G-structures on 8-manifolds

Christof Puhle
Humboldt-Universität zu Berlin

Fact (Reichel 1907, Schouten 1931, Gurevich 1935)
If $\mathrm{GL}(n) \rho \subseteq \Lambda^{3}\left(\mathbb{R}^{n}\right)$ is open, then $n=6,7,8$ and

Fact (Reichel 1907, Schouten 1931, Gurevich 1935)
If $\mathrm{GL}(n) \rho \subseteq \Lambda^{3}\left(\mathbb{R}^{n}\right)$ is open, then $n=6,7,8$ and the stabilizer of ρ in $\mathrm{GL}(n)$ is a real form of one of the complex groups

$$
\operatorname{SL}(3) \times \operatorname{SL}(3), \quad G_{2}, \quad \operatorname{PSL}(3),
$$

respectively.

Fact (Reichel 1907, Schouten 1931, Gurevich 1935)
If $\mathrm{GL}(n) \rho \subseteq \Lambda^{3}\left(\mathbb{R}^{n}\right)$ is open, then $n=6,7,8$ and the stabilizer of ρ in $\mathrm{GL}(n)$ is a real form of one of the complex groups

$$
\operatorname{SL}(3) \times \operatorname{SL}(3), \quad G_{2}, \quad \operatorname{PSL}(3),
$$

respectively.

Consequence

If an oriented $\left(M^{n}, g\right)$ admits a global 3-form in an open orbit, then $n=6,7,8$ and

Fact (Reichel 1907, Schouten 1931, Gurevich 1935)
If $\mathrm{GL}(n) \rho \subseteq \Lambda^{3}\left(\mathbb{R}^{n}\right)$ is open, then $n=6,7,8$ and the stabilizer of ρ in $\operatorname{GL}(n)$ is a real form of one of the complex groups

$$
\operatorname{SL}(3) \times \operatorname{SL}(3), \quad G_{2}, \quad \operatorname{PSL}(3),
$$

respectively.

Consequence

If an oriented $\left(M^{n}, g\right)$ admits a global 3-form in an open orbit, then $n=6,7,8$ and $\left(M^{n}, g\right)$ admits a G-structure with G one of the compact groups

$$
\operatorname{SU}(3), \quad G_{2}, \quad \operatorname{PSU}(3),
$$

respectively.

Fact (Witt 2005/2008)
The GL(8)-orbit of $f \in \Lambda^{3}\left(\mathbb{R}^{8}\right)$, defining the structure constants,

$$
\left[\lambda_{i}, \lambda_{j}\right]=2 i \sum_{k} f_{i j k} \lambda_{k}
$$

of $\operatorname{SU}(3)$ w.r.t. the Gell-Mann matrices λ_{i} (used in QCD), is open and

Fact (Witt 2005/2008)
The GL(8)-orbit of $f \in \Lambda^{3}\left(\mathbb{R}^{8}\right)$, defining the structure constants,

$$
\left[\lambda_{i}, \lambda_{j}\right]=2 i \sum_{k} f_{i j k} \lambda_{k}
$$

of $\operatorname{SU}(3)$ w.r.t. the Gell-Mann matrices λ_{i} (used in QCD), is open and

$$
\operatorname{Iso}(f)=\operatorname{PSU}(3)
$$

Fact (Witt 2005/2008)
The GL(8)-orbit of $f \in \Lambda^{3}\left(\mathbb{R}^{8}\right)$, defining the structure constants,

$$
\left[\lambda_{i}, \lambda_{j}\right]=2 i \sum_{k} f_{i j k} \lambda_{k}
$$

of $\operatorname{SU}(3)$ w.r.t. the Gell-Mann matrices λ_{i} (used in QCD), is open and

$$
\operatorname{Iso}(f)=\operatorname{PSU}(3)
$$

Consequence
(Almost) every physicist knows a 3-form in an open GL(8)-orbit.

Outline

(1) Introduction

Outline

(1) Introduction

(2) Connections with torsion

Outline

(1) Introduction

(2) Connections with torsion
(3) Spin(7)-structures

Outline

(1) Introduction
(2) Connections with torsion
(3) $\operatorname{Spin}(7)$-structures
(4) PSU(3)-structures

Outline

(1) Introduction

(2) Connections with torsion
(3) $\operatorname{Spin}(7)$-structures
(4) PSU(3)-structures

Torsion tensor

Let $\left(M^{n}, g\right)$ be Riemannian manifold.

Torsion tensor

Let $\left(M^{n}, g\right)$ be Riemannian manifold.

Definition

The torsion of a metric connection ∇ (i.e. $\nabla g=0$) is a $(2,1)$-tensor field T defined by

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

Torsion tensor

Let $\left(M^{n}, g\right)$ be Riemannian manifold.

Definition

The torsion of a metric connection ∇ (i.e. $\nabla g=0$) is a $(2,1)$-tensor field T defined by

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

and $T(X, Y, Z)=g(T(X, Y), Z)$.

Torsion tensor

Let $\left(M^{n}, g\right)$ be Riemannian manifold.

Definition

The torsion of a metric connection ∇ (i.e. $\nabla g=0$) is a $(2,1)$-tensor field T defined by

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

and $T(X, Y, Z)=g(T(X, Y), Z)$.

Proposition (Cartan 1925)

Any metric connection ∇ is uniquely determined by its torsion tensor T,

$$
\begin{aligned}
& g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+A(X, Y, Z) \\
& A(X, Y, Z):=\frac{1}{2}(T(X, Y, Z)-T(Y, Z, X)+T(Z, X, Y))
\end{aligned}
$$

Cartan's classes

Proposition (Cartan 1925)

If $n \geq 3$, the space $\mathscr{T}:=\Lambda^{2}\left(T M^{n}\right) \otimes T M^{n}$ of possible torsion tensors splits into 3 irreducible $\mathrm{O}(n)$-modules, $\mathscr{T}=\mathscr{T}_{1} \oplus \mathscr{T}_{2} \oplus \mathscr{T}_{3}$,

Cartan's classes

Proposition (Cartan 1925)

If $n \geq 3$, the space $\mathscr{T}:=\Lambda^{2}\left(T M^{n}\right) \otimes T M^{n}$ of possible torsion tensors splits into 3 irreducible $\mathrm{O}(n)$-modules, $\mathscr{T}=\mathscr{T}_{1} \oplus \mathscr{T}_{2} \oplus \mathscr{T}_{3}$,

$$
\begin{aligned}
& \mathscr{T}_{1}=\left\{T \in \mathscr{T} \mid \exists V \in T M^{n}: T(X, Y)=g(V, X) Y-g(V, Y) X\right\}, \\
& \mathscr{T}_{2}=\{T \in \mathscr{T} \mid T(X, Y, Z)+T(X, Z, Y)=0\}, \\
& \mathscr{T}_{3}=\left\{T \in \mathscr{T} \mid \mathfrak{S}_{X, Y, Z} T(X, Y, Z)=0, \sum_{i} T\left(X, e_{i}, e_{i}\right)=0\right\} .
\end{aligned}
$$

Cartan's classes

Proposition (Cartan 1925)

If $n \geq 3$, the space $\mathscr{T}:=\Lambda^{2}\left(T M^{n}\right) \otimes T M^{n}$ of possible torsion tensors splits into 3 irreducible $\mathrm{O}(n)$-modules, $\mathscr{T}=\mathscr{T}_{1} \oplus \mathscr{T}_{2} \oplus \mathscr{T}_{3}$,

$$
\begin{aligned}
& \mathscr{T}_{1}=\left\{T \in \mathscr{T} \mid \exists V \in T M^{n}: T(X, Y)=g(V, X) Y-g(V, Y) X\right\}, \\
& \mathscr{T}_{2}=\{T \in \mathscr{T} \mid T(X, Y, Z)+T(X, Z, Y)=0\}, \\
& \mathscr{T}_{3}=\left\{T \in \mathscr{T} \mid \mathfrak{S}_{X, Y, Z} T(X, Y, Z)=0, \sum_{i} T\left(X, e_{i}, e_{i}\right)=0\right\} .
\end{aligned}
$$

Definition

Let ∇ be a metric connection with torsion tensor T. We say that T is
i) vectorial if $T \in \mathscr{T}_{1}$.

