G-structures on 8-manifolds

Christof Puhle

Humboldt-Universität zu Berlin

If $GL(n)\rho \subseteq \Lambda^3(\mathbb{R}^n)$ is open, then n = 6,7,8 and

If $GL(n)\rho \subseteq \Lambda^3(\mathbb{R}^n)$ is open, then n = 6,7,8 and the stabilizer of ρ in GL(n) is a real form of one of the complex groups

 $SL(3) \times SL(3), \quad G_2, \quad PSL(3),$

respectively.

If $GL(n)\rho \subseteq \Lambda^3(\mathbb{R}^n)$ is open, then n = 6,7,8 and the stabilizer of ρ in GL(n) is a real form of one of the complex groups

 $SL(3) \times SL(3), \quad G_2, \quad PSL(3),$

respectively.

Consequence

If an oriented (M^n,g) admits a global 3-form in an open orbit, then n = 6,7,8 and

If $GL(n)\rho \subseteq \Lambda^3(\mathbb{R}^n)$ is open, then n = 6,7,8 and the stabilizer of ρ in GL(n) is a real form of one of the complex groups

 $SL(3) \times SL(3)$, G_2 , PSL(3),

respectively.

Consequence

If an oriented (M^n,g) admits a global 3-form in an open orbit, then n = 6,7,8 and (M^n,g) admits a G-structure with G one of the compact groups

 $SU(3), G_2, PSU(3),$

respectively.

Fact (Witt 2005/2008)

The GL(8)-orbit of $f \in \Lambda^3(\mathbb{R}^8)$, defining the structure constants,

$$[\lambda_i,\lambda_j]=2i\sum_k f_{ijk}\lambda_k,$$

of SU(3) w.r.t. the Gell-Mann matrices λ_i (used in QCD), is open and

Fact (Witt 2005/2008)

The GL(8)-orbit of $f \in \Lambda^3(\mathbb{R}^8)$, defining the structure constants,

$$[\lambda_i,\lambda_j]=2i\sum_k f_{ijk}\lambda_k,$$

of SU(3) w.r.t. the Gell-Mann matrices λ_i (used in QCD), is open and Iso(f) = PSU(3).

Fact (Witt 2005/2008)

The GL(8)-orbit of $f \in \Lambda^3(\mathbb{R}^8)$, defining the structure constants,

$$[\lambda_i,\lambda_j]=2i\sum_k f_{ijk}\lambda_k,$$

of SU(3) w.r.t. the Gell-Mann matrices λ_i (used in QCD), is open and

 $\operatorname{Iso}(f) = \operatorname{PSU}(3).$

Consequence

(Almost) every physicist knows a 3-form in an open GL(8)-orbit.

2 Connections with torsion

- 2 Connections with torsion
- Spin(7)-structures

- 2 Connections with torsion
- 3 Spin(7)-structures
- PSU(3)-structures

2 Connections with torsion

3 Spin(7)-structures

PSU(3)-structures

Let (M^n, g) be Riemannian manifold.

Let (M^n, g) be Riemannian manifold.

Definition

The torsion of a metric connection ∇ (i.e. $\nabla g = 0$) is a (2,1)-tensor field T defined by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

Let (M^n, g) be Riemannian manifold.

Definition

The torsion of a metric connection ∇ (i.e. $\nabla g = 0$) is a (2,1)-tensor field T defined by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

and T(X, Y, Z) = g(T(X, Y), Z).

Let (M^n, g) be Riemannian manifold.

Definition

The torsion of a metric connection ∇ (i.e. $\nabla g = 0$) is a (2,1)-tensor field T defined by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

and T(X, Y, Z) = g(T(X, Y), Z).

Proposition (Cartan 1925)

Any metric connection ∇ is uniquely determined by its torsion tensor T,

$$g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + A(X, Y, Z),$$

$$A(X, Y, Z) := \frac{1}{2} (T(X, Y, Z) - T(Y, Z, X) + T(Z, X, Y)).$$

Proposition (Cartan 1925)

If $n \ge 3$, the space $\mathcal{T} := \Lambda^2 (TM^n) \otimes TM^n$ of possible torsion tensors splits into 3 irreducible O(n)-modules, $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2 \oplus \mathcal{T}_3$,

Proposition (Cartan 1925)

If $n \ge 3$, the space $\mathcal{T} := \Lambda^2 (TM^n) \otimes TM^n$ of possible torsion tensors splits into 3 irreducible O(n)-modules, $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2 \oplus \mathcal{T}_3$,

$$\mathcal{T}_1 = \{T \in \mathcal{T} \mid \exists V \in TM^n : T(X, Y) = g(V, X)Y - g(V, Y)X\},\\ \mathcal{T}_2 = \{T \in \mathcal{T} \mid T(X, Y, Z) + T(X, Z, Y) = 0\},\\ \mathcal{T}_3 = \{T \in \mathcal{T} \mid \mathfrak{S}_{X,Y,Z}T(X, Y, Z) = 0, \sum_i T(X, e_i, e_i) = 0\}.$$

Proposition (Cartan 1925)

If $n \ge 3$, the space $\mathcal{T} := \Lambda^2 (TM^n) \otimes TM^n$ of possible torsion tensors splits into 3 irreducible O(n)-modules, $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2 \oplus \mathcal{T}_3$,

$$\mathcal{F}_1 = \{T \in \mathcal{T} \mid \exists V \in TM^n : T(X, Y) = g(V, X)Y - g(V, Y)X\},\\ \mathcal{F}_2 = \{T \in \mathcal{T} \mid T(X, Y, Z) + T(X, Z, Y) = 0\},\\ \mathcal{F}_3 = \{T \in \mathcal{T} \mid \mathfrak{S}_{X,Y,Z}T(X, Y, Z) = 0, \sum_i T(X, e_i, e_i) = 0\}.$$

Definition

Let ∇ be a metric connection with torsion tensor T. We say that T is i) vectorial if $T \in \mathcal{T}_1$.

Proposition (Cartan 1925)

If $n \ge 3$, the space $\mathcal{T} := \Lambda^2 (TM^n) \otimes TM^n$ of possible torsion tensors splits into 3 irreducible O(n)-modules, $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2 \oplus \mathcal{T}_3$,

$$\mathcal{F}_1 = \{T \in \mathcal{F} \mid \exists V \in TM^n : T(X, Y) = g(V, X)Y - g(V, Y)X\},\\ \mathcal{F}_2 = \{T \in \mathcal{F} \mid T(X, Y, Z) + T(X, Z, Y) = 0\},\\ \mathcal{F}_3 = \{T \in \mathcal{F} \mid \mathfrak{S}_{X,Y,Z}T(X, Y, Z) = 0, \sum_i T(X, e_i, e_i) = 0\}.$$

Definition

Let ∇ be a metric connection with torsion tensor T. We say that T is

- i) vectorial if $T \in \mathcal{T}_1$.
- ii) totally skew-symmetric if $T \in \mathcal{T}_2$.

