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University of Montenegro

based on joint works with DIETER KOTSCHICK

Castle Rauischholzhausen, July 5, 2012
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Notion of geometric formality

(M, g) - Riemannian manifold, Ω∗(M) -de Rham algebra of differential
forms;

ω ∈ Ωk (M) is harmonic if

∆ω = dδω+ δdω = (d + δ)2ω = 0

d – exterior derivative; δ – coderivative; ∆ - Laplace-de Rham operator
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Notion of geometric formality

In more detail:

〈, 〉 : Ωk (M)→ R - scalar product:

〈α, β〉 =

∫
M

g(αx , βx)dvolg .

The Hodge star operator

∗ : Ωk (M)→ Ωn−k (M)

is defined with
α ∧ ∗β = 〈α, β〉dvolg.
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Notion of geometric formality

If α ∈ Ωk−1 and β ∈ Ωk then

〈dα, β〉 = (−1)k 〈α, ∗−1d ∗ β〉.

δ = (−1)k ∗−1 d∗ is conjugate to d in the space of k - forms.

∗−1 = (−1)(n−k+1)(k−1)∗ ⇒ δ = (−1)nk+n+1 ∗ d∗.
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Notion of geometric formality

Υ(M, g) ⊆ Ω∗(M) – graded linear subspace of harmonic forms;

Well known properties of harmonic forms:

α ∈ Υ(M, g) =⇒ dα = 0 (α is closed);

No harmonic form is a exact: dω , α for any ω ∈ Ω.

Hodge theorem: Any cohomology class [ω] ∈ H∗(M,R) has unique
harmonic representative:

Υ(M, g)→ H∗(M,R) is bijection.

Question: Is (Υ(M, g),∧) (∧ - exterior product) is an algebra?

Affirmative answer to question =⇒ (Υ(M, g),∧) � (H∗(M,R),∧)
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Definition

A Riemannian metric g on M is said to be formal if exterior product of its
harmonic forms are harmonic forms.

Definition

A closed Riemannian manifold M is said to be geometrically formal if it
admits a formal Riemannian metric.

Example

Real cohomology spheres are geometrically formal;

Symmetric spaces G/H are geometrically formal related to an
invariant metric g;

Proof: ω ∈ ΩG(G/H)⇒ dω = 0 and ω , dα for α ∈ Ω∗(G/H)

ΩG(G/H) ≡ Υ(G/H, g)

.
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Relation to rational formality

Definition

A manifold M is formal in the sense of rational homotopy theory if Ω∗(M)
is weakly equivalent to H∗(M,R):

(Ω∗(M), d)← (C , d)→ (H∗(M), d = 0),

where the both homomorphisms induce isomorphisms in cohomology.

Well known examples of formal spaces:

Any manifold having free cohomology algebra is formal.

Any Kaehler manifold is formal.

Compact symmetric spaces are formal.
The first proof: Take (C , d) = (Υ(G/H), 0) — (geometrical proof).
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Relation to rational formality

Formality createrion for compact homogeneous spaces:

Theorem

G/H is formal if and only if it is of Cartan type:

H∗(G/H,R) � RWH [s]/ 〈P1, . . . ,Pk 〉 ⊗ ∧(zk+1, . . . , zn),

where P1, . . . ,Pk are functionally independent and rkH = k , rkG = n.

s - Cartan algebra for H

H∗(BG,R) � R[t ]WH � 〈P1, . . . ,Pn〉, degPi = 2ki − 1
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Relation to rational formality

It is then proved:

Corollary

All homogeneous spaces G/H with rkH = rkG are formal.

Theorem

All generalised symmetric spaces are formal.

(G,H, θ) θ ∈ Aut(G) θk = Id, k ≥ 2 Gθo ⊆ H ⊆ G

G -semisimple and simply connected⇒ (G,H, θ) = (G,Gθ, θ)

In this case there is bijection with generalised symmetric algebras
(g, gθ, θ)

— Purely topological proof of formality!
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Relation to rational formality

Geometrically formal manifold M is formal:

(Ω(M), d)← (Υ(M), d)→ (H∗(M), d = 0).

Vice versa is not true.
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Geometric formality

Results of D. Kotschick:

Theorem

Let closed orineted Mn be geometrically formal:
1 bk (Mn) ≤ bk (Tn);
2 n = 4m ⇒ b±2m(Mn) ≤ b±2m(Tn);
3 b1(Mn) , n − 1.

