Gradient Ricci Solitons of Cohomogeneity One

joint work with A. Dancer, Oxford and Stuart Hall, Buckingham

Rauischholzhausen Workshop, July 4, 2012

1. Basic Definitions and Facts

Ricci soliton: special solution of

Ricci flow equation $\frac{\partial g}{\partial t} = -2 \operatorname{Ric}(g)$

of form $g(t) = \lambda(t)\phi_t^*(g_0)$ where

 ϕ_t is a 1-parameter family of diffeomorphisms with $\phi(0) = \mathrm{id}_M$

 $\lambda(t)$ smooth function with $\lambda(0) = 1$ (scale change)

"Static" Ricci soliton equation for pair (g, X) on manifold M:

$$\operatorname{Ric}(g) + \frac{1}{2}\mathcal{L}_X g + \frac{\epsilon}{2}g = 0$$

where g is a *complete metric*,

X is a vector field

(necessarily complete, Z-H Zhang 2009)

 $\epsilon = -\frac{\Lambda}{2}$ is a real constant

1

$$\epsilon > 0 \ expanding \ soliton \quad (\Lambda < 0)$$

$$\epsilon = 0 \ steady \ soliton \quad (\Lambda = 0)$$

$$\epsilon < 0 \ shrinking \ soliton \quad (\Lambda > 0)$$

X Killing $\Longrightarrow g$ Einstein ("trivial" solitons)
In Einstein case, $\Lambda = -\frac{\epsilon}{2} \approx$ Einstein constant.
gradient Ricci soliton: special solution where

$$X^{\flat} = du$$

$$u : M \longrightarrow \mathbb{R} \ (soliton \ potential \)$$

static equation becomes

$$\operatorname{Ric}(g) + \operatorname{Hess}_{g}(u) + \frac{\epsilon}{2}g = 0$$

[Petersen-Wylie] g Einstein \Longrightarrow

Gaussian or du parallel

3. Cohomogeneity One GRS Equations

Assume compact Lie group G acts isometrically

on manifold M^{n+1} with

- orbit space an interval I (closed or half-open)
- generic (principal) orbit type G/K
- singular orbits G/H_i with $H_i/K \approx S^{k_i}$

Write metric as $\overline{g} = dt^2 + g_t$ where

 g_t : a curve of *G*-invariant metrics on P := G/KGRS equations become the system:

$$-(\delta^{\nabla^{t}}L_{t})^{\flat} - d(\operatorname{tr}L_{t}) = 0 \quad (1)$$

$$-\operatorname{tr}(\dot{L}_{t}) - \operatorname{tr}(L_{t}^{2}) + \ddot{u} + \frac{\epsilon}{2} = 0 \quad (2)$$

$$\operatorname{ric}_{t} - \operatorname{tr}(L_{t})L_{t} - \dot{L}_{t} + \dot{u} L_{t} + \frac{\epsilon}{2} \mathbb{I} = 0 \quad (3)$$

- L_t is the shape operator of hypersurface P_t
- δ^{∇^t} : $T^*(P) \otimes TP \to TP$ codifferential,
- ric_t is the *Ricci operator* of P_t defined by

 $\mathsf{Ric}(g_t)(X,Y) = g_t(\mathsf{ric}_t(X),Y)$

Plus appropriate *boundary conditions* at endpoints of *I* to guarantee smoothness and completeness

Conservation Law: two formulations

$$\ddot{u} + (-\dot{u} + \operatorname{tr} L) \dot{u} = C + \epsilon u$$
 (R. Hamilton) (4)

$$\Leftrightarrow S_t + \operatorname{tr}(L^2) - (-\dot{u} + \operatorname{tr}(L))^2 + (n-1)\frac{\epsilon}{2} = C + \epsilon u$$

Useful Fact: (A. Back for Einstein case)

smoothness (e.g. C^3) of $\overline{g}, u + Eq. (3) +$

 $\operatorname{codim}(G/H) \ge 2 \Longrightarrow \operatorname{Eq.}(1)$

above + conservation law \implies Eq. (2)

