The Calabi-Yau equation for T^{2}-fibrations

Luigi Vezzoni

Marburg, July 2012
In collaboration with
A. Fino, E. Buzano, Y.Y. Li and S. M. Salamon

The Calabi-Yau equation

Yau's Theorem [Symplectic version]. Let $\left(M^{n}, J, \Omega\right)$ be a compact Kähler manifold and let σ be a volume form satisfying $\int_{M} \Omega^{n}=\int_{M} \sigma$. Then there exists a unique Kähler form $\tilde{\omega} \in[\Omega]$ such that

$$
\tilde{\omega}^{n}=\sigma
$$

The Calabi-Yau equation

Yau's Theorem [Symplectic version]. Let $\left(M^{n}, J, \Omega\right)$ be a compact Kähler manifold and let σ be a volume form satisfying $\int_{M} \Omega^{n}=\int_{M} \sigma$. Then there exists a unique Kähler form $\tilde{\omega} \in[\Omega]$ such that

$$
\tilde{\omega}^{n}=\sigma \longleftarrow \text { CY Equation }
$$

The Calabi-Yau equation

Yau's Theorem [Symplectic version]. Let $\left(M^{n}, J, \Omega\right)$ be a compact Kähler manifold and let σ be a volume form satisfying $\int_{M} \Omega^{n}=\int_{M} \sigma$. Then there exists a unique Kähler form $\tilde{\omega} \in[\Omega]$ such that

$$
\tilde{\omega}^{n}=\sigma \longleftarrow \text { CY Equation }
$$

CY equation still makes sense on an almost Kähler (AK) manifold when J is non-integrable.

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$.

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$. Then

$$
\text { CY Equation } \longleftrightarrow\left\{\begin{array}{l}
(\Omega+d \alpha)^{n}=e^{f} \Omega^{n} \tag{*}\\
J d \alpha=d \alpha
\end{array}\right.
$$

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$. Then

$$
\text { CY Equation } \longleftrightarrow\left\{\begin{array}{l}
(\Omega+d \alpha)^{n}=e^{f} \Omega^{n} \tag{*}\\
J d \alpha=d \alpha \\
d^{*} \alpha=0
\end{array}\right.
$$

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$. Then

$$
\text { CY Equation } \longleftrightarrow\left\{\begin{array}{l}
(\Omega+d \alpha)^{n}=e^{f} \Omega^{n} \tag{*}\\
J d \alpha=d \alpha \\
d^{*} \alpha=0
\end{array}\right.
$$

- (*) is elliptic for $n=2$;

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$. Then

$$
\text { CY Equation } \longleftrightarrow\left\{\begin{array}{l}
(\Omega+d \alpha)^{n}=e^{f} \Omega^{n} \tag{*}\\
J d \alpha=d \alpha \\
d^{*} \alpha=0
\end{array}\right.
$$

- (*) is elliptic for $n=2$;
- (*) is overdetermined for $n>2$.

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$. Then

$$
\text { CY Equation } \longleftrightarrow\left\{\begin{array}{l}
(\Omega+d \alpha)^{n}=e^{f} \Omega^{n} \tag{*}\\
J d \alpha=d \alpha \\
d^{*} \alpha=0
\end{array}\right.
$$

- (*) is elliptic for $n=2$;
- ($*$) is overdetermined for $n>2$.

Question: Can the Yau's Theorem be generalized to AK 4-manifolds?

CY equation on 4-manifolds

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma=\mathrm{e}^{f} \Omega^{n}$ satisfying $\int_{M} \mathrm{e}^{f} \Omega^{n}=\int_{M} \Omega^{n}$. Then

$$
\text { CY Equation } \longleftrightarrow\left\{\begin{array}{l}
(\Omega+d \alpha)^{n}=e^{f} \Omega^{n} \tag{*}\\
J d \alpha=d \alpha \\
d^{*} \alpha=0
\end{array}\right.
$$

- (*) is elliptic for $n=2$;
- (*) is overdetermined for $n>2$.

Question: Can the Yau's Theorem be generalized to AK 4-manifolds? (At least in the special case $b^{+}=1$)

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY equation are unique.
[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the $C Y$ equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation.
[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the $C Y$ equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation. Then

$$
\left\{\begin{array}{l}
\omega_{1}^{2}=\omega_{2}^{2} \\
\omega_{2}=\omega_{1}+d \alpha
\end{array}\right.
$$

[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the $C Y$ equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation. Then

$$
\left\{\begin{array}{l}
\omega_{1}^{2}=\omega_{2}^{2}, \\
\omega_{2}=\omega_{1}+d \alpha
\end{array} \quad \Longrightarrow d \alpha^{2}+2 \omega_{1} \wedge d \alpha=0\right.
$$