Cartan's classes

Proposition (Cartan 1925)

If $n \geq 3$, the space $\mathscr{T}:=\Lambda^{2}\left(T M^{n}\right) \otimes T M^{n}$ of possible torsion tensors splits into 3 irreducible $\mathrm{O}(n)$-modules, $\mathscr{T}=\mathscr{T}_{1} \oplus \mathscr{T}_{2} \oplus \mathscr{T}_{3}$,

$$
\begin{aligned}
& \mathscr{T}_{1}=\left\{T \in \mathscr{T} \mid \exists V \in T M^{n}: T(X, Y)=g(V, X) Y-g(V, Y) X\right\}, \\
& \mathscr{T}_{2}=\{T \in \mathscr{T} \mid T(X, Y, Z)+T(X, Z, Y)=0\}, \\
& \mathscr{T}_{3}=\left\{T \in \mathscr{T} \mid \mathfrak{S}_{X, Y, Z} T(X, Y, Z)=0, \sum_{i} T\left(X, e_{i}, e_{i}\right)=0\right\} .
\end{aligned}
$$

Definition

Let ∇ be a metric connection with torsion tensor T. We say that T is
i) vectorial if $T \in \mathscr{T}_{1}$.
ii) totally skew-symmetric if $T \in \mathscr{T}_{2}$.

Cartan's classes

Proposition (Cartan 1925)

If $n \geq 3$, the space $\mathscr{T}:=\Lambda^{2}\left(T M^{n}\right) \otimes T M^{n}$ of possible torsion tensors splits into 3 irreducible $\mathrm{O}(n)$-modules, $\mathscr{T}=\mathscr{T}_{1} \oplus \mathscr{T}_{2} \oplus \mathscr{T}_{3}$,

$$
\begin{aligned}
& \mathscr{T}_{1}=\left\{T \in \mathscr{T} \mid \exists V \in T M^{n}: T(X, Y)=g(V, X) Y-g(V, Y) X\right\}, \\
& \mathscr{T}_{2}=\{T \in \mathscr{T} \mid T(X, Y, Z)+T(X, Z, Y)=0\}, \\
& \mathscr{T}_{3}=\left\{T \in \mathscr{T} \mid \mathscr{S}_{X, Y, Z} T(X, Y, Z)=0, \Sigma_{i} T\left(X, e_{i}, e_{i}\right)=0\right\} .
\end{aligned}
$$

Definition

Let ∇ be a metric connection with torsion tensor T. We say that T is
i) vectorial if $T \in \mathscr{T}_{1}$.
ii) totally skew-symmetric if $T \in \mathscr{T}_{2}$.
iii) traceless cyclic if $T \in \mathscr{T}_{3}$.

Compatible connections

Let $G \subseteq \mathrm{SO}(n)$ be a closed subgroup and suppose $\left(M^{n}, g\right)$ admits a G-structure.

Compatible connections

Let $G \subseteq \mathrm{SO}(n)$ be a closed subgroup and suppose $\left(M^{n}, g\right)$ admits a G-structure.

Definition

A metric connection ∇ is said to be compatible with the G-structure if

$$
\operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega)=0, \quad \Omega_{i j}=g\left(\nabla e_{i}, e_{j}\right)
$$

Compatible connections

Let $G \subseteq \operatorname{SO}(n)$ be a closed subgroup and suppose $\left(M^{n}, g\right)$ admits a G-structure.

Definition

A metric connection ∇ is said to be compatible with the G-structure if

$$
\operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega)=0, \quad \Omega_{i j}=g\left(\nabla e_{i}, e_{j}\right)
$$

$\Gamma:=\operatorname{pr}_{\mathfrak{g}^{\perp}}\left(\Omega^{g}\right) \in T M^{8} \otimes \mathfrak{g}^{\perp}$ is called the intrinsic torsion of the G-structure.

Compatible connections

Let $G \subseteq \mathrm{SO}(n)$ be a closed subgroup and suppose $\left(M^{n}, g\right)$ admits a G-structure.

Definition

A metric connection ∇ is said to be compatible with the G-structure if

$$
\operatorname{pr}_{\mathfrak{g}^{\perp}}(\Omega)=0, \quad \Omega_{i j}=g\left(\nabla e_{i}, e_{j}\right)
$$

$\Gamma:=\operatorname{pr}_{\mathfrak{g}^{\perp}}\left(\Omega^{g}\right) \in T M^{8} \otimes \mathfrak{g}^{\perp}$ is called the intrinsic torsion of the G-structure.

Lemma

A metric connection is compatible with the G-structure iff the corresponding torsion tensor satisfies

$$
\Gamma(X)=-\operatorname{pr}_{\mathfrak{g}^{\perp}}(A(X, \cdot, \cdot)) .
$$

Outline

(1) Introduction

(2) Connections with torsion

(3) Spin(7)-structures

Alternative definition and Fernández classes

Definition

A $\operatorname{Spin}(7)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 4 -form Φ s.t. there exists an oriented ONF $\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\begin{aligned}
\Phi= & e_{1278}+e_{3478}+e_{5678}+e_{2468}-e_{2358}-e_{1458}-e_{1368} \\
& +e_{3456}+e_{1256}+e_{1234}+e_{1357}-e_{1467}-e_{2367}-e_{2457}
\end{aligned}
$$

Alternative definition and Fernández classes

Definition

A $\operatorname{Spin}(7)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 4 -form Φ s.t. there exists an oriented ONF $\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\begin{aligned}
\Phi= & e_{1278}+e_{3478}+e_{5678}+e_{2468}-e_{2358}-e_{1458}-e_{1368} \\
& +e_{3456}+e_{1256}+e_{1234}+e_{1357}-e_{1467}-e_{2367}-e_{2457}
\end{aligned}
$$

The space of intrinsic torsion tensors splits as $T M^{8} \otimes \mathfrak{s p i n}(7)^{\perp}=W_{8} \oplus W_{48}$.

Alternative definition and Fernández classes

Definition

A $\operatorname{Spin}(7)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 4 -form Φ s.t. there exists an oriented ONF $\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\begin{aligned}
\Phi= & e_{1278}+e_{3478}+e_{5678}+e_{2468}-e_{2358}-e_{1458}-e_{1368} \\
& +e_{3456}+e_{1256}+e_{1234}+e_{1357}-e_{1467}-e_{2367}-e_{2457} .
\end{aligned}
$$

The space of intrinsic torsion tensors splits as $T M^{8} \otimes \mathfrak{s p i n}(7)^{\perp}=W_{8} \oplus W_{48}$.

Definition

A $\operatorname{Spin}(7)$-structure is called
i) parallel if $\Gamma_{8}=0$ and $\Gamma_{48}=0$.

Alternative definition and Fernández classes

Definition

A $\operatorname{Spin}(7)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 4 -form Φ s.t. there exists an oriented ONF $\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\begin{aligned}
\Phi= & e_{1278}+e_{3478}+e_{5678}+e_{2468}-e_{2358}-e_{1458}-e_{1368} \\
& +e_{3456}+e_{1256}+e_{1234}+e_{1357}-e_{1467}-e_{2367}-e_{2457} .
\end{aligned}
$$

The space of intrinsic torsion tensors splits as $T M^{8} \otimes \mathfrak{s p i n}(7)^{\perp}=W_{8} \oplus W_{48}$.

Definition

A $\operatorname{Spin}(7)$-structure is called
i) parallel if $\Gamma_{8}=0$ and $\Gamma_{48}=0$.
ii) locally conformal parallel if $\Gamma_{48}=0$.

Alternative definition and Fernández classes

Definition

A $\operatorname{Spin}(7)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 4 -form Φ s.t. there exists an oriented ONF $\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\begin{aligned}
\Phi= & e_{1278}+e_{3478}+e_{5678}+e_{2468}-e_{2358}-e_{1458}-e_{1368} \\
& +e_{3456}+e_{1256}+e_{1234}+e_{1357}-e_{1467}-e_{2367}-e_{2457} .
\end{aligned}
$$

The space of intrinsic torsion tensors splits as $T M^{8} \otimes \mathfrak{s p i n}(7)^{\perp}=W_{8} \oplus W_{48}$.

Definition

A $\operatorname{Spin}(7)$-structure is called
i) parallel if $\Gamma_{8}=0$ and $\Gamma_{48}=0$.
ii) locally conformal parallel if $\Gamma_{48}=0$.
iii) balanced if $\Gamma_{8}=0$.

