SODEs of the adjoint orbits of the closed fundamental real forms of G. The Kummer--Kleinschmidt--Kronheimer--Manivel--Matsumoto orbit example is given as the orbit that corresponds to the adjoint orbit of the 2-dimensional G-module $\mathfrak{g}/\mathfrak{g}^\mathfrak{g}/\mathfrak{g}$. The problem of identifying the adjoint orbit of the 2-dimensional G-module $\mathfrak{g}/\mathfrak{g}^\mathfrak{g}/\mathfrak{g}$ is an open problem in the theory of Lie algebras.

Riemannian geometry in its dimensions

Let $G = O(2)$ be the Riemannian manifold of dimension 2. Then, we denote the Lie group $\text{SO}(2)$ by G.

Definition 1. The Kummer--Kleinschmidt--Kronheimer--Matsumoto orbit example is given as the orbit that corresponds to the adjoint orbit of the 2-dimensional G-module $\mathfrak{g}/\mathfrak{g}^\mathfrak{g}/\mathfrak{g}$.

In the above diagram, the 2-dimensional G-module $\mathfrak{g}/\mathfrak{g}^\mathfrak{g}/\mathfrak{g}$ is decomposed into two distinct subspaces.

A Klein correspondence

Proposition 1. Let $G = O(2)$ and let $\pi : G \to \text{SO}(2)$ be the projection map. Then, π is a Klein correspondence.

Mumford polytopes

Proposition 2. The Mumford polytopes P_{Mum} of $G = O(2)$ are polytopes given by $P_{\text{Mum}} = \text{conv}(\{e\})$.

Cone polytopes

Proposition 3. The cone polytopes P_{cone} of $G = O(2)$ are polytopes given by $P_{\text{cone}} = \text{conv}(\{e\})$.

Applications

Theorem 4. The Klein correspondence of the maximum T of $\text{SO}(2)$ is a Klein correspondence.

Example 1. Consider the Klein correspondence of the maximum T of $\text{SO}(2)$.

Example 2. Consider the Klein correspondence of the maximum T of $\text{SO}(2)$.