Proposition (Cartan 1925)

If $n \ge 3$, the space $\mathcal{T} := \Lambda^2 (TM^n) \otimes TM^n$ of possible torsion tensors splits into 3 irreducible O(n)-modules, $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2 \oplus \mathcal{T}_3$,

$$\mathcal{F}_1 = \{T \in \mathcal{F} \mid \exists V \in TM^n : T(X, Y) = g(V, X)Y - g(V, Y)X\},\$$

$$\mathcal{F}_2 = \{T \in \mathcal{F} \mid T(X, Y, Z) + T(X, Z, Y) = 0\},\$$

$$\mathcal{F}_3 = \{T \in \mathcal{F} \mid \mathfrak{S}_{X,Y,Z}T(X, Y, Z) = 0, \ \sum_i T(X, e_i, e_i) = 0\}.$$

Definition

Let ∇ be a metric connection with torsion tensor T. We say that T is

- i) vectorial if $T \in \mathcal{T}_1$.
- ii) totally skew-symmetric if $T \in \mathcal{T}_2$.
- iii) traceless cyclic if $T \in \mathcal{T}_3$.

Let $G \subseteq SO(n)$ be a closed subgroup and suppose (M^n, g) admits a G-structure.

Let $G \subseteq SO(n)$ be a closed subgroup and suppose (M^n, g) admits a G-structure.

Definition

A metric connection ∇ is said to be compatible with the *G*-structure if

$$\operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega) = 0, \quad \Omega_{ij} = g(\nabla e_i, e_j).$$

Let $G \subseteq SO(n)$ be a closed subgroup and suppose (M^n, g) admits a G-structure.

Definition

A metric connection ∇ is said to be compatible with the *G*-structure if

$$\operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega) = 0, \quad \Omega_{ij} = g(\nabla e_i, e_j).$$

 $\Gamma := \operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega^g) \in TM^8 \otimes \mathfrak{g}^{\perp} \text{ is called the intrinsic torsion of the } G\text{-structure.}$

Let $G \subseteq SO(n)$ be a closed subgroup and suppose (M^n, g) admits a G-structure.

Definition

A metric connection ∇ is said to be compatible with the *G*-structure if

$$\operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega) = 0, \quad \Omega_{ij} = g(\nabla e_i, e_j).$$

 $\Gamma := \operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega^g) \in \mathcal{T}M^8 \otimes \mathfrak{g}^{\perp} \text{ is called the intrinsic torsion of the } G\text{-structure.}$

Lemma

A metric connection is compatible with the G-structure iff the corresponding torsion tensor satisfies

$$\Gamma(X) = -\mathrm{pr}_{\mathfrak{g}^{\perp}}(A(X,\cdot,\cdot)).$$

- 2 Connections with torsion
- Spin(7)-structures
 - PSU(3)-structures

Definition

A Spin(7)-structure is a Riemannian manifold (M^8, g) equipped with a 4-form Φ s.t. there exists an oriented ONF (e_1, \ldots, e_8) realizing

 $\Phi = e_{1278} + e_{3478} + e_{5678} + e_{2468} - e_{2358} - e_{1458} - e_{1368}$

 $+ e_{3456} + e_{1256} + e_{1234} + e_{1357} - e_{1467} - e_{2367} - e_{2457}$.

Definition

A Spin(7)-structure is a Riemannian manifold (M^8, g) equipped with a 4-form Φ s.t. there exists an oriented ONF (e_1, \ldots, e_8) realizing

$$\Phi = e_{1278} + e_{3478} + e_{5678} + e_{2468} - e_{2358} - e_{1458} - e_{1368}$$

 $+ e_{3456} + e_{1256} + e_{1234} + e_{1357} - e_{1467} - e_{2367} - e_{2457}$.

The space of intrinsic torsion tensors splits as $TM^8 \otimes \mathfrak{spin}(7)^{\perp} = \mathcal{W}_8 \oplus \mathcal{W}_{48}$.

Definition

A Spin(7)-structure is a Riemannian manifold (M^8, g) equipped with a 4-form Φ s.t. there exists an oriented ONF (e_1, \ldots, e_8) realizing

$$\Phi = e_{1278} + e_{3478} + e_{5678} + e_{2468} - e_{2358} - e_{1458} - e_{1368}$$

 $+ e_{3456} + e_{1256} + e_{1234} + e_{1357} - e_{1467} - e_{2367} - e_{2457}$.

The space of intrinsic torsion tensors splits as $TM^8 \otimes \mathfrak{spin}(7)^{\perp} = \mathcal{W}_8 \oplus \mathcal{W}_{48}$.

Definition

A Spin(7)-structure is called

i) parallel if $\Gamma_8 = 0$ and $\Gamma_{48} = 0$.

Definition

A Spin(7)-structure is a Riemannian manifold (M^8, g) equipped with a 4-form Φ s.t. there exists an oriented ONF (e_1, \ldots, e_8) realizing

$$\Phi = e_{1278} + e_{3478} + e_{5678} + e_{2468} - e_{2358} - e_{1458} - e_{1368}$$

 $+ e_{3456} + e_{1256} + e_{1234} + e_{1357} - e_{1467} - e_{2367} - e_{2457}$.

The space of intrinsic torsion tensors splits as $TM^8 \otimes \mathfrak{spin}(7)^{\perp} = \mathcal{W}_8 \oplus \mathcal{W}_{48}$.

Definition

A Spin(7)-structure is called

- i) parallel if $\Gamma_8 = 0$ and $\Gamma_{48} = 0$.
- ii) locally conformal parallel if $\Gamma_{48} = 0$.

Definition

A Spin(7)-structure is a Riemannian manifold (M^8, g) equipped with a 4-form Φ s.t. there exists an oriented ONF (e_1, \ldots, e_8) realizing

$$\Phi = e_{1278} + e_{3478} + e_{5678} + e_{2468} - e_{2358} - e_{1458} - e_{1368}$$

 $+ e_{3456} + e_{1256} + e_{1234} + e_{1357} - e_{1467} - e_{2367} - e_{2457}$.

The space of intrinsic torsion tensors splits as $TM^8 \otimes \mathfrak{spin}(7)^{\perp} = \mathcal{W}_8 \oplus \mathcal{W}_{48}$.

Definition

A Spin(7)-structure is called

- i) parallel if $\Gamma_8 = 0$ and $\Gamma_{48} = 0$.
- ii) locally conformal parallel if $\Gamma_{48} = 0$.
- iii) balanced if $\Gamma_8 = 0$.

Theorem (Ivanov 2004)

Any Spin(7)-structure (M^8, g, Φ) admits a unique compatible connection ∇^c with totally skew-symmetric torsion

$$T^{c} = -\delta \Phi - \frac{7}{6} * (\theta \wedge \Phi), \quad \theta = \frac{1}{7} * (\delta \Phi \wedge \Phi).$$

Theorem (Ivanov 2004)

Any Spin(7)-structure (M^8, g, Φ) admits a unique compatible connection ∇^c with totally skew-symmetric torsion

$$T^{c} = -\delta \Phi - \frac{7}{6} * (\theta \wedge \Phi), \quad \theta = \frac{1}{7} * (\delta \Phi \wedge \Phi).$$

The space of 3-forms splits as $\Lambda^3 = \Lambda_8^3 \oplus \Lambda_{48}^3$.

