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Introduction

Fact (Reichel 1907, Schouten 1931, Gurevich 1935)

If GL(n)ρ ⊆Λ3(Rn) is open, then n= 6,7,8 and

the stabilizer of ρ in GL(n)
is a real form of one of the complex groups

SL(3)×SL(3), G2, PSL(3),

respectively.

Consequence
If an oriented (Mn,g) admits a global 3-form in an open orbit, then
n= 6,7,8 and (Mn,g) admits a G-structure with G one of the compact
groups

SU(3), G2, PSU(3),

respectively.
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Introduction

Fact (Witt 2005/2008)

The GL(8)-orbit of f ∈Λ3(R8), defining the structure constants,

[λi ,λj ]= 2i
∑
k
fijkλk ,

of SU(3) w.r.t. the Gell-Mann matrices λi (used in QCD), is open and

Iso(f )= PSU(3).

Consequence
(Almost) every physicist knows a 3-form in an open GL(8)-orbit.
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Connections with torsion

Torsion tensor

Let (Mn,g) be Riemannian manifold.

Definition
The torsion of a metric connection ∇ (i.e. ∇g = 0) is a (2,1)-tensor field T
defined by

T (X ,Y )=∇XY −∇YX − [X ,Y ]

and T (X ,Y ,Z )= g(T (X ,Y ),Z ).

Proposition (Cartan 1925)
Any metric connection ∇ is uniquely determined by its torsion tensor T ,

g(∇XY ,Z )= g(∇g
XY ,Z )+A(X ,Y ,Z ),

A(X ,Y ,Z ) := 1
2
(T (X ,Y ,Z )−T (Y ,Z ,X )+T (Z ,X ,Y )) .
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Connections with torsion

Cartan’s classes

Proposition (Cartan 1925)

If n≥ 3, the space T :=Λ2 (TMn)⊗TMn of possible torsion tensors splits
into 3 irreducible O(n)-modules, T =T1⊕T2⊕T3,

T1 =
{
T ∈T

∣∣∃V ∈TMn :T (X ,Y )= g(V ,X )Y −g(V ,Y )X
}

,

T2 =
{
T ∈T

∣∣T (X ,Y ,Z )+T (X ,Z ,Y )= 0
}

,

T3 =
{
T ∈T

∣∣SX ,Y ,ZT (X ,Y ,Z )= 0,
∑

iT (X ,ei ,ei )= 0
}

.

Definition
Let ∇ be a metric connection with torsion tensor T . We say that T is

i) vectorial if T ∈T1.
ii) totally skew-symmetric if T ∈T2.
iii) traceless cyclic if T ∈T3.
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Connections with torsion

Compatible connections

Let G ⊆ SO(n) be a closed subgroup and suppose (Mn,g) admits a
G -structure.

Definition
A metric connection ∇ is said to be compatible with the G -structure if

prg⊥(Ω)= 0, Ωij = g(∇ei ,ej).

Γ := prg⊥(Ω
g ) ∈TM8⊗g⊥ is called the intrinsic torsion of the G -structure.

Lemma
A metric connection is compatible with the G-structure iff the
corresponding torsion tensor satisfies

Γ(X )=−prg⊥(A(X , ·, ·)).
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Spin(7)-structures

Alternative definition and Fernández classes

Definition
A Spin(7)-structure is a Riemannian manifold (M8,g) equipped with a
4-form Φ s.t. there exists an oriented ONF (e1, . . . ,e8) realizing

Φ=e1278+e3478+e5678+e2468−e2358−e1458−e1368

+e3456+e1256+e1234+e1357−e1467−e2367−e2457.

The space of intrinsic torsion tensors splits as TM8⊗spin(7)⊥ =W8⊕W48.

Definition
A Spin(7)-structure is called

i) parallel if Γ8 = 0 and Γ48 = 0.
ii) locally conformal parallel if Γ48 = 0.
iii) balanced if Γ8 = 0.
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Spin(7)-structures

Compatible connections

Theorem (Ivanov 2004)

Any Spin(7)-structure (M8,g ,Φ) admits a unique compatible connection
∇c with totally skew-symmetric torsion

T c =−δΦ− 7
6
∗ (θ∧Φ), θ = 1

7
∗ (δΦ∧Φ).

The space of 3-forms splits as Λ3 =Λ3
8⊕Λ3

48.

