Deforming G₂ Conifolds

Jason D. Lotay

University College London

5 July 2012

Joint with Spiro Karigiannis (Waterloo)

Conifolds

• Known examples of G2 conifolds

- Known examples of G2 conifolds
- Moduli space of compact G2 manifolds

- Known examples of G₂ conifolds
- Moduli space of compact G₂ manifolds
- New examples/local uniqueness of holonomy G₂ metrics

- Known examples of G2 conifolds
- Moduli space of compact G₂ manifolds
- New examples/local uniqueness of holonomy G₂ metrics
- Relevance to M-Theory

Definitions and examples

- Definitions and examples
- Deformation theory results

- Definitions and examples
- Deformation theory results
- Applications

- Definitions and examples
- Deformation theory results
- Applications
- Sketch proof and key ideas

- Definitions and examples
- Deformation theory results
- Applications
- Sketch proof and key ideas
- Open problems

G_2 structures

 ${\it M}^7$ connected, oriented and spin

 M^7 connected, oriented and spin

• open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$

 M^7 connected, oriented and spin

- open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$
- ullet positive 3-form $arphi \leadsto$ metric \mathbf{g}_{arphi}

 M^7 connected, oriented and spin

- \bullet open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto$ positive 3-forms
- positive 3-form $\varphi \leadsto \mathsf{metric}\ g_\varphi \leadsto \mathsf{G}_2$ structure

 M^7 connected, oriented and spin

- \bullet open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow \mathsf{metric}\ g_\varphi \rightsquigarrow \mathsf{G}_2$ structure
- (Fernandez–Gray 1982) G_2 structure φ torsion-free if

$$abla_{arphi}arphi=0\quad\Leftrightarrow\quad \mathrm{d}arphi=\mathrm{d}_{arphi}^*arphi=0\quad\Leftrightarrow\quad \mathsf{Hol}(g_{arphi})\subseteq\mathsf{G}_2$$

 M^7 connected, oriented and spin

- open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$
- ullet positive 3-form $arphi \leadsto$ metric $g_{arphi} \leadsto \mathsf{G}_2$ structure
- ullet (Fernandez–Gray 1982) G_2 structure arphi torsion-free if

$$abla_{arphi}arphi=0\quad\Leftrightarrow\quad\mathrm{d}arphi=\mathrm{d}_{arphi}^*arphi=0\quad\Leftrightarrow\quad\mathsf{Hol}(g_{arphi})\subseteq\mathsf{G}_2$$

Definition

 (M^7, φ) with φ torsion-free is a G_2 manifold

 M^7 connected, oriented and spin

- open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$
- positive 3-form $\varphi \rightsquigarrow \mathsf{metric}\ g_\varphi \rightsquigarrow \mathsf{G}_2$ structure
- ullet (Fernandez–Gray 1982) G_2 structure arphi torsion-free if

$$\nabla_{\varphi}\varphi=0\quad\Leftrightarrow\quad\mathrm{d}\varphi=\mathrm{d}_{\varphi}^{*}\varphi=0\quad\Leftrightarrow\quad\mathsf{Hol}(g_{\varphi})\subseteq\mathsf{G}_{2}$$

Definition

 (M^7, φ) with φ torsion-free is a G_2 manifold

• (Bryant 1985) Simply connected M

 M^7 connected, oriented and spin

- open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$
- positive 3-form $\varphi \rightsquigarrow \mathsf{metric}\ g_\varphi \rightsquigarrow \mathsf{G}_2$ structure
- ullet (Fernandez–Gray 1982) G_2 structure arphi torsion-free if

$$abla_{arphi}arphi=0\quad\Leftrightarrow\quad \mathrm{d}arphi=\mathrm{d}_{arphi}^*arphi=0\quad\Leftrightarrow\quad \mathsf{Hol}(g_{arphi})\subseteq\mathsf{G}_2$$

Definition

 (M^7, φ) with φ torsion-free is a G_2 manifold

• (Bryant 1985) Simply connected $M \rightsquigarrow$

$$\mathsf{Hol}(g_{\varphi}) = \mathsf{G}_2 \quad \Leftrightarrow \quad \nexists \alpha \in \mathcal{C}^{\infty}(\Lambda^1) \setminus \{0\}, \nabla_{\varphi} \alpha = 0$$

 M^7 connected, oriented and spin

- open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$
- positive 3-form $\varphi \rightsquigarrow \mathsf{metric}\ g_\varphi \rightsquigarrow \mathsf{G}_2$ structure
- ullet (Fernandez–Gray 1982) G_2 structure arphi torsion-free if

$$abla_{arphi}arphi=0\quad\Leftrightarrow\quad \mathrm{d}arphi=\mathrm{d}_{arphi}^*arphi=0\quad\Leftrightarrow\quad \mathsf{Hol}(g_{arphi})\subseteq\mathsf{G}_2$$

Definition

 (M^7, φ) with φ torsion-free is a G_2 manifold

• (Bryant 1985) Simply connected *M* ↔

$$\mathsf{Hol}(g_{\varphi}) = \mathsf{G}_2 \quad \Leftrightarrow \quad \nexists \alpha \in \mathcal{C}^{\infty}(\Lambda^1) \setminus \{0\}, \nabla_{\varphi} \alpha = 0$$

