* * * * * *

Quaternionic Contact Hypersurfaces of Hyper-Kähler manifolds

Ivan Minchev

joint work with S.Ivanov and D.Vassilev

Quaternionic Manifolds

Definition. A pair (K, Q) of a smooth 4n-manifold K and a three dimensional subbundle $Q \subset \text{End}(TK)$ is called Quaternionic Manifold if

i)
$$\mathcal{Q} = \operatorname{span}\{J_1, J_2, J_3\}$$

$$(J_1)^2 = (J_2)^2 = (J_3)^2 = -Id, \qquad J_1 J_2 = -J_2 J_1 = J_3;$$

ii) There exists a torsion-free connection $\hat{\nabla}$ on TK with $\hat{\nabla}_X Q \subset Q$, $X \in TK$.

• The above definition resembles the definition of a complex manifold.

• Unlike the complex manifolds, quaternionic manifolds can be distinguished locally by a curvature tensor.

Hyper-Surfaces of Quaternionic Manifolds

Let $M \subset K$ be any hyper-surface of the quaternionic manifold (K, Q).

Dfn. We define $H \subset TM$ to be the maximal Q-invariant distribution on M.

• If f is any defining function for M, i.e. $M = f^{-1}(0)$ and $df|_M \neq 0$, then

 $H = \{ X \in TM : df(J_1X) = df(J_2X) = df(J_3X) = 0 \}.$

• Thus H is always a smooth codimension 3 distribution on M.

Quaternionic Contact Hyper-Surfaces of Quaternionic Manifolds

Definition. We say that a hyper-surface M of a quaternionic manifold $(K, Q = \{J_1, J_2, J_3\})$ is a QC-hyper-surface if

i) $\hat{\nabla} df(X,X) \neq 0$, $X \in H$, unless X = 0,

ii) $\hat{\nabla}df(J_sX, J_sY) = \hat{\nabla}df(X, Y), \qquad X, Y \in H, \qquad s = 1, 2, 3,$

where $H \subset TM$ is the maximal Q-invariant distribution on M, $\hat{\nabla}$ is any torsion-free quaternionic connection of (K, Q), and f is any defining function for M.

Examples of QC-Hyper-Surfaces

• Consider the field of the quaternions

$$\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\},$$

where $i^{2} = j^{2} = -k^{2} = -1$ and $i \cdot j = -j \cdot i = k$.

• Consider the flat quaternionic manifold $K := \mathbb{H}^{n+1}$ with its standard quaternionic structure $\mathcal{Q} = \operatorname{span}\{J_1, J_2, J_3\}$.

$$J_1(x) := -x \cdot i, \qquad J_2(x) := -x \cdot j, \qquad J_3(x) := -x \cdot k.$$

• As a torsion free quaternionic connection $\hat{\nabla}$ we take the flat connection here. It clearly holds $\hat{\nabla}_X Q \subset Q$.

Let
$$x = \begin{pmatrix} q_1 \\ \cdots \\ q_n \\ p \end{pmatrix} \in \mathbb{H}^n \times \mathbb{H}.$$

We have the following three basic examples of QC hyper-surfaces of $\mathbb{H}^n\times\mathbb{H}$

•
$$M_1$$
: $\sum_{a=1}^n |q_a|^2 + \mathbb{R}e(p) = 0$

•
$$M_2$$
: $\sum_{a=1}^n |q_a|^2 - |p|^2 = -1$

• $M_3: \sum_{a=1}^n |q_a|^2 + |p|^2 = 1$ (the Sphere).

• Let $Sp(1) := \{z \in \mathbb{H} : |z| = 1\}.$

• The quaternionic affine group $GL(n+1,\mathbb{H})\times Sp(1)\rtimes \mathbb{H}^{n+1}$ acts on the vector space \mathbb{H}^{n+1} by

$$\phi(x) = A \cdot x \cdot \bar{z} + y,$$

where $\phi = (A, z, y) \in GL(n + 1, \mathbb{H}) \times Sp(1) \rtimes \mathbb{H}^{n+1}$.

- If M is a QC-hyper-surface, then $\phi(M)$ is a QC-hyper-surface as well.
- Thus the three examples M_1, M_2 and M_3 determine three orbits of QC-hyper-surfaces of \mathbb{H}^{n+1} .

