Deforming G_{2} Conifolds

Jason D. Lotay
University College London

5 July 2012

Joint with Spiro Karigiannis (Waterloo)

Motivation

Conifolds

Motivation

Conifolds

Motivation

Conifolds

Motivation

Conifolds

- Known examples of G_{2} conifolds

Motivation

Conifolds

- Known examples of G_{2} conifolds
- Moduli space of compact G_{2} manifolds

Motivation

Conifolds

- Known examples of G_{2} conifolds
- Moduli space of compact G_{2} manifolds
- New examples/local uniqueness of holonomy G_{2} metrics

Motivation

Conifolds

- Known examples of G_{2} conifolds
- Moduli space of compact G_{2} manifolds
- New examples/local uniqueness of holonomy G_{2} metrics
- Relevance to M -Theory

Outline

Outline

- Definitions and examples

Outline

- Definitions and examples
- Deformation theory results

Outline

- Definitions and examples
- Deformation theory results
- Applications

Outline

- Definitions and examples
- Deformation theory results
- Applications
- Sketch proof and key ideas

Outline

- Definitions and examples
- Deformation theory results
- Applications
- Sketch proof and key ideas
- Open problems

G_{2} structures

G_{2} structures

M^{7} connected, oriented and spin

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3 -form $\varphi \rightsquigarrow$ metric g_{φ}

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow G_{2}$ structure

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow \mathrm{G}_{2}$ structure
- (Fernandez-Gray 1982) G_{2} structure φ torsion-free if

$$
\nabla_{\varphi} \varphi=0 \quad \Leftrightarrow \quad \mathrm{~d} \varphi=\mathrm{d}_{\varphi}^{*} \varphi=0 \quad \Leftrightarrow \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}
$$

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow G_{2}$ structure
- (Fernandez-Gray 1982) G_{2} structure φ torsion-free if

$$
\nabla_{\varphi} \varphi=0 \quad \Leftrightarrow \quad \mathrm{~d} \varphi=\mathrm{d}_{\varphi}^{*} \varphi=0 \quad \Leftrightarrow \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}
$$

Definition

$\left(M^{7}, \varphi\right)$ with φ torsion-free is a G_{2} manifold

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow G_{2}$ structure
- (Fernandez-Gray 1982) G_{2} structure φ torsion-free if

$$
\nabla_{\varphi} \varphi=0 \quad \Leftrightarrow \quad \mathrm{~d} \varphi=\mathrm{d}_{\varphi}^{*} \varphi=0 \quad \Leftrightarrow \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}
$$

Definition

$\left(M^{7}, \varphi\right)$ with φ torsion-free is a G_{2} manifold

- (Bryant 1985) Simply connected M

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow \mathrm{G}_{2}$ structure
- (Fernandez-Gray 1982) G_{2} structure φ torsion-free if

$$
\nabla_{\varphi} \varphi=0 \quad \Leftrightarrow \quad \mathrm{~d} \varphi=\mathrm{d}_{\varphi}^{*} \varphi=0 \quad \Leftrightarrow \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}
$$

Definition

$\left(M^{7}, \varphi\right)$ with φ torsion-free is a G_{2} manifold

- (Bryant 1985) Simply connected $M \rightsquigarrow$

$$
\operatorname{Hol}\left(g_{\varphi}\right)=\mathrm{G}_{2} \quad \Leftrightarrow \quad \nexists \alpha \in C^{\infty}\left(\Lambda^{1}\right) \backslash\{0\}, \nabla_{\varphi} \alpha=0
$$

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow \mathrm{G}_{2}$ structure
- (Fernandez-Gray 1982) G_{2} structure φ torsion-free if

$$
\nabla_{\varphi} \varphi=0 \quad \Leftrightarrow \quad \mathrm{~d} \varphi=\mathrm{d}_{\varphi}^{*} \varphi=0 \quad \Leftrightarrow \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}
$$

Definition

$\left(M^{7}, \varphi\right)$ with φ torsion-free is a G_{2} manifold

- (Bryant 1985) Simply connected $M \rightsquigarrow$

$$
\operatorname{Hol}\left(g_{\varphi}\right)=\mathrm{G}_{2} \quad \Leftrightarrow \quad \nexists \alpha \in C^{\infty}\left(\wedge^{1}\right) \backslash\{0\}, \nabla_{\varphi} \alpha=0
$$