• (Joyce 1996) Compact M

 M^7 connected, oriented and spin

- open subbundle $\Lambda^3_+ \subseteq \Lambda^3 \leadsto \text{positive 3-forms}$
- positive 3-form $\varphi \rightsquigarrow \mathsf{metric}\ g_\varphi \rightsquigarrow \mathsf{G}_2$ structure
- ullet (Fernandez–Gray 1982) G_2 structure arphi torsion-free if

$$abla_{arphi}arphi=0\quad\Leftrightarrow\quad\mathrm{d}arphi=\mathrm{d}_{arphi}^*arphi=0\quad\Leftrightarrow\quad\mathsf{Hol}(g_{arphi})\subseteq\mathsf{G}_2$$

Definition

 (M^7, φ) with φ torsion-free is a G_2 manifold

• (Bryant 1985) Simply connected *M* ↔

$$\mathsf{Hol}(g_{\varphi}) = \mathsf{G}_2 \quad \Leftrightarrow \quad \nexists \alpha \in C^{\infty}(\Lambda^1) \setminus \{0\}, \nabla_{\varphi} \alpha = 0$$

• (Joyce 1996) Compact $M \rightsquigarrow \operatorname{\mathsf{Hol}}(g_{\varphi}) = \mathsf{G}_2 \Leftrightarrow \pi_1(M)$ finite

G_2 conifolds

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

 $\bullet \ \mathsf{Hol}(g_C) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma \ \mathsf{nearly} \ \mathsf{K\"{a}hler}$

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

- $\mathsf{Hol}(g_C) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma$ nearly Kähler
- Examples of Σ :

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

- $\mathsf{Hol}(g_C) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma$ nearly Kähler
- Examples of $\Sigma \colon\thinspace \mathcal{S}^6,\,\mathbb{CP}^3,\,\text{SU}(3)/\mathit{T}^2,\,\mathcal{S}^3\times\mathcal{S}^3$

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

- $\operatorname{\mathsf{Hol}}(g_{\mathsf{C}}) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma$ nearly Kähler
- Examples of Σ : \mathcal{S}^6 , \mathbb{CP}^3 , $SU(3)/T^2$, $\mathcal{S}^3 \times \mathcal{S}^3$

Definition

M asymptotically conical (AC)

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

- $\operatorname{\mathsf{Hol}}(g_{\mathsf{C}}) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma$ nearly Kähler
- Examples of Σ : \mathcal{S}^6 , \mathbb{CP}^3 , $SU(3)/\mathcal{T}^2$, $\mathcal{S}^3 \times \mathcal{S}^3$

Definition

M asymptotically conical (AC) if \exists diffeomorphism

$$\Psi: (R, \infty) \times \Sigma \to M \setminus K$$

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

- $\operatorname{\mathsf{Hol}}(g_{\mathsf{C}}) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma$ nearly Kähler
- Examples of Σ : \mathcal{S}^6 , \mathbb{CP}^3 , $SU(3)/\mathcal{T}^2$, $\mathcal{S}^3 \times \mathcal{S}^3$

Definition

M asymptotically conical (AC) if \exists diffeomorphism

$$\Psi:(R,\infty) imes\Sigma o M\setminus K$$
 and rate $u<0$ such that

$$|
abla_{\mathcal{C}}^{j}(\Psi^{*}g_{\mathcal{M}}-g_{\mathcal{C}})|=O(r^{
u-j}) \quad ext{for all } j\in\mathbb{N} \ ext{as } r o\infty$$

Cone
$$C^7=\mathbb{R}^+ imes \Sigma^6$$
, $g_C=\mathrm{d} r^2+r^2g_\Sigma$

- $\mathsf{Hol}(g_C) \subseteq \mathsf{G}_2 \Leftrightarrow \Sigma$ nearly Kähler
- Examples of Σ : \mathcal{S}^6 , \mathbb{CP}^3 , $SU(3)/\mathcal{T}^2$, $\mathcal{S}^3 \times \mathcal{S}^3$

Definition

M asymptotically conical (AC) if \exists diffeomorphism

 $\Psi:(R,\infty) imes\Sigma o M\setminus K$ and rate u<0 such that

$$|
abla_C^j(\Psi^*g_M-g_C)|=O(r^{
u-j}) \quad ext{for all } j\in \mathbb{N} ext{ as } r o \infty$$

• M AC rate $\nu_0 < 0 \rightsquigarrow M$ AC any rate $\nu \in [\nu_0, 0)$

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• M CS rate $\nu_0 > 0 \leadsto M$ CS any rate $\nu \in (0, \nu_0]$

Definition

$$\overline{M}$$
 conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0,\epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• M CS rate $\nu_0 > 0 \rightsquigarrow M$ CS any rate $\nu \in (0, \nu_0]$

Definition

$$\overline{M}$$
 conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• M CS rate $\nu_0 > 0 \leadsto M$ CS any rate $\nu \in (0, \nu_0]$

