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The space of homogeneous manifolds

Fix g: real vector space.

g = k⊕ p: direct sum decomposition, 〈·, ·〉: inner product on p.

Given µ ∈ Λ2g∗ ⊗ g, i.e. µ : g× g→ g bil. and skew-symm.,

µ (Gµ/Kµ, gµ) homogeneous space provided:

(i) µ Jacobi X, µ(k, k) ⊂ k, µ(k, p) ⊂ p ( Gµ, Kµ).

(ii) Kµ closed in Gµ ( Gµ/Kµ manifold).

(iii) {Z ∈ k : µ(Z , p) = 0} = 0 ( Gµ/Kµ almost-effective).

(iv) 〈·, ·〉 is adµ k|p-invariant ( gµ Gµ-invariant), gµ(o) = 〈·, ·〉).

q = dim k, n = dim p,

Hq,n :=
{
µ ∈ Λ2g∗ ⊗ g : (i)-(iv)X

}
⊂ Lq+n.

Hq,n ↔ all simply connected Riemannian homogeneous space of
dimension n with a q-dimensional isotropy (up to isometry).

H0,n = Ln variety of Lie algebras ↔ left-invariant metrics on all
n-dimensional s.c. Lie groups.
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n-dimensional s.c. Lie groups.

Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 3 / 28



Geometric structures

g = k⊕ p,

Fix J : p→ p, J2 = −I , + (iv)’ [adµ k|p, J] = 0,
µ ∈ Hq,n  (Gµ/Kµ, J) almost-complex homogeneous space.

+ (v) Nijenhuis(J, µ) = 0, polynomial on µ,
µ ∈ Hq,n  (Gµ/Kµ, J) complex homogeneous space.

Fix (J, 〈·, ·〉), 〈J·, J·〉 = 〈·, ·〉, + (iv)’, (iv)
µ ∈ Hq,n  (Gµ/Kµ, J) (almost-) hermitian homogeneous space.

Analogously: Symplectic, Hyper-complex, etc.

Deformation theory, convergence, invariants, critical points of functionals,
evolution equations ???

(only q = 0 and µ nilpotent has been explored).
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Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 4 / 28



Subsets of Hq,n

g = k⊕ p, Hq,n ⊂ Lq+n ⊂ Λ2g∗ ⊗ g,

Notation: GLq+n := GLq+n(R) = GL(g), same for k and p.

GLq+n 	 Λ2g∗ ⊗ g by

(h · µ)(X ,Y ) = hµ(h−1X , h−1Y ), ∀X ,Y ∈ g.

µ ∈ Hq,n, h :=
[
hq 0
0 hn

]
∈ GLq+n, [ht

nhn, adµ k|p] = 0.

⇒ h · µ ∈ Hq,n.

Gh·µ/Kh·µ and Gµ/Kµ are equivariantly diffeomorphic.

(Gh·µ/Kh·µ, gh·µ) is equivariantly isometric to
(
Gµ/Kµ, g〈hn·,hn·〉

)
( all Gµ-invariant metrics on Gµ/Kµ),
(⇒ O(n) · µ ⊂ Hq,n all equivariantly isometric to gµ).
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Convergence

Lie injectivity radius of (Gµ/Kµ, gµ), µ ∈ Hq,n,

rµ := sup
{

r > 0 : πµ ◦ expµ : B(0, r)→ Gµ/Kµ diffeomorphism
}
.

Theorem (JL 2010)

µk , λ ∈ Hq,n.

µk → λ ⇒ (Gµk/Kµk , gµk )→ (Gλ/Kλ, gλ) infinitesimally (only the
germs of the metrics at the origins are involved). (∼ converse X)
Assume µk → λ and inf

k
rµk > 0, then,

(Gµk/Kµk , gµk )→ (Gλ/Kλ, gλ) locally (smooth on fixed open
neighborhoods of the origins).

(Gµk/Kµk , gµk )→ (Gλ/Kλ, gλ) pointed (or Cheeger-Gromov), after
passing to a subsequence.

Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 6 / 28



Convergence

Lie injectivity radius of (Gµ/Kµ, gµ), µ ∈ Hq,n,

rµ := sup
{

r > 0 : πµ ◦ expµ : B(0, r)→ Gµ/Kµ diffeomorphism
}
.

Theorem (JL 2010)

µk , λ ∈ Hq,n.