- (Joyce 1996) Compact M

G_{2} structures

M^{7} connected, oriented and spin

- open subbundle $\Lambda_{+}^{3} \subseteq \Lambda^{3} \rightsquigarrow$ positive 3-forms
- positive 3-form $\varphi \rightsquigarrow$ metric $g_{\varphi} \rightsquigarrow G_{2}$ structure
- (Fernandez-Gray 1982) G_{2} structure φ torsion-free if

$$
\nabla_{\varphi} \varphi=0 \quad \Leftrightarrow \quad \mathrm{~d} \varphi=\mathrm{d}_{\varphi}^{*} \varphi=0 \quad \Leftrightarrow \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}
$$

Definition

$\left(M^{7}, \varphi\right)$ with φ torsion-free is a G_{2} manifold

- (Bryant 1985) Simply connected $M \rightsquigarrow$

$$
\operatorname{Hol}\left(g_{\varphi}\right)=\mathrm{G}_{2} \quad \Leftrightarrow \quad \nexists \alpha \in C^{\infty}\left(\Lambda^{1}\right) \backslash\{0\}, \nabla_{\varphi} \alpha=0
$$

- (Joyce 1996) Compact $M \rightsquigarrow \operatorname{Hol}\left(g_{\varphi}\right)=\mathrm{G}_{2} \Leftrightarrow \pi_{1}(M)$ finite

G_{2} conifolds

G_{2} conifolds

$$
\text { Cone } C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}
$$

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\operatorname{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\operatorname{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler
- Examples of Σ :

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\operatorname{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler
- Examples of $\Sigma: \mathcal{S}^{6}, \mathbb{C P}^{3}, \operatorname{SU}(3) / T^{2}, \mathcal{S}^{3} \times \mathcal{S}^{3}$

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\operatorname{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler
- Examples of $\Sigma: \mathcal{S}^{6}, \mathbb{C P}^{3}, \operatorname{SU}(3) / T^{2}, \mathcal{S}^{3} \times \mathcal{S}^{3}$

Definition

M asymptotically conical (AC)

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\operatorname{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler
- Examples of $\Sigma: \mathcal{S}^{6}, \mathbb{C P}^{3}, \operatorname{SU}(3) / T^{2}, \mathcal{S}^{3} \times \mathcal{S}^{3}$

Definition

M asymptotically conical (AC) if \exists diffeomorphism $\Psi:(R, \infty) \times \Sigma \rightarrow M \backslash K$

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\operatorname{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler
- Examples of $\Sigma: \mathcal{S}^{6}, \mathbb{C P}^{3}, \operatorname{SU}(3) / T^{2}, \mathcal{S}^{3} \times \mathcal{S}^{3}$

Definition

M asymptotically conical (AC) if \exists diffeomorphism $\Psi:(R, \infty) \times \Sigma \rightarrow M \backslash K$ and rate $\nu<0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow \infty
$$

G_{2} conifolds

Cone $C^{7}=\mathbb{R}^{+} \times \Sigma^{6}, g_{C}=\mathrm{d} r^{2}+r^{2} g_{\Sigma}$

- $\mathrm{Hol}\left(g_{C}\right) \subseteq \mathrm{G}_{2} \Leftrightarrow \Sigma$ nearly Kähler
- Examples of $\Sigma: \mathcal{S}^{6}, \mathbb{C P}^{3}, \operatorname{SU}(3) / T^{2}, \mathcal{S}^{3} \times \mathcal{S}^{3}$

Definition

M asymptotically conical (AC) if \exists diffeomorphism $\Psi:(R, \infty) \times \Sigma \rightarrow M \backslash K$ and rate $\nu<0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow \infty
$$

- M AC rate $\nu_{0}<0 \rightsquigarrow M$ AC any rate $\nu \in\left[\nu_{0}, 0\right)$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

- M CS rate $\nu_{0}>0 \rightsquigarrow M$ CS any rate $\nu \in\left(0, \nu_{0}\right]$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

- M CS rate $\nu_{0}>0 \rightsquigarrow M \mathrm{CS}$ any rate $\nu \in\left(0, \nu_{0}\right]$

Examples

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

- M CS rate $\nu_{0}>0 \rightsquigarrow M \mathrm{CS}$ any rate $\nu \in\left(0, \nu_{0}\right]$