Examples

• (Bryant-Salamon 1989) AC holonomy G2 manifolds

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• M CS rate $\nu_0 > 0 \leadsto M$ CS any rate $\nu \in (0, \nu_0]$

- (Bryant-Salamon 1989) AC holonomy G2 manifolds
 - $\Lambda^2_-(\mathcal{S}^4)$ and $\Lambda^2_-(\mathbb{CP}^2)$ have rate -4, $\Sigma=\mathbb{CP}^3$ and $SU(3)/\mathcal{T}^2$

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• M CS rate $\nu_0 > 0 \leadsto M$ CS any rate $\nu \in (0, \nu_0]$

- (Bryant-Salamon 1989) AC holonomy G2 manifolds
 - $\Lambda^2_-(\mathcal{S}^4)$ and $\Lambda^2_-(\mathbb{CP}^2)$ have rate -4, $\Sigma=\mathbb{CP}^3$ and $SU(3)/\mathcal{T}^2$
 - $\mathbb{S}(\mathcal{S}^3)$ has rate -3, $\Sigma = \mathcal{S}^3 \times \mathcal{S}^3$

Definition

 \overline{M} conically singular (CS) at $z \in \overline{M}$ if $M = \overline{M} \setminus \{z\}$ smooth and \exists diffeomorphism $\Psi : (0, \epsilon) \times \Sigma \to M \setminus K$ and rate $\nu > 0$ such that $|\nabla^j_C(\Psi^*g_M - g_C)| = O(r^{\nu - j})$ for all $j \in \mathbb{N}$ as $r \to 0$

• M CS rate $\nu_0 > 0 \leadsto M$ CS any rate $\nu \in (0, \nu_0]$

- (Bryant-Salamon 1989) AC holonomy G₂ manifolds
 - $\Lambda^2_-(\mathcal{S}^4)$ and $\Lambda^2_-(\mathbb{CP}^2)$ have rate -4, $\Sigma=\mathbb{CP}^3$ and $SU(3)/\mathcal{T}^2$
 - $\mathbb{S}(\mathcal{S}^3)$ has rate -3, $\Sigma = \mathcal{S}^3 \times \mathcal{S}^3$
- (Joyce–Karigiannis) Potential method for constructing CS holonomy G_2 manifolds, $\Sigma = \mathbb{CP}^3$

Theorem (Joyce 1996)

Theorem (Joyce 1996)

M compact G₂ manifold

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

(Nordström 2009) Asymptotically cylindrical case

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

M AC G₂ manifold

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis–L 2012)

M AC G_2 manifold with generic rate $\nu \in (-4, -5/2)$

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis–L 2012)

M AC G_2 manifold with generic rate $\nu \in (-4, -5/2) \Rightarrow$ moduli space is locally a smooth manifold

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

M AC G_2 manifold with generic rate $\nu \in (-4, -5/2) \Rightarrow$ moduli space is locally a smooth manifold of dimension

•
$$b_{cs}^3(M)$$
 if $\nu \in (-4, -3)$

Theorem (Joyce 1996)

M compact G_2 manifold \Rightarrow moduli space of torsion-free G_2 structures is locally a smooth manifold of dimension $b^3(M)$

(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

M AC G_2 manifold with generic rate $\nu \in (-4, -5/2) \Rightarrow$ moduli space is locally a smooth manifold of dimension

- $b_{cs}^3(M)$ if $\nu \in (-4, -3)$
- $b_{cs}^3(M) + \dim \operatorname{Im} \left(H^3(M) \to H^3(\Sigma) \right) + \sum_{\lambda \in (-3,\nu)} m_{\Sigma}(\lambda)$ if $\nu \in (-3,-5/2)$

Theorem (Karigiannis-L 2012)

M CS G₂ manifold

Theorem (Karigiannis-L 2012)

M CS G_2 manifold with rate ν near 0

Theorem (Karigiannis-L 2012)

M CS G_2 manifold with rate ν near $0 \Rightarrow$

ullet \exists finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$

Theorem (Karigiannis-L 2012)

- ullet \exists finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$
- ullet \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \to \mathcal{O}$ with $\pi(0) = 0$

Theorem (Karigiannis-L 2012)

- ullet finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \to \mathcal{O}$ with $\pi(0) = 0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$

Theorem (Karigiannis–L 2012)

- ullet finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \to \mathcal{O}$ with $\pi(0) = 0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
 - $b^3(M) \dim \operatorname{Im} \left(H^3(M) \to H^3(\Sigma) \right) \sum_{\lambda \in (-3,0]} m_{\Sigma}(\lambda)$

Theorem (Karigiannis-L 2012)

- ullet finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \to \mathcal{O}$ with $\pi(0) = 0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
 - $b^3(M) \dim \operatorname{Im} \left(H^3(M) \to H^3(\Sigma) \right) \sum_{\lambda \in (-3,0]} m_{\Sigma}(\lambda)$
 - ullet ${\cal I}$ is the infinitesimal deformation space