Compatible connections

Theorem (Ivanov 2004)
Any Spin(7)-structure (M^{8}, g, Φ) admits a unique compatible connection ∇^{c} with totally skew-symmetric torsion

$$
T^{c}=-\delta \Phi-\frac{7}{6} *(\theta \wedge \Phi), \quad \theta=\frac{1}{7} *(\delta \Phi \wedge \Phi) .
$$

Compatible connections

Theorem (Ivanov 2004)

Any Spin(7)-structure (M^{8}, g, Φ) admits a unique compatible connection ∇^{c} with totally skew-symmetric torsion

$$
T^{c}=-\delta \Phi-\frac{7}{6} *(\theta \wedge \Phi), \quad \theta=\frac{1}{7} *(\delta \Phi \wedge \Phi) .
$$

The space of 3-forms splits as $\Lambda^{3}=\Lambda_{8}^{3} \oplus \Lambda_{48}^{3}$.

Compatible connections

Theorem (Ivanov 2004)

Any $\operatorname{Spin}(7)$-structure $\left(M^{8}, g, \Phi\right)$ admits a unique compatible connection ∇^{c} with totally skew-symmetric torsion

$$
T^{c}=-\delta \Phi-\frac{7}{6} *(\theta \wedge \Phi), \quad \theta=\frac{1}{7} *(\delta \Phi \wedge \Phi) .
$$

The space of 3-forms splits as $\Lambda^{3}=\Lambda_{8}^{3} \oplus \Lambda_{48}^{3}$.
Proposition (Cabrera 1995, P' 2009)
Let $\left(M^{8}, g, \Phi\right)$ be a $\operatorname{Spin}(7)$-structure. Then

$\left(M^{8}, g, \Phi\right)$ is	if and only if	or equivalently if
parallel	$T_{8}^{c}=0, T_{48}^{c}=0$	$d \Phi=0, \theta=0$
locally conformal parallel	$T_{48}^{c}=0$	$d \Phi=\theta \wedge \Phi$
balanced	$T_{8}^{c}=0$	$\theta=0$

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^{c} T^{c}=0$.

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^{c} T^{c}=0$.
Proposition (Ivanov 2004, P' 2009)
Let $\left(M^{8}, g, \Phi\right)$ be a $\operatorname{Spin}(7)$-structure with $\nabla^{c} T^{c}=0$. Then

$$
\text { Scal }^{g}=\frac{27}{2}\left\|T_{8}^{c}\right\|^{2}-\frac{1}{2}\left\|T_{48}^{c}\right\|^{2}
$$

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^{c} T^{c}=0$.
Proposition (Ivanov 2004, P' 2009)
Let $\left(M^{8}, g, \Phi\right)$ be a $\operatorname{Spin}(7)$-structure with $\nabla^{c} T^{c}=0$. Then

$$
\text { Scal }^{g}=\frac{27}{2}\left\|T_{8}^{c}\right\|^{2}-\frac{1}{2}\left\|T_{48}^{c}\right\|^{2}
$$

Theorem (Agricola-Friedrich 2004, P' 2009)
If $\nabla^{c} T^{c}=0$, any ∇^{c}-parallel spinor field Ψ on $\left(M^{8}, g, \Phi\right)$ satisfies
$\left(T^{c}\right)^{2} \cdot \Psi=7\left\|T_{8}^{c}\right\|^{2} \cdot \Psi, \quad-4 \operatorname{Ric}^{c}(X) \cdot \Psi=\left(\left(T^{c}\right)^{2}-7\left\|T_{8}^{c}\right\|^{2}\right) \cdot X \cdot \Psi . \quad(*)$

Parallel torsion

We now restrict to the case of parallel torsion, i.e. $\nabla^{c} T^{c}=0$.

Proposition (Ivanov 2004, P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a $\operatorname{Spin}(7)$-structure with $\nabla^{c} T^{c}=0$. Then

$$
\text { Scal }^{g}=\frac{27}{2}\left\|T_{8}^{c}\right\|^{2}-\frac{1}{2}\left\|T_{48}^{c}\right\|^{2}
$$

Theorem (Agricola-Friedrich 2004, P' 2009)
If $\nabla^{c} T^{c}=0$, any ∇^{c}-parallel spinor field Ψ on $\left(M^{8}, g, \Phi\right)$ satisfies

$$
\left(T^{c}\right)^{2} \cdot \Psi=7\left\|T_{8}^{c}\right\|^{2} \cdot \Psi, \quad-4 \operatorname{Ric}^{c}(X) \cdot \Psi=\left(\left(T^{c}\right)^{2}-7\left\|T_{8}^{c}\right\|^{2}\right) \cdot X \cdot \Psi . \quad(*)
$$

There exists at least one ∇^{c}-parallel spinor field Ψ_{0} on $\left(M^{8}, g, \Phi\right)$,

$$
\Phi \cdot \Psi_{0}=-14 \Psi_{0} .
$$

Algebraic classification

For any ∇^{c}-parallel $T^{c} \neq 0$, we have $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right) \nsubseteq \mathfrak{s p i n}(7)$.

Algebraic classification

For any ∇^{c}-parallel $T^{c} \neq 0$, we have $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right) \nsubseteq \mathfrak{s p i n}(7)$.

Lemma

Let $\mathfrak{g} \nsubseteq \mathfrak{s p i n}(7)$ be non-Abelian. If there exist a \mathfrak{g}-invariant $T \in \Lambda^{3}, T \neq 0$, then \mathfrak{g} is conjugate to one of

Algebraic classification

For any ∇^{c}-parallel $T^{c} \neq 0$, we have $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right) \subsetneq \mathfrak{s p i n}(7)$.

Lemma

Let $\mathfrak{g} \nsubseteq \mathfrak{s p i n}(7)$ be non-Abelian. If there exist $\mathfrak{g} \mathfrak{g}$-invariant $T \in \Lambda^{3}, T \neq 0$, then \mathfrak{g} is conjugate to one of

$$
\begin{aligned}
& \mathfrak{g}_{2} \subset \mathfrak{s p i n}(7), \quad \mathfrak{s u}(3) \subset \mathfrak{g}_{2}, \quad \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{g}_{2}, \quad \mathfrak{u}(2) \subset \mathfrak{s u}(3), \\
& \mathbb{R} \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2), \quad \mathbb{R} \oplus \mathfrak{s u}(2) \subset \mathfrak{s u}^{(4) \subset \mathfrak{s p i n}^{(2)},} \\
& \mathfrak{s u}(3) \subset \mathfrak{s u}(3), \quad \mathfrak{s u}(2) \subset \mathfrak{u}(2), \quad \mathfrak{s u}_{c}(2) \subset \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s o}_{i r}(3) \subset \mathfrak{g}_{2} .
\end{aligned}
$$

Algebraic classification

For any ∇^{c}-parallel $T^{c} \neq 0$, we have $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right) \subsetneq \mathfrak{s p i n}(7)$.

Lemma

Let $\mathfrak{g} \nsubseteq \mathfrak{s p i n}(7)$ be non-Abelian. If there exist a \mathfrak{g}-invariant $T \in \Lambda^{3}, T \neq 0$, then \mathfrak{g} is conjugate to one of

$$
\begin{aligned}
& \mathfrak{g}_{2} \subset \mathfrak{s p i n}(7), \quad \mathfrak{s u}(3) \subset \mathfrak{g}_{2}, \quad \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{g}_{2}, \quad \mathfrak{u}(2) \subset \mathfrak{s u}(3), \\
& \mathbb{R} \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2), \quad \mathbb{R} \oplus \mathfrak{s u}(2) \subset \mathfrak{s u}^{(4)} \subset \mathfrak{s p i n}(7)^{s i n}(3) \subset \mathfrak{s u}(3), \quad \mathfrak{s u}(2) \subset \mathfrak{u}(2), \quad \mathfrak{s u}_{c}(2) \subset \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s u}_{i r}(3) \subset \mathfrak{g}_{2} .
\end{aligned}
$$

Classification recipe:
(1) Fix $\mathfrak{h}=\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right)=\mathfrak{g}$ with $\mathfrak{g} \nsubseteq \mathfrak{s p i n}(7)$ non-Abelian.

