The Calabi-Yau equation for T^2 -fibrations

Luigi Vezzoni

Marburg, July 2012

In collaboration with A. Fino, E. Buzano, Y.Y. Li and S. M. Salamon

The Calabi-Yau equation

Yau's Theorem [Symplectic version]. Let (M^n, J, Ω) be a compact Kähler manifold and let σ be a volume form satisfying $\int_M \Omega^n = \int_M \sigma$. Then there exists a unique Kähler form $\tilde{\omega} \in [\Omega]$ such that

$$\tilde{\omega}^n = \sigma$$

The Calabi-Yau equation

Yau's Theorem [Symplectic version]. Let (M^n, J, Ω) be a compact Kähler manifold and let σ be a volume form satisfying $\int_M \Omega^n = \int_M \sigma$. Then there exists a unique Kähler form $\tilde{\omega} \in [\Omega]$ such that

 $\tilde{\omega}^n = \sigma \longleftarrow CY$ Equation

The Calabi-Yau equation

Yau's Theorem [Symplectic version]. Let (M^n, J, Ω) be a compact Kähler manifold and let σ be a volume form satisfying $\int_M \Omega^n = \int_M \sigma$. Then there exists a unique Kähler form $\tilde{\omega} \in [\Omega]$ such that

 $\tilde{\omega}^n = \sigma \longleftarrow CY$ Equation

CY equation still makes sense on an almost Kähler (AK) manifold when J is non-integrable.

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$.

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$. Then

CY Equation
$$\longleftrightarrow \begin{cases} (\Omega + d\alpha)^n = e^f \Omega^n \\ Jd\alpha = d\alpha \end{cases}$$
 (*)

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$. Then

CY Equation
$$\longleftrightarrow$$

$$\begin{cases}
(\Omega + d\alpha)^n = e^f \Omega^n \\
Jd\alpha = d\alpha \\
d^*\alpha = 0
\end{cases} (*)$$

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$. Then

CY Equation
$$\longleftrightarrow \begin{cases} (\Omega + d\alpha)^n = e^f \Omega^n \\ Jd\alpha = d\alpha \\ d^*\alpha = 0 \end{cases}$$
 (*)

• (*) is elliptic for n = 2;

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$. Then

CY Equation
$$\longleftrightarrow \begin{cases} (\Omega + d\alpha)^n = e^f \Omega^n \\ Jd\alpha = d\alpha \\ d^*\alpha = 0 \end{cases}$$
 (*)

- (*) is elliptic for n = 2;
- (*) is overdetermined for n > 2.

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$. Then

CY Equation
$$\longleftrightarrow$$

$$\begin{cases}
(\Omega + d\alpha)^n = e^f \Omega^n \\
Jd\alpha = d\alpha \\
d^*\alpha = 0
\end{cases} (*)$$

- (*) is elliptic for n = 2;
- (*) is overdetermined for n > 2.

Question: Can the Yau's Theorem be generalized to AK 4-manifolds?

Let (M, J, Ω) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_M e^f \Omega^n = \int_M \Omega^n$. Then

CY Equation
$$\longleftrightarrow$$

$$\begin{cases}
(\Omega + d\alpha)^n = e^f \Omega^n \\
Jd\alpha = d\alpha \\
d^*\alpha = 0
\end{cases} (*)$$

- (*) is elliptic for n = 2;
- (*) is overdetermined for n > 2.

Question: Can the Yau's Theorem be generalized to AK 4-manifolds? (At least in the special case $b^+ = 1$)

Proposition [Donaldson] In dimension 4 solutions to the CY equation are unique.

[D] S.K.Donaldson, in Inspired by S.S.Chern, World Sci. 2006

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation.

[D] S.K.Donaldson, in Inspired by S.S.Chern, World Sci. 2006

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation. Then

$$\begin{cases} \omega_1^2 = \omega_2^2 \,, \\ \omega_2 = \omega_1 + d\alpha \end{cases}$$

[D] S.K.Donaldson, in Inspired by S.S.Chern, World Sci. 2006

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation. Then

$$\begin{cases} \omega_1^2 = \omega_2^2, \\ \omega_2 = \omega_1 + d\alpha \end{cases} \implies d\alpha^2 + 2\omega_1 \wedge d\alpha = 0.$$

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation. Then

$$\begin{cases} \omega_1^2 = \omega_2^2, \\ \omega_2 = \omega_1 + d\alpha \end{cases} \implies d\alpha^2 + 2\omega_1 \wedge d\alpha = 0.$$

Consider $\bar{\omega} = \omega_1 + \omega_2$.

