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If GL(n)p < A3(R") is open, then n=6,7,8 and the stabilizer of p in GL(n)
is a real form of one of the complex groups

SL(3)xSL(3), G, PSL(3),

respectively.

Consequence

If an oriented (M", g) admits a global 3-form in an open orbit, then
n=6,7,8 and (M",g) admits a G-structure with G one of the compact
groups

SU(3), Gy, PSU(3),

respectively.
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Fact (Witt 2005/2008)
The GL(8)-orbit of f € A3(R®), defining the structure constants,

i Al =20 fkAx,
p

of SU(3) w.r.t. the Gell-Mann matrices A; (used in QCD), is open and

Iso(f) =PSU(3).

Consequence

(Almost) every physicist knows a 3-form in an open GL(8)-orbit.
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Torsion tensor
Let (M",g) be Riemannian manifold.

Definition
The torsion of a metric connection V (i.e. Vg =0) is a (2,1)-tensor field T
defined by

T(X,Y)=VxY -VyX—[X,Y]

and T(X,Y,2)=g(T(X,Y),2).

Proposition (Cartan 1925)

Any metric connection V is uniquely determined by its torsion tensor T,

—~~

g(VxY,Z)=g(VE&Y,2)+ A(X, Y, 2),

AX,Y,Z):==(T(X,Y,Z2)=T(Y,Z,X)+ T(Z,X,Y)).

N[
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into 3 irreducible O(n)-modules, I =971 & I ® I3,

(TeT [3VeTM™: T(X,Y)=g(V,X)Y -g(V,Y)X},
(TeT|T(X,Y,2)+T(X,2,Y)=0},

{TeT |GxyvzT(X,Y,Z)=0, ¥;T(X,eje)=0}.
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Cartan’s classes

Proposition (Cartan 1925)

If n=3, the space I := A>(TM")® TM" of possible torsion tensors splits
into 3 irreducible O(n)-modules, T =971 & 92 & T3

Fi={TeT|IVe TM": T(X,Y)=g(V,X)Y -g(V,Y)X},
To={TeT|T(X,Y,2)+T(X,Z,Y)=0},
FT3={TeT |6x,y,zT(X,Y,Z)=0, ;T(X,e;,e)=0}.
Definition

Let V be a metric connection with torsion tensor T. We say that T is
i) vectorial if T € 97.

ii) totally skew-symmetric if T € 9.
i) traceless cyclic if T € 3.
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Connections with torsion

Compatible connections

Let G =SO(n) be a closed subgroup and suppose (M",g) admits a
G-structure.

Definition

A metric connection V is said to be compatible with the G-structure if

pry(Q)=0, Q;=g(Veie).

[:=prg.(Q8)e TM8® g is called the intrinsic torsion of the G-structure.

v

Lemma
A metric connection is compatible with the G-structure iff the
corresponding torsion tensor satisfies

I(X) = —pry (A(X, ).
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Alternative definition and Fernandez classes
Definition

A Spin(7)-structure is a Riemannian manifold (M, g) equipped with a
4-form @ s.t. there exists an oriented ONF (ey,..., eg) realizing

D =e1278 + €3478 + E5678 + €2468 — €2358 — €1458 — €1368
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Alternative definition and Fernandez classes

Definition
A Spin(7)-structure is a Riemannian manifold (M8, g) equipped with a
4-form @ s.t. there exists an oriented ONF (ey,..., eg) realizing

D =e1078 + €3478 + 5678 + €2468 — €2358 — €1458 — €1368

+ €3456 + €1256 t €1234 + €1357 — €1467 — €2367 — €2457-

The space of intrinsic torsion tensors splits as TM® @ spin(7)1 = #4 @ #4s.

Definition
A Spin(7)-structure is called
i) parallel if Tg=0 and T'4g=0.
ii) locally conformal parallel if T4 =0.
i) balanced if I's = 0.

10
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Compatible connections
Theorem (lvanov 2004)
Any Spin(7)-structure (M8, g,®) admits a unique compatible connection

V¢ with totally skew-symmetric torsion

TC=—5<I>—%*(0/\<I)), 9:;*(5%@)_

: 3_A3a A3
The space of 3-forms splits as A° = A ® Ajg.
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Compatible connections

Theorem (lvanov 2004)

Any Spin(7)-structure (M8, g,®) admits a unique compatible connection

V¢ with totally skew-symmetric torsion

TC=—5<I>—%* (OAD), 0=2x(O5DAD).
The space of 3-forms splits as A3 = A3 €BA3
Proposition (Cabrera 1995, P' 2009)
Let (M8, g,®) be a Spin(7)-structure. Then
(M8,g,®) is if and only if | or equivalently if
parallel Tg=0, Tye=0 d®=0,6=0
locally conformal parallel T,5=0 do=0ND
balanced Té: =0 6=0
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Parallel torsion

We now restrict to the case of parallel torsion, i.e. VET¢=0.
Proposition (lvanov 2004, P’ 2009)
Let (M8,g,®) be a Spin(7)-structure with VS T<=0. Then

Scal® = —IIT8 12 ——II .