µk → λ ⇒ (Gµk/Kµk , gµk )→ (Gλ/Kλ, gλ) infinitesimally (only the
germs of the metrics at the origins are involved). (∼ converse X)
Assume µk → λ and inf

k
rµk > 0, then,

(Gµk/Kµk , gµk )→ (Gλ/Kλ, gλ) locally (smooth on fixed open
neighborhoods of the origins).

(Gµk/Kµk , gµk )→ (Gλ/Kλ, gλ) pointed (or Cheeger-Gromov), after
passing to a subsequence.
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Convergence

Assume k = 0, i.e. g = p, µ ∈ H0,n = Ln  (Gµ, 〈·, ·〉) left-invariant
metric.

Theorem (JL 2010)

µk ∈ H0,n = Ln, the following are equivalent.

µk → λ.

(Gµk , 〈·, ·〉)→ (Gλ, 〈·, ·〉) infinitesimally.

(Gµk , 〈·, ·〉)→ (Gλ, 〈·, ·〉) locally.

(Gµk , 〈·, ·〉)→ (Gλ, 〈·, ·〉) pointed, provided Gλ is compact.

gµk → gλ smoothly on Rn ≡ g, provided all µk are completely
solvable (e.g. nilpotent).
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Examples of singular behavior

A sequence µk ∈ H1,7 of Aloff-Wallach spaces (SU(3)/S1
p,q)

which
infinitesimally converges to another Aloff-Wallach space λ, but such
that it does not admit any pointed or local convergent subsequence.

A divergent sequence µk ∈ H0,3 of left-invariant metrics on S̃L2(R)
which nevertheless pointed converges to R× H2. µk is actually
isometric to a convergent sequence in H1,3.

A sequence µk ∈ H1,5 of homogeneous metrics on S3 × S2

converging to λ /∈ H1,5. However, λ can be viewed as an element of
H2,4, giving rise to a collapsing of the µk with bounded curvature to
a metric on S2 × S2.
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Ricci operator

µ ∈ Hq,n, Ricµ : p→ p given by

Ricµ = Mµ − 1
2 Bµ − S(adµ Hµ|p) ,

〈BµX ,Y 〉 = tr adµ X adµ Y (Killing form),

Hµ ∈ p, 〈Hµ,X 〉 = tr adµ X (unimodularity)

tr MµE = 1
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Mµ and Hµ depends only on µp, where ∀X ,Y ∈ p,
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Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 9 / 28



Ricci operator

µ ∈ Hq,n, Ricµ : p→ p given by

Ricµ = Mµ − 1
2 Bµ − S(adµ Hµ|p) ,

〈BµX ,Y 〉 = tr adµ X adµ Y (Killing form),

Hµ ∈ p, 〈Hµ,X 〉 = tr adµ X (unimodularity)

tr MµE = 1
4〈π(E )µp, µp〉, ∀E ∈ End(p) (moment map

for the linear action GL(p) 	 Λ2p∗ ⊗ p)

Mµ and Hµ depends only on µp, where ∀X ,Y ∈ p,

µ(X ,Y ) = µk(X ,Y ) + µp(X ,Y ), µk(X ,Y ) ∈ k, µp(X ,Y ) ∈ p.
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Ricci flow

g(t) Ricci flow starting at the homogeneous manifold

(M, g0) = (Gµ0/Kµ0 , gµ0) , µ0 ∈ Hq,n,

∂
∂t g(t) = −2 Rc(g(t)) , g(0) = gµ0 ,

⇒ Gµ0 ⊂ Isom(M, g(t)) for all t

⇒ g(t)←→ 〈·, ·〉t : Ad(Kµ0)-invariant inner product on p solving the ODE:

d
dt 〈·, ·〉t = −2 Rc(〈·, ·〉t), 〈·, ·〉0 = 〈·, ·〉,

t ∈ (T−,T+), −∞ ≤ T− < 0 < T+ ≤ T+.

Ricci flow on Hq,n ???
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Bracket flow

Consider for a curve µ(t) ∈ Λ2g∗ ⊗ g the bracket flow:

d
dtµ = −π

([
0 0
0 Ricµ

])
µ ,

π : glq+n −→ End(Λ2g∗ ⊗ g),

π(A)µ := Aµ(·, ·)− µ(A·, ·)− µ(·,A·), ∀A ∈ glq+n.