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation. Then

$$\begin{cases} \omega_1^2 = \omega_2^2, \\ \omega_2 = \omega_1 + d\alpha \end{cases} \implies d\alpha^2 + 2\omega_1 \wedge d\alpha = 0.$$

Consider $\bar{\omega} = \omega_1 + \omega_2$. $\bar{\omega}$ is a symplectic form.

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation. Then

$$\begin{cases} \omega_1^2 = \omega_2^2, \\ \omega_2 = \omega_1 + d\alpha \end{cases} \implies d\alpha^2 + 2\omega_1 \wedge d\alpha = 0.$$

Consider $\bar{\omega} = \omega_1 + \omega_2$. $\bar{\omega}$ is a symplectic form.

$$\bar{\omega} \wedge \boldsymbol{d}\alpha = \mathbf{0}$$

Proposition [Donaldson] *In dimension* 4 *solutions to the CY equation are unique.*

Proof. Let ω_1 and ω_2 be two solutions to the CY equation. Then

$$\begin{cases} \omega_1^2 = \omega_2^2, \\ \omega_2 = \omega_1 + d\alpha \end{cases} \implies d\alpha^2 + 2\omega_1 \wedge d\alpha = 0.$$

Consider $\bar{\omega} = \omega_1 + \omega_2$. $\bar{\omega}$ is a symplectic form.

$$\bar{\omega} \wedge d\alpha = 0 \Longrightarrow d\alpha = 0.$$
 c.v.d.

Existence of solutions

Donaldson's Conjecture. Let (M, Ω, J, σ) be a compact symplectic 4-manifold with an acs J tamed^{*} by Ω and a volume form. If $\tilde{\omega} \in [\Omega]$ is a symplectic form on M which is compatible with J and solving the CY equation

$$\tilde{\omega}^2 = \sigma$$

then there are C^{∞} a priori bounds on $\tilde{\omega}$ depending only on Ω , J and σ .

*
$$\Omega(J\cdot, \cdot) > 0.$$

Existence of solutions

Donaldson's Conjecture. Let (M, Ω, J, σ) be a compact symplectic 4-manifold with an acs J tamed^{*} by Ω and a volume form. If $\tilde{\omega} \in [\Omega]$ is a symplectic form on M which is compatible with J and solving the CY equation

$$\tilde{\omega}^2 = \sigma$$

then there are C^{∞} a priori bounds on $\tilde{\omega}$ depending only on Ω , J and σ .

Applications:

• Yau's theorem holds on compact 4-dimensional AK manifolds with $b^+ = 1$.

*
$$\Omega(J\cdot,\cdot) > 0.$$

Existence of solutions

Donaldson's Conjecture. Let (M, Ω, J, σ) be a compact symplectic 4-manifold with an acs J tamed^{*} by Ω and a volume form. If $\tilde{\omega} \in [\Omega]$ is a symplectic form on M which is compatible with J and solving the CY equation

$$\tilde{\omega}^2 = \sigma$$

then there are C^{∞} a priori bounds on $\tilde{\omega}$ depending only on Ω , J and σ .

Applications:

• Yau's theorem holds on compact 4-dimensional AK manifolds with $b^+ = 1$.

 If b⁺(M) = 1 and there exists Ω taming J, then there exists Ω
 which is compatible with J.

