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The Einstein-Hilbert
Action and its Variation

We consider a compact connected n-dimensional C∞-

manifold Mn, n ≥ 3 and the set of all Riemannian met-

rics on it, denoted by M. The Einstein-Hilbert action

(or total scalar curvature) is defined by

M→ R

g 7→ S(g) :=

∫
M

scalg dvolg.

The first variation of the action is given by

S ′(h) =

∫
M

〈(1/2)scalg · g − ricg, h〉g dvolg.

Thus, g ∈ M is a critical metric for S if and only if

(1/2)scalg · g− ricg = 0, i.e. g is Ricci-flat. If we restrict

the action toMc, the set of all metrics of volume c, we

obtain more critical points in this subset:

Proposition 1. A metric g ∈ Mc is critical for S|Mc

if and only if it is Einstein i.e. ricg = µ · g for some

µ ∈ R.

Now we wish to determine the sign of the second varia-

tion of S at Einstein metrics. It is well known that the

second variation is positive in the direction of conformal

pertubations. In fact, if h = f · g for some f ∈ C∞, the

variational formula reads

S ′′g (h) =
n− 2

2

∫
M

〈f, (n− 1)∆gf − nµf〉 dvolg.

The positivity of S ′′g (h) follows from the Lichnerowicz

eigenvalue estimate on ∆g.

If h = LXg for some vector field X, the second varia-

tion vanishes, since S is a Riemannian functional, i.e.

S(ϕ∗g) = S(g) for any diffeomorphism ϕ on M .

It remains to consider the second variation on tensors,

that are trace-free and divergence-free at each point

p ∈ M . These tensors are often called transverse-

traceless or TT. On TT-tensors, the second variation

is given by

S ′′g (h) = −1

2

∫
M

〈h,∇∗∇h− 2R̊h〉 dvolg.

We denote G := ∇∗∇− 2R̊.

Stability of Einstein
Metrics

Definition 2. Let (M, g) an Einstein manifold and con-

sider the operator G on TT-tensors. If G is positive

semidefinite, (M, g) is said to be stable. If G is posi-

tive definite, we call (M, g) strictly stable. Elements in

the kernel of G are called infinitesimal Einstein defor-

mations.

If gt is a curve of einstein metrics through g0, then its

derivative g′0 is in the kernel of G. Therefore, an Ein-

stein metric is isolated in the set of Einstein metrics, if

ker G is trivial.

For example, the flat torus (T n, geukl) is stable but not

strictly stable. The kernel of G consists of all parallel

symmetric (0, 2)− tensors and is of dimension n(n−1)
2 −1.

The sphere with its standard metric is strictly stable,

hence isolated as an Einstein metric.

A product of two Einstein metrics with positive scalar

curvature is unstable. In the case of positive scalar cur-

vature, many unstable Einstein metrics are known. In

constrast, no unstable Einstein metrics of nonpositive

scalar curvature are known. It is conjectured that all

such Einstein manifolds are stable.

Stability and Sectional
Curvature Bounds

In the seventies, stablity of Einstein metrics was stud-

ied by N. Koiso ([3],[4]). A consequence of his work was

the following

Theorem 3 (Koiso). Let (Mn, g) be an Einstein man-

ifold. If the sectional curvature is negative or if it is

positive and n−2
3n -pinched, (M, g) is strictly stable.

The pinching assumption is very strong, since for n > 8,

all such pinched manifolds are quotients of the sphere.

In my work, I try to weaken the curvature assumptions.

So far, I have extended the stability result to weakly

pinched manifolds:

Theorem 4. Let (Mn, g) be an Einstein manifold,

which is weakly n−2
3n -pinched. If n ≥ 8, (M, g) is strictly

stable.

For manifolds of nonpositive sectional curvature, the

following was obtained:

Theorem 5. Let (M, g) a non-flat Einstein mani-

fold with Einstein constant µ and nonpositive sectional

curvature. If Kmin > 2
nµ, (M, g) is strictly stable.

If Kmin ≥ 2
nµ and ker G is nontrivial, M is even-

dimensional and there exists an orthogonal splitting

TM = E ⊕ F . The subbundles E and F are of the

same dimension and both integrable. The correspond-

ing integral submanifolds are flat.