[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation. Then

$$
\left\{\begin{array}{l}
\omega_{1}^{2}=\omega_{2}^{2}, \\
\omega_{2}=\omega_{1}+d \alpha
\end{array} \quad \Longrightarrow d \alpha^{2}+2 \omega_{1} \wedge d \alpha=0\right.
$$

Consider $\bar{\omega}=\omega_{1}+\omega_{2}$.
[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation. Then

$$
\left\{\begin{array}{l}
\omega_{1}^{2}=\omega_{2}^{2}, \\
\omega_{2}=\omega_{1}+d \alpha
\end{array} \quad \Longrightarrow d \alpha^{2}+2 \omega_{1} \wedge d \alpha=0\right.
$$

Consider $\bar{\omega}=\omega_{1}+\omega_{2} . \bar{\omega}$ is a symplectic form.
[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation. Then

$$
\left\{\begin{array}{l}
\omega_{1}^{2}=\omega_{2}^{2}, \\
\omega_{2}=\omega_{1}+d \alpha
\end{array} \quad \Longrightarrow d \alpha^{2}+2 \omega_{1} \wedge d \alpha=0\right.
$$

Consider $\bar{\omega}=\omega_{1}+\omega_{2} . \bar{\omega}$ is a symplectic form.

$$
\bar{\omega} \wedge d \alpha=0
$$

[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY equation are unique.

Proof. Let ω_{1} and ω_{2} be two solutions to the CY equation. Then

$$
\left\{\begin{array}{l}
\omega_{1}^{2}=\omega_{2}^{2}, \\
\omega_{2}=\omega_{1}+d \alpha
\end{array} \quad \Longrightarrow d \alpha^{2}+2 \omega_{1} \wedge d \alpha=0\right.
$$

Consider $\bar{\omega}=\omega_{1}+\omega_{2} . \bar{\omega}$ is a symplectic form.

$$
\bar{\omega} \wedge d \alpha=0 \Longrightarrow d \alpha=0 . \quad \text { c.v.d. }
$$

[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006

Existence of solutions

Donaldson's Conjecture. Let (M, Ω, J, σ) be a compact symplectic 4-manifold with an acs J tamed* by Ω and a volume form. If $\tilde{\omega} \in[\Omega]$ is a symplectic form on M which is compatible with J and solving the CY equation

$$
\tilde{\omega}^{2}=\sigma
$$

then there are C^{∞} a priori bounds on $\tilde{\omega}$ depending only on Ω, J and σ.

* $\Omega(J \cdot, \cdot)>0$.

Existence of solutions

Donaldson's Conjecture. Let (M, Ω, J, σ) be a compact symplectic 4-manifold with an acs J tamed* by Ω and a volume form. If $\tilde{\omega} \in[\Omega]$ is a symplectic form on M which is compatible with J and solving the CY equation

$$
\tilde{\omega}^{2}=\sigma
$$

then there are C^{∞} a priori bounds on $\tilde{\omega}$ depending only on Ω, J and σ.

Applications:

- Yau's theorem holds on compact 4-dimensional AK manifolds with $b^{+}=1$.
* $\Omega(J \cdot, \cdot)>0$.

Existence of solutions

Donaldson's Conjecture. Let (M, Ω, J, σ) be a compact symplectic 4-manifold with an acs J tamed* by Ω and a volume form. If $\tilde{\omega} \in[\Omega]$ is a symplectic form on M which is compatible with J and solving the CY equation

$$
\tilde{\omega}^{2}=\sigma
$$

then there are C^{∞} a priori bounds on $\tilde{\omega}$ depending only on Ω, J and σ.

Applications:

- Yau's theorem holds on compact 4-dimensional AK manifolds with $b^{+}=1$.
- If $b^{+}(M)=1$ and there exists Ω taming J, then there exists $\tilde{\Omega}$ which is compatible with J.
* $\Omega(J \cdot, \cdot)>0$.

The Chern connection

The Chern connection

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$
\nabla J=\nabla g=0, \quad \operatorname{Tor}^{1,1}=0
$$

The Chern connection

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$
\nabla J=\nabla g=0, \quad \operatorname{Tor}^{1,1}=0
$$

Consider

$$
\mathcal{R}_{i \bar{j} k \bar{l}}=R_{i k \bar{l}}^{j}+4 N_{\overline{l j}}^{r} \overline{N_{\bar{r} \bar{k}}^{i}}
$$

The Chern connection

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$
\nabla J=\nabla g=0, \quad \operatorname{Tor}^{1,1}=0
$$