Examples

- (Bryant-Salamon 1989) AC holonomy G_{2} manifolds

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

- M CS rate $\nu_{0}>0 \rightsquigarrow M \mathrm{CS}$ any rate $\nu \in\left(0, \nu_{0}\right]$

Examples

- (Bryant-Salamon 1989) AC holonomy G_{2} manifolds - $\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ and $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right)$ have rate $-4, \Sigma=\mathbb{C P}{ }^{3}$ and $\operatorname{SU}(3) / T^{2}$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

- M CS rate $\nu_{0}>0 \rightsquigarrow M \mathrm{CS}$ any rate $\nu \in\left(0, \nu_{0}\right]$

Examples

- (Bryant-Salamon 1989) AC holonomy G_{2} manifolds
- $\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ and $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right)$ have rate $-4, \Sigma=\mathbb{C P} \mathbb{P}^{3}$ and $\operatorname{SU}(3) / T^{2}$
- $\mathbb{S}\left(\mathcal{S}^{3}\right)$ has rate $-3, \Sigma=\mathcal{S}^{3} \times \mathcal{S}^{3}$

G_{2} conifolds

Definition

\bar{M} conically singular (CS) at $z \in \bar{M}$ if $M=\bar{M} \backslash\{z\}$ smooth and \exists diffeomorphism $\Psi:(0, \epsilon) \times \Sigma \rightarrow M \backslash K$ and rate $\nu>0$ such that

$$
\left|\nabla_{C}^{j}\left(\Psi^{*} g_{M}-g_{C}\right)\right|=O\left(r^{\nu-j}\right) \quad \text { for all } j \in \mathbb{N} \text { as } r \rightarrow 0
$$

- M CS rate $\nu_{0}>0 \rightsquigarrow M \mathrm{CS}$ any rate $\nu \in\left(0, \nu_{0}\right]$

Examples

- (Bryant-Salamon 1989) AC holonomy G_{2} manifolds
- $\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ and $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right)$ have rate $-4, \Sigma=\mathbb{C P} \mathbb{P}^{3}$ and $\operatorname{SU}(3) / T^{2}$
- $\mathbb{S}\left(\mathcal{S}^{3}\right)$ has rate $-3, \Sigma=\mathcal{S}^{3} \times \mathcal{S}^{3}$
- (Joyce-Karigiannis) Potential method for constructing CS holonomy G_{2} manifolds, $\Sigma=\mathbb{C P}^{3}$

AC deformations

Theorem (Joyce 1996)

AC deformations

Theorem (Joyce 1996)
M compact G_{2} manifold

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$
(Nordström 2009) Asymptotically cylindrical case

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$
(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

M AC G_{2} manifold

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$
(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

$M A C G_{2}$ manifold with generic rate $\nu \in(-4,-5 / 2)$

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$
(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

$M A C G_{2}$ manifold with generic rate $\nu \in(-4,-5 / 2) \Rightarrow$ moduli space is locally a smooth manifold

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$
(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

$M A C G_{2}$ manifold with generic rate $\nu \in(-4,-5 / 2) \Rightarrow$ moduli space is locally a smooth manifold of dimension

- $b_{c s}^{3}(M)$ if $\nu \in(-4,-3)$

AC deformations

Theorem (Joyce 1996)

M compact G_{2} manifold \Rightarrow moduli space of torsion-free G_{2} structures is locally a smooth manifold of dimension $b^{3}(M)$
(Nordström 2009) Asymptotically cylindrical case

Theorem (Karigiannis-L 2012)

$M A C G_{2}$ manifold with generic rate $\nu \in(-4,-5 / 2) \Rightarrow$ moduli space is locally a smooth manifold of dimension

- $b_{c s}^{3}(M)$ if $\nu \in(-4,-3)$
- $b_{c s}^{3}(M)+\operatorname{dim} \operatorname{lm}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)+\sum_{\lambda \in(-3, \nu)} m_{\Sigma}(\lambda)$ if $\nu \in(-3,-5 / 2)$

CS deformations

Theorem (Karigiannis-L 2012)
 M CS G2 manifold

CS deformations

Theorem (Karigiannis-L 2012)
 M CS G_{2} manifold with rate ν near 0

CS deformations

Theorem (Karigiannis-L 2012)
M CS G_{2} manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}