Theorem (Karigiannis–L 2012)

- ullet finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \to \mathcal{O}$ with $\pi(0) = 0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
 - $b^3(M) \dim \operatorname{Im} \left(H^3(M) \to H^3(\Sigma) \right) \sum_{\lambda \in (-3,0]} m_{\Sigma}(\lambda)$
 - ullet ${\cal I}$ is the infinitesimal deformation space
 - \bullet \mathcal{O} is the obstruction space

Theorem (Karigiannis-L 2012)

- ullet finite-dimensional vector spaces of forms ${\mathcal I}$ and ${\mathcal O}$
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \to \mathcal{O}$ with $\pi(0) = 0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
 - $b^3(M) \dim \operatorname{Im} \left(H^3(M) \to H^3(\Sigma) \right) \sum_{\lambda \in (-3,0]} m_{\Sigma}(\lambda)$
 - ullet ${\cal I}$ is the infinitesimal deformation space
 - ullet \mathcal{O} is the obstruction space
 - $\mathcal{O} = \{0\} \rightsquigarrow \mathsf{smooth} \mathsf{moduli} \mathsf{space}$

1.
$$M = \Lambda^2_-(S^4)$$
 or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

1.
$$M = \Lambda^2_-(S^4)$$
 or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

1.
$$M = \Lambda^2_-(S^4)$$
 or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

• (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$

1.
$$M = \Lambda^2_-(S^4)$$
 or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- dim $\mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $u\in(-4,0)$

1.
$$M = \Lambda^2_-(S^4)$$
 or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- dim $\mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu\in(-4,0)\leadsto$ local uniqueness

1.
$$M = \Lambda^2_-(S^4)$$
 or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- $\dim \mathcal{M}_{
 u} = b_{\operatorname{cs}}^3(M) = 1$ for $u \in (-4,0) \rightsquigarrow \operatorname{local}$ uniqueness
- **2.** $M = \mathbb{S}(S^3)$, AC with rate -3

- 1. $M = \Lambda^2_-(S^4)$ or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4
 - $b_{cs}^3(M) = b^4(M) = 1$, $b^3(\Sigma) = 0$
 - (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
 - $\dim \mathcal{M}_{
 u} = b_{\operatorname{cs}}^3(M) = 1$ for $u \in (-4,0) \rightsquigarrow \operatorname{local}$ uniqueness
- **2.** $M = \mathbb{S}(S^3)$, AC with rate -3
 - $b_{cs}^3(M) = 0$, $b^3(M) = 1$, $b^3(\Sigma) = 2$

1. $M = \Lambda^2_-(S^4)$ or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- $\dim \mathcal{M}_{
 u} = b_{\operatorname{cs}}^3(M) = 1$ for $u \in (-4,0) \rightsquigarrow \operatorname{local}$ uniqueness
- **2.** $M = \mathbb{S}(S^3)$, AC with rate -3
 - $b_{cs}^3(M) = 0$, $b^3(M) = 1$, $b^3(\Sigma) = 2$
 - dim Im $(H^3(M) \to H^3(\Sigma)) = 1$

1. $M = \Lambda^2_-(S^4)$ or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- $\dim \mathcal{M}_{
 u} = b_{\operatorname{cs}}^3(M) = 1$ for $u \in (-4,0) \rightsquigarrow \operatorname{local}$ uniqueness
- **2.** $M = \mathbb{S}(S^3)$, AC with rate -3
 - $b_{cs}^3(M) = 0$, $b^3(M) = 1$, $b^3(\Sigma) = 2$
 - dim Im $(H^3(M) \to H^3(\Sigma)) = 1$
 - $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$

1. $M = \Lambda^2_-(S^4)$ or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- $\dim \mathcal{M}_{
 u} = b_{\operatorname{cs}}^3(M) = 1$ for $u \in (-4,0) \rightsquigarrow \operatorname{local}$ uniqueness
- **2.** $M = \mathbb{S}(S^3)$, AC with rate -3

•
$$b_{cs}^3(M) = 0$$
, $b^3(M) = 1$, $b^3(\Sigma) = 2$

• dim Im
$$(H^3(M) \to H^3(\Sigma)) = 1$$

•
$$m_{\Sigma}(\lambda) = 0$$
 for $\lambda \in (-3,0)$

• dim
$$\mathcal{M}_{\nu} = 1$$
 for $\nu \in (-3,0)$

1. $M = \Lambda^2_-(S^4)$ or $\Lambda^2_-(\mathbb{CP}^2)$, AC with rate -4

•
$$b_{cs}^3(M) = b^4(M) = 1$$
, $b^3(\Sigma) = 0$

- (Moroianu–Semmelmann 2010) $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
- $\dim \mathcal{M}_{
 u} = b_{\operatorname{cs}}^3(M) = 1$ for $u \in (-4,0) \rightsquigarrow \operatorname{local}$ uniqueness
- **2.** $M = \mathbb{S}(S^3)$, AC with rate -3
 - $b_{cs}^3(M) = 0$, $b^3(M) = 1$, $b^3(\Sigma) = 2$
 - dim Im $(H^3(M) \to H^3(\Sigma)) = 1$
 - $m_{\Sigma}(\lambda) = 0$ for $\lambda \in (-3,0)$
 - dim $\mathcal{M}_{\nu}=1$ for $\nu\in(-3,0)\leadsto$ local uniqueness