Consider

$$
\mathcal{R}_{i \bar{j} k \bar{l}}=R_{i k \bar{l}}^{j}+4 N_{\overline{l j}}^{r} \overline{N_{\bar{r} \bar{k}}^{i}}
$$

Theorem [Tosatti,Weinkove,Yau] If $\mathcal{R}>0$, then the Donaldson's conjecture holds.
[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, Proc. London Math. Soc., 2008

The Chern connection

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$
\nabla J=\nabla g=0, \quad \operatorname{Tor}^{1,1}=0
$$

Consider

$$
\mathcal{R}_{i \overline{i j k} \bar{l}}=R_{i k \bar{l}}^{j}+4 N_{\overline{l j}}^{r} \overline{N_{\bar{r} \bar{k}}^{i}}
$$

Theorem [Tosatti,Weinkove,Yau] If $\mathcal{R}>0$, then the Donaldson's conjecture holds.

Example: An infinitesimal deformation of the F-S structure on $\mathbb{C P}^{n}$.
[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, Proc. London Math. Soc., 2008

CY equation on the Kodaira-Thurston manifold

The Kodaira-Thurston manifold is defined as $M=\Gamma \backslash \mathrm{Nil}^{3} \times S^{1}$.

CY equation on the Kodaira-Thurston manifold

The Kodaira-Thurston manifold is defined as $M=\Gamma \backslash \mathrm{Nil}^{3} \times S^{1}$.
M has a global left-invariant coframe $\left\{e^{1}, e^{2}, e^{3}, e^{4}\right\}$

$$
d e^{i}=0, \quad i=1,2,3, \quad d e^{4}=e^{1} \wedge e^{2}, \quad(0,0,0,12) .
$$

CY equation on the Kodaira-Thurston manifold

The Kodaira-Thurston manifold is defined as $M=\Gamma \backslash \mathrm{Nil}^{3} \times S^{1}$.
M has a global left-invariant coframe $\left\{e^{1}, e^{2}, e^{3}, e^{4}\right\}$

$$
d e^{i}=0, \quad i=1,2,3, \quad d e^{4}=e^{1} \wedge e^{2}, \quad(0,0,0,12) .
$$

M has the almost Kähler structure

$$
\Omega=e^{1} \wedge e^{3}+e^{2} \wedge e^{4} \quad g=\sum e^{i} \otimes e^{i} .
$$

CY equation on the Kodaira-Thurston manifold

The Kodaira-Thurston manifold is defined as $M=\Gamma \backslash \mathrm{Nil}^{3} \times S^{1}$.
M has a global left-invariant coframe $\left\{e^{1}, e^{2}, e^{3}, e^{4}\right\}$

$$
d e^{i}=0, \quad i=1,2,3, \quad d e^{4}=e^{1} \wedge e^{2}, \quad(0,0,0,12) .
$$

M has the almost Kähler structure

$$
\Omega=e^{1} \wedge e^{3}+e^{2} \wedge e^{4} \quad g=\sum e^{i} \otimes e^{i} .
$$

$b_{1}(M)=3$ and M has no Kähler structures
[K] K.Kodaira, Amer. J. Math., 1964
M is a T^{2}-bundle over a \mathbb{T}^{2}

$$
S^{1} \times S^{1} \quad \hookrightarrow \quad \Gamma \backslash N i i^{3} \times S^{1}
$$

M is a T^{2}-bundle over a \mathbb{T}^{2}

$$
S^{1} \times S^{1} \quad \hookrightarrow \quad \Gamma \backslash N i i^{3} \times S^{1}
$$

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes on the fibers.
M is a T^{2}-bundle over a \mathbb{T}^{2}

$$
S^{1} \times S^{1} \hookrightarrow \underset{ }{ } \quad \stackrel{\Gamma N i i^{3}}{\downarrow} \times S^{1}
$$

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes on the fibers.

Theorem[Tosatti, Weinkove] The CY equation on (M, Ω, g) can be solved for every T^{2}-invariant volume form σ.
[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.
M is a T^{2}-bundle over a \mathbb{T}^{2}

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes on the fibers.

Theorem[Tosatti,Weinkove] The CY equation on (M, Ω, g) can be solved for every T^{2}-invariant volume form σ.

Argument of the proof:

- Writing $\sigma=e^{f} \Omega^{2}$, then every solution $\tilde{\omega}=\Omega+d \alpha$ of the CY equation satisfies $\operatorname{tr}_{\mathrm{g}} \tilde{g} \leq \operatorname{Min}_{M} \Delta f$
- The continuity method gives the result.
[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.

CY equation on the Kodaira-Thurston manifold II
Consider the Calabi-Yau equation $(\Omega+d \alpha)^{2}=\mathrm{e}^{f} \Omega^{2}$.