Theorem. If M is a connected QC-hyper-surface of \mathbb{H}^{n+1} then there exists a transformation $\phi \in GL(n+1,\mathbb{H}) \times Sp(1) \rtimes \mathbb{H}^{n+1}$ such that $\phi(M)$ is an open set of one of the hyper-surfaces

•
$$M_1: \quad \sum_{a=1}^n |q_a|^2 + \mathbb{R}e(p) = 0$$

•
$$M_2$$
: $\sum_{a=1}^n |q_a|^2 - |p|^2 = -1$

•
$$M_3$$
: $\sum_{a=1}^n |q_a|^2 + |p|^2 = 1.$

Let $(K, Q = \{J_1, J_2, J_3\})$ be a quaternionic manifold and $M \subset K$ be a QC-hyper-surface, i.e. we have

- $\hat{\nabla} df(J_s X, J_s X) + \hat{\nabla} df(X, Y) = 0, \quad X, Y \in H$
- $\hat{\nabla} df|_H$ is positive or negative definite on H.

If we define:

- Metric $g := \hat{\nabla} df|_H$ on H.
- Three 1-forms η_1, η_2, η_3 on M given by

$$\eta_s(u) := -df(J_s u), \qquad u \in TM.$$

Then it holds: $g(J_sX, J_sY) = g(X, Y)$ and $d\eta_s(X, Y) = g(J_sX, Y)$ for any $X, Y \in H$.

Abstract Quaternionic Contact Manifolds

Definition. A pair (M, H) of a (4n + 3)-manifold M and a 4n-distribution H on M is called Quaternionic Contact Manifold if locally there exists a smooth field $(\eta_1, \eta_2, \eta_3, I_1, I_2, I_3, g)$, where

- η_1, η_2, η_3 are 1-forms on M with common kernel H
- $I_1, I_2, I_3 \in \mathsf{End}(H)$ satisfy

$$(I_1)^2 = (I_2)^2 = (I_3)^2 = -Id, \qquad I_1I_2 = -I_2I_1 = I_3$$

• $g \in H^* \otimes H^*$ is symmetric and positive definite,

and all these satisfy the equations

$$d\eta_s(X,Y) = g(J_sX,Y) \qquad X,Y \in H.$$

Conformal Infinity

Let (M, H) be a QC manifold.

If $(\hat{\eta}_1, \hat{\eta}_2, \hat{\eta}_3, \hat{I}_1, \hat{I}_2, \hat{I}_3, \hat{g})$ and $(\eta_1, \eta_2, \eta_3, I_1, I_2, I_3, g)$ are two admissible sets in an open neighborhood $U \subset M$ then

 $(\hat{I}_1, \hat{I}_2, \hat{I}_3) = (I_1, I_2, I_3)\Psi, \quad (\hat{\eta}_1, \hat{\eta}_2, \hat{\eta}_3) = \mathcal{F}(\eta_1, \eta_2, \eta_3)\Psi, \quad \hat{g} = \mathcal{F}g,$

where $\mathcal{F}: U \to \mathbb{R}^+$ and $\Psi: U \to SO(3)$.

Dfn. We say that a Riemannian metric G defined on $M \times (0, \epsilon)$ with coordinates (x, ρ) has as conformal infinity the QC-manifold (M, H) if there exists an admissible set $(\eta_1, \eta_2, \eta_3, I_1, I_2, I_3, g)$ such that

$$G \sim \frac{1}{\rho^2} ((\eta_1)^2 + (\eta_2)^2 + (\eta_3)^2 + d\rho^2) + \frac{1}{\rho}g,$$

when ρ tends to zero.

Theorem. [O.Biquard, 2000] Each real analytic QC-manifold (M, H) is the conformal infinity of a unique quaternionic Kähler metric G defined on a neighborhood of M.

Example. The quaternionic hyperbolic metric on the unit-ball in \mathbb{H}^{n+1} has as conformal infinity the unit-sphere S^{4n+3} with the QC distribution H being induced by the imbedding of S^{4n+3} into the quaternionic manifold \mathbb{H}^{n+1} .