*
$$\Omega(J\cdot,\cdot) > 0.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$\nabla J = \nabla g = 0, \quad \text{Tor}^{1,1} = 0.$$

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$\nabla J = \nabla g = 0, \quad \text{Tor}^{1,1} = 0.$$

Consider

$$\mathcal{R}_{i\bar{j}k\bar{l}} = R^{j}_{ik\bar{l}} + 4N^{r}_{\bar{l}\bar{j}}\overline{N^{i}_{\bar{r}\bar{k}}}$$

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$\nabla J = \nabla g = 0, \quad \text{Tor}^{1,1} = 0.$$

Consider

$$\mathcal{R}_{i\bar{j}k\bar{l}} = R^{j}_{ik\bar{l}} + 4N^{r}_{\bar{l}\bar{j}}\overline{N^{i}_{\bar{r}\bar{k}}}$$

Theorem [Tosatti,Weinkove,Yau] If $\mathcal{R} > 0$, then the Donaldson's conjecture holds.

[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, *Proc. London Math. Soc.*, 2008

Let (M, g, J) be an almost Hermtian manifold. There exists a unique connection ∇ such that

$$\nabla J = \nabla g = 0, \quad \text{Tor}^{1,1} = 0.$$

Consider

$$\mathcal{R}_{i\bar{j}k\bar{l}} = R^{j}_{ik\bar{l}} + 4N^{r}_{\bar{l}\bar{j}}\overline{N^{i}_{\bar{r}\bar{k}}}$$

Theorem [Tosatti,Weinkove,Yau] If $\mathcal{R} > 0$, then the Donaldson's conjecture holds.

Example: An infinitesimal deformation of the F-S structure on \mathbb{CP}^n .

[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, *Proc. London Math. Soc.*, 2008

The Kodaira-Thurston manifold is defined as $M = \Gamma \setminus Nil^3 \times S^1$.

The Kodaira-Thurston manifold is defined as $M = \Gamma \setminus Nil^3 \times S^1$.

M has a global left-invariant coframe $\{e^1,e^2,e^3,e^4\}$

$$de^i = 0$$
, $i = 1, 2, 3$, $de^4 = e^1 \wedge e^2$, $(0, 0, 0, 12)$.

The Kodaira-Thurston manifold is defined as $M = \Gamma \setminus Nil^3 \times S^1$.

M has a global left-invariant coframe $\{e^1,e^2,e^3,e^4\}$

$$de^i = 0\,, \quad i = 1, 2, 3\,, \quad de^4 = e^1 \wedge e^2\,, \quad (0, 0, 0, 12)\,.$$

M has the almost Kähler structure

$$\Omega = e^1 \wedge e^3 + e^2 \wedge e^4 \quad g = \sum e^i \otimes e^i \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Kodaira-Thurston manifold is defined as $M = \Gamma \setminus Nil^3 \times S^1$.

M has a global left-invariant coframe $\{e^1,e^2,e^3,e^4\}$

$$de^i=0\,,\quad i=1,2,3\,,\quad de^4=e^1\wedge e^2\,,\quad (0,0,0,12)\,.$$

M has the almost Kähler structure

$$\Omega = e^1 \wedge e^3 + e^2 \wedge e^4 \quad g = \sum e^i \otimes e^i \,.$$

b1(M) = 3 and M has no Kähler structures[K] K.Kodaira, Amer. J. Math., 1964

$$\begin{array}{cccc} S^1 \times S^1 & \hookrightarrow & \Gamma \backslash \textit{Nil}^3 & \times S^1 \\ & \downarrow \\ & \mathbb{T}^2 \end{array}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$\begin{array}{cccc} S^1 \times S^1 & \hookrightarrow & \Gamma \backslash \textit{Nil}^3 & \times S^1 \\ & \downarrow \\ & \mathbb{T}^2 \end{array}$$

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes on the fibers.

$$\begin{array}{cccc} S^1 \times S^1 & \hookrightarrow & \Gamma \backslash \textit{Nil}^3 & \times S^1 \\ & \downarrow \\ & \mathbb{T}^2 \end{array}$$

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes on the fibers.

Theorem[Tosatti,Weinkove] The CY equation on (M, Ω, g) can be solved for every T^2 -invariant volume form σ .

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.

$$\begin{array}{cccc} S^1 \times S^1 & \hookrightarrow & \Gamma \backslash \textit{Nil}^3 & \times S^1 \\ & \downarrow \\ & \mathbb{T}^2 \end{array}$$

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes on the fibers.