CY equation on the Kodaira-Thurston manifold II
Consider the Calabi-Yau equation $(\Omega+d \alpha)^{2}=\mathrm{e}^{f} \Omega^{2}$. Let

$$
\alpha=v e^{1}+v_{x} e^{3}+v_{y} e^{4}, \quad v \in C^{\infty}\left(\mathbb{T}^{2}\right) .
$$

CY equation on the Kodaira-Thurston manifold II

Consider the Calabi-Yau equation $(\Omega+d \alpha)^{2}=\mathrm{e}^{f} \Omega^{2}$. Let

$$
\alpha=v e^{1}+v_{x} e^{3}+v_{y} e^{4}, \quad v \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then

$$
d \alpha=v_{x x} e^{13}+v_{x y} e^{23}+v_{x y} e^{14}+v_{y y} e^{24}
$$

CY equation on the Kodaira-Thurston manifold II

Consider the Calabi-Yau equation $(\Omega+d \alpha)^{2}=\mathrm{e}^{f} \Omega^{2}$. Let

$$
\alpha=v e^{1}+v_{x} e^{3}+v_{y} e^{4}, \quad v \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then

$$
d \alpha=v_{x x} e^{13}+v_{x y} e^{23}+v_{x y} e^{14}+v_{y y} e^{24}
$$

and the CY equation becomes the Monge-Ampère equation

$$
\left(1+v_{x x}\right)\left(1+v_{y y}\right)-v_{x y}^{2}=e^{f}
$$

CY equation on the Kodaira-Thurston manifold II

Consider the Calabi-Yau equation $(\Omega+d \alpha)^{2}=\mathrm{e}^{f} \Omega^{2}$. Let

$$
\alpha=v e^{1}+v_{x} e^{3}+v_{y} e^{4}, \quad v \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then

$$
d \alpha=v_{x x} e^{13}+v_{x y} e^{23}+v_{x y} e^{14}+v_{y y} e^{24}
$$

and the CY equation becomes the Monge-Ampère equation

$$
\left(1+v_{x x}\right)\left(1+v_{y y}\right)-v_{x y}^{2}=e^{f}
$$

Theorem [Li] The Monge-Ampère equation on the standard torus \mathbb{T}^{n} has always solution.
[Li] Y.Y. Li, Comm. Pure Appl. Math., 1990.

Goal: Generalize this argument to other AK structures on T^{2}-bundles over \mathbb{T}^{2}.

Goal: Generalize this argument to other AK structures on T^{2}-bundles over \mathbb{T}^{2}.

Theorem [Ue] Every orientable T^{2}-bundle over a \mathbb{T}^{2} is an infra-solvmanifold, i.e. a finite quotient of a solvmanifold.
[Ue] M. Ue, J. Math. Soc. Japan, 2009.

Goal: Generalize this argument to other AK structures on T^{2}-bundles over \mathbb{T}^{2}.

Theorem [Ue] Every orientable T^{2}-bundle over a \mathbb{T}^{2} is an infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let $M=\tilde{\Gamma} \backslash G$ be a 4-dimensional infra-solvmanifold equipped with an invariant $A K$ structure (J, Ω). Then condition $\mathcal{R}>0$ holds if and only if J is integrable.
[Ue] M. Ue, J. Math. Soc. Japan, 2009.

Goal: Generalize this argument to other AK structures on T^{2}-bundles over \mathbb{T}^{2}.

Theorem [Ue] Every orientable T^{2}-bundle over a \mathbb{T}^{2} is an infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let $M=\tilde{\Gamma} \backslash G$ be a 4-dimensional infra-solvmanifold equipped with an invariant $A K$ structure (J, Ω). Then condition $\mathcal{R}>0$ holds if and only if J is integrable.

- In particular the Tosatti-Weinkove-Yau theorem cannot be applied to the case of a T^{2}-bundle over a \mathbb{T}^{2}.
[Ue] M. Ue, J. Math. Soc. Japan, 2009.

The main result

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^{2}-bundle over a \mathbb{T}^{2} equipped with an invariant $A K$ structure (Ω, J). Then for every T^{2}-invariant volume form $\sigma=e^{f} \Omega^{2}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$ the associated $C Y$ equation as a unique solution.

The main result

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^{2}-bundle over a \mathbb{T}^{2} equipped with an invariant $A K$ structure (Ω, J). Then for every T^{2}-invariant volume form $\sigma=e^{f} \Omega^{2}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$ the associated $C Y$ equation as a unique solution.

Layout of the proof:

The main result

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^{2}-bundle over a \mathbb{T}^{2} equipped with an invariant $A K$ structure (Ω, J). Then for every T^{2}-invariant volume form $\sigma=e^{f} \Omega^{2}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$ the associated $C Y$ equation as a unique solution.