Proposition (Cabrera 1995, P’ 2009)

Let (M8,g ,Φ) be a Spin(7)-structure. Then

(M8,g ,Φ) is if and only if or equivalently if
parallel T c

8 = 0, T c
48 = 0 dΦ= 0, θ = 0

locally conformal parallel T c
48 = 0 dΦ= θ∧Φ

balanced T c
8 = 0 θ = 0
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Spin(7)-structures

Parallel torsion
We now restrict to the case of parallel torsion, i.e. ∇cT c = 0.

Proposition (Ivanov 2004, P’ 2009)

Let (M8,g ,Φ) be a Spin(7)-structure with ∇cT c = 0. Then

Scalg = 27
2

‖T c
8 ‖2− 1

2
‖T c

48‖2.

Theorem (Agricola-Friedrich 2004, P’ 2009)

If ∇cT c = 0, any ∇c -parallel spinor field Ψ on (M8,g ,Φ) satisfies

(T c)2 ·Ψ= 7‖T c
8 ‖2 ·Ψ, −4Ricc (X ) ·Ψ=

(
(T c)2−7‖T c

8 ‖2
)
·X ·Ψ. (∗)

There exists at least one ∇c -parallel spinor field Ψ0 on (M8,g ,Φ),

Φ ·Ψ0 =−14Ψ0.
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Spin(7)-structures

Algebraic classification

For any ∇c -parallel T c 6= 0, we have hol(∇c)⊆ iso(T c)Ú spin(7).

Lemma
Let gÚ spin(7) be non-Abelian. If there exist a g-invariant T ∈Λ3, T 6= 0,
then g is conjugate to one of

g2 ⊂ spin(7), su(3)⊂ g2, su(2)⊕suc(2)⊂ g2, u(2)⊂ su(3),

R⊕suc(2)⊂ su(2)⊕suc(2), R⊕su(2)⊂ su(4)⊂ spin(7),

so(3)⊂ su(3), su(2)⊂ u(2), suc(2)⊂R⊕suc(2), soir (3)⊂ g2.

Classification recipe:

(1) Fix h= hol(∇c)⊆ iso(T c)= g with gÚ spin(7) non-Abelian.
(2) Determine the spaces of h-invariant spinors and g-invariant 3-forms.
(3) Solve equations (∗) on these spaces.

13
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Spin(7)-structures

Results

Proposition
Only the following isotropy algebrae iso(T c) allow to carry out (1) to (3)
consistently:

g2, su(3), su(2)⊕suc(2), u(2), R⊕su(2) R⊕suc(2), so(3)

Here
K (g) := ker

{
b1 :Λ

2⊗g→Λ3⊗Λ1} .

Proposition
There exist at least two non-zero ∇c -parallel spinor fields on non-parallel
Spin(7)-manifolds with ∇cT c = 0 and iso(T c) non-Abelian.
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Spin(7)-structures

Theorem (P’ 2009)

Let (M8,g ,Φ) be a complete, simply connected Spin(7)-manifold with
∇cT c = 0 and iso(T c) equal to
a) g2 or su(2)⊕suc(2).

b) su(3) or so(3).
c) R⊕su(2).
d) u(2).

Then M8 is isometric to the Riemannian product of

a) R with a co-calibrated G2-manifold.
b) R2 with an almost Hermitian 6-manifold of Gray-Hervella class W1⊕W3

or the Riemannian product of R with a Sasakian 7-manifold.
c) S2 with either the projective space CP3 or the flag manifold F (1,2),

both equipped with their standard nearly Kähler structure.
d) a Sasakian 3-manifold with a 5-dimensional Sasakian manifold or the

Riemannian product of R with an integrable G2-manifold.
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Spin(7)-structures

Theorem (continuation)
Moreover, any Spin(7)-manifold with ∇cT c = 0 and iso(T c)=R⊕suc(2) is
locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)
Let (Mn,g ,T) be a complete, simply connected Riemannian manifold with
3-form T. Suppose that the tangent bundle

TMn =TM+⊕TM−

splits under the action of the holonomy group of
∇XY =∇g

XY + 1
2 ·T (X ,Y , ·) so that

T (X+,X−, ·)= 0, T (X+,Y+, ·) ∈TM+, T (X−,Y−, ·) ∈TM−.