Theorem[Tosatti,Weinkove] The CY equation on (M, Ω, g) can be solved for every T^2 -invariant volume form σ .

Argument of the proof:

- Writing $\sigma = e^f \Omega^2$, then every solution $\tilde{\omega} = \Omega + d\alpha$ of the CY equation satisfies $\left| \operatorname{tr}_{\mathrm{g}} \tilde{g} \leq \operatorname{Min}_M \Delta f \right|$
- The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.

Consider the Calabi-Yau equation $(\Omega + d\alpha)^2 = e^f \Omega^2$.

Consider the Calabi-Yau equation $(\Omega + d\alpha)^2 = e^f \Omega^2$. Let

$$\alpha = v e^1 + v_x e^3 + v_y e^4, \quad v \in C^\infty(\mathbb{T}^2).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Consider the Calabi-Yau equation $(\Omega + d\alpha)^2 = e^f \Omega^2$. Let

$$\alpha = v e^1 + v_x e^3 + v_y e^4$$
, $v \in C^\infty(\mathbb{T}^2)$.

Then

$$d\alpha = v_{xx} e^{13} + v_{xy} e^{23} + v_{xy} e^{14} + v_{yy} e^{24}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Consider the Calabi-Yau equation $(\Omega + d\alpha)^2 = e^f \Omega^2$. Let

$$\alpha = v e^1 + v_x e^3 + v_y e^4, \quad v \in C^\infty(\mathbb{T}^2).$$

Then

$$d\alpha = v_{xx} e^{13} + v_{xy} e^{23} + v_{xy} e^{14} + v_{yy} e^{24}$$

and the CY equation becomes the Monge-Ampère equation

$$(1 + v_{xx})(1 + v_{yy}) - v_{xy}^2 = e^f$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the Calabi-Yau equation $(\Omega + d\alpha)^2 = e^f \Omega^2$. Let

$$\alpha = v e^1 + v_x e^3 + v_y e^4, \quad v \in C^\infty(\mathbb{T}^2).$$

Then

$$d\alpha = v_{xx} e^{13} + v_{xy} e^{23} + v_{xy} e^{14} + v_{yy} e^{24}$$

and the CY equation becomes the Monge-Ampère equation

$$(1 + v_{xx})(1 + v_{yy}) - v_{xy}^2 = e^f$$

Theorem [Li] The Monge-Ampère equation on the standard torus \mathbb{T}^n has always solution.

[Li] Y.Y. Li, Comm. Pure Appl. Math., 1990.

Goal: Generalize this argument to other AK structures on \mathcal{T}^2 -bundles over \mathbb{T}^2 .

Goal: Generalize this argument to other AK structures on T^2 -bundles over \mathbb{T}^2 .

Theorem [Ue] Every orientable T^2 -bundle over a \mathbb{T}^2 is an *infra-solvmanifold*, i.e. a finite quotient of a solvmanifold.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.

Goal: Generalize this argument to other AK structures on T^2 -bundles over \mathbb{T}^2 .

Theorem [Ue] Every orientable T^2 -bundle over a \mathbb{T}^2 is an *infra-solvmanifold*, i.e. a finite quotient of a solvmanifold.

Lemma Let $M = \tilde{\Gamma} \setminus G$ be a 4-dimensional infra-solvmanifold equipped with an invariant AK structure (J, Ω) . Then condition $\mathcal{R} > 0$ holds if and only if J is integrable.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.

Goal: Generalize this argument to other AK structures on T^2 -bundles over \mathbb{T}^2 .

Theorem [Ue] Every orientable T^2 -bundle over a \mathbb{T}^2 is an *infra-solvmanifold*, i.e. a finite quotient of a solvmanifold.

Lemma Let $M = \tilde{\Gamma} \setminus G$ be a 4-dimensional infra-solvmanifold equipped with an invariant AK structure (J, Ω) . Then condition $\mathcal{R} > 0$ holds if and only if J is integrable.

• In particular the Tosatti-Weinkove-Yau theorem cannot be applied to the case of a T^2 -bundle over a \mathbb{T}^2 .

[Ue] M. Ue, J. Math. Soc. Japan, 2009.