Theorem (Ivanov 2004)

Any Spin(7)-structure (M^8, g, Φ) admits a unique compatible connection ∇^c with totally skew-symmetric torsion

$$T^{c} = -\delta \Phi - \frac{7}{6} * (\theta \wedge \Phi), \quad \theta = \frac{1}{7} * (\delta \Phi \wedge \Phi).$$

The space of 3-forms splits as $\Lambda^3 = \Lambda_8^3 \oplus \Lambda_{48}^3$.

Proposition (Cabrera 1995, P' 2009)

Let (M^8, g, Φ) be a Spin(7)-structure. Then

(M^8,g,Φ) is	if and only if	or equivalently if
parallel	$T_8^c = 0, \ T_{48}^c = 0$	$d\Phi = 0, \ \theta = 0$
locally conformal parallel	$T_{48}^{c} = 0$	$d\Phi = \theta \wedge \Phi$
balanced	$T_{8}^{c} = 0$	$\theta = 0$

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^{c} T^{c} = 0$.

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^c T^c = 0$.

Proposition (Ivanov 2004, P' 2009)

Let (M^8, g, Φ) be a Spin(7)-structure with $\nabla^c T^c = 0$. Then

$$\operatorname{Scal}^{g} = \frac{27}{2} \| T_{8}^{c} \|^{2} - \frac{1}{2} \| T_{48}^{c} \|^{2}.$$

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^c T^c = 0$.

Proposition (Ivanov 2004, P' 2009)

Let (M^8, g, Φ) be a Spin(7)-structure with $\nabla^c T^c = 0$. Then

$$\operatorname{Scal}^{g} = \frac{27}{2} \| T_{8}^{c} \|^{2} - \frac{1}{2} \| T_{48}^{c} \|^{2}.$$

Theorem (Agricola-Friedrich 2004, P' 2009) If $\nabla^c T^c = 0$, any ∇^c -parallel spinor field Ψ on (M^8, g, Φ) satisfies $(T^c)^2 \cdot \Psi = 7 \|T_8^c\|^2 \cdot \Psi, -4 \operatorname{Ric}^c(X) \cdot \Psi = ((T^c)^2 - 7 \|T_8^c\|^2) \cdot X \cdot \Psi.$ (*)

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^c T^c = 0$.

Proposition (Ivanov 2004, P' 2009)

Let (M^8, g, Φ) be a Spin(7)-structure with $\nabla^c T^c = 0$. Then

$$\operatorname{Scal}^{g} = \frac{27}{2} \| T_{8}^{c} \|^{2} - \frac{1}{2} \| T_{48}^{c} \|^{2}.$$

Theorem (Agricola-Friedrich 2004, P' 2009) If $\nabla^c T^c = 0$, any ∇^c -parallel spinor field Ψ on (M^8, g, Φ) satisfies $(T^c)^2 \cdot \Psi = 7 \|T_8^c\|^2 \cdot \Psi, -4 \operatorname{Ric}^c(X) \cdot \Psi = ((T^c)^2 - 7 \|T_8^c\|^2) \cdot X \cdot \Psi.$ (*)

There exists at least one ∇^c -parallel spinor field Ψ_0 on (M^8, g, Φ) ,

$$\Phi \cdot \Psi_0 = -14 \Psi_0.$$

For any ∇^c -parallel $T^c \neq 0$, we have $\mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) \subseteq \mathfrak{spin}(7)$.

For any ∇^c -parallel $T^c \neq 0$, we have $\mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) \subseteq \mathfrak{spin}(7)$.

Lemma

Let $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ be non-Abelian. If there exist a \mathfrak{g} -invariant $T \in \Lambda^3$, $T \neq 0$, then \mathfrak{g} is conjugate to one of

For any ∇^c -parallel $T^c \neq 0$, we have $\mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) \subseteq \mathfrak{spin}(7)$.

Lemma

Let $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ be non-Abelian. If there exist a \mathfrak{g} -invariant $T \in \Lambda^3$, $T \neq 0$, then \mathfrak{g} is conjugate to one of

$$\begin{split} \mathfrak{g}_2 &\subset \mathfrak{spin}(7), \quad \mathfrak{su}(3) \subset \mathfrak{g}_2, \quad \mathfrak{su}(2) \oplus \mathfrak{su}_c(2) \subset \mathfrak{g}_2, \quad \mathfrak{u}(2) \subset \mathfrak{su}(3), \\ \mathbb{R} \oplus \mathfrak{su}_c(2) \subset \mathfrak{su}(2) \oplus \mathfrak{su}_c(2), \quad \mathbb{R} \oplus \mathfrak{su}(2) \subset \mathfrak{su}(4) \subset \mathfrak{spin}(7), \\ \mathfrak{so}(3) \subset \mathfrak{su}(3), \quad \mathfrak{su}(2) \subset \mathfrak{u}(2), \quad \mathfrak{su}_c(2) \subset \mathbb{R} \oplus \mathfrak{su}_c(2), \quad \mathfrak{so}_{ir}(3) \subset \mathfrak{g}_2. \end{split}$$

For any ∇^c -parallel $T^c \neq 0$, we have $\mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) \subseteq \mathfrak{spin}(7)$.

Lemma

Let $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ be non-Abelian. If there exist a \mathfrak{g} -invariant $T \in \Lambda^3$, $T \neq 0$, then \mathfrak{g} is conjugate to one of

$$\begin{split} \mathfrak{g}_2 &\subset \mathfrak{spin}(7), \quad \mathfrak{su}(3) \subset \mathfrak{g}_2, \quad \mathfrak{su}(2) \oplus \mathfrak{su}_c(2) \subset \mathfrak{g}_2, \quad \mathfrak{u}(2) \subset \mathfrak{su}(3), \\ \mathbb{R} \oplus \mathfrak{su}_c(2) \subset \mathfrak{su}(2) \oplus \mathfrak{su}_c(2), \quad \mathbb{R} \oplus \mathfrak{su}(2) \subset \mathfrak{su}(4) \subset \mathfrak{spin}(7), \\ \mathfrak{so}(3) \subset \mathfrak{su}(3), \quad \mathfrak{su}(2) \subset \mathfrak{u}(2), \quad \mathfrak{su}_c(2) \subset \mathbb{R} \oplus \mathfrak{su}_c(2), \quad \mathfrak{so}_{ir}(3) \subset \mathfrak{g}_2. \end{split}$$

Classification recipe:

(1) Fix $\mathfrak{h} = \mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) = \mathfrak{g}$ with $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ non-Abelian.

For any ∇^c -parallel $T^c \neq 0$, we have $\mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) \subseteq \mathfrak{spin}(7)$.