CS deformations

Theorem (Karigiannis-L 2012)

$M C S G_{2}$ manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \rightarrow \mathcal{O}$ with $\pi(0)=0$

CS deformations

Theorem (Karigiannis-L 2012)

$M C S G_{2}$ manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \rightarrow \mathcal{O}$ with $\pi(0)=0$
such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$

CS deformations

Theorem (Karigiannis-L 2012)

$M C S G_{2}$ manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \rightarrow \mathcal{O}$ with $\pi(0)=0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
- $b^{3}(M)-\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)-\sum_{\lambda \in(-3,0]} m_{\Sigma}(\lambda)$

CS deformations

Theorem (Karigiannis-L 2012)

M CS G_{2} manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \rightarrow \mathcal{O}$ with $\pi(0)=0$ such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
- $b^{3}(M)-\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)-\sum_{\lambda \in(-3,0]} m_{\Sigma}(\lambda)$
- \mathcal{I} is the infinitesimal deformation space

CS deformations

Theorem (Karigiannis-L 2012)

$M C S G_{2}$ manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \rightarrow \mathcal{O}$ with $\pi(0)=0$
such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
- $b^{3}(M)-\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)-\sum_{\lambda \in(-3,0]} m_{\Sigma}(\lambda)$
- \mathcal{I} is the infinitesimal deformation space
- \mathcal{O} is the obstruction space

CS deformations

Theorem (Karigiannis-L 2012)

$M C S G_{2}$ manifold with rate ν near $0 \Rightarrow$

- \exists finite-dimensional vector spaces of forms \mathcal{I} and \mathcal{O}
- \exists open $\mathcal{U} \ni 0$ in \mathcal{I} and smooth $\pi: \mathcal{U} \rightarrow \mathcal{O}$ with $\pi(0)=0$
such that the moduli space is locally homeomorphic to $\pi^{-1}(0)$ and has expected dimension at least
- $b^{3}(M)-\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)-\sum_{\lambda \in(-3,0]} m_{\Sigma}(\lambda)$
- \mathcal{I} is the infinitesimal deformation space
- \mathcal{O} is the obstruction space
- $\mathcal{O}=\{0\} \rightsquigarrow$ smooth moduli space

Applications

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0)$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

2. $M=\mathbb{S}\left(\mathcal{S}^{3}\right), A C$ with rate -3

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

2. $M=\mathbb{S}\left(\mathcal{S}^{3}\right), A C$ with rate -3

- $b_{\mathrm{cs}}^{3}(M)=0, b^{3}(M)=1, b^{3}(\Sigma)=2$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

2. $M=\mathbb{S}\left(\mathcal{S}^{3}\right), A C$ with rate -3

- $b_{\text {cs }}^{3}(M)=0, b^{3}(M)=1, b^{3}(\Sigma)=2$
- $\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)=1$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

2. $M=\mathbb{S}\left(\mathcal{S}^{3}\right), A C$ with rate -3

- $b_{\text {cs }}^{3}(M)=0, b^{3}(M)=1, b^{3}(\Sigma)=2$
- $\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)=1$
- $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

2. $M=\mathbb{S}\left(\mathcal{S}^{3}\right), A C$ with rate -3

- $b_{\text {cs }}^{3}(M)=0, b^{3}(M)=1, b^{3}(\Sigma)=2$
- $\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)=1$
- $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=1$ for $\nu \in(-3,0)$

Applications

1. $M=\Lambda_{-}^{2}\left(\mathcal{S}^{4}\right)$ or $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right), A C$ with rate -4

- $b_{\mathrm{cs}}^{3}(M)=b^{4}(M)=1, b^{3}(\Sigma)=0$
- (Moroianu-Semmelmann 2010) $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=b_{\mathrm{cs}}^{3}(M)=1$ for $\nu \in(-4,0) \rightsquigarrow$ local uniqueness

2. $M=\mathbb{S}\left(\mathcal{S}^{3}\right), A C$ with rate -3

- $b_{\mathrm{cs}}^{3}(M)=0, b^{3}(M)=1, b^{3}(\Sigma)=2$
- $\operatorname{dim} \operatorname{Im}\left(H^{3}(M) \rightarrow H^{3}(\Sigma)\right)=1$
- $m_{\Sigma}(\lambda)=0$ for $\lambda \in(-3,0)$
- $\operatorname{dim} \mathcal{M}_{\nu}=1$ for $\nu \in(-3,0) \rightsquigarrow$ local uniqueness