Layout of the proof:

- Use the classification of orientable T^{2}-bundles over \mathbb{T}^{2};

The main result

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^{2}-bundle over a \mathbb{T}^{2} equipped with an invariant $A K$ structure (Ω, J). Then for every T^{2}-invariant volume form $\sigma=e^{f} \Omega^{2}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$ the associated $C Y$ equation as a unique solution.

Layout of the proof:

- Use the classification of orientable T^{2}-bundles over \mathbb{T}^{2};
- Classify in each case invariant Lagrangian AK structures and invariant Symplectic AK structures;

The main result

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^{2}-bundle over a \mathbb{T}^{2} equipped with an invariant $A K$ structure (Ω, J). Then for every T^{2}-invariant volume form $\sigma=e^{f} \Omega^{2}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$ the associated $C Y$ equation as a unique solution.

Layout of the proof:

- Use the classification of orientable T^{2}-bundles over \mathbb{T}^{2};
- Classify in each case invariant Lagrangian AK structures and invariant Symplectic AK structures;
- Rewrite the problem in terms of a Monge-Ampère equation;

The main result

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^{2}-bundle over a \mathbb{T}^{2} equipped with an invariant $A K$ structure (Ω, J). Then for every T^{2}-invariant volume form $\sigma=e^{f} \Omega^{2}, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$ the associated $C Y$ equation as a unique solution.

Layout of the proof:

- Use the classification of orientable T^{2}-bundles over \mathbb{T}^{2};
- Classify in each case invariant Lagrangian AK structures and invariant Symplectic AK structures;
- Rewrite the problem in terms of a Monge-Ampère equation;
- Show that such an equation has solution.
- Classification of T^{2}-bundles over \mathbb{T}^{2}
T^{2}-bundles over \mathbb{T}^{2} were classified by Sakamoto and Fukuhara.
[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.
- Classification of T^{2}-bundles over \mathbb{T}^{2}
T^{2}-bundles over \mathbb{T}^{2} were classified by Sakamoto and Fukuhara.
- Any T^{2}-bundle over \mathbb{T}^{2} can be viewed as $M=\Gamma \backslash \mathbb{R}^{4}, \Gamma$ is a lattice of a group G which acts on \mathbb{R}^{4}.
[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.
- Classification of T^{2}-bundles over \mathbb{T}^{2}
T^{2}-bundles over \mathbb{T}^{2} were classified by Sakamoto and Fukuhara.
- Any T^{2}-bundle over \mathbb{T}^{2} can be viewed as $M=\Gamma \backslash \mathbb{R}^{4}, \Gamma$ is a lattice of a group G which acts on \mathbb{R}^{4}.
- The possible groups are

$$
S O(4) \ltimes \mathbb{R}^{4}, \quad \mathrm{Nil}^{3} \times \mathbb{R}, \quad \text { Sol }{ }^{3} \times \mathbb{R}, \quad \mathrm{Nil}^{4}
$$

[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.

- Classification of T^{2}-bundles over \mathbb{T}^{2}
T^{2}-bundles over \mathbb{T}^{2} were classified by Sakamoto and Fukuhara.
- Any T^{2}-bundle over \mathbb{T}^{2} can be viewed as $M=\Gamma \backslash \mathbb{R}^{4}, \Gamma$ is a lattice of a group G which acts on \mathbb{R}^{4}.
- The possible groups are $S O(4) \ltimes \mathbb{R}^{4}, \quad \mathrm{Nil}^{3} \times \mathbb{R}, \quad \mathrm{Sol}{ }^{3} \times \mathbb{R}, \quad \mathrm{Nil}^{4}$.
- T^{2}-bundles over \mathbb{T}^{2} are classified in 9 families
[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.

The nine families

	G	Structure equations
i, ii	$\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
$i v, v$	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil^{4}	$(0,13,0,12)$

Theorem [Geiges] Let M be the total space of an orientable T^{2}-bundle over a \mathbb{T}^{2}. Then
[G] H. Geiges, Duke Math. J., 1992.

The nine families

	G	Structure equations
i, ii	$\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
$i v, v$	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil^{4}	$(0,13,0,12)$

Theorem [Geiges] Let M be the total space of an orientable T^{2}-bundle over a \mathbb{T}^{2}. Then

- every $a \in H^{2}(M, \mathbb{R})$ can be represented by a symplectic form;
[G] H. Geiges, Duke Math. J., 1992.