Lemma

Let $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ be non-Abelian. If there exist a \mathfrak{g} -invariant $T \in \Lambda^3$, $T \neq 0$, then \mathfrak{g} is conjugate to one of

$$\begin{split} \mathfrak{g}_2 &\subset \mathfrak{spin}(7), \quad \mathfrak{su}(3) \subset \mathfrak{g}_2, \quad \mathfrak{su}(2) \oplus \mathfrak{su}_c(2) \subset \mathfrak{g}_2, \quad \mathfrak{u}(2) \subset \mathfrak{su}(3), \\ \mathbb{R} \oplus \mathfrak{su}_c(2) \subset \mathfrak{su}(2) \oplus \mathfrak{su}_c(2), \quad \mathbb{R} \oplus \mathfrak{su}(2) \subset \mathfrak{su}(4) \subset \mathfrak{spin}(7), \\ \mathfrak{so}(3) \subset \mathfrak{su}(3), \quad \mathfrak{su}(2) \subset \mathfrak{u}(2), \quad \mathfrak{su}_c(2) \subset \mathbb{R} \oplus \mathfrak{su}_c(2), \quad \mathfrak{so}_{ir}(3) \subset \mathfrak{g}_2. \end{split}$$

Classification recipe:

(1) Fix
$$\mathfrak{h} = \mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(\mathcal{T}^c) = \mathfrak{g}$$
 with $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ non-Abelian.

(2) Determine the spaces of \mathfrak{h} -invariant spinors and \mathfrak{g} -invariant 3-forms.

For any ∇^c -parallel $T^c \neq 0$, we have $\mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) \subseteq \mathfrak{spin}(7)$.

Lemma

Let $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ be non-Abelian. If there exist a \mathfrak{g} -invariant $T \in \Lambda^3$, $T \neq 0$, then \mathfrak{g} is conjugate to one of

$$\begin{split} \mathfrak{g}_2 &\subset \mathfrak{spin}(7), \quad \mathfrak{su}(3) \subset \mathfrak{g}_2, \quad \mathfrak{su}(2) \oplus \mathfrak{su}_c(2) \subset \mathfrak{g}_2, \quad \mathfrak{u}(2) \subset \mathfrak{su}(3), \\ \mathbb{R} \oplus \mathfrak{su}_c(2) \subset \mathfrak{su}(2) \oplus \mathfrak{su}_c(2), \quad \mathbb{R} \oplus \mathfrak{su}(2) \subset \mathfrak{su}(4) \subset \mathfrak{spin}(7), \\ \mathfrak{so}(3) \subset \mathfrak{su}(3), \quad \mathfrak{su}(2) \subset \mathfrak{u}(2), \quad \mathfrak{su}_c(2) \subset \mathbb{R} \oplus \mathfrak{su}_c(2), \quad \mathfrak{so}_{ir}(3) \subset \mathfrak{g}_2. \end{split}$$

Classification recipe:

- (1) Fix $\mathfrak{h} = \mathfrak{hol}(\nabla^c) \subseteq \mathfrak{iso}(T^c) = \mathfrak{g}$ with $\mathfrak{g} \subseteq \mathfrak{spin}(7)$ non-Abelian.
- (2) Determine the spaces of \mathfrak{h} -invariant spinors and \mathfrak{g} -invariant 3-forms.
- (3) Solve equations (*) on these spaces.

Results

Proposition

Only the following isotropy algebrae $iso(T^c)$ allow to carry out (1) to (3) consistently:

$\mathfrak{g}_2, \mathfrak{su}(3), \mathfrak{su}(2) \oplus \mathfrak{su}_c(2), \mathfrak{u}(2), \mathbb{R} \oplus \mathfrak{su}(2)$	$\mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{so}(3)$

Results

Proposition

Only the following isotropy algebrae $iso(T^c)$ allow to carry out (1) to (3) consistently:

$$\begin{array}{ll} \mathfrak{g}_{2}, \mathfrak{su}(3), \mathfrak{su}(2) \oplus \mathfrak{su}_{c}(2), \mathfrak{u}(2), \mathbb{R} \oplus \mathfrak{su}(2) & \mathbb{R} \oplus \mathfrak{su}_{c}(2), \mathfrak{so}(3) \\ & \mathcal{K}(\mathfrak{iso}(\mathcal{T}^{c})) \neq \{0\} & \mathcal{K}(\mathfrak{iso}(\mathcal{T}^{c})) = \{0\} \end{array}$$

Here

$$\mathscr{K}(\mathfrak{g}) := \ker \{ b_1 : \Lambda^2 \otimes \mathfrak{g} \to \Lambda^3 \otimes \Lambda^1 \}.$$

Results

Proposition

Only the following isotropy algebrae $iso(T^c)$ allow to carry out (1) to (3) consistently:

$$\begin{array}{ll} \mathfrak{g}_2, \mathfrak{su}(3), \mathfrak{su}(2) \oplus \mathfrak{su}_c(2), \mathfrak{u}(2), \mathbb{R} \oplus \mathfrak{su}(2) & \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{so}(3) \\ & \mathcal{K}(\mathfrak{iso}(\mathcal{T}^c)) \neq \{0\} & \mathcal{K}(\mathfrak{iso}(\mathcal{T}^c)) = \{0\} \end{array}$$

Here

$$\mathscr{K}(\mathfrak{g}) := \ker \{ b_1 : \Lambda^2 \otimes \mathfrak{g} \to \Lambda^3 \otimes \Lambda^1 \}.$$

Proposition

There exist at least two non-zero ∇^c -parallel spinor fields on non-parallel Spin(7)-manifolds with $\nabla^c T^c = 0$ and $iso(T^c)$ non-Abelian.

Let (M^8, g, Φ) be a complete, simply connected Spin(7)-manifold with $\nabla^c T^c = 0$ and $iso(T^c)$ equal to

a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.
- d) u(2).

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.
- d) u(2).

Let (M^8, g, Φ) be a complete, simply connected Spin(7)-manifold with $\nabla^c T^c = 0$ and $iso(T^c)$ equal to

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.
- d) u(2).

Then M⁸ is isometric to the Riemannian product of

a) \mathbb{R} with a co-calibrated G_2 -manifold.

Let (M^8, g, Φ) be a complete, simply connected Spin(7)-manifold with $\nabla^c T^c = 0$ and $iso(T^c)$ equal to

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.
- d) u(2).

Then M⁸ is isometric to the Riemannian product of

- a) \mathbb{R} with a co-calibrated G_2 -manifold.
- b) \mathbb{R}^2 with an almost Hermitian 6-manifold of Gray-Hervella class $\mathcal{W}_1 \oplus \mathcal{W}_3$ or the Riemannian product of \mathbb{R} with a Sasakian 7-manifold.

Let (M^8, g, Φ) be a complete, simply connected Spin(7)-manifold with $\nabla^c T^c = 0$ and $iso(T^c)$ equal to

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.
- d) u(2).

Then M⁸ is isometric to the Riemannian product of

- a) \mathbb{R} with a co-calibrated G_2 -manifold.
- b) \mathbb{R}^2 with an almost Hermitian 6-manifold of Gray-Hervella class $\mathcal{W}_1 \oplus \mathcal{W}_3$ or the Riemannian product of \mathbb{R} with a Sasakian 7-manifold.
- c) S^2 with either the projective space \mathbb{CP}^3 or the flag manifold F(1,2), both equipped with their standard nearly Kähler structure.