Theorem

If Mn is closed orineted which fibers smoothly over S1 aand b1(Mn) = 1,
bk (Mn) = 0, 1 < k < n − 1 then M is geometrically formal.

Theorem

All closed oriented geometrically formal manifolds of dimension ≤ 4 have
real cohomology of compact symmetric spaces.
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Corollary

A closed oriented three (four)-manifold with b1(M) = 1 (and b2(M) = 0)
is geometrically formal iff it fibers over S1.

H∗(M) � H∗(S1) ⊗ H∗(S2)(H∗(S3))

This gives many non-symmetric examples of geometrically formal three
and four manifolds.
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Geometric formality

Joint results with D. Kotschick

Seach for geometrically formal manifolds in the class of:

k -symmetric spaces;

isotropy irreducible spaces;

fibrations with geometrically formal base and the fiber;

homogeneous spaces or biquotients with the "nice" metrics.
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Non-geometrically formal exmaples

M is geometrically formal⇒ all cohomology relations hold for the
harmonic forms.

Theorem

There are no formal metrics on complete flag manifolds U(n)/Tn,
Sp(n)/Tn, SO(2n)/Tn, SO(2n + 1)/Tn.

Theorem

There are no formal metrics on SU(2n + 1)/Tn, SU(2n)/Tn,
Spin(2n + 2)/Tn.

Remark:

The cohomology ring structure is obstruction.

They are all k -symmetric spaces.

CP1 → U(3)/T3 → CP2
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Partial flag manifolds

Fn = SU(n + 1)/S(U(n) × U(1) × U(1)); 3 - symmetric space;

Fn = {(L ,P)|P a 2-plane in Cn+2, L a line in P};

Fn → L gives fibration p : Fn → CPn+1 ⇒ Fn is projectivized tangent
bundle of CPn+1;
H∗(Fn,R) is generated by two elements x and y of degree 2 with:

xn+2 = 0,
(x + y)n+2 − xn+2

y
= 0.

Theorem

Any closed oriented manifold M with cohomology ring of Fn is not
geometrically formal.
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Isotropy irreducible spaces

Isotropy irreducible homogeneous spaces need not to be formal.

Example

SU(pq)/(SU(p) × SU(q)) for p, q ≥ 3

SO(78)/E6

SO(n2 − 1)/SU(n) for n ≥ 3

are strongly isotropy irreducible, but are not formal (not Cartan type)→
not geometrically formal.
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S2-bundle over CP2

Theorem

Let M6 be the total space of an S2-bundle over CP2. It is geometrically
formal if and only if it is the trivial bundle S2 × CP2.

The orientation-preserving diffeomorphism group of S2 is homotopy
equivalent to SO(3)⇒ the bundle structure group is SO(3).

SO(3) = PU(2)⇒ every S2-bundle is the projectivisation of a
complex rank 2 vector bundle E.

H∗(M6,R) = R[x, y], degx = degy = 2,

x is pulled back from CP2 and y restricts as a generator to every
fiber. We choose y so that

y2 + c1(E)xy + c2(E)x2 = 0,

where ci(E) =
〈
ci(E), [CP i]

〉
are the Chern numbers . We also have

x3 = 0⇒ Kerx , 0.
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S2-bundle over CP2

We do the base change to obtain y2 + cx2 = 0, where c vanishes iff
M is trivial bundle.

x3 = 0⇒ xy2 = 0⇒ y3 , 0 for c , 0.

If c , 0 and M is geometrically formal then y is nondegenerate.

But iv(y2) = 2ivy ∧ y = 0 for v ∈ Kerx- contradiction!

Svjetlana Terzić Geometric formality



Eschenburg’s and Totaro’s biquotients

Source of examples having positive sectional curvature.

Example

G = SU(3),
U = T1 × T1 = {D(ak , a l , a−k−l),D(bm, bn, b−n−m), a, b ∈ S1}

H∗(G/U) = R[x, y]/
〈
x2 = y2, x3 = y3

〉
— M geometrically formal⇒ x + y is a symplectic form.
— Since (x + y)(x − y) = 0⇒ x − y vanishes - contradiction.

Example

Totaro’s biquotients M = (S3)3/(S1)3 are with infinitely many rational
cohomolog rings.
H∗(M) has three generators x1, x2, x3 in degree 2 with relations:

x2
1 = 0, x2(ax1 + x3 + x2) = 0, x3(bx1 + 2x2 + x3) = 0. a, b ∈ Z .