Algebraic classification

For any ∇^{c}-parallel $T^{c} \neq 0$, we have $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right) \nsubseteq \mathfrak{s p i n}(7)$.

Lemma

Let $\mathfrak{g} \ddagger \mathfrak{s p i n}(7)$ be non-Abelian. If there exist a \mathfrak{g}-invariant $T \in \Lambda^{3}, T \neq 0$, then \mathfrak{g} is conjugate to one of

$$
\begin{aligned}
& \mathfrak{g}_{2} \subset \mathfrak{s p i n}(7), \quad \mathfrak{s u}(3) \subset \mathfrak{g}_{2}, \quad \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{g}_{2}, \quad \mathfrak{u}(2) \subset \mathfrak{s u}(3), \\
& \mathbb{R} \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2), \quad \mathbb{R} \oplus \mathfrak{s u}(2) \subset \mathfrak{s u}^{(4)} \subset \mathfrak{s p i n}(7)^{s i n}(3) \subset \mathfrak{s u}(3), \quad \mathfrak{s u}(2) \subset \mathfrak{u}(2), \quad \mathfrak{s u}_{c}(2) \subset \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s u}_{i r}(3) \subset \mathfrak{g}_{2} .
\end{aligned}
$$

Classification recipe:
(1) Fix $\mathfrak{h}=\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right)=\mathfrak{g}$ with $\mathfrak{g} \subseteq \mathfrak{s p i n}(7)$ non-Abelian.
(2) Determine the spaces of \mathfrak{h}-invariant spinors and \mathfrak{g}-invariant 3 -forms.

Algebraic classification

For any ∇^{c}-parallel $T^{c} \neq 0$, we have $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right) \subsetneq \mathfrak{s p i n}(7)$.

Lemma

Let $\mathfrak{g} \ddagger \mathfrak{s p i n}(7)$ be non-Abelian. If there exist a \mathfrak{g}-invariant $T \in \Lambda^{3}, T \neq 0$, then \mathfrak{g} is conjugate to one of

$$
\begin{aligned}
& \mathfrak{g}_{2} \subset \mathfrak{s p i n}(7), \quad \mathfrak{s u}(3) \subset \mathfrak{g}_{2}, \quad \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{g}_{2}, \quad \mathfrak{u}(2) \subset \mathfrak{s u}(3), \\
& \mathbb{R} \oplus \mathfrak{s u}_{c}(2) \subset \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2), \quad \mathbb{R} \oplus \mathfrak{s u}(2) \subset \mathfrak{s u}^{(4)} \subset \mathfrak{s p i n}(7)^{s i n}(3) \subset \mathfrak{s u}(3), \quad \mathfrak{s u}(2) \subset \mathfrak{u}(2), \quad \mathfrak{s u}_{c}(2) \subset \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s u}_{i r}(3) \subset \mathfrak{g}_{2} .
\end{aligned}
$$

Classification recipe:
(1) Fix $\mathfrak{h}=\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathfrak{i s o}\left(T^{c}\right)=\mathfrak{g}$ with $\mathfrak{g} \subseteq \mathfrak{s p i n}(7)$ non-Abelian.
(2) Determine the spaces of \mathfrak{h}-invariant spinors and \mathfrak{g}-invariant 3 -forms.
(3) Solve equations (*) on these spaces.

Results

Proposition

Only the following isotropy algebrae $\mathfrak{i s o}\left(T^{c}\right)$ allow to carry out (1) to (3) consistently:

$\mathfrak{g}_{2}, \mathfrak{s u}(3), \mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2), \mathfrak{u}(2), \mathbb{R} \oplus \mathfrak{s u}(2)$	$\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s o}(3)$

Results

Proposition

Only the following isotropy algebrae $\mathfrak{i s o}\left(T^{c}\right)$ allow to carry out (1) to (3) consistently:

$\mathfrak{g}_{2}, \mathfrak{s u}(3), \mathfrak{s u}(2) \oplus \mathfrak{s u}{ }_{c}(2), \mathfrak{u}(2), \mathbb{R} \oplus \mathfrak{s u}(2)$	$\mathbb{R} \oplus \mathfrak{s u}(2), \mathfrak{s o}(3)$
$\mathcal{K}\left(\mathfrak{i s o}\left(T^{c}\right)\right) \neq\{0\}$	$\mathbb{K}\left(\mathfrak{i s o}\left(T^{c}\right)\right)=\{0\}$

Here

$$
\mathscr{K}(\mathfrak{g}):=\operatorname{ker}\left\{b_{1}: \Lambda^{2} \otimes \mathfrak{g} \rightarrow \Lambda^{3} \otimes \Lambda^{1}\right\}
$$

Results

Proposition

Only the following isotropy algebrae $\mathfrak{i s o}\left(T^{c}\right)$ allow to carry out (1) to (3) consistently:

$\mathfrak{g}_{2}, \mathfrak{s u}(3), \mathfrak{s u}(2) \oplus \mathfrak{s u}{ }_{c}(2), \mathfrak{u}(2), \mathbb{R} \oplus \mathfrak{s u}(2)$	$\mathbb{R} \oplus \mathfrak{s u}(2), \mathfrak{s o}(3)$
$\mathscr{K}\left(\mathfrak{i s o}\left(T^{c}\right)\right) \neq\{0\}$	$\mathscr{K}\left(\mathfrak{i s o}\left(T^{c}\right)\right)=\{0\}$

Here

$$
\mathscr{K}(\mathfrak{g}):=\operatorname{ker}\left\{b_{1}: \Lambda^{2} \otimes \mathfrak{g} \rightarrow \Lambda^{3} \otimes \Lambda^{1}\right\} .
$$

Proposition

There exist at least two non-zero ∇^{c}-parallel spinor fields on non-parallel Spin(7)-manifolds with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ non-Abelian.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{S u}_{c}(2)$.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{S u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.
d) $\mathfrak{u}(2)$.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.
d) $\mathfrak{u}(2)$.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.
d) $\mathfrak{u}(2)$.

Then M^{8} is isometric to the Riemannian product of
a) \mathbb{R} with a co-calibrated G_{2}-manifold.

Theorem (P^{\prime} 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.
d) $\mathfrak{u}(2)$.

Then M^{8} is isometric to the Riemannian product of
a) \mathbb{R} with a co-calibrated G_{2}-manifold.
b) \mathbb{R}^{2} with an almost Hermitian 6-manifold of Gray-Hervella class $\mathbb{W}_{1} \oplus W_{3}$ or the Riemannian product of \mathbb{R} with a Sasakian 7-manifold.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.
d) $\mathfrak{u}(2)$.

Then M^{8} is isometric to the Riemannian product of
a) \mathbb{R} with a co-calibrated G_{2}-manifold.
b) \mathbb{R}^{2} with an almost Hermitian 6-manifold of Gray-Hervella class $\mathbb{W}_{1} \oplus W_{3}$ or the Riemannian product of \mathbb{R} with a Sasakian 7-manifold.
c) S^{2} with either the projective space $\mathbb{C P}^{3}$ or the flag manifold $F(1,2)$, both equipped with their standard nearly Kähler structure.

Theorem (P' 2009)

Let $\left(M^{8}, g, \Phi\right)$ be a complete, simply connected Spin(7)-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)$ equal to
a) \mathfrak{g}_{2} or $\mathfrak{s u}(2) \oplus \mathfrak{s u}_{c}(2)$.
b) $\mathfrak{s u}(3)$ or $\mathfrak{s o}(3)$.
c) $\mathbb{R} \oplus \mathfrak{s u}(2)$.
d) $\mathfrak{u}(2)$.

Then M^{8} is isometric to the Riemannian product of
a) \mathbb{R} with a co-calibrated G_{2}-manifold.
b) \mathbb{R}^{2} with an almost Hermitian 6-manifold of Gray-Hervella class $\mathbb{W}_{1} \oplus W_{3}$ or the Riemannian product of \mathbb{R} with a Sasakian 7-manifold.
c) S^{2} with either the projective space $\mathbb{C P}^{3}$ or the flag manifold $F(1,2)$, both equipped with their standard nearly Kähler structure.
d) a Sasakian 3-manifold with a 5-dimensional Sasakian manifold or the Riemannian product of \mathbb{R} with an integrable G_{2}-manifold.