3. M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$

3. M CS with $\Sigma=\mathbb{CP}^3$ or $\mathcal{S}^3\times\mathcal{S}^3$

•
$$m_{\Sigma}(0) = 0$$

3. M CS with $\Sigma=\mathbb{CP}^3$ or $\mathcal{S}^3\times\mathcal{S}^3$

•
$$m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$$

3. M CS with $\Sigma=\mathbb{CP}^3$ or $\mathcal{S}^3\times\mathcal{S}^3$

•
$$m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$$

ullet $\mathcal{M}_{
u}$ smooth

3. M CS with $\Sigma=\mathbb{CP}^3$ or $\mathcal{S}^3\times\mathcal{S}^3$

•
$$m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$$

ullet $\mathcal{M}_
u$ smooth, $\dim \mathcal{M}_
u = \mathit{b}^3(\mathit{M})$ or $\mathit{b}^3_{\mathsf{cs}}(\mathit{M})$

3. M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$

•
$$m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$$

- ullet $\mathcal{M}_
 u$ smooth, $\dim \mathcal{M}_
 u = b^3(M)$ or $b^3_{ exttt{cs}}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$

- **3.** M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$
 - $m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$
 - ullet $\mathcal{M}_
 u$ smooth, $\dim \mathcal{M}_
 u = b^3(M)$ or $b^3_{ ext{cs}}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$
 - $m_{\Sigma}(0) = 8$

- **3.** M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$
 - $m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$
 - ullet $\mathcal{M}_
 u$ smooth, dim $\mathcal{M}_
 u = b^3(M)$ or $b^3_{\sf cs}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$
 - $m_{\Sigma}(0) = 8 \rightsquigarrow \dim \mathcal{O} \leq 8$

- **3.** M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$
 - $m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$
 - ullet $\mathcal{M}_
 u$ smooth, dim $\mathcal{M}_
 u = b^3(M)$ or $b^3_{\sf cs}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$
 - $m_{\Sigma}(0) = 8 \rightsquigarrow \dim \mathcal{O} \leq 8$
 - Smoothness for $\mathcal{M}_{\nu} \leftrightarrow$ deformations of SU(3)/ \mathcal{T}^2

- **3.** M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$
 - $m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$
 - ullet $\mathcal{M}_
 u$ smooth, dim $\mathcal{M}_
 u = b^3(M)$ or $b^3_{
 m cs}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$
 - $m_{\Sigma}(0) = 8 \rightsquigarrow \dim \mathcal{O} \leq 8$
 - Smoothness for $\mathcal{M}_{\nu} \leftrightarrow$ deformations of SU(3)/ T^2
- **5.** *M* CS with cone *C* and *N* AC with rate $\nu \leq -3$ to *C*

- **3.** M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$
 - $m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$
 - ullet $\mathcal{M}_
 u$ smooth, dim $\mathcal{M}_
 u = b^3(M)$ or $b^3_{
 m cs}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$
 - $m_{\Sigma}(0) = 8 \rightsquigarrow \dim \mathcal{O} \leq 8$
 - ullet Smoothness for $\mathcal{M}_
 u \leftrightarrow {\sf deformations}$ of ${\sf SU}(3)/{\it T}^2$
- **5.** *M* CS with cone *C* and *N* AC with rate $\nu \leq -3$ to *C*
 - (Karigiannis 2009) Can desingularize M via gluing with N if topological condition and gauge-fixing condition satisfied

- **3.** M CS with $\Sigma = \mathbb{CP}^3$ or $\mathcal{S}^3 \times \mathcal{S}^3$
 - $m_{\Sigma}(0) = 0 \rightsquigarrow \mathcal{O} = \{0\}$
 - ullet $\mathcal{M}_
 u$ smooth, dim $\mathcal{M}_
 u = b^3(M)$ or $b^3_{
 m cs}(M)$
- **4.** M CS with $\Sigma = SU(3)/T^2$
 - $m_{\Sigma}(0) = 8 \rightsquigarrow \dim \mathcal{O} \leq 8$
 - Smoothness for $\mathcal{M}_{
 u} \leftrightarrow \operatorname{deformations}$ of $\operatorname{SU}(3)/T^2$
- **5.** *M* CS with cone *C* and *N* AC with rate $\nu \leq -3$ to *C*
 - (Karigiannis 2009) Can desingularize M via gluing with N if topological condition and gauge-fixing condition satisfied
 - Slice theorem ⇒ gauge-fixing always holds

 (M^7, φ) G_2 conifold rate ν

 (M^7, φ) G_2 conifold rate ν

$$\bullet \ \mathcal{T}_{\nu} = \{ \tau \in \mathit{C}^{\infty}(\Lambda^3_+) \text{ with rate } \nu \, : \, \mathrm{d}\tau = \mathrm{d}_{\tau}^*\tau = 0 \}$$