The nine families

	G	Structure equations
i, ii	$\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
$i v, v$	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil^{4}	$(0,13,0,12)$

Theorem [Geiges] Let M be the total space of an orientable T^{2}-bundle over a \mathbb{T}^{2}. Then

- every $a \in H^{2}(M, \mathbb{R})$ can be represented by a symplectic form;
- M has a Kähler structure if and only if $G=\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$ and in this case all the invariant AK structures are genuine Kähler structures;
[G] H. Geiges, Duke Math. J., 1992.

The nine families

	G	Structure equations
i, ii	$\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
iv, v	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil^{4}	$(0,13,0,12)$

Theorem [Geiges] Let M be the total space of an orientable T^{2}-bundle over a \mathbb{T}^{2}. Then

- every $a \in H^{2}(M, \mathbb{R})$ can be represented by a symplectic form;
- M has a Kähler structure if and only if $G=\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$ and in this case all the invariant AK structures are genuine Kähler structures;
- If $G=N_{i l}{ }^{4}$ then every left-invariant $A K$ structure is Lagrangian;
[G] H. Geiges, Duke Math. J., 1992.

The nine families

	G	Structure equations
i, ii	$\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
iv, v	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil^{4}	$(0,13,0,12)$

Theorem [Geiges] Let M be the total space of an orientable T^{2}-bundle over a \mathbb{T}^{2}. Then

- every $a \in H^{2}(M, \mathbb{R})$ can be represented by a symplectic form;
- M has a Kähler structure if and only if $G=\mathrm{SO}(4) \ltimes \mathbb{R}^{4}$ and in this case all the invariant AK structures are genuine Kähler structures;
- If $G=\mathrm{Nil}^{4}$ then every left-invariant $A K$ structure is Lagrangian;
- If $G=S o I^{3} \times \mathbb{R}$ every $A K$ structure is non-Lagrangian.
[G] H. Geiges, Duke Math. J., 1992.
- Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $\mathrm{Nil}^{3} \times \mathbb{R}, \mathrm{Nil}^{4}$ $\mathrm{Sol}^{3} \times \mathbb{R}$.

- Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $\mathrm{Nil}^{3} \times \mathbb{R}, \mathrm{Nil}^{4}$ $\mathrm{Sol}^{3} \times \mathbb{R}$.

In each case there exists an ON basis $\left(f^{i}\right)$ such that $\Omega=f^{12}+f^{34}$ and

- Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $\mathrm{Nil}^{3} \times \mathbb{R}, \mathrm{Nil}^{4}$ $\mathrm{Sol}^{3} \times \mathbb{R}$.

In each case there exists an ON basis (f^{i}) such that $\Omega=f^{12}+f^{34}$ and

- $G=N i^{4} \rightarrow f^{1} \in\left\langle e^{1}\right\rangle, \quad f^{2} \in\left\langle e^{1}, e^{2}\right\rangle, \quad f^{3} \in\left\langle e^{1}, e^{2}, e^{3}\right\rangle$.
- Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $\mathrm{Nil}^{3} \times \mathbb{R}, \mathrm{Nil}^{4}$ $\mathrm{Sol}^{3} \times \mathbb{R}$. In each case there exists an ON basis (f^{i}) such that $\Omega=f^{12}+f^{34}$ and

- $G=N i^{4} \rightarrow f^{1} \in\left\langle e^{1}\right\rangle, \quad f^{2} \in\left\langle e^{1}, e^{2}\right\rangle, \quad f^{3} \in\left\langle e^{1}, e^{2}, e^{3}\right\rangle$.
- $G=S O I^{3} \times \mathbb{R} \rightarrow f^{1} \in\left\langle e^{1}\right\rangle, \quad f^{3} \in\left\langle e^{3}\right\rangle, \quad f^{4} \in\left\langle e^{3}, e^{4}\right\rangle$.
- Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $\mathrm{Nil}^{3} \times \mathbb{R}, \mathrm{Nil}^{4}$ $\mathrm{Sol}^{3} \times \mathbb{R}$. In each case there exists an ON basis (f^{i}) such that $\Omega=f^{12}+f^{34}$ and

- $G=N i l^{4} \rightarrow f^{1} \in\left\langle e^{1}\right\rangle, \quad f^{2} \in\left\langle e^{1}, e^{2}\right\rangle, \quad f^{3} \in\left\langle e^{1}, e^{2}, e^{3}\right\rangle$.
- $G=S O I^{3} \times \mathbb{R} \rightarrow f^{1} \in\left\langle e^{1}\right\rangle, \quad f^{3} \in\left\langle e^{3}\right\rangle, \quad f^{4} \in\left\langle e^{3}, e^{4}\right\rangle$.
- $G=N i i^{3} \times \mathbb{R} \rightarrow f^{1} \in\left\langle e^{1}\right\rangle, g\left(e^{3}, f^{2}\right)=0, g\left(e^{3}, f^{3}\right) g\left(e^{4}, f^{4}\right) \geq 0$.