None of them is geometrically formal (each cohomology ring gives
obstruction).
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Aloff-Wallach spaces Nk ,l = SU(3)/T1

T1 ⊂ SU(3) as D(zk , z l , z−k−l), k , l-coprime integers with
kl(k + l) , 0;

Normal homogeneous metric on Nk ,l : submersion metric for a
biinvariant metric on SU(3) from principal circle fibration
T1 → SU(3)→ Nk ,l ;

It is with positive sectional curvature (proved by Aloff and Wallach);

Nk ,l has real cohomology of S2 × S5 =⇒ no cohomology
obstructions to geometric formality;

Theorem

The normal homogeneous metrics on Aloff-Wallach spaces are not
formal.
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Assume Nk ,l — geometrically formal⇒ for harmonic ω2, ω5 we have
ω2

2 = 0 and ω2 ∧ ω5 is a volume form.

e = λ[ω2], λ , 0 - Euler class of this principal bundle, normalize to
get λ = 1;

η2 = π∗(ω2) = dα, for connection form α;

η5 = π∗(ω5)⇒ η
2
2 = 0, ∗η5 = α ∧ η2, d(∗η5) = 0;

η3 = ∗η5 - harmonic on SU(3)⇒ η3(X ,Y ,Z) =
〈
X , [Y ,Z ]

〉
;

There exists K ⊆ Te(SU(3)/T1), dimK = 5 such that iv(η3) = 0 for
v ∈ K ;

Let H1,H2,E1,E2,F1,F2 - canonical (Chevalley) generators for
SU(3);

Let L is spanned by H1,H2,E1,F1 ⇒ ix(η3) , 0 for x ∈ L ;

K ∩ L = 0 - impossible for dimension reasons.
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Examples of geom. formal homogeneous spaces

Harmonic forms of an invariant metric on G/H are invariant:

h - harmonic⇒ h = hi + dα, ∗h = (∗h)i + dβ for
hi =

∫
G g∗h and (∗h)i =

∫
G g∗(∗h); hi and (∗h)i are invariant⇒

∗hi = ∗

∫
G

g∗h =

∫
G
∗(g∗h) =

∫
G

g∗(∗h) = (∗h)i

⇒ hi is harmonic⇒ h = hi .

Lemma

Let H∗(G/H,R) = ∧(x, y) where x and y are of odd degrees. Then any
homogeneous metric on G/H is geometrically formal.

Lemma

SU(4) acts transitively on S5 × S7 with isotropy subgroup SU(2). All
SU(4)-homogeneous metrics for this action are formal. Furthermore, the
normal homogeneous metrics are not symmetric.
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Stiefel manifolds

Theorem

All homogeneous metrics on the following homogeneous spaces are
geometrically formal:

1 the real Stiefel manifolds V4(R2n+1) = SO(2n + 1)/SO(2n − 3) for
n ≥ 3,

2 the real Stiefel manifolds V3(R2n) = SO(2n)/SO(2n − 3) for n ≥ 3,
3 the complex Stiefel manifolds V2(Cn) = SU(n)/SU(n − 2), for n ≥ 5,
4 quaternionic Stiefel manifolds V2(Hn) = Sp(n)/Sp(n − 2), for n ≥ 3,
5 the octonian Stiefel manifold V2(O2) = Spin(9)/G2, and
6 the space Spin(10)/Spin(7).

Moreover, none of these spaces is homotopy equivalent to a symmetric
space. They are not homotopy equivalent to products of real cohomology
spheres, except possibly for V3(R2n) with n even.
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Complex Stiefel manifolds
Proof:

By James-Whitehead: if V2(Cn) is homotopy equivalent to
S2n−1 × S2n−3 then π4n−1(S2n) contains an element of Hopf invariant
one;

By Adams’s result it follows n ∈ {1, 2, 4};

If V2(Cn) ≈ X1 × X2, where Xi are real homology spheres⇒ Xi are
homotopy spheres⇒ n = 4. But, V2(C4) is an S5-bundle over S7

with structure group SU(4). The clutching element is from
π6(SU(4)) = 0⇒ V2(C4) is diffeomorphic to S5 × S7.

Non homotopy equivalence to symmetric space follows using
classification of homogeneous spaces having cohomology of
odd-dimensional spheres (given by Onischick or Kramer).

Svjetlana Terzić Geometric formality