Let (M^8, g, Φ) be a complete, simply connected Spin(7)-manifold with $\nabla^c T^c = 0$ and $iso(T^c)$ equal to

- a) \mathfrak{g}_2 or $\mathfrak{su}(2) \oplus \mathfrak{su}_c(2)$.
- b) $\mathfrak{su}(3)$ or $\mathfrak{so}(3)$.
- c) $\mathbb{R} \oplus \mathfrak{su}(2)$.
- d) u(2).

Then M⁸ is isometric to the Riemannian product of

- a) \mathbb{R} with a co-calibrated G_2 -manifold.
- b) \mathbb{R}^2 with an almost Hermitian 6-manifold of Gray-Hervella class $\mathcal{W}_1 \oplus \mathcal{W}_3$ or the Riemannian product of \mathbb{R} with a Sasakian 7-manifold.
- c) S^2 with either the projective space \mathbb{CP}^3 or the flag manifold F(1,2), both equipped with their standard nearly Kähler structure.
- d) a Sasakian 3-manifold with a 5-dimensional Sasakian manifold or the Riemannian product of \mathbb{R} with an integrable G_2 -manifold.

Moreover, any Spin(7)-manifold with $\nabla^c T^c = 0$ and $i\mathfrak{so}(T^c) = \mathbb{R} \oplus \mathfrak{su}_c(2)$ is locally isometric to a naturally reductive homogeneous space.

Moreover, any Spin(7)-manifold with $\nabla^c T^c = 0$ and $\mathfrak{iso}(T^c) = \mathbb{R} \oplus \mathfrak{su}_c(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Moreover, any Spin(7)-manifold with $\nabla^c T^c = 0$ and $\mathfrak{iso}(T^c) = \mathbb{R} \oplus \mathfrak{su}_c(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)

Let (M^n, g, T) be a complete, simply connected Riemannian manifold with 3-form T. Suppose that the tangent bundle

 $TM^n = TM_+ \oplus TM_-$

splits under the action of the holonomy group of $\nabla_X Y = \nabla_X^g Y + \frac{1}{2} \cdot T(X, Y, \cdot)$ so that

 $T(X_+,X_-,\cdot)=0, \qquad T(X_+,Y_+,\cdot)\in TM_+, \qquad T(X_-,Y_-,\cdot)\in TM_-.$

Moreover, any Spin(7)-manifold with $\nabla^c T^c = 0$ and $\mathfrak{iso}(T^c) = \mathbb{R} \oplus \mathfrak{su}_c(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)

Let (M^n, g, T) be a complete, simply connected Riemannian manifold with 3-form T. Suppose that the tangent bundle

 $TM^n = TM_+ \oplus TM_-$

splits under the action of the holonomy group of $\nabla_X Y = \nabla_X^g Y + \frac{1}{2} \cdot T(X, Y, \cdot)$ so that

 $T(X_+,X_-,\cdot)=0, \qquad T(X_+,Y_+,\cdot)\in TM_+, \qquad T(X_-,Y_-,\cdot)\in TM_-.$

Let $T = T_+ + T_-$ denote the corresponding decomposition of T.

Moreover, any Spin(7)-manifold with $\nabla^c T^c = 0$ and $\mathfrak{iso}(T^c) = \mathbb{R} \oplus \mathfrak{su}_c(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)

Let (M^n, g, T) be a complete, simply connected Riemannian manifold with 3-form T. Suppose that the tangent bundle

 $TM^n = TM_+ \oplus TM_-$

splits under the action of the holonomy group of $\nabla_X Y = \nabla_X^g Y + \frac{1}{2} \cdot T(X, Y, \cdot)$ so that

 $T\left(X_+,X_-,\cdot\right)=0,\qquad T\left(X_+,Y_+,\cdot\right)\in TM_+,\qquad T\left(X_-,Y_-,\cdot\right)\in TM_-.$

Let $T = T_+ + T_-$ denote the corresponding decomposition of T. Then (M, g, T) is isometric to a Riemannian product $(M_+, g_+, T_+) \times (M_-, g_-, T_-)$.

Outline

- Connections with torsion
- 3 Spin(7)-structures

Definition

A PSU(3)-structure is a Riemannian manifold (M^8, g) equipped with a 3-form ρ s.t. there exists an oriented ONF (e_1, \dots, e_8) realizing

 $\rho = e_{246} - e_{235} - e_{145} - e_{136} + (e_{12} + e_{34} - 2e_{56}) \wedge e_7 + \sqrt{3}(e_{12} - e_{34}) \wedge e_8$

Definition

A PSU(3)-structure is a Riemannian manifold (M^8, g) equipped with a 3-form ρ s.t. there exists an oriented ONF (e_1, \dots, e_8) realizing

 $\rho = e_{246} - e_{235} - e_{145} - e_{136} + (e_{12} + e_{34} - 2e_{56}) \wedge e_7 + \sqrt{3}(e_{12} - e_{34}) \wedge e_8$

The space of intrinsic torsion tensors splits into 6 irreducible PSU(3)-modules:

Definition

A PSU(3)-structure is a Riemannian manifold (M^8, g) equipped with a 3-form ρ s.t. there exists an oriented ONF (e_1, \dots, e_8) realizing

 $\rho = e_{246} - e_{235} - e_{145} - e_{136} + (e_{12} + e_{34} - 2e_{56}) \wedge e_7 + \sqrt{3}(e_{12} - e_{34}) \wedge e_8$

The space of intrinsic torsion tensors splits into 6 irreducible PSU(3)-modules:

 $TM^8 \otimes \mathfrak{psu}(3)^{\perp} = \mathscr{W}_1 \oplus \mathscr{W}_2 \oplus \mathscr{W}_3 \oplus \mathscr{W}_4 \oplus \mathscr{W}_5 \oplus \mathscr{W}_6.$

Definition

A PSU(3)-structure is a Riemannian manifold (M^8, g) equipped with a 3-form ρ s.t. there exists an oriented ONF (e_1, \dots, e_8) realizing

 $\rho = e_{246} - e_{235} - e_{145} - e_{136} + (e_{12} + e_{34} - 2e_{56}) \wedge e_7 + \sqrt{3}(e_{12} - e_{34}) \wedge e_8$

The space of intrinsic torsion tensors splits into 6 irreducible PSU(3)-modules:

$$TM^8 \otimes \mathfrak{psu}(3)^{\perp} = \mathscr{W}_1 \oplus \mathscr{W}_2 \oplus \mathscr{W}_3 \oplus \mathscr{W}_4 \oplus \mathscr{W}_5 \oplus \mathscr{W}_6.$$

Definition

A PSU(3)-structure (M^8, g, ρ) is said to be of class $\mathcal{W}_{i_1} \oplus \ldots \oplus \mathcal{W}_{i_k}$ if