Geometry type $G=\mathrm{Nil}^{3} \times \mathbb{R}$

Geometry type $G=\mathrm{Nil}^{3} \times \mathbb{R}$

	G	Structure equations
ii	$\mathrm{SO}(4) \times \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
vi, vii, viii	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
Nil $\times \mathbb{R}$	$(0,0,0,12)$	
ix	NiI^{4}	$(0,13,0,12)$

Geometry type $G=\mathrm{Nil}^{3} \times \mathbb{R}$

	G	Structure equations
i, ii	$S O(4) \times \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
iv, v	Sol $^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	Nil $^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil 4	$(0,13,0,12)$

In this case all the total spaces are nilmanifolds, all the invariant AK structures are Lagrangian and we can work as in the Kodaira-Thurston manifold.

Geometry type $G=\mathrm{Nil}^{3} \times \mathbb{R}$

	G	Structure equations
i, ii	$S O(4) \times \mathbb{R}^{4}$	$(0,0,0,0)$
iii	$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$
vi, vii, viii	$\mathrm{Sol}^{3} \times \mathbb{R}$	$(0,0,13,41)$
$\mathrm{Nil}^{3} \times \mathbb{R}$	$(0,0,0,12)$	
Nil^{4}	$(0,13,0,12)$	

In this case the total spaces could be infra-nilmanifolds, invariant AK structures could be either Lagrangian or non-Lagrangian and the argument used in the Kodaira-Thurston case has to be modified.

Geometry type $G=$ Sol $^{3} \times \mathbb{R}$

	G	Structure equations
i, ii	SO(4) $\times \mathbb{R}^{4}$	$(0,0,0,0)$
iii	Nil $^{3} \times \mathbb{R}$	$(0,0,0,12)$
iv, v	Sol $^{3} \times \mathbb{R}$	$(0,0,13,41)$
vi, vii, viii	Nil $^{3} \times \mathbb{R}$	$(0,0,0,12)$
ix	Nil 4	$(0,13,0,12)$

In this case the total space could be an infra-sovmanifold, all invariant AK structures are non-Lagrangian and the CY equation reduces to a Monge-Ampère equation.

Geometry type $G=\mathrm{Nil}^{4}$

In this case all total spaces are nilmanifolds, all invariant AK structures are Lagrangian and the CY reduces to the same Monge-Ampère equation for Lagrangian AK structures in the families vi), vii), viii) associated to $\mathrm{Nil}^{3} \times \mathbb{R}$.

- The Monge-Ampère equation

The following equation covers all cases

$$
A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}
$$

where

$$
\begin{aligned}
& A_{11}[u]=u_{x x}+B_{11} u_{y}+C_{11}+D u, \\
& A_{12}[u]=u_{x y}+B_{12} u_{y}+C_{12}, \\
& A_{22}[u]=u_{y y}+B_{22} u_{y}+C_{22},
\end{aligned}
$$

and $B_{i j}, C_{i j}, D, E_{i}$ are constants.

- The Monge-Ampère equation

The following equation covers all cases

$$
A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}
$$

where

$$
\begin{aligned}
& A_{11}[u]=u_{x x}+B_{11} u_{y}+C_{11}+D u, \\
& A_{12}[u]=u_{x y}+B_{12} u_{y}+C_{12}, \\
& A_{22}[u]=u_{y y}+B_{22} u_{y}+C_{22},
\end{aligned}
$$

and $B_{i j}, C_{i j}, D, E_{i}$ are constants.
In the Lagrangian case $D=0$

- Solutions to the Monge-Ampère equation

Goal: Show that $A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}$ has a solution on \mathbb{T}^{2}.

- Solutions to the Monge-Ampère equation

Goal: Show that $A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}$ has a solution on \mathbb{T}^{2}.

- The first step consists on observing that solutions to the equation are unique up to a constant.
- Solutions to the Monge-Ampère equation

Goal: Show that $A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}$ has a solution on \mathbb{T}^{2}.

- The first step consists on observing that solutions to the equation are unique up to a constant.
- We look for a solution u satisfying $\int_{\mathbb{T}^{2}} u=0$.
- Solutions to the Monge-Ampère equation

Goal: Show that $A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}$ has a solution on \mathbb{T}^{2}.

- The first step consists on observing that solutions to the equation are unique up to a constant.
- We look for a solution u satisfying $\int_{\mathbb{T}^{2}} u=0$.
- We apply the continuity method to

$$
A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+(1-t) E_{2}+t E_{2} \mathrm{e}^{f}, \quad t \in[0,1] .
$$

- Solutions to the Monge-Ampère equation

Goal: Show that $A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+E_{2} \mathrm{e}^{f}$ has a solution on \mathbb{T}^{2}.