Theorem (Agricola-Friedrich 2004, P' 2009)

If VETC =0, any V-parallel spinor field ¥ on (M8, g,®) satisfies

TR W=7 TER-W, —4RicS(X)-¥ = (T2 =TITEIR)- X -
) 8

(*)
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Spin(7)-structures

Parallel torsion

We now restrict to the case of parallel torsion, i.e. VET¢=0.
Proposition (lvanov 2004, P’ 2009)
Let (M8,g,®) be a Spin(7)-structure with VS T<=0. Then

Scal® = —IIT3 12 ——II .

Theorem (Agricola-Friedrich 2004, P' 2009)
If VETE =0, any V¢-parallel spinor field ¥ on (M8, g,®) satisfies

(TP ®=TIT§I2-¥, —4Ric® (X)-¥ = (T -7IT§I?)-X-¥. (x)

There exists at least one V-parallel spinor field Wy on (M8, g,®),

Wy =-14¥,.
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then g is conjugate to one of
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Resuc(2) csu(2)osuc(2), Resu(2)csu(4)cspin(7),
s0(3)csu(3), su(2)cu(2), su.(2)cResuc(2), so;(3)cgo.

Classification recipe:
(1) Fix h=hol(VE) ciso(T€) =g with g < spin(7) non-Abelian.
(2) Determine the spaces of h-invariant spinors and g-invariant 3-forms.

(3) Solve equations (*) on these spaces.
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Results

Proposition

Only the following isotropy algebrae iso(T€) allow to carry out (1) to (3)
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Spin(7)-structures

Results

Proposition

Only the following isotropy algebrae iso(T<) allow to carry out (1) to (3)
consistently:

g2, su(3), su(2) @suc(2), u(2), Resu(2) | Resuc(2), so(3)
K (is50(T€)) # {0} K (is50(T€)) = {0}

Here
H(g):=ker{b;: \’®g— A3@A'}.

Proposition

There exist at least two non-zero V¢-parallel spinor fields on non-parallel
Spin(7)-manifolds with V¢ T =0 and iso(T) non-Abelian.
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Let (M8, g,®) be a complete, simply connected Spin(7)-manifold with
VT =0 and iso(T°) equal to
a) g2 or su(2)@suc(2).
b) su(3) or so(3).
c) Resu(2).
d) u(2).
Then M8 is isometric to the Riemannian product of
a) R with a co-calibrated Gp-manifold.

b) R? with an almost Hermitian 6-manifold of Gray-Hervella class W1 & #3
or the Riemannian product of R with a Sasakian 7-manifold.

c) S2 with either the projective space CP* or the flag manifold F(1,2),
both equipped with their standard nearly Kahler structure.

d) a Sasakian 3-manifold with a 5-dimensional Sasakian manifold or the
Riemannian product of R with an integrable Gy-manifold.

15
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Moreover, any Spin(7)-manifold with V< T¢ =0 and iso(T¢) =Resu.(2) is
locally isometric to a naturally reductive homogeneous space.
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Theorem (continuation)

Moreover, any Spin(7)-manifold with V< T¢ =0 and iso(T¢) =Resu.(2) is
locally isometric to a naturally reductive homogeneous space.

The proof mainly uses the following generalized splitting theorem:
Theorem (Cleyton-Moroianu 2008)

Let (M",g,T) be a complete, simply connected Riemannian manifold with
3-form T. Suppose that the tangent bundle

TM"=TM, e TM_

splits under the action of the holonomy group of
VxY=VEY+1-T(X,Y,") so that

T(XoX_,))=0, T(X,,Ye)eTM,,  T(X_ Y. )eTM..

Let T =T, + T_ denote the corresponding decomposition of T.Then
(M, g, T) is isometric to a Riemannian product (My, g+, T.) x (M-, g-, T_).
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Definitions
Definition

A PSU(3)-structure is a Riemannian manifold (M8, g) equipped with a
3-form p s.t. there exists an oriented ONF (ey,...,eg) realizing

P = €216 — €235 — €145 — €136 + (€12 + €34 — 2 es6) A €7 + V3 (€12 — €34) A eg
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PSU(3)-structures

Definitions

Definition
A PSU(3)-structure is a Riemannian manifold (M8, g) equipped with a
3-form p s.t. there exists an oriented ONF (e, ...,eg) realizing

P = €216 — €235 — €145 — €136 + (€12 + €34 — 2 es6) A €7 + V3 (€12 — €34) A eg

The space of intrinsic torsion tensors splits into 6 irreducible
PSU(3)-modules:

TMBepsu(3)t =WieWso Wz Wsd Ws o Ws.