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\mathrm{cs}}^{3}(M)$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\mathrm{cs}}^{3}(M)$

4. $M \mathrm{CS}$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\mathrm{cs}}^{3}(M)$

4. $M C S$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

- $m_{\Sigma}(0)=8$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\mathrm{cs}}^{3}(M)$

4. $M \mathrm{CS}$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

- $m_{\Sigma}(0)=8 \rightsquigarrow \operatorname{dim} \mathcal{O} \leq 8$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\text {cs }}^{3}(M)$

4. $M \mathrm{CS}$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

- $m_{\Sigma}(0)=8 \rightsquigarrow \operatorname{dim} \mathcal{O} \leq 8$
- Smoothness for $\mathcal{M}_{\nu} \leftrightarrow$ deformations of $\operatorname{SU}(3) / T^{2}$

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\text {cs }}^{3}(M)$

4. $M \mathrm{CS}$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

- $m_{\Sigma}(0)=8 \rightsquigarrow \operatorname{dim} \mathcal{O} \leq 8$
- Smoothness for $\mathcal{M}_{\nu} \leftrightarrow$ deformations of $\operatorname{SU}(3) / T^{2}$

5. M CS with cone C and $N A C$ with rate $\nu \leq-3$ to C

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\text {cs }}^{3}(M)$

4. $M \mathrm{CS}$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

- $m_{\Sigma}(0)=8 \rightsquigarrow \operatorname{dim} \mathcal{O} \leq 8$
- Smoothness for $\mathcal{M}_{\nu} \leftrightarrow$ deformations of $\operatorname{SU}(3) / T^{2}$

5. M CS with cone C and $N A C$ with rate $\nu \leq-3$ to C

- (Karigiannis 2009) Can desingularize M via gluing with N if topological condition and gauge-fixing condition satisfied

Applications

3. $M \mathrm{CS}$ with $\Sigma=\mathbb{C P}^{3}$ or $\mathcal{S}^{3} \times \mathcal{S}^{3}$

- $m_{\Sigma}(0)=0 \rightsquigarrow \mathcal{O}=\{0\}$
- \mathcal{M}_{ν} smooth, $\operatorname{dim} \mathcal{M}_{\nu}=b^{3}(M)$ or $b_{\mathrm{cs}}^{3}(M)$

4. $M \mathrm{CS}$ with $\Sigma=\operatorname{SU}(3) / T^{2}$

- $m_{\Sigma}(0)=8 \rightsquigarrow \operatorname{dim} \mathcal{O} \leq 8$
- Smoothness for $\mathcal{M}_{\nu} \leftrightarrow$ deformations of $\operatorname{SU}(3) / T^{2}$

5. M CS with cone C and $N A C$ with rate $\nu \leq-3$ to C

- (Karigiannis 2009) Can desingularize M via gluing with N if topological condition and gauge-fixing condition satisfied
- Slice theorem \Rightarrow gauge-fixing always holds

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\wedge_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$

Strategy

$\left(M^{\top}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\Lambda_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$

Strategy

$\left(M^{\top}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\Lambda_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\Lambda_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\Lambda_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\Lambda_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism
(b) τ closed

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\wedge_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism
(b) τ closed, Hodge theory $\rightsquigarrow \exists$! co-exact β, harmonic γ such that $\tau-\varphi=\mathrm{d} \beta+\gamma$

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\wedge_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism
(b) τ closed, Hodge theory $\rightsquigarrow \exists$! co-exact β, harmonic γ such that $\tau-\varphi=\mathrm{d} \beta+\gamma$
(c) $\tau \in \mathcal{S}_{\nu}$

Strategy

$\left(M^{7}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\wedge_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism
(b) τ closed, Hodge theory $\rightsquigarrow \exists$! co-exact β, harmonic γ such that $\tau-\varphi=\mathrm{d} \beta+\gamma$
(c) $\tau \in \mathcal{S}_{\nu} \Leftrightarrow \Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} F(\mathrm{~d} \beta+\gamma)$