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^2 -bundle over a \mathbb{T}^2 equipped with an invariant AK structure (Ω, J) . Then for every T^2 -invariant volume form $\sigma = e^f \Omega^2$, $f \in C^{\infty}(\mathbb{T}^2)$ the associated CY equation as a unique solution.

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^2 -bundle over a \mathbb{T}^2 equipped with an invariant AK structure (Ω, J) . Then for every T^2 -invariant volume form $\sigma = e^f \Omega^2$, $f \in C^{\infty}(\mathbb{T}^2)$ the associated CY equation as a unique solution.

Layout of the proof:

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^2 -bundle over a \mathbb{T}^2 equipped with an invariant AK structure (Ω, J) . Then for every T^2 -invariant volume form $\sigma = e^f \Omega^2$, $f \in C^{\infty}(\mathbb{T}^2)$ the associated CY equation as a unique solution.

Layout of the proof:

• Use the classification of orientable *T*²-bundles over **T**²;

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^2 -bundle over a \mathbb{T}^2 equipped with an invariant AK structure (Ω, J) . Then for every T^2 -invariant volume form $\sigma = e^f \Omega^2$, $f \in C^{\infty}(\mathbb{T}^2)$ the associated CY equation as a unique solution.

Layout of the proof:

- Use the classification of orientable *T*²-bundles over **T**²;
- Classify in each case *invariant Lagrangian* AK structures and *invariant Symplectic* AK structures;

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^2 -bundle over a \mathbb{T}^2 equipped with an invariant AK structure (Ω, J) . Then for every T^2 -invariant volume form $\sigma = e^f \Omega^2$, $f \in C^{\infty}(\mathbb{T}^2)$ the associated CY equation as a unique solution.

Layout of the proof:

- Use the classification of orientable *T*²-bundles over \mathbb{T}^2 ;
- Classify in each case *invariant Lagrangian* AK structures and *invariant Symplectic* AK structures;
- Rewrite the problem in terms of a Monge-Ampère equation;

Theorem [Fino, Li, Salamon, -/ Buzano, Fino, -] Let M be a T^2 -bundle over a \mathbb{T}^2 equipped with an invariant AK structure (Ω, J) . Then for every T^2 -invariant volume form $\sigma = e^f \Omega^2$, $f \in C^{\infty}(\mathbb{T}^2)$ the associated CY equation as a unique solution.

Layout of the proof:

- Use the classification of orientable *T*²-bundles over **T**²;
- Classify in each case *invariant Lagrangian* AK structures and *invariant Symplectic* AK structures;
- Rewrite the problem in terms of a Monge-Ampère equation;

Show that such an equation has solution.

 $\mathcal{T}^2\text{-}\mathsf{bundles}$ over \mathbb{T}^2 were classified by Sakamoto and Fukuhara.

[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{T}^2\text{-}\mathsf{bundles}$ over \mathbb{T}^2 were classified by Sakamoto and Fukuhara.

Any T²-bundle over T² can be viewed as M = Γ\ℝ⁴, Γ is a lattice of a group G which acts on ℝ⁴.

[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.

 $\mathcal{T}^2\text{-}\mathsf{bundles}$ over \mathbb{T}^2 were classified by Sakamoto and Fukuhara.

Any T²-bundle over T² can be viewed as M = Γ\ℝ⁴, Γ is a lattice of a group G which acts on ℝ⁴.

• The possible groups are $SO(4) \ltimes \mathbb{R}^4$, $Nil^3 \times \mathbb{R}$, $Sol^3 \times \mathbb{R}$, Nil^4 .

[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.

 $\mathcal{T}^2\text{-}\mathsf{bundles}$ over \mathbb{T}^2 were classified by Sakamoto and Fukuhara.

Any T²-bundle over T² can be viewed as M = Γ\ℝ⁴, Γ is a lattice of a group G which acts on ℝ⁴.

- The possible groups are $SO(4) \ltimes \mathbb{R}^4$, $Nil^3 \times \mathbb{R}$, $Sol^3 \times \mathbb{R}$, Nil^4 .
- T^2 -bundles over \mathbb{T}^2 are classified in 9 families

[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.