Definition
A PSU(3)-structure (M8, g,p) is said to be of class #; ®...® ¥, if

Few,o...eW,.
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PSU(3)-structures

Classes vs. differential equations

Proposition
Let (M8, g,p) be a PSU(3)-structure. Then

(M8, g,p) is of class if and only if p satisfies
Wro W30 WadWs @ W pJlxdp=0
WieWsoWadWs oW 6p =(6p1p)lp
WiewsoWseWsodWs | 6plp=0 or pldp=0
WioW3eWsd W 6p=0
WieWs e We 10 xdp=pA(pl*dp)
Woo Wad We 10dp=p A (pldp)
WreWs dp=0
Ws dp=0 and 6p=0
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Classes vs. differential equations

Proposition
Let (M8, g,p) be a PSU(3)-structure. Then

(M8, g,p) is of class if and only if p satisfies
Wro W30 WadWs @ W pJlxdp=0
WieWsoWadWs oW 6p =(6p1p)lp
WiewsoWseWsodWs | 6plp=0 or pldp=0
WioW3eWsd W 6p=0
WieWs e We 10 xdp=pA(pl*dp)
Woo Wad We 10dp=p A (pldp)
WreWs dp=0
Ws dp=0 and 6p=0

We now restrict to non-integrable (i.e. T #0) PSU(3)-structures of class
Wie...eWs.
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PSU(3)-structures

Compatible connections
Via PSU(3)-equivariant isomorphisms we identify

[1+T2+03 with TreAd, T4+

with Fre A%
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PSU(3)-structures

Compatible connections
Via PSU(3)-equivariant isomorphisms we identify

[1+T2+03 with TreAd, [4+T5 with FreA®

Proposition

Any PSU(3)-structures of class #1 &...® #5 admits a (unique) compatible
connection V¢ with torsion tensor

TX, Y, Z2)=Tr(X,Y,Z2)-((Z2p) 2 Fr)(X,Y)

Proposition
The torsion tensor T€ is

i) totally skew-symmetric iff (M8, g,p) is of class Wy & W> & W53.
i) traceless cyclic iff (M8, g,p) is of class Ws.

)
i) not (strictly) vectorial.
iv) VC-parallel iff V¢ Tr =0 and V°Fr =0.




PSU(3)-structures

Link to Spin(7)-structures and Bianchi identity
Proposition

Any Spin(7)-manifold (M8,g,®,V<, T<) with VE T€ =0 and
is0(T¢) cR@suc(2) admits a PSU(3)-structure (M8, g,p,V<, T€) of class
WieW>e W3 with

TC=pr, (T€).
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PSU(3)-structures

Link to Spin(7)-structures and Bianchi identity
Proposition

Any Spin(7)-manifold (M8,g,®,V<, T<) with VE T€ =0 and
is0(T¢) cR@suc(2) admits a PSU(3)-structure (M8, g,p,V<, T€) of class
WieW>e W3 with

TC= prpL( Te).

In general, the holonomy algebra hol(V€) is one of
psu(3), Resuc(2), suc(2), ¢, so(3), t, o.
Proposition

Let (M8, g,p) be a PSU(3)-structure of class W1 &...® W with VET¢ =0.
Then

GX,y_ZRC (X, Y,Z, V) = Z((e,-J Tr) = ((e,'Jp)JFr))/\

i

((ei sV Tr) = (e J((VIp)JFr))) (XY, Z).
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PSU(3)-structures

Main results

Theorem (P 2012)

Let (M8, g,p) be a PSU(3)-structure of class W1 &®...®Ws with VT =0
and hol(V) = R& suc(2), suc(2), 2.
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Let (M8, g,p) be a PSU(3)-structure of class W1 &®...®Ws with VT =0
and hol(V°) = R@ suc(2),5uc(2),t2. Then (M8, g, p)

a) is of class WieWreWs and

b) admits a Spin(7)-structure preserved by V€.

Moreover, if (M®,g,p) is regular, it is a principal S*-bundle and a
Riemannian submersion over a co-calibrated Gy-manifold (N,g,®, V<, T¢)
with V€ T =0 and hol(VE) SR @ su(2).
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Proposition (Friedrich 2009)
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Ga-manifold N with V€ T<¢ =0 and hol(V¢) = su(2).
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PSU(3)-structures

Example (FKMS 1997)
N=N(1,1) is a nearly parallel Go-manifold with hol(VE) = R@ suc(2).
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Example (FKMS 1997)
N=N(1,1) is a nearly parallel Go-manifold with hol(VE) = R@ suc(2).

Theorem (P’ 2012)
Let (M8, g,p) be a PSU(3)-structure of class W1 &...®Ws with VT =0
and hol(V¢) =s0(3). Then (M8 g,p) is either

a) of class #5 and Scal® >0 or

b) of class #s and Scal® <O0.