Strategy

$\left(M^{\top}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\wedge_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism
(b) τ closed, Hodge theory $\rightsquigarrow \exists$! co-exact β, harmonic γ such that $\tau-\varphi=\mathrm{d} \beta+\gamma$
(c) $\tau \in \mathcal{S}_{\nu} \Leftrightarrow \Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} F(\mathrm{~d} \beta+\gamma)$
(d) Implicit Function Theorem, elliptic regularity

Strategy

$\left(M^{\top}, \varphi\right) \mathrm{G}_{2}$ conifold rate ν

- $\mathcal{T}_{\nu}=\left\{\tau \in C^{\infty}\left(\wedge_{+}^{3}\right)\right.$ with rate $\left.\nu: \mathrm{d} \tau=\mathrm{d}_{\tau}^{*} \tau=0\right\}$
- $\mathcal{D}_{\nu}=\{$ diffeomorphisms with rate ν isotopic to id $\}$
- $\mathcal{M}_{\nu}=\mathcal{T}_{\nu} / \mathcal{D}_{\nu}$

(a) Gauge \rightsquigarrow slice $\mathcal{S}_{\nu} \ni \varphi, \mathcal{S}_{\nu} \rightarrow \mathcal{M}_{\nu}$ homeomorphism
(b) τ closed, Hodge theory $\rightsquigarrow \exists$! co-exact β, harmonic γ such that $\tau-\varphi=\mathrm{d} \beta+\gamma$
(c) $\tau \in \mathcal{S}_{\nu} \Leftrightarrow \Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} F(\mathrm{~d} \beta+\gamma)$
(d) Implicit Function Theorem, elliptic regularity $\rightsquigarrow \mathcal{M}_{\nu}$ locally parametrised by harmonic 3 -forms rate ν

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{\nu} \varphi\right\}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{\nu} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{\nu} \varphi=\mathrm{d}(\nu\lrcorner \varphi\right)$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{\nu} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$ - $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- $\mathrm{AC} \nu>-\frac{7}{2} \Rightarrow \operatorname{not}$ in L^{2}

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- $\mathrm{AC} \nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- $\mathrm{AC} \nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ with $\Lambda_{1}^{3}=\{f \varphi\}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- AC $\nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ with $\Lambda_{1}^{3}=\{f \varphi\}$ and $\left.\Lambda_{7}^{3}=\{v\lrcorner *_{\varphi} \varphi\right\}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- $\mathrm{AC} \nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ with $\Lambda_{1}^{3}=\{f \varphi\}$ and $\left.\Lambda_{7}^{3}=\{v\lrcorner *_{\varphi} \varphi\right\}$
- Dirac operator D acting on $\Lambda_{1}^{3} \oplus \Lambda_{7}^{3}$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- AC $\nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ with $\Lambda_{1}^{3}=\{f \varphi\}$ and $\left.\Lambda_{7}^{3}=\{v\lrcorner *_{\varphi} \varphi\right\}$
- Dirac operator D acting on $\Lambda_{1}^{3} \oplus \Lambda_{7}^{3}$ by

$$
f \varphi+v\lrcorner *_{\varphi} \varphi
$$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- AC $\nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ with $\Lambda_{1}^{3}=\{f \varphi\}$ and $\left.\Lambda_{7}^{3}=\{v\lrcorner *_{\varphi} \varphi\right\}$
- Dirac operator D acting on $\Lambda_{1}^{3} \oplus \Lambda_{7}^{3}$ by

$$
\left.f \varphi+v\lrcorner *_{\varphi} \varphi \mapsto \pi_{1+7} \mathrm{~d}(v\lrcorner \varphi\right)+*_{\varphi} \mathrm{d}(f \varphi)
$$

Gauge-fixing

(a) $T_{\varphi}\left(\varphi \mathcal{D}_{\nu}\right)=\left\{\mathcal{L}_{v} \varphi\right\} \rightsquigarrow$ seek τ transverse to all $\left.\mathcal{L}_{v} \varphi=\mathrm{d}(v\lrcorner \varphi\right)$

- $\Lambda^{2}=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$ with $\left.\Lambda_{7}^{2}=\{v\lrcorner \varphi\right\}$
- $\left.\langle\tau, \mathrm{d}(v\lrcorner \varphi)\rangle_{\varphi}=\left\langle\mathrm{d}_{\varphi}^{*} \tau, v\right\lrcorner \varphi\right\rangle_{\varphi}$
- $\pi_{7}\left(d_{\varphi}^{*} \tau\right)=0 \rightsquigarrow$ gauge-fixing