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d_{\tau}^* \tau = 0 \}$
- $\mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d_{\tau}^* \tau = 0 \}$
- $\bullet \ \mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

 (M^7, φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d_{\tau}^* \tau = 0 \}$
- $\bullet \ \mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\bullet \ \mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

(a) Gauge \leadsto slice $\mathcal{S}_{\nu} \ni \varphi$, $\mathcal{S}_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\bullet \ \mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

- (a) Gauge \rightsquigarrow slice $S_{\nu} \ni \varphi$, $S_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism
- **(b)** τ closed

 (M^7, φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

- (a) Gauge \rightsquigarrow slice $S_{\nu} \ni \varphi$, $S_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism
- (b) τ closed, Hodge theory $\leadsto \exists\,!$ co-exact β , harmonic γ such that $\tau-\varphi=\mathrm{d}\beta+\gamma$

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\mathcal{D}_{\nu} = \{ \mathsf{diffeomorphisms} \ \mathsf{with} \ \mathsf{rate} \ \nu \ \mathsf{isotopic} \ \mathsf{to} \ \mathsf{id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

- (a) Gauge \rightsquigarrow slice $S_{\nu} \ni \varphi$, $S_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism
- (b) τ closed, Hodge theory $\leadsto \exists\,!$ co-exact β , harmonic γ such that $\tau-\varphi=\mathrm{d}\beta+\gamma$
- (c) $\tau \in \mathcal{S}_{\nu}$

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\mathcal{D}_{\nu} = \{ \mathsf{diffeomorphisms} \ \mathsf{with} \ \mathsf{rate} \ \nu \ \mathsf{isotopic} \ \mathsf{to} \ \mathsf{id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

- (a) Gauge \rightsquigarrow slice $S_{\nu} \ni \varphi$, $S_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism
- (b) τ closed, Hodge theory $\leadsto \exists \,!$ co-exact β , harmonic γ such that $\tau-\varphi=\mathrm{d}\beta+\gamma$
- (c) $\tau \in \mathcal{S}_{\nu} \Leftrightarrow \Delta_{\varphi}\beta = \mathrm{d}_{\varphi}^* F(\mathrm{d}\beta + \gamma)$

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\mathcal{D}_{
 u} = \{ \mathsf{diffeomorphisms} \ \mathsf{with} \ \mathsf{rate} \
 u \ \mathsf{isotopic} \ \mathsf{to} \ \mathsf{id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

- (a) Gauge \rightsquigarrow slice $S_{\nu} \ni \varphi$, $S_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism
- (b) τ closed, Hodge theory $\leadsto \exists \,!$ co-exact β , harmonic γ such that $\tau-\varphi=\mathrm{d}\beta+\gamma$
- (c) $\tau \in \mathcal{S}_{\nu} \Leftrightarrow \Delta_{\varphi}\beta = \mathrm{d}_{\varphi}^* F(\mathrm{d}\beta + \gamma)$
- (d) Implicit Function Theorem, elliptic regularity

 (M^7,φ) G_2 conifold rate ν

- $\mathcal{T}_{\nu} = \{ \tau \in C^{\infty}(\Lambda^3_+) \text{ with rate } \nu : d\tau = d^*_{\tau}\tau = 0 \}$
- $\mathcal{D}_{\nu} = \{ \text{diffeomorphisms with rate } \nu \text{ isotopic to id} \}$
- $\mathcal{M}_{\nu} = \mathcal{T}_{\nu}/\mathcal{D}_{\nu}$

- (a) Gauge \rightsquigarrow slice $S_{\nu} \ni \varphi$, $S_{\nu} \to \mathcal{M}_{\nu}$ homeomorphism
- (b) τ closed, Hodge theory $\leadsto \exists \,!$ co-exact β , harmonic γ such that $\tau-\varphi=\mathrm{d}\beta+\gamma$
- (c) $\tau \in \mathcal{S}_{\nu} \Leftrightarrow \Delta_{\varphi}\beta = \mathrm{d}_{\varphi}^* F(\mathrm{d}\beta + \gamma)$
- (d) Implicit Function Theorem, elliptic regularity $\rightsquigarrow \mathcal{M}_{\nu}$ locally parametrised by harmonic 3-forms rate ν

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\}$$

(a) $T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\mathbf{v}}\varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\mathbf{v}}\varphi = \mathrm{d}(\mathbf{v} \lrcorner \varphi)$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

$$\bullet \ \Lambda^2 = \Lambda^2_7 \oplus \Lambda^2_{14}$$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

•
$$\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$$
 with $\Lambda_7^2 = \{ \nu \lrcorner \varphi \}$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ \nu \lrcorner \varphi \}$
- $\langle \tau, \mathrm{d}(\mathbf{v} \lrcorner \varphi) \rangle_{\varphi}$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ \nu \lrcorner \varphi \}$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

•
$$\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$$
 with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$

•
$$\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$$

•
$$\pi_7(d_{\varphi}^* au) = 0 \rightsquigarrow \mathsf{gauge-fixing}$$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