 $\Gamma \in \mathcal{W}_{i_1} \oplus \ldots \oplus \mathcal{W}_{i_k}.$

Classes vs. differential equations

Proposition

Let (M^8, g, ρ) be a PSU(3)-structure. Then

(M^8,g, ho) is of class	if and only if ρ satisfies
$\mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$\rho \lrcorner * d ho = 0$
$\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$6\delta\rho = (\delta\rho \lrcorner \rho) \lrcorner \rho$
$\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$\delta \rho \lrcorner \rho = 0$ or $\rho \lrcorner d\rho = 0$
$\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$\delta ho = 0$
$\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_6$	$10 * d\rho = \rho \land (\rho \lrcorner * d\rho)$
$\mathcal{W}_2 \oplus \mathcal{W}_4 \oplus \mathcal{W}_6$	$10 d\rho = \rho \wedge (\rho \lrcorner d\rho)$
$\mathcal{W}_2 \oplus \mathcal{W}_6$	$d\rho = 0$
₩ ₆	$d ho = 0$ and $\delta ho = 0$

Classes vs. differential equations

Proposition

Let (M^8, g, ρ) be a PSU(3)-structure. Then

(M^8,g, ho) is of class	if and only if ρ satisfies
$\mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$\rho \lrcorner * d ho = 0$
$\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$6\delta\rho = (\delta\rho \lrcorner \rho) \lrcorner \rho$
$\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$\delta \rho \lrcorner \rho = 0$ or $\rho \lrcorner d\rho = 0$
$\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_5 \oplus \mathcal{W}_6$	$\delta ho = 0$
$\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_6$	$10 * d\rho = \rho \land (\rho \lrcorner * d\rho)$
$\mathcal{W}_2 \oplus \mathcal{W}_4 \oplus \mathcal{W}_6$	$10 d\rho = \rho \wedge (\rho \lrcorner d\rho)$
$\mathcal{W}_2 \oplus \mathcal{W}_6$	$d\rho = 0$
W ₆	$d ho = 0$ and $\delta ho = 0$

We now restrict to non-integrable (i.e. $\Gamma \neq 0$) PSU(3)-structures of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

 $\Gamma_1 + \Gamma_2 + \Gamma_3$ with $T_{\Gamma} \in \Lambda^3$, $\Gamma_4 + \Gamma_5$ with $F_{\Gamma} \in \Lambda^4$.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

 $\Gamma_1 + \Gamma_2 + \Gamma_3$ with $T_{\Gamma} \in \Lambda^3$, $\Gamma_4 + \Gamma_5$ with $F_{\Gamma} \in \Lambda^4$.

Proposition

Any PSU(3)-structures of class $W_1 \oplus ... \oplus W_5$ admits a (unique) compatible connection ∇^c with torsion tensor

 $T^{c}(X,Y,Z) = T_{\Gamma}(X,Y,Z) - ((Z \sqcup \rho) \sqcup F_{\Gamma})(X,Y)$

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

 $\Gamma_1 + \Gamma_2 + \Gamma_3$ with $T_{\Gamma} \in \Lambda^3$, $\Gamma_4 + \Gamma_5$ with $F_{\Gamma} \in \Lambda^4$.

Proposition

Any PSU(3)-structures of class $W_1 \oplus ... \oplus W_5$ admits a (unique) compatible connection ∇^c with torsion tensor

$$T^{c}(X,Y,Z) = T_{\Gamma}(X,Y,Z) - ((Z \sqcup \rho) \sqcup F_{\Gamma})(X,Y)$$

Proposition

The torsion tensor T^c is

i) totally skew-symmetric iff (M^8, g, ρ) is of class $W_1 \oplus W_2 \oplus W_3$.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

 $\Gamma_1 + \Gamma_2 + \Gamma_3$ with $T_{\Gamma} \in \Lambda^3$, $\Gamma_4 + \Gamma_5$ with $F_{\Gamma} \in \Lambda^4$.

Proposition

Any PSU(3)-structures of class $W_1 \oplus ... \oplus W_5$ admits a (unique) compatible connection ∇^c with torsion tensor

$$T^{c}(X,Y,Z) = T_{\Gamma}(X,Y,Z) - ((Z \sqcup \rho) \sqcup F_{\Gamma})(X,Y)$$

Proposition

The torsion tensor T^c is

- i) totally skew-symmetric iff (M^8, g, ρ) is of class $W_1 \oplus W_2 \oplus W_3$.
- ii) traceless cyclic iff (M^8, g, ρ) is of class \mathcal{W}_5 .

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

 $\Gamma_1 + \Gamma_2 + \Gamma_3$ with $T_{\Gamma} \in \Lambda^3$, $\Gamma_4 + \Gamma_5$ with $F_{\Gamma} \in \Lambda^4$.

Proposition

Any PSU(3)-structures of class $W_1 \oplus ... \oplus W_5$ admits a (unique) compatible connection ∇^c with torsion tensor

$$T^{c}(X,Y,Z) = T_{\Gamma}(X,Y,Z) - ((Z \sqcup \rho) \sqcup F_{\Gamma})(X,Y)$$

Proposition

The torsion tensor T^c is

- i) totally skew-symmetric iff (M^8, g, ρ) is of class $W_1 \oplus W_2 \oplus W_3$.
- ii) traceless cyclic iff (M^8, g, ρ) is of class \mathcal{W}_5 .
- iii) not (strictly) vectorial.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

 $\Gamma_1 + \Gamma_2 + \Gamma_3$ with $T_{\Gamma} \in \Lambda^3$, $\Gamma_4 + \Gamma_5$ with $F_{\Gamma} \in \Lambda^4$.

Proposition

Any PSU(3)-structures of class $W_1 \oplus ... \oplus W_5$ admits a (unique) compatible connection ∇^c with torsion tensor

$$T^{c}(X,Y,Z) = T_{\Gamma}(X,Y,Z) - ((Z \sqcup \rho) \sqcup F_{\Gamma})(X,Y)$$

Proposition

The torsion tensor T^c is

- i) totally skew-symmetric iff (M^8, g, ρ) is of class $W_1 \oplus W_2 \oplus W_3$.
- ii) traceless cyclic iff (M^8, g, ρ) is of class \mathcal{W}_5 .

iii) not (strictly) vectorial.

iv) ∇^c -parallel iff $\nabla^c T_{\Gamma} = 0$ and $\nabla^c F_{\Gamma} = 0$.

Proposition

Any Spin(7)-manifold $(M^8, g, \Phi, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{iso}(\overline{T^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$ admits a PSU(3)-structure $(M^8, g, \rho, \nabla^c, T^c)$ of class $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$ with

$$\mathcal{T}^{c} = \mathrm{pr}_{\rho^{\perp}}(\overline{\mathcal{T}^{c}}).$$

Proposition

Any Spin(7)-manifold $(M^8, g, \Phi, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{iso}(\overline{T^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$ admits a PSU(3)-structure $(M^8, g, \rho, \nabla^c, T^c)$ of class $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$ with

$$\mathcal{T}^{c} = \mathrm{pr}_{\rho^{\perp}}(\overline{\mathcal{T}^{c}}).$$

In general, the holonomy algebra $\mathfrak{hol}(\nabla^c)$ is one of

 $\mathfrak{psu}(3)$, $\mathbb{R} \oplus \mathfrak{su}_c(2)$, $\mathfrak{su}_c(2)$, \mathfrak{t}^2 , $\mathfrak{so}(3)$, \mathfrak{t}^1 , o.