	G	Structure equations
<i>i</i> , <i>ii</i>	$SO(4)\ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$\mathit{Nil}^3 imes\mathbb{R}$	(0, 0, 0, 12)
iv, v	$\mathit{Sol}^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$\mathit{Nil}^3 imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

Theorem [Geiges] Let M be the total space of an orientable T^2 -bundle over a \mathbb{T}^2 . Then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

	G	Structure equations
<i>i</i> , <i>ii</i>	$SO(4)\ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$\mathit{Nil}^3 imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	$\mathit{Sol}^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$\mathit{Nil}^3 imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

Theorem [Geiges] Let M be the total space of an orientable T^2 -bundle over a \mathbb{T}^2 . Then

• every $a \in H^2(M, \mathbb{R})$ can be represented by a symplectic form;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	G	Structure equations
<i>i</i> , <i>ii</i>	$SO(4) \ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$Nil^3 imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	Sol $^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$Nil^3 imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

Theorem [Geiges] Let M be the total space of an orientable T^2 -bundle over a \mathbb{T}^2 . Then

- every $a \in H^2(M, \mathbb{R})$ can be represented by a symplectic form;
- M has a K\u00e4hler structure if and only if G = SO(4) κ ℝ⁴ and in this case all the invariant AK structures are genuine K\u00e4hler structures;

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

	G	Structure equations
<i>i</i> , <i>ii</i>	$SO(4) \ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$Nil^3 imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	Sol $^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$Nil^3 imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

Theorem [Geiges] Let M be the total space of an orientable T^2 -bundle over a \mathbb{T}^2 . Then

- every $a \in H^2(M, \mathbb{R})$ can be represented by a symplectic form;
- M has a K\u00e4hler structure if and only if G = SO(4) κ ℝ⁴ and in this case all the invariant AK structures are genuine K\u00e4hler structures;
- If $G = Nil^4$ then every left-invariant AK structure is Lagrangian;

	G	Structure equations
<i>i</i> , <i>ii</i>	$SO(4) \ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$Nil^3 imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	Sol $^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$Nil^3 imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

Theorem [Geiges] Let M be the total space of an orientable T^2 -bundle over a \mathbb{T}^2 . Then

- every $a \in H^2(M, \mathbb{R})$ can be represented by a symplectic form;
- M has a K\u00e4hler structure if and only if G = SO(4) κ ℝ⁴ and in this case all the invariant AK structures are genuine K\u00e4hler structures;
- If G = Nil⁴ then every left-invariant AK structure is Lagrangian;
- If $G = Sol^3 \times \mathbb{R}$ every AK structure is non-Lagrangian.

• Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $Nil^3 \times \mathbb{R}$, Nil^4 $Sol^3 \times \mathbb{R}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $Nil^3 \times \mathbb{R}$, Nil^4 $Sol^3 \times \mathbb{R}$.

In each case there exists an ON basis (f^i) such that $\Omega = f^{12} + f^{34}$ and

<u>Classification of invariant AK structures</u>

Goal: Classify all invariant AK structures (g, Ω) on $Nil^3 \times \mathbb{R}$, Nil^4 $Sol^3 \times \mathbb{R}$.

In each case there exists an ON basis (f^i) such that $\Omega = f^{12} + f^{34}$ and

•
$$G = Nil^4 \rightarrow f^1 \in \langle e^1 \rangle$$
, $f^2 \in \langle e^1, e^2 \rangle$, $f^3 \in \langle e^1, e^2, e^3 \rangle$.

• Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $Nil^3 \times \mathbb{R}$, Nil^4 $Sol^3 \times \mathbb{R}$.

In each case there exists an ON basis (f^i) such that $\Omega = f^{12} + f^{34}$ and

•
$$G = Nil^4 \rightarrow f^1 \in \langle e^1 \rangle$$
, $f^2 \in \langle e^1, e^2 \rangle$, $f^3 \in \langle e^1, e^2, e^3 \rangle$.

• $G = Sol^3 \times \mathbb{R} \to f^1 \in \left\langle e^1 \right\rangle, \quad f^3 \in \left\langle e^3 \right\rangle, \quad f^4 \in \left\langle e^3, e^4 \right\rangle.$

• Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Ω) on $Nil^3 \times \mathbb{R}$, Nil^4 $Sol^3 \times \mathbb{R}$.

