal{T}_{i} for some i,
- σ_{T} splits in $\sigma_{T}=\sum_{i=1}^{k} \sigma_{i}$ with $\sigma_{i}:=\sigma_{T^{i}}$, where

$$
\left.\left.\sigma_{T}:=\frac{1}{2} \sum_{i}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right)
$$

Partial Schrödinger-Lichnerowicz formulas

- Partial connections:

$$
\nabla_{X}^{s, i}:=\nabla_{p_{i}(X)}^{s}, \quad \text { hence } \nabla^{s}=\sum_{i=1}^{k} \nabla^{s, i}
$$

- Partial Dirac operators and partial spinor Laplacians:

$$
D_{i}^{s}:=\sum_{m=1}^{n_{i}} e_{m}^{i} \cdot \nabla_{m}^{s, i}, \quad \Delta_{i}^{s}:=-\sum_{m=1}^{n_{i}} \nabla_{m}^{s, i} \nabla_{m}^{s, i}
$$

Then

$$
D=\sum_{i=1}^{k} D_{i}^{s}, \Delta^{s}=\sum_{i=1}^{k} \Delta_{i}^{s}
$$

Let

$$
\left.\mathcal{D}_{i}^{s}:=\sum_{m=1}^{n_{i}}\left(e_{m}^{i}\right\lrcorner T_{i}\right) \cdot \nabla_{e_{m}^{i}}^{s, i} \psi
$$

Prop.[PSL formulas]
M with a geometry with reducible parallel torsion. Then
(i) $\left(D_{i}^{s}\right)^{2}=\Delta_{i}^{s}+s(6-8 s) \sigma_{i}-4 s \mathcal{D}_{i}^{s}+\frac{1}{4}$ Scal $_{i}^{s}$,
(ii) $D_{i}^{s} D_{j}^{s}+D_{j}^{s} D_{i}^{s}=0$ for $i \neq j$,
(iii) $\left(D_{i}^{s / 3}\right)^{2}=\Delta_{i}^{s}+2 s \sigma_{i}+\frac{1}{4}$ Scal $_{i}^{g}-2 s^{2}\left\|T_{i}\right\|^{2}$.

Adapted Twistor Operator

$$
P^{s} \psi=\nabla^{s} \psi+\sum_{i=1}^{k} \frac{1}{n_{i}} \sum_{l=1}^{n_{i}} e_{l}^{i} \otimes e_{l}^{i} \cdot D_{i}^{s} \psi
$$

One checks that

$$
\left\|P^{s} \psi\right\|^{2}=\left\langle\left(\Delta^{s}-\sum_{i=1}^{k} \frac{1}{n_{i}}\left(D_{i}^{s}\right)^{2}\right) \psi, \psi\right\rangle
$$

Thm.[Twistorial estimate for products]
Let $n_{1} \leq n_{2} \leq \ldots \leq n_{k}$ and λ the smallest eigenvalue of $\not D^{2}$. Then
$\lambda \geq \frac{n_{k}}{4\left(n_{k}-1\right)}$ Scal $_{\min }^{g}+\frac{n_{k}\left(n_{k}-5\right)}{8\left(n_{k}-3\right)^{2}}\|T\|^{2}+\frac{n_{k}\left(4-n_{k}\right)}{4\left(n_{k}-3\right)^{2}} \max \left(\mu_{1}^{2}, \ldots, \mu_{k}^{2}\right)$
$"=":$ for $\tilde{s}=\frac{n_{k}-1}{4\left(n_{k}-3\right)}$
-the Riemannian scalar curvature of (M, g) is constant,

- the eigenspinor ψ is a twistor spinor for \tilde{s} on M_{k},
$\bullet i=1, \ldots, k-1:$
(a) $n_{i}<n_{k}: \nabla^{\tilde{s}_{-}}$parallel spinor on M_{i},
(b) $n_{i}=n_{k}: \nabla^{\tilde{s}_{-}}$-parallel or twistor spinor for \tilde{s} on M_{i},
- spinors lie in $\Sigma_{\mu}\left(M_{i}\right)$ corresponding to the largest eigenvalue of T_{i}^{2}.

A generalization of

$$
\begin{aligned}
\lambda^{g} \geq \frac{n_{k}}{4\left(n_{k}-1\right)} \text { Scal }_{\min }^{g} \\
\quad[\mathrm{E} . \text { C. Kim (2004), B. Alexandrov (2006)] }
\end{aligned}
$$

Ex.

Let M be a product of 5-dimensional manifolds with parallel torsion, then M is a 10-dimensional manifold with a geometry with reducible parallel torsion:
The 'twistorial eigenvalue estimate' reads

$$
\lambda \geq \frac{5}{18} \text { Scal }_{\min }^{g}+\frac{25}{196}\|T\|^{2}-\frac{15}{49} \max \left(\mu^{2}\right)
$$

and the 'twistorial eigenvalue estimate for products' reads

$$
\lambda \geq \frac{5}{4} \text { Scal }_{\min }^{g}-\frac{5}{16} \max \left(\mu^{2}\right)
$$