Theorem (continuation)
Moreover, any $\operatorname{Spin}(7)$-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$ is locally isometric to a naturally reductive homogeneous space.

Theorem (continuation)

Moreover, any $\operatorname{Spin}(7)$-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (continuation)

Moreover, any $\operatorname{Spin}(7)$-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)

Let $\left(M^{n}, g, T\right)$ be a complete, simply connected Riemannian manifold with 3 -form T. Suppose that the tangent bundle

$$
T M^{n}=T M_{+} \oplus T M_{-}
$$

splits under the action of the holonomy group of

$$
\nabla_{X} Y=\nabla_{X}^{g} Y+\frac{1}{2} \cdot T(X, Y, \cdot) \text { so that }
$$

$$
T\left(X_{+}, X_{-}, \cdot\right)=0, \quad T\left(X_{+}, Y_{+}, \cdot\right) \in T M_{+}, \quad T\left(X_{-}, Y_{-}, \cdot\right) \in T M_{-}
$$

Theorem (continuation)

Moreover, any $\operatorname{Spin}(7)$-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)=\mathbb{R} \oplus \mathfrak{s u} u_{c}(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)

Let $\left(M^{n}, g, T\right)$ be a complete, simply connected Riemannian manifold with 3-form T. Suppose that the tangent bundle

$$
T M^{n}=T M_{+} \oplus T M_{-}
$$

splits under the action of the holonomy group of
$\nabla_{X} Y=\nabla_{X}^{g} Y+\frac{1}{2} \cdot T(X, Y, \cdot)$ so that

$$
T\left(X_{+}, X_{-}, \cdot\right)=0, \quad T\left(X_{+}, Y_{+}, \cdot\right) \in T M_{+}, \quad T\left(X_{-}, Y_{-}, \cdot\right) \in T M_{-}
$$

Let $T=T_{+}+T_{-}$denote the corresponding decomposition of T.

Theorem (continuation)

Moreover, any $\operatorname{Spin}(7)$-manifold with $\nabla^{c} T^{c}=0$ and $\mathfrak{i s o}\left(T^{c}\right)=\mathbb{R} \oplus \mathfrak{s u} u_{c}(2)$ is locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:

Theorem (Cleyton-Moroianu 2008)

Let $\left(M^{n}, g, T\right)$ be a complete, simply connected Riemannian manifold with 3-form T. Suppose that the tangent bundle

$$
T M^{n}=T M_{+} \oplus T M_{-}
$$

splits under the action of the holonomy group of $\nabla_{X} Y=\nabla_{X}^{g} Y+\frac{1}{2} \cdot T(X, Y, \cdot)$ so that

$$
T\left(X_{+}, X_{-}, \cdot\right)=0, \quad T\left(X_{+}, Y_{+}, \cdot\right) \in T M_{+}, \quad T\left(X_{-}, Y_{-}, \cdot\right) \in T M_{-}
$$

Let $T=T_{+}+T_{-}$denote the corresponding decomposition of T. Then (M, g, T) is isometric to a Riemannian product $\left(M_{+}, g_{+}, T_{+}\right) \times\left(M_{-}, g_{-}, T_{-}\right)$.

Outline

(1) Introduction

(2) Connections with torsion
(3) $\operatorname{Spin}(7)$-structures
(4) PSU(3)-structures

Definitions

Definition

A $\operatorname{PSU}(3)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 3-form ρ s.t. there exists an oriented $\operatorname{ONF}\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\rho=e_{246}-e_{235}-e_{145}-e_{136}+\left(e_{12}+e_{34}-2 e_{56}\right) \wedge e_{7}+\sqrt{3}\left(e_{12}-e_{34}\right) \wedge e_{8}
$$

Definitions

Definition

A PSU(3)-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 3 -form ρ s.t. there exists an oriented $\operatorname{ONF}\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\rho=e_{246}-e_{235}-e_{145}-e_{136}+\left(e_{12}+e_{34}-2 e_{56}\right) \wedge e_{7}+\sqrt{3}\left(e_{12}-e_{34}\right) \wedge e_{8}
$$

The space of intrinsic torsion tensors splits into 6 irreducible PSU(3)-modules:

Definitions

Definition

A PSU(3)-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 3 -form ρ s.t. there exists an oriented $\operatorname{ONF}\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\rho=e_{246}-e_{235}-e_{145}-e_{136}+\left(e_{12}+e_{34}-2 e_{56}\right) \wedge e_{7}+\sqrt{3}\left(e_{12}-e_{34}\right) \wedge e_{8}
$$

The space of intrinsic torsion tensors splits into 6 irreducible PSU(3)-modules:

$$
T M^{8} \otimes \mathfrak{p s u}(3)^{\perp}=W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{4} \oplus W_{5} \oplus W_{6}
$$

Definitions

Definition

A $\operatorname{PSU}(3)$-structure is a Riemannian manifold $\left(M^{8}, g\right)$ equipped with a 3 -form ρ s.t. there exists an oriented $\operatorname{ONF}\left(e_{1}, \ldots, e_{8}\right)$ realizing

$$
\rho=e_{246}-e_{235}-e_{145}-e_{136}+\left(e_{12}+e_{34}-2 e_{56}\right) \wedge e_{7}+\sqrt{3}\left(e_{12}-e_{34}\right) \wedge e_{8}
$$

The space of intrinsic torsion tensors splits into 6 irreducible PSU(3)-modules:

$$
T M^{8} \otimes \mathfrak{p s u}(3)^{\perp}=\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus W_{3} \oplus W_{4} \oplus \mathscr{W}_{5} \oplus W_{6} .
$$

Definition

A PSU(3)-structure $\left(M^{8}, g, \rho\right)$ is said to be of class $W_{i_{1}} \oplus \ldots \oplus W_{i_{k}}$ if

$$
\Gamma \in \mathbb{W}_{i_{1}} \oplus \ldots \oplus \mathbb{W}_{i_{k}} .
$$

Classes vs. differential equations

Proposition

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure. Then

$\left(M^{8}, g, \rho\right)$ is of class	if and only if ρ satisfies
$W_{2} \oplus W_{3} \oplus W_{4} \oplus W_{5} \oplus W_{6}$	$\rho\lrcorner * d \rho=0$
$W_{1} \oplus W_{3} \oplus W_{4} \oplus W_{5} \oplus W_{6}$	$6 \delta \rho=(\delta \rho\lrcorner \rho)\lrcorner \rho$
$W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{5} \oplus W_{6}$	$\delta \rho\lrcorner \rho=0 \quad$ or $\quad \rho\lrcorner d \rho=0$
$W_{1} \oplus W_{3} \oplus W_{5} \oplus W_{6}$	$\delta \rho=0$
$W_{1} \oplus W_{2} \oplus W_{6}$	$10 * d \rho=\rho \wedge(\rho\lrcorner * d \rho)$
$W_{2} \oplus W_{4} \oplus W_{6}$	$10 d \rho=\rho \wedge(\rho\lrcorner d \rho)$
$W_{2} \oplus W_{6}$	$d \rho=0$
W_{6}	$d \rho=0 \quad$ and $\quad \delta \rho=0$

Classes vs. differential equations

Proposition

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure. Then

$\left(M^{8}, g, \rho\right)$ is of class	if and only if ρ satisfies
$W_{2} \oplus W_{3} \oplus W_{4} \oplus W_{5} \oplus W_{6}$	$\rho\lrcorner * d \rho=0$
$W_{1} \oplus W_{3} \oplus W_{4} \oplus W_{5} \oplus W_{6}$	$6 \delta \rho=(\delta \rho\lrcorner \rho)\lrcorner \rho$
$W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{5} \oplus W_{6}$	$\delta \rho\lrcorner \rho=0 \quad$ or $\quad \rho\lrcorner d \rho=0$
$W_{1} \oplus W_{3} \oplus W_{5} \oplus W_{6}$	$\delta \rho=0$
$W_{1} \oplus W_{2} \oplus W_{6}$	$10 * d \rho=\rho \wedge(\rho\lrcorner * d \rho)$
$W_{2} \oplus W_{4} \oplus W_{6}$	$10 d \rho=\rho \wedge(\rho\lrcorner d \rho)$
$W_{2} \oplus W_{6}$	$d \rho=0$
W_{6}	$d \rho=0 \quad$ and $\quad \delta \rho=0$