•
$$\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$$
 with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$

•
$$\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$$

•
$$\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$$

Analytic framework: weighted Sobolev $L_{k,\nu}^2$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

Analytic framework: weighted Sobolev $L_{k,\nu}^2$

•
$$\xi \in L^2_{0,\nu}$$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au) = 0 \rightsquigarrow \mathsf{gauge-fixing}$

Analytic framework: weighted Sobolev $L^2_{k,\nu}$

•
$$\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu - \frac{7}{2}} \xi \in L^2$$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au)=0 \leadsto \mathsf{gauge} ext{-fixing}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\bullet \langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27}$$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- \bullet $\pi_7(d_{\varphi}^* au)=0 \leadsto ext{gauge-fixing}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27}$$
 with $\Lambda^3_1=\{f\varphi\}$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\bullet \langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27} \text{ with } \Lambda^3_1=\{f\varphi\} \text{ and } \Lambda^3_7=\{v\,\lrcorner\, *_\varphi\varphi\}$$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

Analytic framework: weighted Sobolev $L^2_{k,\nu}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27} \text{ with } \Lambda^3_1=\{f\varphi\} \text{ and } \Lambda^3_7=\{v\,\lrcorner\, *_\varphi\varphi\}$$

• Dirac operator $\not \! D$ acting on $\Lambda^3_1 \oplus \Lambda^3_7$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

Analytic framework: weighted Sobolev $L^2_{k,\nu}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27} \text{ with } \Lambda^3_1=\{f\varphi\} \text{ and } \Lambda^3_7=\{v\,\lrcorner\, *_\varphi\varphi\}$$

• Dirac operator $\not \! D$ acting on $\Lambda_1^3 \oplus \Lambda_7^3$ by $f \varphi + v \lrcorner *_{\wp} \varphi$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

Analytic framework: weighted Sobolev $L^2_{k,\nu}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27} \text{ with } \Lambda^3_1=\{f\varphi\} \text{ and } \Lambda^3_7=\{v\,\lrcorner\, *_\varphi\varphi\}$$

• Dirac operator $\not \! D$ acting on $\Lambda_1^3 \oplus \Lambda_7^3$ by $f \varphi + v \lrcorner *_{\varphi} \varphi \mapsto \pi_{1+7} \mathrm{d}(v \lrcorner \varphi) + *_{\varphi} \mathrm{d}(f \varphi)$

(a)
$$T_{\varphi}(\varphi \mathcal{D}_{\nu}) = \{\mathcal{L}_{\nu} \varphi\} \rightsquigarrow \text{seek } \tau \text{ transverse to all } \mathcal{L}_{\nu} \varphi = \mathrm{d}(\nu \lrcorner \varphi)$$

- $\Lambda^2 = \Lambda_7^2 \oplus \Lambda_{14}^2$ with $\Lambda_7^2 = \{ v \lrcorner \varphi \}$
- $\langle \tau, d(\mathbf{v} \rfloor \varphi) \rangle_{\varphi} = \langle d_{\varphi}^* \tau, \mathbf{v} \rfloor \varphi \rangle_{\varphi}$
- $\pi_7(d_{\varphi}^* au)=0 \rightsquigarrow \mathsf{gauge-fixing}$

- $\xi \in L^2_{0,\nu} \Leftrightarrow r^{-\nu \frac{7}{2}} \xi \in L^2$
- AC $\nu > -\frac{7}{2} \Rightarrow$ not in L^2

$$\Lambda^3=\Lambda^3_1\oplus\Lambda^3_7\oplus\Lambda^3_{27} \text{ with } \Lambda^3_1=\{f\varphi\} \text{ and } \Lambda^3_7=\{v\,\lrcorner\, *_\varphi\varphi\}$$

- Dirac operator $\not \! D$ acting on $\Lambda_1^3 \oplus \Lambda_7^3$ by $f \varphi + v \lrcorner *_{\varphi} \varphi \mapsto \pi_{1+7} \mathrm{d}(v \lrcorner \varphi) + *_{\varphi} \mathrm{d}(f \varphi)$

(b) Hodge theory not valid in general on $L^2_{k,\nu}$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu}$$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$
- (c) $\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$
 - $*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) \xi + F(\xi)$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$
- (c) $\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$
 - $*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) \xi + F(\xi)$
 - $\bullet \ \mathrm{d}_\tau^*\tau = 0$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

$$\bullet \ \mathrm{d}_\tau^*\tau = 0 \Leftrightarrow \mathrm{d}_\varphi^*\xi = \tfrac{7}{3}\mathrm{d}_\varphi^*\pi_1(\xi) + 2\mathrm{d}_\varphi^*\pi_7(\xi) + \mathrm{d}_\varphi^*F(\xi)$$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

•
$$d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$$

•
$$\pi_7(d_{\varphi}^*\xi) = 0$$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

•
$$d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$$

•
$$\pi_7(d_{\varphi}^*\xi) = 0 \Leftrightarrow d_{\varphi}^*\pi_1(\xi) = d_{\varphi}^*\pi_7(\xi) = 0$$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