Let T =T++T− denote the corresponding decomposition of T .Then
(M ,g ,T ) is isometric to a Riemannian product (M+,g+,T+)× (M−,g−,T−).
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PSU(3)-structures
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1 Introduction

2 Connections with torsion

3 Spin(7)-structures
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PSU(3)-structures

Definitions

Definition
A PSU(3)-structure is a Riemannian manifold (M8,g) equipped with a
3-form ρ s.t. there exists an oriented ONF (e1, . . . ,e8) realizing

ρ = e246−e235−e145−e136+ (e12+e34−2e56)∧e7+
p
3(e12−e34)∧e8

The space of intrinsic torsion tensors splits into 6 irreducible
PSU(3)-modules:

TM8⊗psu(3)⊥ =W1⊕W2⊕W3⊕W4⊕W5⊕W6.

Definition
A PSU(3)-structure (M8,g ,ρ) is said to be of class Wi1 ⊕ . . .⊕Wik if

Γ ∈Wi1 ⊕ . . .⊕Wik .
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PSU(3)-structures

Classes vs. differential equations

Proposition
Let (M8,g ,ρ) be a PSU(3)-structure. Then

(M8,g ,ρ) is of class if and only if ρ satisfies
W2⊕W3⊕W4⊕W5⊕W6 ρ ∗dρ = 0
W1⊕W3⊕W4⊕W5⊕W6 6δρ = (δρ ρ) ρ

W1⊕W2⊕W3⊕W5⊕W6 δρ ρ = 0 or ρ dρ = 0
W1⊕W3⊕W5⊕W6 δρ = 0

W1⊕W2⊕W6 10 ∗dρ = ρ∧ (ρ ∗dρ)
W2⊕W4⊕W6 10dρ = ρ∧ (ρ dρ)

W2⊕W6 dρ = 0
W6 dρ = 0 and δρ = 0

We now restrict to non-integrable (i.e. Γ 6= 0) PSU(3)-structures of class
W1⊕ . . .⊕W5.
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PSU(3)-structures

Compatible connections
Via PSU(3)-equivariant isomorphisms we identify

Γ1+Γ2+Γ3 with TΓ ∈Λ3, Γ4+Γ5 with FΓ ∈Λ4.

Proposition
Any PSU(3)-structures of class W1⊕ . . .⊕W5 admits a (unique) compatible
connection ∇c with torsion tensor

T c(X ,Y ,Z )=TΓ(X ,Y ,Z )− ((Z ρ) FΓ)(X ,Y )

Proposition
The torsion tensor T c is

i) totally skew-symmetric iff (M8,g ,ρ) is of class W1⊕W2⊕W3.
ii) traceless cyclic iff (M8,g ,ρ) is of class W5.
iii) not (strictly) vectorial.
iv) ∇c -parallel iff ∇cTΓ = 0 and ∇cFΓ = 0.
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PSU(3)-structures

Link to Spin(7)-structures and Bianchi identity
Proposition

Any Spin(7)-manifold (M8,g ,Φ,∇c ,T c) with ∇c T c = 0 and
iso(T c)⊆R⊕suc(2) admits a PSU(3)-structure (M8,g ,ρ,∇c ,T c) of class
W1⊕W2⊕W3 with

T c = prρ⊥(T c).

In general, the holonomy algebra hol(∇c) is one of

psu(3), R⊕suc(2), suc(2), t2, so(3), t1, 0.

Proposition
Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0.
Then
SX ,Y ,Z Rc (X ,Y ,Z ,V )=∑

i
((ei TΓ)− ((ei ρ) FΓ))∧

((ei V TΓ)− (ei ((V ρ) FΓ)))(X ,Y ,Z ) .
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PSU(3)-structures

Main results

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)=R⊕suc(2),suc(2),t2.

Then (M8,g ,ρ)

a) is of class W1⊕W2⊕W3 and
b) admits a Spin(7)-structure preserved by ∇c .

Moreover, if (M8,g ,ρ) is regular, it is a principal S1-bundle and a
Riemannian submersion over a co-calibrated G2-manifold (N ,g ,ϕ,∇c ,T c)
with ∇c T c = 0 and hol(∇c)⊆R⊕suc(2).

Proposition (Friedrich 2009)
There exists a unique simply connected, complete co-calibrated
G2-manifold N with ∇c T c = 0 and hol(∇c)= suc(2).
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PSU(3)-structures

Example (FKMS 1997)

N =N(1,1) is a nearly parallel G2-manifold with hol(∇c)=R⊕suc(2).

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)= so(3). Then (M8,g ,ρ) is either

a) of class W3 and Scalg > 0 or
b) of class W5 and Scalg < 0.

In each of these two cases, M8 is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark
In all considered cases, T c is either totally skew-symmetric or traceless
cyclic.