Proposition

Any Spin(7)-manifold $(M^8, g, \Phi, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{iso}(\overline{T^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$ admits a PSU(3)-structure $(M^8, g, \rho, \nabla^c, T^c)$ of class $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$ with

$$T^{c} = \operatorname{pr}_{\rho^{\perp}}(\overline{T^{c}}).$$

In general, the holonomy algebra $\mathfrak{hol}(\nabla^c)$ is one of

 $\mathfrak{psu}(3)$, $\mathbb{R} \oplus \mathfrak{su}_c(2)$, $\mathfrak{su}_c(2)$, \mathfrak{t}^2 , $\mathfrak{so}(3)$, \mathfrak{t}^1 , o.

Proposition

Any Spin(7)-manifold $(M^8, g, \Phi, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{iso}(\overline{T^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$ admits a PSU(3)-structure $(M^8, g, \rho, \nabla^c, T^c)$ of class $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$ with

$$T^{c} = \operatorname{pr}_{\rho^{\perp}}(\overline{T^{c}}).$$

In general, the holonomy algebra $\mathfrak{hol}(\nabla^c)$ is one of

 $\mathfrak{psu}(3)$, $\mathbb{R} \oplus \mathfrak{su}_c(2)$, $\mathfrak{su}_c(2)$, \mathfrak{t}^2 , $\mathfrak{so}(3)$, \mathfrak{t}^1 , o.

Proposition

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$. Then

$$\mathfrak{S}_{X,Y,Z}\mathbf{R}^{c}(X,Y,Z,V) = \sum_{i} \left((e_{i} \sqcup T_{\Gamma}) - ((e_{i} \sqcup \rho) \sqcup F_{\Gamma}) \right) \wedge \left((e_{i} \sqcup V \sqcup T_{\Gamma}) - (e_{i} \sqcup ((V \sqcup \rho) \sqcup F_{\Gamma})))(X,Y,Z) \right).$$

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), \mathfrak{t}^2$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), \mathfrak{t}^2$. Then (M^8, g, ρ)

a) is of class $W_1 \oplus W_2 \oplus W_3$ and

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), t^2$. Then (M^8, g, ρ)

- a) is of class $W_1 \oplus W_2 \oplus W_3$ and
- b) admits a Spin(7)-structure preserved by ∇^c .

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), t^2$. Then (M^8, g, ρ)

- a) is of class $W_1 \oplus W_2 \oplus W_3$ and
- b) admits a Spin(7)-structure preserved by ∇^c .

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), t^2$. Then (M^8, g, ρ)

- a) is of class $W_1 \oplus W_2 \oplus W_3$ and
- b) admits a Spin(7)-structure preserved by ∇^c .

Moreover, if (M^8, g, ρ) is regular, it is a principal S^1 -bundle and a Riemannian submersion over a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), t^2$. Then (M^8, g, ρ)

- a) is of class $W_1 \oplus W_2 \oplus W_3$ and
- b) admits a Spin(7)-structure preserved by ∇^c .

Moreover, if (M^8, g, ρ) is regular, it is a principal S^1 -bundle and a Riemannian submersion over a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Proposition (Friedrich 2009)

There exists a unique simply connected, complete co-calibrated G_2 -manifold \overline{N} with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) = \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2), t^2$. Then (M^8, g, ρ)

- a) is of class $W_1 \oplus W_2 \oplus W_3$ and
- b) admits a Spin(7)-structure preserved by ∇^c .

Moreover, if (M^8, g, ρ) is regular, it is a principal S^1 -bundle and a Riemannian submersion over a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Proposition (Friedrich 2009)

There exists a unique simply connected, complete co-calibrated G_2 -manifold \overline{N} with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) = \mathfrak{su}_c(2)$.

 $\overline{N} = N(1,1)$ is a nearly parallel G_2 -manifold with $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2)$.

 $\overline{N} = N(1,1)$ is a nearly parallel G_2 -manifold with $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathfrak{so}(3)$. Then (M^8, g, ρ) is either

a) of class W_3 and $\text{Scal}^g > 0$ or

 $\overline{N} = N(1,1)$ is a nearly parallel G_2 -manifold with $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathfrak{so}(3)$. Then (M^8, g, ρ) is either

- a) of class W_3 and $\text{Scal}^g > 0$ or
- b) of class \mathcal{W}_5 and $\operatorname{Scal}^g < 0$.

 $\overline{N} = N(1,1)$ is a nearly parallel G_2 -manifold with $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathfrak{so}(3)$. Then (M^8, g, ρ) is either

- a) of class W_3 and $\text{Scal}^g > 0$ or
- b) of class \mathcal{W}_5 and $\operatorname{Scal}^g < 0$.

 $\overline{N} = N(1,1)$ is a nearly parallel G_2 -manifold with $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathfrak{so}(3)$. Then (M^8, g, ρ) is either

- a) of class W_3 and $\text{Scal}^g > 0$ or
- b) of class W_5 and $\operatorname{Scal}^g < 0$.

In each of these two cases, M^8 is locally isometric to a unique homogeneous space with isotropy group SO(3).

 $\overline{N} = N(1,1)$ is a nearly parallel G_2 -manifold with $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2)$.

Theorem (P' 2012)

Let (M^8, g, ρ) be a PSU(3)-structure of class $\mathcal{W}_1 \oplus \ldots \oplus \mathcal{W}_5$ with $\nabla^c T^c = 0$ and $\mathfrak{hol}(\nabla^c) = \mathfrak{so}(3)$. Then (M^8, g, ρ) is either

- a) of class W_3 and $\text{Scal}^g > 0$ or
- b) of class W_5 and $\operatorname{Scal}^g < 0$.

In each of these two cases, M^8 is locally isometric to a unique homogeneous space with isotropy group SO(3).

Remark

In all considered cases, T^c is either totally skew-symmetric or traceless cyclic.

i) The following are globally well defined and ∇^{c} -parallel

 e_8 , $\omega := e_8 \perp \rho$, $\varphi_1 := e_{246} - e_{235} - e_{145} - e_{136} + e_{127} + e_{347}$, $\varphi_2 := e_{567}$

and $\Phi = (\varphi_1 + \varphi_2) \wedge e_8 + *((\varphi_1 + \varphi_2) \wedge e_8).$

i) The following are globally well defined and ∇^c -parallel

 e_8 , $\omega := e_8 \perp \rho$, $\varphi_1 := e_{246} - e_{235} - e_{145} - e_{136} + e_{127} + e_{347}$, $\varphi_2 := e_{567}$

and $\Phi = (\varphi_1 + \varphi_2) \wedge e_8 + *((\varphi_1 + \varphi_2) \wedge e_8).$

ii) Since T_{Γ} , F_{Γ} and $\mathbb{R}^{c} : \Lambda^{2} \to \mathbb{R} \oplus \mathfrak{su}_{c}(2)$ are $\mathbb{R} \oplus \mathfrak{su}_{c}(2)$ -invariant the Bianchi identity for ∇^{c} yields