Hamiltonian Formulation:

$$\mathcal{C} = S^2_+(\mathfrak{p})^K \times \mathbb{R}$$

On T^* C (with canonical symplectic structure) take Hamiltonian function

$$\mathcal{H} = v(q)e^{-u}\left(\left(2\langle L,L\rangle + \dot{u}^2 - 2\dot{u}\operatorname{tr}L\right)\right)$$

 $+ E - \epsilon(n + 1 - u) - S(q))$

(from Perelman's *W*-functional)

v(q) relative volume, E Lagrangian multiplier

KE has Lorentz signature

Then integral curves in $\{\mathcal{H} = 0\}$ are equivalent to solutions of Eq. (2) and (3).

Initial Value Problem at Singular Orbit:

existence of a local solution (arbitrary ϵ) in a G-invariant nbd of singular orbit G/H with prescribed metric and shape operator on G/H

M. Buzano (JGP 2011)

under *assumption*: at special orbit G/H, the slice rep. and the isotropy rep. as *K*-reps, have no common irred. summands

4. Non-existence Result ([DHW], after Böhm)

Write $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ (Ad_K-invariant decomposition)

$$\mathfrak{p} = \mathfrak{p}_1 \oplus \cdots \oplus \mathfrak{p}_r \quad (5)$$

where \mathfrak{p}_i is the sum of all equivalent Ad_K -irreducible summands of a fixed type. This decomposition is unique up to permutation of summands.

Special orbits G/H_i : $\mathfrak{h}_i = \mathfrak{s}_i \oplus \mathfrak{k}$, $\mathfrak{p} = \mathfrak{s}_i \oplus \mathfrak{q}_i$

Theorem 1. Let M be a closed cohomogeneity one G-manifold as described above. Assume that some summand \mathfrak{p}_{i_0} in (5) is actually Ad_K -irreducible and that for any G-invariant metric on G/K, the restriction to \mathfrak{p}_{i_0} of its traceless Ricci tensor is always negative definite. Assume further that $\mathfrak{p}_{i_0} \cap$ $\mathfrak{s}_j = \{0\}$ for j = 1, 2.

Then there cannot be any G-invariant gradient Ricci soliton structure on \overline{M} .

Sketch of Proof:

Consider $\tilde{g} = v^{-\frac{2}{n}g}$, where $v := \sqrt{\det g_t}$ Set $F_i := \frac{1}{2} \operatorname{tr}_i(\tilde{g}^2)$. Then one computes that $\ddot{F}_i + \xi \dot{F}_i = \operatorname{tr}_i(\dot{g}^2) + \operatorname{tr}_i(\dot{g}\tilde{g}^{-1}\dot{g}\tilde{g}) + 2 \operatorname{tr}_i(\tilde{g}^2r^{(0)})$ Pick i_0 .

At the singular orbits, F_{i_0} tend to $+\infty$. So F_{i_0} has an interior minimum.

There, $\dot{F}_{i_0} = 0$, while $\ddot{F}_{i_0} \ge 0$. \Box

Explicit example (C. Böhm):

$$S^{k+1} \times (G'/K') \times M_3 \times \cdots \times M_r$$

with M_i compact isotropy irreducible and

$$G'/K' = SU(\ell + m)/(SO(\ell) \cdot U(1) \cdot U(m)),$$

 $\ell \ge 32, m = 1, 2, k = 1, 2, \cdots, [\ell/3]$

8

Complete, non-compact, non-trivial GRS

I. Steady Case $(\epsilon = 0)$

can apply and/or sharpen results of B. L. Chen $(\bar{R} > 0)$, Munteanu-Sesum, Peng Wu, ...