23



PSU(3)-structures

Example (FKMS 1997)

N =N(1,1) is a nearly parallel G2-manifold with hol(∇c)=R⊕suc(2).

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)= so(3). Then (M8,g ,ρ) is either
a) of class W3 and Scalg > 0 or

b) of class W5 and Scalg < 0.
In each of these two cases, M8 is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark
In all considered cases, T c is either totally skew-symmetric or traceless
cyclic.

23



PSU(3)-structures

Example (FKMS 1997)

N =N(1,1) is a nearly parallel G2-manifold with hol(∇c)=R⊕suc(2).

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)= so(3). Then (M8,g ,ρ) is either
a) of class W3 and Scalg > 0 or
b) of class W5 and Scalg < 0.

In each of these two cases, M8 is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark
In all considered cases, T c is either totally skew-symmetric or traceless
cyclic.

23



PSU(3)-structures

Example (FKMS 1997)

N =N(1,1) is a nearly parallel G2-manifold with hol(∇c)=R⊕suc(2).

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)= so(3). Then (M8,g ,ρ) is either
a) of class W3 and Scalg > 0 or
b) of class W5 and Scalg < 0.

In each of these two cases, M8 is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark
In all considered cases, T c is either totally skew-symmetric or traceless
cyclic.

23



PSU(3)-structures

Example (FKMS 1997)

N =N(1,1) is a nearly parallel G2-manifold with hol(∇c)=R⊕suc(2).

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)= so(3). Then (M8,g ,ρ) is either
a) of class W3 and Scalg > 0 or
b) of class W5 and Scalg < 0.

In each of these two cases, M8 is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark
In all considered cases, T c is either totally skew-symmetric or traceless
cyclic.

23



PSU(3)-structures

Example (FKMS 1997)

N =N(1,1) is a nearly parallel G2-manifold with hol(∇c)=R⊕suc(2).

Theorem (P’ 2012)

Let (M8,g ,ρ) be a PSU(3)-structure of class W1⊕ . . .⊕W5 with ∇cT c = 0
and hol(∇c)= so(3). Then (M8,g ,ρ) is either
a) of class W3 and Scalg > 0 or
b) of class W5 and Scalg < 0.

In each of these two cases, M8 is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark
In all considered cases, T c is either totally skew-symmetric or traceless
cyclic.

23



PSU(3)-structures

Proof (for the case hol(∇c)=R⊕suc(2))
i) The following are globally well defined and ∇c -parallel

e8, ω := e8 ρ, ϕ1 := e246−e235−e145−e136+e127+e347, ϕ2 := e567

and Φ= (ϕ1+ϕ2)∧e8+∗((ϕ1+ϕ2)∧e8).

ii) Since TΓ,FΓ and Rc :Λ2 →R⊕suc(2) are R⊕suc(2)-invariant the
Bianchi identity for ∇c yields

TΓ = a1(ϕ1+3ϕ2)+a2(ω∧e8+3ϕ2), FΓ = 0, (a1,a2) ∈A(R2.

iii) We compute the following differentials:

dω= 0, d(e8 ∗ϕi )= 0, i = 1,2.

iv) Several Lie derivatives along e8 vanish,

Le8ω, Le8ϕi , Le8(e8 ∗ϕi )= 0, i = 1,2.
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PSU(3)-structures

Proof (continuation)

v) Assume that e8 induces a free S1-action.

vi) The orbit space π :M8 →N is a Riemannian 7-manifold N.
vii) On N, there exist differential forms ω, ϕi such that

∗ϕi = e8 ∗ϕi , i = 1,2.

viii) The 3-form ϕ :=ϕ1+ϕ2 satisfies

d∗ϕ= 0.

ix) Consequently, N is a co-calibrated G2-manifold with fund. form ϕ.
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PSU(3)-structures

Construction

i) Start from a co-calibrated G2-manifold (N ,g ,ϕ,∇c ,T c) with ∇c T c = 0
and hol(∇c)=R⊕suc(2),suc(2).

ii) The forms ϕ1, ϕ2 and ω exist on N and dω= 0.
iii) Suppose the equation de8 = a2ω defines a principal S1-bundle

π :M8 →N.
iv) Then, M8 admits a PSU(3)-structure

ρ =π∗(ϕ1)−2π∗(ϕ2)+π∗(ω)∧e8

with parallel torsion

T c = a1(π
∗(ϕ1)+3π∗(ϕ2))+a2(π

∗(ω)∧e8+3π∗(ϕ2))

and hol(∇c)⊆R⊕suc(2).
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