Theorem. [D.Duchemin, 2006] Each real analytic QC-manifold (M, H) can be imbedded as a QC-hyper-surface in an appropriate quaternionic manifold (K, Q).

Typical examples of QC-manifolds are provided by the 3-Sasakian geometry.

Recall: A Riemannian (4n + 3)-manifold (M, h) is called 3-Sasaki if there exist 3-Killing vector fields ξ_1, ξ_2, ξ_3 such that

- $h(\xi_i, \xi_j) = \delta_{ij}, \ i, j = 1, 2, 3$
- $[\xi_i, \xi_j] = -2\xi_k$, for any cyclic permutation (i, j, k) of (1, 2, 3)

• $(D_X \tilde{I}_i)Y = h(\xi_i, Y)X - h(X, Y)\xi_i$, $i = 1, 2, 3, X, Y \in TM$, where $\tilde{I}_i(X) := D_X\xi_i$ and D denotes the Levi-Civita connection of the Riemannian metric h.

We construct a **QC**-structure on M out of the 3-Sasakian one by setting $H = \{\xi_1, \xi_2, \xi_3\}^{\perp}$.

QC-Hyper-Surfaces of Hyper-Kähler Manifolds

Let (K, Q) be a quaternionic manifold and G be any Q-compatible Riemannian metric on K.

Dfn. (K, Q, G) is called a hyper-Kähler manifold if there exists a frame $\{J_1, J_2, J_3\}$ of Q which is parallel with respect to the Levi-Civita connection of G.

• A trivial example of a hyper-Kähler manifold is provided by \mathbb{H}^{n+1} with its flat metric.

From now on we will assume: (M, H) is a QC-hyper-surface of a hyper-Kähler manifold (K, J_1, J_2, J_3, G) .

Furthermore:

- Let D be the Levi-Civita connection of G
- Let N be the unit-normal vector field of the imbedding

• $II(X,Y) := -G(D_XN,Y)$, $X,Y \in TM$ is the second fundamental form.

Then it holds:

- $II|_H$ is symmetric and negative definite
- $II(J_sX, J_sY) = II(X, Y), \quad s = 1, 2, 3, \quad X, Y \in H.$

Note that we make no assumption about $II(J_sN, X)$, s = 1, 2, 3, $X \in H$.

• The key point in our method is proving that for each QC-hyper-surface (M, H) there exists a function $f : M \to \mathbb{R}$ for which it holds

$$II(J_sN, J_sX) = -f^{-1}df(X), \quad s = 1, 2, 3, \quad X \in H.$$

• The function f is obtained by performing a certain volume normalization on M by comparing $II|_{H}$ with the hyper-Kähler metric $G|_{H}$. For this purpose we use the following lemma

Lemma. Let \mathcal{H}^{4n} be a real vector space with a prescribed hyper-complex structure (J_1, J_2, J_3) . Assume that we are given two positive definite inner products \hat{g} and g on \mathcal{H}^{4n} compatible with (J_1, J_2, J_3) .

If we set $\hat{\gamma}_i(X,Y) := \hat{g}(I_jX,Y) + \sqrt{-1} \hat{g}(I_kX,Y)$ and $\gamma_i(X,Y) := g(I_jX,Y) + \sqrt{-1} g(I_kX,Y)$, then there exists a positive constant μ such that $(\hat{\gamma}_s)^n = \mu(\gamma_s)^n$, s = 1, 2, 3. **Note** that the Levi-Civita connection of the hyper-Kähler metric G induces a connection in the bundle $TK|_M \to M$.

Theorem. If (M, H) is a QC-hyper-surface of a hyper-Kähler manifold (K, Q) then it holds:

• The second fundamental form II extends in an unique way to a symmetric J_s -invariant section Δ of the bundle $(T^*K \otimes T^*K)|_M \to M$.

• The section $f\Delta$ is parallel with respect to the Levi-Civita connection of the hyper-Kähler metric G.

Let (K, Q, G) be a hyper-Kähler manifold with Riemannian curvature tensor R.

Theorem. If $M \subset K$ is a QC-hyper-surface with normal vector N, then at each point of M it holds

$$R(X,Y)N = 0, \qquad X,Y \in TK.$$

Thank You for Your Attention!