We now restrict to non-integrable (i.e. $\Gamma \neq 0$) PSU(3)-structures of class $W_{1} \oplus \ldots \oplus \mathbb{W}_{5}$.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify
$\Gamma_{1}+\Gamma_{2}+\Gamma_{3} \quad$ with $\quad T_{\Gamma} \in \Lambda^{3}, \quad \Gamma_{4}+\Gamma_{5} \quad$ with $\quad F_{\Gamma} \in \Lambda^{4}$.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

$$
\Gamma_{1}+\Gamma_{2}+\Gamma_{3} \quad \text { with } \quad T_{\Gamma} \in \Lambda^{3}, \quad \Gamma_{4}+\Gamma_{5} \quad \text { with } \quad F_{\Gamma} \in \Lambda^{4} .
$$

Proposition

Any PSU(3)-structures of class $\mathscr{W}_{1} \oplus \ldots \oplus \mathscr{W}_{5}$ admits a (unique) compatible connection ∇^{c} with torsion tensor

$$
\left.\left.T^{c}(X, Y, Z)=T_{\Gamma}(X, Y, Z)-((Z\lrcorner \rho)\right\lrcorner F_{\Gamma}\right)(X, Y)
$$

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

$$
\Gamma_{1}+\Gamma_{2}+\Gamma_{3} \quad \text { with } \quad T_{\Gamma} \in \Lambda^{3}, \quad \Gamma_{4}+\Gamma_{5} \quad \text { with } \quad F_{\Gamma} \in \Lambda^{4} .
$$

Proposition

Any PSU(3)-structures of class $W_{1} \oplus \ldots \oplus W_{5}$ admits a (unique) compatible connection ∇^{c} with torsion tensor

$$
\left.\left.T^{c}(X, Y, Z)=T_{\Gamma}(X, Y, Z)-((Z\lrcorner \rho)\right\lrcorner F_{\Gamma}\right)(X, Y)
$$

Proposition

The torsion tensor T^{c} is
i) totally skew-symmetric iff $\left(M^{8}, g, \rho\right)$ is of class $\mathbb{W}_{1} \oplus \mathbb{W}_{2} \oplus \mathbb{W}_{3}$.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

$$
\Gamma_{1}+\Gamma_{2}+\Gamma_{3} \quad \text { with } \quad T_{\Gamma} \in \Lambda^{3}, \quad \Gamma_{4}+\Gamma_{5} \quad \text { with } \quad F_{\Gamma} \in \Lambda^{4} .
$$

Proposition

Any PSU(3)-structures of class $W_{1} \oplus \ldots \oplus W_{5}$ admits a (unique) compatible connection ∇^{c} with torsion tensor

$$
\left.\left.T^{c}(X, Y, Z)=T_{\Gamma}(X, Y, Z)-((Z\lrcorner \rho)\right\lrcorner F_{\Gamma}\right)(X, Y)
$$

Proposition

The torsion tensor T^{c} is
i) totally skew-symmetric iff $\left(M^{8}, g, \rho\right)$ is of class $\mathbb{W}_{1} \oplus W_{2} \oplus W_{3}$.
ii) traceless cyclic iff $\left(M^{8}, g, \rho\right)$ is of class \mathbb{W}_{5}.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

$$
\Gamma_{1}+\Gamma_{2}+\Gamma_{3} \quad \text { with } \quad T_{\Gamma} \in \Lambda^{3}, \quad \Gamma_{4}+\Gamma_{5} \quad \text { with } \quad F_{\Gamma} \in \Lambda^{4} .
$$

Proposition

Any PSU(3)-structures of class $W_{1} \oplus \ldots \oplus W_{5}$ admits a (unique) compatible connection ∇^{c} with torsion tensor

$$
\left.\left.T^{c}(X, Y, Z)=T_{\Gamma}(X, Y, Z)-((Z\lrcorner \rho)\right\lrcorner F_{\Gamma}\right)(X, Y)
$$

Proposition

The torsion tensor T^{c} is
i) totally skew-symmetric iff $\left(M^{8}, g, \rho\right)$ is of class $\mathbb{W}_{1} \oplus W_{2} \oplus W_{3}$.
ii) traceless cyclic iff $\left(M^{8}, g, \rho\right)$ is of class W_{5}.
iii) not (strictly) vectorial.

Compatible connections

Via PSU(3)-equivariant isomorphisms we identify

$$
\Gamma_{1}+\Gamma_{2}+\Gamma_{3} \quad \text { with } \quad T_{\Gamma} \in \Lambda^{3}, \quad \Gamma_{4}+\Gamma_{5} \quad \text { with } \quad F_{\Gamma} \in \Lambda^{4} .
$$

Proposition

Any PSU(3)-structures of class $W_{1} \oplus \ldots \oplus W_{5}$ admits a (unique) compatible connection ∇^{c} with torsion tensor

$$
\left.\left.T^{c}(X, Y, Z)=T_{\Gamma}(X, Y, Z)-((Z\lrcorner \rho)\right\lrcorner F_{\Gamma}\right)(X, Y)
$$

Proposition

The torsion tensor T^{c} is
i) totally skew-symmetric iff $\left(M^{8}, g, \rho\right)$ is of class $\mathbb{W}_{1} \oplus W_{2} \oplus W_{3}$.
ii) traceless cyclic iff $\left(M^{8}, g, \rho\right)$ is of class W_{5}.
iii) not (strictly) vectorial.
iv) ∇^{c}-parallel iff $\nabla^{c} T_{\Gamma}=0$ and $\nabla^{c} F_{\Gamma}=0$.

Link to Spin(7)-structures and Bianchi identity

Proposition

Any Spin(7)-manifold ($\left.M^{8}, g, \Phi, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{i s o}\left(\overline{T^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{S u}_{c}(2)$ admits a $\operatorname{PSU}(3)$-structure $\left(M^{8}, g, \rho, \nabla^{c}, T^{c}\right)$ of class $\mathbb{W}_{1} \oplus \mathbb{W}_{2} \oplus \mathbb{W}_{3}$ with

$$
T^{c}=\operatorname{pr}_{\rho^{\perp}}\left(\overline{T^{c}}\right) .
$$

Link to Spin(7)-structures and Bianchi identity

Proposition

Any Spin(7)-manifold ($\left.M^{8}, g, \Phi, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{i s o}\left(\overline{T^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ admits a $\operatorname{PSU}(3)$-structure $\left(M^{8}, g, \rho, \nabla^{c}, T^{c}\right)$ of class $\mathbb{W}_{1} \oplus \mathbb{W}_{2} \oplus \mathbb{W}_{3}$ with

$$
T^{c}=\operatorname{pr}_{\rho^{\perp}}\left(\overline{T^{c}}\right) .
$$

In general, the holonomy algebra $\mathfrak{h o l}\left(\nabla^{c}\right)$ is one of $\mathfrak{p s u}(3), \quad \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s u}_{c}(2), \mathfrak{t}^{2}, \quad \mathfrak{s o}(3), \mathfrak{t}^{1}, \quad 0$.

Link to Spin(7)-structures and Bianchi identity

Proposition

Any Spin(7)-manifold ($\left.M^{8}, g, \Phi, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{i s o}\left(\overline{T^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ admits a $\operatorname{PSU}(3)$-structure $\left(M^{8}, g, \rho, \nabla^{c}, T^{c}\right)$ of class $\mathbb{W}_{1} \oplus \mathbb{W}_{2} \oplus \mathbb{W}_{3}$ with

$$
T^{c}=\operatorname{pr}_{\rho^{\perp}}\left(\overline{T^{c}}\right) .
$$

In general, the holonomy algebra $\mathfrak{h o l}\left(\nabla^{c}\right)$ is one of $\mathfrak{p s u}(3), \quad \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s u}_{c}(2), \mathfrak{t}^{2}, \quad \mathfrak{s o}(3), \mathfrak{t}^{1}, \quad 0$.