In each of these two cases, M® is locally isometric to a unique
homogeneous space with isotropy group SO(3).
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PSU(3)-structures

Example (FKMS 1997)
N =N(1,1) is a nearly parallel Go-manifold with hol(V<) = R@ su.(2).

Theorem (P’ 2012)
Let (M8, g,p) be a PSU(3)-structure of class W1 &...®Ws with VT =0
and hol(V¢) =s0(3). Then (M8 g,p) is either

a) of class #3 and Scal® >0  or

b) of class #s and Scal® <O0.

In each of these two cases, M® is locally isometric to a unique
homogeneous space with isotropy group SO(3).

Remark

In all considered cases, T°€ is either totally skew-symmetric or traceless
cyclic.
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PSU(3)-structures

Proof (for the case hol(V) =Resuc(2))
i) The following are globally well defined and V¢-parallel

€, W:i=¢€glp, P1:=€26—€235— €145 €136+ €127+ €347,

and @ = (@1 +@2) ANeg+ *((p1+@2) Neg).

@2 = €567
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Proof (for the case hol(V) =Resuc(2))
i) The following are globally well defined and V¢-parallel

€g, W:i=€glp, P1:=E246—€235—€145— €136 T €127 T €347, (P2 := €567

and @ = (1 +¢@2) Aeg+*((p1+¢2) Aeg).
i) Since Tr,Fr and R°: A2 — R@suc(2) are R@ suc(2)-invariant the
Bianchi identity for V¢ yields

Tr=a1(p1+3¢2)+ax(wneg+3¢2), Fr=0, (a1,a2)eAC R2.
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i) The following are globally well defined and V¢-parallel

€g, W:i=€glp, P1:=E246—€235—€145— €136 T €127 T €347, (P2 := €567

and ® = (g1 +@2) Neg+ *((p1+@2) Nesg).
i) Since Tr,Fr and R°: A2 — R@suc(2) are R@ suc(2)-invariant the
Bianchi identity for V¢ yields
Tr=a1(p1+3¢2)+ax(wneg+3¢2), Fr=0, (a1,a2)eAC R2.
iii) We compute the following differentials:

do=0, d(egt*p;)=0, i=1,2.
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Proof (for the case hol(VS) =Resuc(2))
i) The following are globally well defined and V¢-parallel

€g, W:i=€glp, P1:=E246—€235—€145— €136 T €127 T €347, (P2 := €567

and @ = (1 +¢@2) Aeg+*((p1+¢2) Aeg).
i) Since Tr,Fr and R°: A2 — R@suc(2) are R@ suc(2)-invariant the
Bianchi identity for V¢ yields

Tr=a1(p1+3¢2)+ax(wneg+3¢2), Fr=0, (a1,a2)eAC R2.
iii) We compute the following differentials:
do=0, d(egt*p;)=0, i=1,2.

iv) Several Lie derivatives along eg vanish,

Loy, LegPin Leg(eg1*i)=0, =12,
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PSU(3)-structures

Proof (continuation)

v) Assume that eg induces a free S-action.
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Proof (continuation)

v) Assume that eg induces a free S-action.
vi) The orbit space m: M8 — N is a Riemannian 7-manifold N.
vii) On N, there exist differential forms @, ; such that

*@;=eg lx@;, i=12.
viii) The 3-form @ := @1 + @3 satisfies

d¥g=0.
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PSU(3)-structures

Proof (continuation)

v) Assume that eg induces a free S-action.
vi) The orbit space m: M8 — N is a Riemannian 7-manifold N.

vii) On N, there exist differential forms , @; such that
*@;=eg lx@;, i=12.
viii) The 3-form @ := @1 + @3 satisfies

d¥g=0.

ix) Consequently, N is a co-calibrated Gy-manifold with fund. form @.
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PSU(3)-structures

Construction

i) Start from a co-calibrated G,-manifold (N, g, 9, V¢, T<) with V€ T¢=0
and hol(V°) = Resuc(2), suc(2).
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Construction
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and hol(VE) = R@ su.(2),su.(2).
i) The forms @1, 92 and @ exist on N and dw = 0.
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PSU(3)-structures

Construction

i) Start from a co-calibrated G,-manifold (N, g, 9, V¢, T<) with V€ T¢=0
and hol(VE) = R@ su.(2),su.(2).
i) The forms @1, 92 and @ exist on N and dw = 0.

iii) Suppose the equation deg = aw defines a principal S'-bundle
m:M8—N.

iv) Then, M8 admits a PSU(3)-structure
p=n"(p1) =27 (p2) + 7" (@) N eg
with parallel torsion
T¢=a1(n" (p1) +377(92)) + a2(n" (@) A eg + 377 (¢2))

and hol(V) cResuc(2).
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