•
$$d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$$

•
$$\pi_7(\mathrm{d}_{\varphi}^*\xi) = 0 \Leftrightarrow \mathrm{d}_{\varphi}^*\pi_1(\xi) = \mathrm{d}_{\varphi}^*\pi_7(\xi) = 0$$

$$\bullet \ \Delta_{\varphi}\beta = \mathrm{d}_{\varphi}^*\mathrm{d}\beta$$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

•
$$d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$$

•
$$\pi_7(\mathrm{d}_{\varphi}^*\xi) = 0 \Leftrightarrow \mathrm{d}_{\varphi}^*\pi_1(\xi) = \mathrm{d}_{\varphi}^*\pi_7(\xi) = 0$$

$$ullet$$
 $\Delta_{arphi}eta=\mathrm{d}_{arphi}^*\mathrm{d}eta \leadsto \mathsf{elliptic}$ equation

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

•
$$d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$$

•
$$\pi_7(\mathrm{d}_{\varphi}^*\xi) = 0 \Leftrightarrow \mathrm{d}_{\varphi}^*\pi_1(\xi) = \mathrm{d}_{\varphi}^*\pi_7(\xi) = 0$$

$$ullet$$
 $\Delta_{arphi}eta=\mathrm{d}_{arphi}^*\mathrm{d}eta \leadsto \mathsf{elliptic}$ equation

(d) Maybe $\operatorname{Im} \operatorname{d}_{\varphi}^* \nsubseteq \operatorname{Im} \Delta_{\varphi}$

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$
- (c) $\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$
 - $*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) \xi + F(\xi)$
 - $d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$
 - $\pi_7(\mathrm{d}_{\varphi}^*\xi) = 0 \Leftrightarrow \mathrm{d}_{\varphi}^*\pi_1(\xi) = \mathrm{d}_{\varphi}^*\pi_7(\xi) = 0$
 - $\Delta_{\varphi}\beta = \mathrm{d}_{\varphi}^*\mathrm{d}\beta \rightsquigarrow \mathsf{elliptic}$ equation
- (d) Maybe $\operatorname{Im} \operatorname{d}_{\varphi}^* \nsubseteq \operatorname{Im} \Delta_{\varphi} \leadsto \operatorname{obstructions}$ to applying IFT

- **(b)** Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$
- (c) $\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$
 - $*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) \xi + F(\xi)$
 - $d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$
 - $\pi_7(\mathrm{d}_{\varphi}^*\xi) = 0 \Leftrightarrow \mathrm{d}_{\varphi}^*\pi_1(\xi) = \mathrm{d}_{\varphi}^*\pi_7(\xi) = 0$
 - ullet $\Delta_{arphi}eta=\mathrm{d}_{arphi}^*\mathrm{d}eta \leadsto \mathsf{elliptic}$ equation
- (d) Maybe $\operatorname{Im} \operatorname{d}_{\varphi}^* \nsubseteq \operatorname{Im} \Delta_{\varphi} \leadsto \operatorname{obstructions}$ to applying IFT
 - AC: no obstruction

- (b) Hodge theory not valid in general on $L^2_{k,\nu}$
 - AC: decomposition works by choice of rates
 - CS: $\tau \varphi = d\beta + \gamma + \eta$

(c)
$$\tau = \varphi + \xi \in \mathcal{S}_{\nu} \leadsto$$

•
$$*_{\varphi}(*_{\tau}\tau) = \varphi + \frac{7}{3}\pi_1(\xi) + 2\pi_7(\xi) - \xi + F(\xi)$$

•
$$d_{\tau}^* \tau = 0 \Leftrightarrow d_{\varphi}^* \xi = \frac{7}{3} d_{\varphi}^* \pi_1(\xi) + 2 d_{\varphi}^* \pi_7(\xi) + d_{\varphi}^* F(\xi)$$

•
$$\pi_7(\mathrm{d}_{\varphi}^*\xi) = 0 \Leftrightarrow \mathrm{d}_{\varphi}^*\pi_1(\xi) = \mathrm{d}_{\varphi}^*\pi_7(\xi) = 0$$

- $\Delta_{\varphi}\beta = \mathrm{d}_{\varphi}^*\mathrm{d}\beta \rightsquigarrow$ elliptic equation
- (d) Maybe $\operatorname{Im} \operatorname{d}_{\varphi}^* \nsubseteq \operatorname{Im} \Delta_{\varphi} \leadsto \operatorname{obstructions}$ to applying IFT
 - AC: no obstruction
 - CS: obstructions $\leftrightarrow \mathcal{O}$

• New examples of nearly Kähler 6-manifolds

- New examples of nearly Kähler 6-manifolds
- Deformations of nearly Kähler 6-manifolds

- New examples of nearly Kähler 6-manifolds
- Deformations of nearly Kähler 6-manifolds
- Examples of CS holonomy G2 manifolds

- New examples of nearly Kähler 6-manifolds
- Deformations of nearly Kähler 6-manifolds
- Examples of CS holonomy G₂ manifolds
- Ricci-flat deformations of G2 conifolds