Link to Spin(7)-structures and Bianchi identity

Proposition

Any Spin(7)-manifold ($\left.M^{8}, g, \Phi, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{i s o}\left(\overline{T^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ admits a $\operatorname{PSU}(3)$-structure $\left(M^{8}, g, \rho, \nabla^{c}, T^{c}\right)$ of class $\mathbb{W}_{1} \oplus \mathbb{W}_{2} \oplus \mathbb{W}_{3}$ with

$$
T^{c}=\operatorname{pr}_{\rho^{\perp}}\left(\overline{T^{c}}\right) .
$$

In general, the holonomy algebra $\mathfrak{h o l}\left(\nabla^{c}\right)$ is one of

$$
\mathfrak{p s u}(3), \quad \mathbb{R} \oplus \mathfrak{s u}_{c}(2), \quad \mathfrak{s u}_{c}(2), \quad \mathfrak{t}^{2}, \quad \mathfrak{s o}(3), \quad \mathfrak{t}^{1}, \quad 0 .
$$

Proposition

Let $\left(M^{8}, g, \rho\right)$ be a PSU(3)-structure of class $W_{1} \oplus \ldots \oplus \mathbb{W}_{5}$ with $\nabla^{c} T^{c}=0$. Then

$$
\begin{aligned}
\mathfrak{S}_{X, Y, Z} \mathbb{R}^{c}(X, Y, Z, V)=\sum_{i} & \left.\left.\left.\left(\left(e_{i}\right\lrcorner T_{\Gamma}\right)-\left(\left(e_{i}\right\lrcorner \rho\right)\right\lrcorner F_{\Gamma}\right)\right) \wedge \\
& \left.\left.\left.\left.\left.\left(\left(e_{i}\right\lrcorner V\right\lrcorner T_{\Gamma}\right)-\left(e_{i}\right\lrcorner((V\lrcorner \rho)\right\lrcorner F_{\Gamma}\right)\right)\right)(X, Y, Z) .
\end{aligned}
$$

Main results

Theorem (P^{\prime} 2012)
Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus \mathscr{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$.

Main results

Theorem (P^{\prime} 2012)

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathbb{W}_{1} \oplus \ldots \oplus \mathbb{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$. Then $\left(M^{8}, g, \rho\right)$
a) is of class $\mathscr{W}_{1} \oplus W_{2} \oplus \mathbb{W}_{3} \quad$ and

Main results

Theorem (P' 2012)

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus W_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$. Then $\left(M^{8}, g, \rho\right)$
a) is of class $\mathbb{W}_{1} \oplus W_{2} \oplus W_{3} \quad$ and
b) admits a $\operatorname{Spin}(7)$-structure preserved by ∇^{c}.

Main results

Theorem (P' 2012)

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus W_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$. Then $\left(M^{8}, g, \rho\right)$
a) is of class $\mathbb{W}_{1} \oplus W_{2} \oplus W_{3} \quad$ and
b) admits a $\operatorname{Spin}(7)$-structure preserved by ∇^{c}.

Main results

Theorem (P' 2012)

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus \mathscr{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$. Then $\left(M^{8}, g, \rho\right)$
a) is of class $\mathscr{W}_{1} \oplus W_{2} \oplus W_{3} \quad$ and
b) admits a $\operatorname{Spin}(7)$-structure preserved by ∇^{c}.

Moreover, if $\left(M^{8}, g, \rho\right)$ is regular, it is a principal S^{1}-bundle and a Riemannian submersion over a co-calibrated G_{2}-manifold ($\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}$) with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{S u}_{c}(2)$.

Main results

Theorem (P' 2012)

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus W_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$. Then $\left(M^{8}, g, \rho\right)$
a) is of class $\mathscr{W}_{1} \oplus W_{2} \oplus W_{3} \quad$ and
b) admits a $\operatorname{Spin}(7)$-structure preserved by ∇^{c}.

Moreover, if $\left(M^{8}, g, \rho\right)$ is regular, it is a principal S^{1}-bundle and a Riemannian submersion over a co-calibrated G_{2}-manifold ($\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}$) with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$.

Proposition (Friedrich 2009)

There exists a unique simply connected, complete co-calibrated G_{2}-manifold \bar{N} with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathfrak{s u}_{c}(2)$.

Main results

Theorem (P' 2012)

Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus W_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2), \mathrm{t}^{2}$. Then $\left(M^{8}, g, \rho\right)$
a) is of class $\mathscr{W}_{1} \oplus W_{2} \oplus W_{3} \quad$ and
b) admits a $\operatorname{Spin}(7)$-structure preserved by ∇^{c}.

Moreover, if $\left(M^{8}, g, \rho\right)$ is regular, it is a principal S^{1}-bundle and a Riemannian submersion over a co-calibrated G_{2}-manifold ($\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}$) with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right) \subseteq \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$.

Proposition (Friedrich 2009)

There exists a unique simply connected, complete co-calibrated G_{2}-manifold \bar{N} with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathfrak{s u}_{c}(2)$.

Example (FKMS 1997)

$\bar{N}=N(1,1)$ is a nearly parallel G_{2}-manifold with $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$.

Example (FKMS 1997)

$\bar{N}=N(1,1)$ is a nearly parallel G_{2}-manifold with $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$.

Theorem (P' 2012)
Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathbb{W}_{1} \oplus \ldots \oplus \mathbb{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathfrak{s o}(3)$. Then $\left(M^{8}, g, \rho\right)$ is either
a) of class W_{3} and $\mathrm{Scal}^{g}>0$ or

Example (FKMS 1997)

$\bar{N}=N(1,1)$ is a nearly parallel G_{2}-manifold with $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$.

Theorem (P' 2012)
Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathbb{W}_{1} \oplus \ldots \oplus \mathbb{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathfrak{s o}(3)$. Then $\left(M^{8}, g, \rho\right)$ is either
a) of class W_{3} and Scal ${ }^{g}>0$ or
b) of class W_{5} and Scal ${ }^{g}<0$.

Example (FKMS 1997)

$\bar{N}=N(1,1)$ is a nearly parallel G_{2}-manifold with $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$.

Theorem (P' 2012)
Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathbb{W}_{1} \oplus \ldots \oplus \mathbb{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathfrak{s o}(3)$. Then $\left(M^{8}, g, \rho\right)$ is either
a) of class W_{3} and Scal ${ }^{g}>0$ or
b) of class W_{5} and Scal ${ }^{g}<0$.

Example (FKMS 1997)

$\bar{N}=N(1,1)$ is a nearly parallel G_{2}-manifold with $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$.

Theorem (P' 2012)
Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathscr{W}_{1} \oplus \ldots \oplus \mathscr{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathfrak{s o}(3)$. Then $\left(M^{8}, g, \rho\right)$ is either
a) of class W_{3} and $\mathrm{Scal}^{g}>0$ or
b) of class W_{5} and Scal ${ }^{g}<0$.

In each of these two cases, M^{8} is locally isometric to a unique homogeneous space with isotropy group $\mathrm{SO}(3)$.

Example (FKMS 1997)

$\bar{N}=N(1,1)$ is a nearly parallel G_{2}-manifold with $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$.

Theorem (P' 2012)
Let $\left(M^{8}, g, \rho\right)$ be a $\operatorname{PSU}(3)$-structure of class $\mathbb{W}_{1} \oplus \ldots \oplus \mathbb{W}_{5}$ with $\nabla^{c} T^{c}=0$ and $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathfrak{s o}(3)$. Then $\left(M^{8}, g, \rho\right)$ is either
a) of class W_{3} and $\mathrm{Scal}^{g}>0$ or
b) of class W_{5} and Scal ${ }^{g}<0$.

In each of these two cases, M^{8} is locally isometric to a unique homogeneous space with isotropy group $\mathrm{SO}(3)$.

Remark

In all considered cases, T^{c} is either totally skew-symmetric or traceless cyclic.