- The first step consists on observing that solutions to the equation are unique up to a constant.
- We look for a solution u satisfying $\int_{\mathbb{T}^{2}} u=0$.
- We apply the continuity method to

$$
A_{11}[u] A_{22}[u]-\left(A_{12}[u]\right)^{2}=E_{1}+(1-t) E_{2}+t E_{2} \mathrm{e}^{f}, \quad t \in[0,1] .
$$

using the a priori estimate

$$
\|u\|_{C^{2}} \leq 2\left(B_{11}+1\right)\left|B_{22}\right| \mathrm{e}^{2 C_{22}}+C_{11}+C_{22}
$$

The CY equation on the Kodaira-Thurston manifold (Still in progress!)

Let (M, Ω, J) be the Kodaira-Thurston manifold with the standard AK structure and let

$$
\sigma=\mathrm{e}^{f} \Omega^{2}, \quad f \in C^{\infty}(M, \mathbb{R}) .
$$

The CY equation on the Kodaira-Thurston manifold (Still in progress!)

Let (M, Ω, J) be the Kodaira-Thurston manifold with the standard AK structure and let

$$
\sigma=\mathrm{e}^{f} \Omega^{2}, \quad f \in C^{\infty}(M, \mathbb{R}) .
$$

f can be regarded as a map $f \in C^{\infty}\left(\mathbb{R}^{4}, \mathbb{R}\right)$ such that

$$
f(x, y, z, t)=f(x+n, y+m, z+k+n y, t+l), \quad(n, m, k, l) \in \mathbb{Z}^{4} .
$$

The CY equation on the Kodaira-Thurston manifold

(Still in progress!)

Let (M, Ω, J) be the Kodaira-Thurston manifold with the standard AK structure and let

$$
\sigma=\mathrm{e}^{f} \Omega^{2}, \quad f \in C^{\infty}(M, \mathbb{R}) .
$$

f can be regarded as a map $f \in C^{\infty}\left(\mathbb{R}^{4}, \mathbb{R}\right)$ such that

$$
f(x, y, z, t)=f(x+n, y+m, z+k+n y, t+l), \quad(n, m, k, l) \in \mathbb{Z}^{4} .
$$

The CY equation writes as

$$
\begin{gathered}
J d a=d a \Longleftrightarrow\left\{\begin{array}{l}
a_{2, y}+x a_{2, z}-a_{1, x}+a_{4}=-a_{4, t}+a_{3, z}, \\
a_{4, y}+x a_{4, z}-a_{1, z}=-a_{3, x}+a_{2, t}
\end{array}\right. \\
(\Omega+d a)^{2}=\mathrm{e}^{f} \Longleftrightarrow \begin{array}{r}
\left(1+a_{3, y}+x a_{3, z}-a_{1, t}\right)\left(1-a_{4, x}+a_{2, z}\right)- \\
-\left(-a_{4, t}+a_{3, z}\right)^{2}-\left(a_{3, x}-a_{2, t}\right)^{2}=\mathrm{e}^{f} .
\end{array}
\end{gathered}
$$

Theorem The CY problem is equivalent to the following Monge-Ampère type equation

$$
\begin{aligned}
& \left(\left(\partial_{y}+x \partial_{z}\right)^{2} u+\partial_{t}^{2} u+\left(\partial_{y}+x \partial_{z}\right) B_{3} u-\partial_{t} B_{1} u+1\right)\left(\partial_{x}^{2} u+\partial_{z}^{2} u+1\right)- \\
& \left(\partial_{x} \partial_{t} u+\left(\partial_{y}+x \partial_{z}\right) \partial_{z} u+\partial_{z} B_{3} u\right)^{2}-\left(\left(\partial_{y}+x \partial_{z}\right) \partial_{x} u-\partial_{z} \partial_{t} u+\partial_{z} u+\partial_{x} B_{3} u\right)^{2}=\mathrm{e}^{F}
\end{aligned}
$$

where B_{1} and B_{3} are linear operators solving

$$
\left\{\begin{array}{l}
\partial_{x}\left(B_{1} u\right)+\partial_{z}\left(B_{3} u\right)=-\partial_{x} u \\
\partial_{x}\left(B_{3} u\right)-\partial_{z}\left(B_{1} u\right)=-\partial_{z} u
\end{array}\right.
$$

Open related problems

- Find a (generalized) $\partial \bar{\partial}$-lemma which ensures that the CY problem reduces to a Monge-Ampère equation.
- Find a proof of the main theorem in terms of a (modified) Ricci flow.
- Find examples / classify compact AK non-Kähler manifolds with $\mathcal{R}>0$.