µ0 ∈ Hq,n ⇒ µ(t) ∈ Hq,n for all t,

µ(t) (Gµ(t)/Kµ(t), 〈·, ·〉) curve of homogeneous spaces.
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(M, g0) = (Gµ0/Kµ0 , gµ0), µ0 ∈ Hq,n, (recall g = k⊕ p),

(M, g(t)),
(
Gµ0/Kµ0 , g〈·,·〉t

)
,
(
Gµ(t)/Kµ(t), gµ(t)

)
,

Theorem (JL 2010)

∃ ϕ(t) : M = Gµ0/Kµ0 −→ Gµ(t)/Kµ(t) such that

g(t) = ϕ(t)∗gµ(t) , ∀t ∈ (T−,T+).

Moreover, ϕ(t) : Gµ0/Kµ0 −→ Gµ(t)/Kµ(t) equivariant diffeomorphism
determined by the Lie group isomorphism between Gµ0 and Gµ(t) with

derivative h̃ :=
[
I 0
0 h

]
: g −→ g, where h(t) := dϕ(t)|o : p −→ p,

(i) d
dt h = −h Ric(〈·, ·〉t), h(0) = I .

(ii) d
dt h = −Ricµ(t) h, h(0) = I .

The following conditions also hold:

(iii) 〈·, ·〉t = 〈h·, h·〉.
(iv) µ(t) = h̃µ0(h̃−1·, h̃−1·).

Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 12 / 28
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)
,
(
Gµ(t)/Kµ(t), gµ(t)

)
,

g(t) = ϕ(t)∗gµ(t)

Same behavior of the curvature and of any other Riemannian
invariant.

Maximal interval of time where a solution exists is the same.

µ(tk)→ λ ∈ Hq,n (or a suitable normalization) ⇒ convergence or
subconvergence gµk → gλ (infinitesimal, local or pointed).

µ(t)|k×g ≡ µ0|k×g.
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Application to nilmanifolds

G nilpotent and s.c., K = {e}, g = p = Rn = G , µ nilpotent Lie bracket

on g, Ricµ = Mµ , R(gµ) = −1
4‖µ‖

2,

d
dtµ = −π(Ricµ)µ = − grad(tr Ric2

µ)µ

negative gradient flow of the square norm of the moment map for the
action GLn 	 Λ2g∗ ⊗ g.

[JL 2001] gµ Ricci soliton ⇔ µ critical point of µ 7→ tr Ric2
µ on the sphere.

Theorem (JL 2009)

The Ricci flow g(t) is a type-III solution (i.e. t ∈ [0,∞) and
‖Rm(g(t))‖ ≤ C

t ).

g(t) converges in C∞ to a flat metric uniformly on compact sets in
Rn.

After rescaling (R ≡ −1), g(t) converges to a Ricci soliton metric
g∞, which is also invariant under a transitive nilpotent Lie group,
though possibly non-isomorphic to G .
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Other applications

[Guzhvina 2008] Bracket flow for nilmanifolds with applications to
almost-flat manifolds.

[Payne 2010] Qualitative behavior of bracket flow solutions for
nilmanifolds.

[Glickenstein-Payne 2010] Ricci flow of 3-dim unimodular Lie groups.

[Arroyo 2012] Application to Ricci flow of 4-dim homogeneous manifolds
and to Ricci flow of solvmanifolds.
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Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 15 / 28



Other applications

[Guzhvina 2008] Bracket flow for nilmanifolds with applications to
almost-flat manifolds.

[Payne 2010] Qualitative behavior of bracket flow solutions for
nilmanifolds.

[Glickenstein-Payne 2010] Ricci flow of 3-dim unimodular Lie groups.

[Arroyo 2012] Application to Ricci flow of 4-dim homogeneous manifolds
and to Ricci flow of solvmanifolds.
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Example in dim = 3

µ = µa,b ∈ H1,3 defined by
µ(X3,Z1) = X2,
µ(Z1,X2) = X3,
µ(X2,X3) = aX1 + bZ1.

Bracket flow:


d
dt a = (−3

2 a2 + 2b)a,

d
dt b = (−a2 + 2b)b.

flat
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Figure: Phase plane for the ODE system
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Example in dim = 3
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Example in dim = 3
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Example in dim = 3
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Example in simple Lie groups

Bracket flow:
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dt a = 1
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Example in simple Lie groups
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Ricci solitons

(M, g) complete Riemannian manifold, Ricci soliton:

Rc(g) = cg + LX (g), c ∈ R, X ∈ χ(M) (complete)

⇔ g(t) = (−2ct + 1)ϕ(t)∗g , ϕ(t) ∈ Diff(M),

solution to Ricci flow with g(0) = g .