Proof (for the case $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$)

i) The following are globally well defined and ∇^{c}-parallel

$$
\begin{aligned}
& e_{8}, \quad \omega:=e_{8}-\rho, \quad \varphi_{1}:=e_{246}-e_{235}-e_{145}-e_{136}+e_{127}+e_{347}, \quad \varphi_{2}:=e_{567} \\
& \text { and } \Phi=\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}+*\left(\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}\right)
\end{aligned}
$$

Proof (for the case $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$)

i) The following are globally well defined and ∇^{c}-parallel
$e_{8}, \quad \omega:=e_{8}-\rho, \quad \varphi_{1}:=e_{246}-e_{235}-e_{145}-e_{136}+e_{127}+e_{347}, \quad \varphi_{2}:=e_{567}$ and $\Phi=\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}+*\left(\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}\right)$.
ii) Since T_{Γ}, F_{Γ} and $\mathrm{R}^{c}: \Lambda^{2} \rightarrow \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ are $\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$-invariant the Bianchi identity for ∇^{c} yields

$$
T_{\Gamma}=a_{1}\left(\varphi_{1}+3 \varphi_{2}\right)+a_{2}\left(\omega \wedge e_{8}+3 \varphi_{2}\right), \quad F_{\Gamma}=0, \quad\left(a_{1}, a_{2}\right) \in A \subsetneq \mathbb{R}^{2} .
$$

Proof (for the case $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$)

i) The following are globally well defined and ∇^{c}-parallel
$e_{8}, \quad \omega:=e_{8} \downarrow \rho, \quad \varphi_{1}:=e_{246}-e_{235}-e_{145}-e_{136}+e_{127}+e_{347}, \quad \varphi_{2}:=e_{567}$
and $\Phi=\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}+*\left(\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}\right)$.
ii) Since T_{Γ}, F_{Γ} and $\mathrm{R}^{c}: \Lambda^{2} \rightarrow \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ are $\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$-invariant the Bianchi identity for ∇^{c} yields

$$
T_{\Gamma}=a_{1}\left(\varphi_{1}+3 \varphi_{2}\right)+a_{2}\left(\omega \wedge e_{8}+3 \varphi_{2}\right), \quad F_{\Gamma}=0, \quad\left(a_{1}, a_{2}\right) \in A \subsetneq \mathbb{R}^{2} .
$$

iii) We compute the following differentials:

$$
\left.d \omega=0, \quad d\left(e_{8}\right\lrcorner * \varphi_{i}\right)=0, \quad i=1,2 .
$$

Proof (for the case $\mathfrak{h o l}\left(\nabla^{c}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2)$)

i) The following are globally well defined and ∇^{c}-parallel
$e_{8}, \quad \omega:=e_{8} \downarrow \rho, \quad \varphi_{1}:=e_{246}-e_{235}-e_{145}-e_{136}+e_{127}+e_{347}, \quad \varphi_{2}:=e_{567}$
and $\Phi=\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}+*\left(\left(\varphi_{1}+\varphi_{2}\right) \wedge e_{8}\right)$.
ii) Since T_{Γ}, F_{Γ} and $\mathrm{R}^{c}: \Lambda^{2} \rightarrow \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$ are $\mathbb{R} \oplus \mathfrak{s u}_{c}(2)$-invariant the Bianchi identity for ∇^{c} yields

$$
T_{\Gamma}=a_{1}\left(\varphi_{1}+3 \varphi_{2}\right)+a_{2}\left(\omega \wedge e_{8}+3 \varphi_{2}\right), \quad F_{\Gamma}=0, \quad\left(a_{1}, a_{2}\right) \in A \subsetneq \mathbb{R}^{2} .
$$

iii) We compute the following differentials:

$$
\left.d \omega=0, \quad d\left(e_{8}\right\lrcorner * \varphi_{i}\right)=0, \quad i=1,2 .
$$

iv) Several Lie derivatives along e8 vanish,

$$
\left.\mathscr{L}_{e_{8}} \omega, \quad \mathscr{L}_{e_{8}} \varphi_{i}, \quad \mathscr{L}_{e_{8}}\left(e_{8}\right\lrcorner * \varphi_{i}\right)=0, \quad i=1,2 .
$$

Proof (continuation)

v) Assume that e induces a free S^{1}-action.

Proof (continuation)

v) Assume that e e_{8} induces a free S^{1}-action.
vi) The orbit space $\pi: M^{8} \rightarrow \bar{N}$ is a Riemannian 7-manifold \bar{N}.

Proof (continuation)

v) Assume that e induces a free S^{1}-action.
vi) The orbit space $\pi: M^{8} \rightarrow \bar{N}$ is a Riemannian 7-manifold \bar{N}.
vii) On \bar{N}, there exist differential forms $\bar{\omega}, \overline{\varphi_{i}}$ such that

$$
\bar{*} \overline{\varphi_{i}}=\overline{\left.e_{8}\right\lrcorner * \varphi_{i}}, \quad i=1,2 .
$$

Proof (continuation)

v) Assume that e e_{8} induces a free S^{1}-action.
vi) The orbit space $\pi: M^{8} \rightarrow \bar{N}$ is a Riemannian 7-manifold \bar{N}.
vii) On \bar{N}, there exist differential forms $\bar{\omega}, \overline{\varphi_{i}}$ such that

$$
\bar{*} \overline{\varphi_{i}}=\overline{\left.e_{8}\right\lrcorner * \varphi_{i}}, \quad i=1,2 .
$$

viii) The 3-form $\bar{\varphi}:=\overline{\varphi_{1}}+\overline{\varphi_{2}}$ satisfies

$$
d \bar{*} \bar{\varphi}=0 .
$$

Proof (continuation)

v) Assume that e e_{8} induces a free S^{1}-action.
vi) The orbit space $\pi: M^{8} \rightarrow \bar{N}$ is a Riemannian 7-manifold \bar{N}.
vii) On \bar{N}, there exist differential forms $\bar{\omega}, \overline{\varphi_{i}}$ such that

$$
\bar{*} \overline{\varphi_{i}}=\overline{\left.e_{8}\right\lrcorner * \varphi_{i}}, \quad i=1,2 .
$$

viii) The 3-form $\bar{\varphi}:=\overline{\varphi_{1}}+\overline{\varphi_{2}}$ satisfies

$$
d \overline{\#} \bar{\varphi}=0 .
$$

ix) Consequently, \bar{N} is a co-calibrated G_{2}-manifold with fund. form $\bar{\varphi}$.

Construction

i) Start from a co-calibrated G_{2}-manifold ($\left.\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2)$.

Construction

i) Start from a co-calibrated G_{2}-manifold ($\left.\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{s u}_{c}(2), \mathfrak{s u}_{c}(2)$.
ii) The forms $\overline{\varphi_{1}}, \overline{\varphi_{2}}$ and $\bar{\omega}$ exist on \bar{N} and $d \bar{\omega}=0$.

Construction

i) Start from a co-calibrated G_{2}-manifold ($\left.\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}\right)$ with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2), \mathfrak{s u}_{c}(2)$.
ii) The forms $\overline{\varphi_{1}}, \overline{\varphi_{2}}$ and $\bar{\omega}$ exist on \bar{N} and $d \bar{\omega}=0$.
iii) Suppose the equation $\operatorname{de}_{8}=a_{2} \omega$ defines a principal S^{1}-bundle $\pi: M^{8} \rightarrow \bar{N}$.

Construction

i) Start from a co-calibrated G_{2}-manifold ($\bar{N}, \bar{g}, \bar{\varphi}, \overline{\nabla^{c}}, \overline{T^{c}}$) with $\overline{\nabla^{c}} \overline{T^{c}}=0$ and $\mathfrak{h o l}\left(\overline{\nabla^{c}}\right)=\mathbb{R} \oplus \mathfrak{S u}_{c}(2), \mathfrak{s u}_{c}(2)$.
ii) The forms $\overline{\varphi_{1}}, \overline{\varphi_{2}}$ and $\bar{\omega}$ exist on \bar{N} and $d \bar{\omega}=0$.
iii) Suppose the equation $\operatorname{de}_{8}=a_{2} \omega$ defines a principal S^{1}-bundle $\pi: M^{8} \rightarrow \bar{N}$.
iv) Then, M^{8} admits a PSU(3)-structure

$$
\rho=\pi^{*}\left(\overline{\varphi_{1}}\right)-2 \pi^{*}\left(\overline{\varphi_{2}}\right)+\pi^{*}(\bar{\omega}) \wedge e_{8}
$$

with parallel torsion

$$
T^{c}=a_{1}\left(\pi^{*}\left(\overline{\varphi_{1}}\right)+3 \pi^{*}\left(\overline{\varphi_{2}}\right)\right)+a_{2}\left(\pi^{*}(\bar{\omega}) \wedge e_{8}+3 \pi^{*}\left(\overline{\varphi_{2}}\right)\right)
$$

and $\mathfrak{h o l}\left(\nabla^{c}\right) \subseteq \mathbb{R} \oplus \mathfrak{s u}_{c}(2)$.