Analytic framework: weighted Sobolev $L_{k, \nu}^{2}$

- $\xi \in L_{0, \nu}^{2} \Leftrightarrow r^{-\nu-\frac{7}{2}} \xi \in L^{2}$
- AC $\nu>-\frac{7}{2} \Rightarrow$ not in L^{2}
$\Lambda^{3}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$ with $\Lambda_{1}^{3}=\{f \varphi\}$ and $\left.\Lambda_{7}^{3}=\{v\lrcorner *_{\varphi} \varphi\right\}$
- Dirac operator D acting on $\Lambda_{1}^{3} \oplus \Lambda_{7}^{3}$ by $\left.f \varphi+v\lrcorner *_{\varphi} \varphi \mapsto \pi_{1+7} \mathrm{~d}(v\lrcorner \varphi\right)+*_{\varphi} \mathrm{d}(f \varphi)$
- Surjectivity of D for $A C \rightsquigarrow$ slice

Key points

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu}$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$

$$
\cdot *_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)
$$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC : decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$
- $\Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} \mathrm{~d} \beta$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left({ }_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$
- $\Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} \mathrm{~d} \beta \rightsquigarrow$ elliptic equation

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC : decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$
- $\Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} \mathrm{~d} \beta \rightsquigarrow$ elliptic equation
(d) Maybe $\operatorname{Im~}_{\varphi}^{*} \nsubseteq \operatorname{Im} \Delta_{\varphi}$

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$
- $\Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} \mathrm{~d} \beta \rightsquigarrow$ elliptic equation
(d) Maybe $\operatorname{Im} \mathrm{d}_{\varphi}^{*} \nsubseteq \operatorname{Im} \Delta_{\varphi} \rightsquigarrow$ obstructions to applying IFT

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left(*_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$
- $\Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} \mathrm{~d} \beta \rightsquigarrow$ elliptic equation
(d) Maybe $\operatorname{Im} \mathrm{d}_{\varphi}^{*} \nsubseteq \operatorname{Im} \Delta_{\varphi} \rightsquigarrow$ obstructions to applying IFT
- AC: no obstruction

Key points

(b) Hodge theory not valid in general on $L_{k, \nu}^{2}$

- AC: decomposition works by choice of rates
- CS: $\tau-\varphi=\mathrm{d} \beta+\gamma+\eta$
(c) $\tau=\varphi+\xi \in \mathcal{S}_{\nu} \rightsquigarrow$
- $*_{\varphi}\left({ }_{\tau} \tau\right)=\varphi+\frac{7}{3} \pi_{1}(\xi)+2 \pi_{7}(\xi)-\xi+F(\xi)$
- $\mathrm{d}_{\tau}^{*} \tau=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \xi=\frac{7}{3} \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)+2 \mathrm{~d}_{\varphi}^{*} \pi_{7}(\xi)+\mathrm{d}_{\varphi}^{*} F(\xi)$
- $\pi_{7}\left(\mathrm{~d}_{\varphi}^{*} \xi\right)=0 \Leftrightarrow \mathrm{~d}_{\varphi}^{*} \pi_{1}(\xi)=\mathrm{d}_{\varphi}^{*} \pi_{7}(\xi)=0$
- $\Delta_{\varphi} \beta=\mathrm{d}_{\varphi}^{*} \mathrm{~d} \beta \rightsquigarrow$ elliptic equation
(d) Maybe $\operatorname{Im} \mathrm{d}_{\varphi}^{*} \nsubseteq \operatorname{Im} \Delta_{\varphi} \rightsquigarrow$ obstructions to applying IFT
- AC: no obstruction
- CS: obstructions $\leftrightarrow \mathcal{O}$

Open problems

Open problems

- New examples of nearly Kähler 6-manifolds

Open problems

- New examples of nearly Kähler 6-manifolds
- Deformations of nearly Kähler 6-manifolds

Open problems

- New examples of nearly Kähler 6-manifolds
- Deformations of nearly Kähler 6-manifolds
- Examples of CS holonomy G_{2} manifolds

Open problems

- New examples of nearly Kähler 6-manifolds
- Deformations of nearly Kähler 6-manifolds
- Examples of CS holonomy G_{2} manifolds
- Ricci-flat deformations of G_{2} conifolds