[Ivey, Naber, Perelman, Petersen-Wylie]  Any nontrivial (i.e.
non-Einstein and not the product of an Einstein homogeneous manifold
with a euclidean space) homogeneous Ricci soliton must be noncompact,
expanding (c < 0), non-gradient.
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Algebraic solitons

(G/K , g〈·,·〉): connected homogeneous space, with reductive
decomposition g = k⊕ p.

semi-algebraic soliton: ∃ ϕt ∈ Aut(G ) with ϕt(K ) = K such that

g(t) = c(t)ϕ∗t g〈·,·〉, g(0) = g〈·,·〉.

⇔ ∃ c ∈ R and D ∈ Der(g) such that Dk ⊂ k and

Ric = cI + Symm(Dp).

algebraic soliton: ∃c ∈ R and D ∈ Der(g) such that Dk ⊂ k and

Ric = cI + Dp ⇔ µ(t) = (−2ct + 1)−1/2 · [·, ·].

solvsoliton: algebraic soliton with K = e and G solvable.

nilsoliton: algebraic soliton with K = e and G nilpotent.
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Classification and structure of nilsolitons (↔ GIT): [Fernandez Culma,
Jablonski, Nikolayevsky, Payne, Will, JL, ...]

Classification and structure of solvsolitons: [Lafuente, Will, JL, ...]

Theorem (Jablonski 2012)

Any (nonflat) Ricci soliton solvmanifold is isometric to a simply
connected solvsoliton.

Any homogeneous Ricci soliton (M, g) is a semi-algebraic soliton with
respect to its full isometry group G = Isom(M, g).
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Open questions:

Is any homogeneous Ricci soliton isometric to an algebraic soliton ??

Is any algebraic soliton isometric to a solvsoliton ??

Alekseevskii’s conjecture [Besse, 80’s]. Any Einstein connected
homogeneous Riemannian manifold of negative scalar curvature is
diffeomorphic to a Euclidean space.

Theorem (Lafuente-JL 2012)

Any example of an algebraic soliton which is not a solvsoliton gives rise to
a counterexample to the Alekseevskii conjecture.
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Structure of semi-algebraic solitons

Theorem (Lafuente-JL 2011)

Assume g = k⊕ p is ⊥-Killing, and consider the orthogonal decomposition
p = h⊕ n, where n is the nilradical of g. Then (G/K , g〈·,·〉) is a
semi-algebraic soliton if and only if the following conditions hold:

[h, h] ⊂ k⊕ h. In particular, u := k⊕ h is a reductive Lie subalgebra of
g and g = un n.

Ricu = cI + Ch, where Ricu is the Ricci operator of U/K with
u = k⊕ h and 〈ChY ,Y 〉 = tr Symm(ad Y |n)2, ∀Y ∈ h.

Ricn = cI + D1, for some D1 ∈ Der(n), where Ricn denotes the Ricci
operator of (n, 〈·, ·〉|n×n) (nilsoliton).∑

[ad Yi |n, (ad Yi |n)t ] = 0, where {Yi} is any orthonormal basis of h
(⇒ (ad Y |n)t ∈ Der(n) for all Y ∈ h).
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Jorge Lauret, UN Córdoba, Argentina () The Ricci flow and its solitons for homogeneous manifolds and the Alekseevskii conjectureMarburg, July 6th, 2012 28 / 28



Structure of semi-algebraic solitons

Theorem (Lafuente-JL 2011)

Assume g = k⊕ p is ⊥-Killing, and consider the orthogonal decomposition
p = h⊕ n, where n is the nilradical of g. Then (G/K , g〈·,·〉) is a
semi-algebraic soliton if and only if the following conditions hold:

[h, h] ⊂ k⊕ h. In particular, u := k⊕ h is a reductive Lie subalgebra of
g and g = un n.

Ricu = cI + Ch, where Ricu is the Ricci operator of U/K with
u = k⊕ h and 〈ChY ,Y 〉 = tr Symm(ad Y |n)2, ∀Y ∈ h.

Ricn = cI + D1, for some D1 ∈ Der(n), where Ricn denotes the Ricci
operator of (n, 〈·, ·〉|n×n) (nilsoliton).∑

[ad Yi |n, (ad Yi |n)t ] = 0, where {Yi} is any orthonormal basis of h

(⇒ (ad Y |n)t ∈ Der(n) for all Y ∈ h).
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