Stability is not given if we just assume K ≥ 0. In

this case, we obtain a (nonpositive) lower bound on the

smallest Eigenvalue of G.

Proposition 6. Let (M, g) an Einstein manifold with

constant µ and sectional curvature K ≥ 0. Then, the

lowest eigenvalue of G satisfies

λ ≥ −2µ.

Equality holds if and only if M is locally isometric to a

product.

Stability and the Weyl
Tensor

By the above, constant curvature metrics strictly stable

in the non-flat case. We can also estimate the lowest

Eigenvalue of G:

Proposition 7. Let (M, g) be a Riemannian manifold

of constant curvature K. Then (M, g) is stable. It is

strictly stable, if K 6= 0. The lowest eigenvalue of G
satisfies the estimate

λ ≥ max {2K(n+ 1),−K(n− 2)} .

For a general Einstein-manifold, the difference from be-

ing of constant curvature is measured by the Weyl cur-

vature tensor. Therefore, it seems convenient to search

stability criterions involving the Weyl curvature.

Let b : M → R be the largest eigenvalue of the operator

W̊ acting on traceless symmetric (0, 2)-tensors,

W̊h(X, Y ) =
n∑
i=1

h(W (ei, X)Y, ei).

Theorem 8. Let (M, g) be Einstein with constant µ. If

‖b‖∞ ≤ max

{
µ

n+ 1

2(n− 1)
,−µn− 2

n− 1

}

(M, g) is stable. If the strict inequality holds, (M, g) is

strictly stable.

If the Einstein constant µ is positive, we are able to

prove a criterion involving an integral of the Weyl cur-

vature:

Theorem 9. Let (M, g) be a non-conformally flat Ein-

stein manifold with positive Einstein constant µ . If

‖b‖Ln/2 ≤ µ · Vol(M, g)2/n
n+ 1

2(n− 1)

(
4(n− 1)

n(n− 2)
+ 1

)−1
,

(M, g) is stable.

Since the Ln/2-norm of the Weyl tensor is conformally

invariant and any non-conformally flat Einstein metric

is a Yamabe metric in its conformal class, we can deduce

the following:

Corollary 10. Let (M, g) be a Riemannian metric and

let Y ([g]) be the Yamabe invariant of the conformal

class of g. If

‖W‖Ln/2 ≤ Y ([g])
n+ 1

2n(n− 1)

(
4(n− 1)

n(n− 2)
+ 1

)−1
,

any Einstein metric in [g] is stable.

In dimension 4, we would obtain that a positive

Einstein-manifold is stable if ‖W‖L2 ≤ µ
3Vol(M, g)1/2.

Unfortunately, this is of no use. Gursky and LeBrun

([2]) proved that if the Weyl-tensor of any Einstein 4-

manifold satisfies the upper bound

‖W‖L2 <
4µ√

6
Vol(M, g)1/2

then W ≡ 0. In higher dimensions, our criterion is not

ruled out by such isolation results.

Stability in Dimension Six

In dimension six, we can use the Gauss-Bonnet formula

to prove the following:

Theorem 11. Let (M, g) be a positive Einstein six-

manifold with vol(M) = 1 and non-vanishing Weyl ten-

sor. If

(
144− 12 · 72 · 32

5 · 112

)
µ3

25
≤ 384π3χ(M)+48(W,W ◦W )L2

(M, g) is stable. Here, W is considered as an endomor-

phism on 2-forms and the L2-scalar product is taken

with respect to the norm on End(Λ2M).

Here the assumptions are made such that, by using

Gauss-Bonnet, we get a small L3-norm of the Weyl-

tensor.

Stability of Kähler-Einstein
metrics

It is well known that all Kähler-Einstein metrics of

nonpositive scalar curvature are stable. This assertion

is wrong in the case of positive scalar curvature. Here

we can make use of the Bochner curvature tensor.

For Kähler-Einstein metrics, the Bochner tensor mea-

sures the difference from being of constant holomorphic

sectional curvature. One can see that a positive Kähler-

Einstein metric is stable if its Bochner tensor is small.

As we did for the Weyl tensor, we proved two criterions

involving the L∞- and the Ln/2-norm of the Bochner

tensor, respectively.

Open Questions

- Can we weaken the pinching assumption of Theorem

4?

- Are all Einstein manifolds of nonpositive scalar cur-

vature stable?
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