In each case there exists an ON basis (f^i) such that $\Omega = f^{12} + f^{34}$ and

•
$$G = Nil^4 \rightarrow f^1 \in \langle e^1 \rangle$$
, $f^2 \in \langle e^1, e^2 \rangle$, $f^3 \in \langle e^1, e^2, e^3 \rangle$.

•
$$G = Sol^3 \times \mathbb{R} \to f^1 \in \left\langle e^1 \right\rangle, \quad f^3 \in \left\langle e^3 \right\rangle, \quad f^4 \in \left\langle e^3, e^4 \right\rangle.$$

• $G = Nil^3 \times \mathbb{R} \rightarrow f^1 \in \left\langle e^1 \right\rangle, \ g(e^3, f^2) = 0, \ g(e^3, f^3)g(e^4, f^4) \ge 0.$

	G	Structure equations
i, ii	$SO(4)\ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$\mathit{Nil}^3 imes\mathbb{R}$	(0, 0, 0, 12)
iv, v	Sol $^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$\mathit{Nil}^3 imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

In this case all the total spaces are *nilmanifolds*, all the invariant AK structures are *Lagrangian* and we can work as in the Kodaira-Thurston manifold.

	G	Structure equations
i, ii	$SO(4)\ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$\mathit{Nil^3} imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	Sol $^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$\mathit{Nil^3} imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

In this case the total spaces could be *infra-nilmanifolds*, invariant AK structures could be either *Lagrangian* or non-Lagrangian and the argument used in the Kodaira-Thurston case has to be modified.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	G	Structure equations
i, ii	$SO(4)\ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$\mathit{Nil^3} imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	$\mathit{Sol}^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$\mathit{Nil^3} imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

In this case the total space could be an *infra-sovmanifold*, all invariant AK structures are *non-Lagrangian* and the CY equation reduces to a Monge-Ampère equation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometry type $G = Nil^4$

	G	Structure equations
i, ii	$SO(4)\ltimes \mathbb{R}^4$	(0, 0, 0, 0)
iii	$\mathit{Nil^3} imes \mathbb{R}$	(0, 0, 0, 12)
iv, v	Sol $^3 imes \mathbb{R}$	(0, 0, 13, 41)
vi, vii, viii	$\mathit{Nil^3} imes \mathbb{R}$	(0, 0, 0, 12)
ix	Nil ⁴	(0, 13, 0, 12)

In this case all total spaces are *nilmanifolds*, all invariant AK structures are *Lagrangian* and the CY reduces to the same Monge-Ampère equation for *Lagrangian* AK structures in the families *vi*), *vii*), *viii*) associated to $Nil^3 \times \mathbb{R}$.

- ロ ト - 4 回 ト - 4 □ - 4

• The Monge-Ampère equation

The following equation covers all cases

$$A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$$

where

$$A_{11}[u] = u_{xx} + B_{11}u_y + C_{11} + Du,$$

$$A_{12}[u] = u_{xy} + B_{12}u_y + C_{12},$$

$$A_{22}[u] = u_{yy} + B_{22}u_y + C_{22},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

and B_{ij} , C_{ij} , D, E_i are constants.

• The Monge-Ampère equation

The following equation covers all cases

$$A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$$

where

$$A_{11}[u] = u_{xx} + B_{11}u_y + C_{11} + Du,$$

$$A_{12}[u] = u_{xy} + B_{12}u_y + C_{12},$$

$$A_{22}[u] = u_{yy} + B_{22}u_y + C_{22},$$

and B_{ij} , C_{ij} , D, E_i are constants.

In the Lagrangian case D = 0

Goal: Show that $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$ has a solution on \mathbb{T}^2 .

Goal: Show that $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$ has a solution on \mathbb{T}^2 .

• The first step consists on observing that solutions to the equation are unique up to a constant.

Goal: Show that $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$ has a solution on \mathbb{T}^2 .

• The first step consists on observing that solutions to the equation are unique up to a constant.

• We look for a solution u satisfying $\int_{\mathbb{T}^2} u = 0$.

Goal: Show that $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$ has a solution on \mathbb{T}^2 .