$$T_{\Gamma} = a_1(\varphi_1 + 3\varphi_2) + a_2(\omega \wedge e_8 + 3\varphi_2), \quad F_{\Gamma} = 0, \quad (a_1, a_2) \in A \subsetneq \mathbb{R}^2.$$

i) The following are globally well defined and ∇^c -parallel

 e_8 , $\omega := e_8 \perp \rho$, $\varphi_1 := e_{246} - e_{235} - e_{145} - e_{136} + e_{127} + e_{347}$, $\varphi_2 := e_{567}$

and $\Phi = (\varphi_1 + \varphi_2) \wedge e_8 + *((\varphi_1 + \varphi_2) \wedge e_8).$

ii) Since T_{Γ} , F_{Γ} and $\mathbb{R}^{c} : \Lambda^{2} \to \mathbb{R} \oplus \mathfrak{su}_{c}(2)$ are $\mathbb{R} \oplus \mathfrak{su}_{c}(2)$ -invariant the Bianchi identity for ∇^{c} yields

$$T_{\Gamma} = a_1(\varphi_1 + 3\varphi_2) + a_2(\omega \wedge e_8 + 3\varphi_2), \quad F_{\Gamma} = 0, \quad (a_1, a_2) \in A \subsetneq \mathbb{R}^2.$$

iii) We compute the following differentials:

$$d\omega = 0$$
, $d(e_8 \bot * \varphi_i) = 0$, $i = 1, 2$.

i) The following are globally well defined and ∇^c -parallel

 e_8 , $\omega := e_8 \perp \rho$, $\varphi_1 := e_{246} - e_{235} - e_{145} - e_{136} + e_{127} + e_{347}$, $\varphi_2 := e_{567}$

and $\Phi = (\varphi_1 + \varphi_2) \wedge e_8 + *((\varphi_1 + \varphi_2) \wedge e_8).$

ii) Since T_{Γ} , F_{Γ} and $\mathbb{R}^{c} : \Lambda^{2} \to \mathbb{R} \oplus \mathfrak{su}_{c}(2)$ are $\mathbb{R} \oplus \mathfrak{su}_{c}(2)$ -invariant the Bianchi identity for ∇^{c} yields

$$T_{\Gamma} = a_1(\varphi_1 + 3\varphi_2) + a_2(\omega \wedge e_8 + 3\varphi_2), \quad F_{\Gamma} = 0, \quad (a_1, a_2) \in A \subsetneq \mathbb{R}^2.$$

iii) We compute the following differentials:

$$d\omega = 0$$
, $d(e_8 \sqcup *\varphi_i) = 0$, $i = 1, 2$.

iv) Several Lie derivatives along e₈ vanish,

$$\mathscr{L}_{e_8}\omega, \quad \mathscr{L}_{e_8}\varphi_i, \quad \mathscr{L}_{e_8}(e_8 \,\lrcorner\, *\, \varphi_i) = 0, \quad i = 1, 2.$$

v) Assume that e_8 induces a free S^1 -action.

- v) Assume that e_8 induces a free S^1 -action.
- vi) The orbit space $\pi: M^8 \to \overline{N}$ is a Riemannian 7-manifold \overline{N} .

- v) Assume that e_8 induces a free S^1 -action.
- vi) The orbit space $\pi: M^8 \to \overline{N}$ is a Riemannian 7-manifold \overline{N} .
- vii) On \overline{N} , there exist differential forms $\overline{\omega}$, $\overline{\varphi_i}$ such that

$$\overline{*}\overline{\varphi_i} = \overline{e_8 \, \lrcorner * \varphi_i}, \quad i = 1, 2.$$

- v) Assume that e_8 induces a free S^1 -action.
- vi) The orbit space $\pi: M^8 \to \overline{N}$ is a Riemannian 7-manifold \overline{N} .
- vii) On \overline{N} , there exist differential forms $\overline{\omega}$, $\overline{\varphi_i}$ such that

$$\overline{*} \overline{\varphi_i} = \overline{e_8 \, \lrcorner \, * \varphi_i}, \quad i = 1, 2.$$

viii) The 3-form $\overline{\varphi} := \overline{\varphi_1} + \overline{\varphi_2}$ satisfies

 $d \overline{*} \overline{\varphi} = 0.$

- v) Assume that e_8 induces a free S^1 -action.
- vi) The orbit space $\pi: M^8 \to \overline{N}$ is a Riemannian 7-manifold \overline{N} .
- vii) On \overline{N} , there exist differential forms $\overline{\omega}$, $\overline{\varphi_i}$ such that

$$\overline{*} \overline{\varphi_i} = \overline{e_8 \, \lrcorner \, * \varphi_i}, \quad i = 1, 2.$$

viii) The 3-form $\overline{\varphi} := \overline{\varphi_1} + \overline{\varphi_2}$ satisfies

$$d \overline{*} \overline{\varphi} = 0.$$

ix) Consequently, \overline{N} is a co-calibrated G_2 -manifold with fund. form $\overline{\varphi}$.

i) Start from a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2).$

- i) Start from a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2).$
- ii) The forms $\overline{\varphi_1}$, $\overline{\varphi_2}$ and $\overline{\omega}$ exist on \overline{N} and $d\overline{\omega} = 0$.

- i) Start from a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2).$
- ii) The forms $\overline{\varphi_1}$, $\overline{\varphi_2}$ and $\overline{\omega}$ exist on \overline{N} and $d\overline{\omega} = 0$.
- iii) Suppose the equation $de_8 = a_2 \omega$ defines a principal S^1 -bundle $\pi: M^8 \to \overline{N}$.

- i) Start from a co-calibrated G_2 -manifold $(\overline{N}, \overline{g}, \overline{\varphi}, \overline{\nabla^c}, \overline{T^c})$ with $\overline{\nabla^c} \overline{T^c} = 0$ and $\mathfrak{hol}(\overline{\nabla^c}) = \mathbb{R} \oplus \mathfrak{su}_c(2), \mathfrak{su}_c(2).$
- ii) The forms $\overline{\varphi_1}$, $\overline{\varphi_2}$ and $\overline{\omega}$ exist on \overline{N} and $d\overline{\omega} = 0$.
- iii) Suppose the equation $de_8 = a_2 \omega$ defines a principal S^1 -bundle $\pi: M^8 \to \overline{N}$.
- iv) Then, M^8 admits a PSU(3)-structure

$$\rho = \pi^*(\overline{\varphi_1}) - 2\pi^*(\overline{\varphi_2}) + \pi^*(\overline{\omega}) \wedge e_8$$

with parallel torsion

$$T^{c} = a_{1}(\pi^{*}(\overline{\varphi_{1}}) + 3\pi^{*}(\overline{\varphi_{2}})) + a_{2}(\pi^{*}(\overline{\omega}) \wedge e_{8} + 3\pi^{*}(\overline{\varphi_{2}}))$$

and $\mathfrak{hol}(\nabla^c) \subseteq \mathbb{R} \oplus \mathfrak{su}_c(2)$.