- The first step consists on observing that solutions to the equation are unique up to a constant.
- We look for a solution u satisfying $\int_{\mathbb{T}^2} u = 0$.
- We apply the continuity method to

 $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + (1-t)E_2 + tE_2 e^f, \quad t \in [0,1].$

Goal: Show that $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f$ has a solution on \mathbb{T}^2 .

- The first step consists on observing that solutions to the equation are unique up to a constant.
- We look for a solution u satisfying $\int_{\mathbb{T}^2} u = 0$.
- We apply the continuity method to

 $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + (1-t)E_2 + tE_2 e^f, \quad t \in [0,1].$

using the a priori estimate

$$\|u\|_{C^2} \le 2(B_{11}+1)|B_{22}|e^{2C_{22}}+C_{11}+C_{22}.$$

The CY equation on the Kodaira-Thurston manifold (Still in progress!)

Let (M, Ω, J) be the Kodaira-Thurston manifold with the standard AK structure and let

$$\sigma = \mathrm{e}^f \Omega^2, \quad f \in C^\infty(M,\mathbb{R}).$$

The CY equation on the Kodaira-Thurston manifold (Still in progress!)

Let (M, Ω, J) be the Kodaira-Thurston manifold with the standard AK structure and let

$$\sigma = \mathrm{e}^f \Omega^2 \,, \quad f \in C^\infty(M,\mathbb{R}).$$

f can be regarded as a map $f\in C^\infty(\mathbb{R}^4,\mathbb{R})$ such that

$$f(x, y, z, t) = f(x + n, y + m, z + k + ny, t + l), \quad (n, m, k, l) \in \mathbb{Z}^4.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The CY equation on the Kodaira-Thurston manifold (Still in progress!)

Let (M, Ω, J) be the Kodaira-Thurston manifold with the standard AK structure and let

$$\sigma = \mathrm{e}^f \Omega^2, \quad f \in C^\infty(M,\mathbb{R}).$$

f can be regarded as a map $f\in C^\infty(\mathbb{R}^4,\mathbb{R})$ such that

$$f(x, y, z, t) = f(x + n, y + m, z + k + ny, t + l), \quad (n, m, k, l) \in \mathbb{Z}^4.$$

The CY equation writes as

(Ω

$$Jda = da \iff \begin{cases} a_{2,y} + xa_{2,z} - a_{1,x} + a_4 = -a_{4,t} + a_{3,z}, \\ a_{4,y} + xa_{4,z} - a_{1,z} = -a_{3,x} + a_{2,t} \end{cases}$$
$$+ da)^2 = e^f \iff \frac{(1 + a_{3,y} + xa_{3,z} - a_{1,t})(1 - a_{4,x} + a_{2,z}) - (-a_{4,t} + a_{3,z})^2 - (a_{3,x} - a_{2,t})^2}{-(-a_{4,t} + a_{3,z})^2 - (a_{3,x} - a_{2,t})^2} = e^f.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem The CY problem is equivalent to the following Monge-Ampère type equation

$$\left((\partial_y + x\partial_z)^2 u + \partial_t^2 u + (\partial_y + x\partial_z) B_3 u - \partial_t B_1 u + 1 \right) \left(\partial_x^2 u + \partial_z^2 u + 1 \right) - \left(\partial_x \partial_t u + (\partial_y + x\partial_z) \partial_z u + \partial_z B_3 u \right)^2 - \left((\partial_y + x\partial_z) \partial_x u - \partial_z \partial_t u + \partial_z u + \partial_x B_3 u \right)^2 = e^F$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where B_1 and B_3 are linear operators solving

$$\begin{cases} \partial_x(B_1u) + \partial_z(B_3u) = -\partial_x u \\ \partial_x(B_3u) - \partial_z(B_1u) = -\partial_z u. \end{cases}$$

Open related problems

- Find a (generalized) $\partial \bar{\partial}$ -lemma which ensures that the CY problem reduces to a Monge-Ampère equation.
- Find a proof of the main theorem in terms of a (modified) Ricci flow.

• Find examples / classify compact AK non-Kähler manifolds with $\mathcal{R} > 0.$