Proposition 2. For a complete, non-compact, nontrivial steady GRS of cohomogeneity one:

(a) u is strictly decreasing and concave (as function of t) with $\ddot{u}(0) = C/(k+1) < 0$

(note: no curvature assumptions)

(b) trL is strictly decreasing; $0 < trL \leq \frac{n}{t}$.

(c) generalized mean curvature $\xi := -\dot{u} + trL$ is strictly decreasing with asymptotic limit $\sqrt{-C}$. Hence $C\xi^{-2}$ is a general Lyapunov function.

(d) ambient scalar curvature is strictly decreasing with asymptotic limit 0 (since $\bar{R} + \dot{u}^2 = -C$).

(e) quantity $\mathcal{F} := v_n^2 (S + \operatorname{tr}(L_0)^2)$ is non-increasing on any trajectory corresponding to a non-trivial soliton (Lyapunov function) **Example 1.** [DW2009] $M = \mathbb{R}^{d_1+1} \times M_2 \times \cdots \times M_r$

 $M_1 = S^{d_1}, d_1 > 1$, equipped with the constant curvature 1 metric h_1

 $(M_i, h_i), 2 \le i \le r$ Einstein with Einstein constants $\lambda_i > 0$ and dimension d_i .

 $\exists r-1$ parameter family of non-trivial steady GRS structures with $\bar{g} = dt^2 + g_1(t)^2 h_1 + \cdots + g_r(t)^2 h_r$, $\operatorname{Ric}(\bar{g}) \geq 0$ (positive off the zero section)

Remarks:

(i) generally non-Kähler; generally not locally conformally flat if $r \ge 2$

(ii) r = 1: Bryant solitons on \mathbb{R}^n , $n \ge 3$

(n = 2 is Hamilton's cigar, which is Kähler)

These have positive sectional curvature.

(iii) r = 2 Ivey's generalization of Bryant solitons, PAMS (1994)

(iv) asymptotics: $g_i \sim \sqrt{t}$, $\operatorname{tr} L \sim \frac{n}{2t} + O(t^{-2})$ and $u(t) \sim -\sqrt{-Ct} + \frac{n}{4} \log t$.

(iv) C. Böhm (1999): r - 2 parameter family of complete Ricci-flat metrics (C=0); asymptotically Euclidean

Example 2. [DZ Chen 2010]

 $M = S^1 \times L_q$ where L_q is the complex line bundle over a Fano KE manifold with |q| the first Chern number.

 \exists a 3-parameter family of "explicit" steady soliton solutions (modulo homothety)

Hypersurfaces are T^2 bundles over Fano with connection metric

Metric on $T^2 = S^1 \times S^1$ is not "diagonal"

Asymptotically, metric components $\sim t$ (paraboloidal)

II. Expanding Case: $(\epsilon > 0)$ Set

 $\xi := -\dot{u} + trL$ (generalized mean curvature)

and $\mathcal{E} = C + \epsilon u$.

Conservation law becomes: $\ddot{\mathcal{E}} + \xi \dot{\mathcal{E}} - \epsilon \mathcal{E} = 0$.

Its derivative yields for $y = \dot{u}$:

$$\ddot{y} + \xi \dot{y} - (\frac{\epsilon}{2} + \operatorname{tr}(L^2))y = 0$$

can apply and/or sharpen results of B.L. Chen $(\bar{R} + \frac{\epsilon}{2}(n+1) > 0)$, Shijin Zhang, Zhuhong Zhang, Carillo-Ni, Munteanu-Sesum, Pigola-Rimoldi-Setti,....

Proposition 3. For a non-trivial complete expanding GRS with u(0) = 0

(a) u is strictly decreasing and strictly concave; $\ddot{u}(0) = C/(k+1) < 0$

(b) volume grows at least logarithmically

(c) $\exists t_1 > 0$ such that $-\sqrt{\frac{\epsilon}{2}n} < \text{tr}L < \sqrt{\frac{\epsilon}{2}n}$ for $t \ge t_1$

Proposition 4. (gradient bound) $\exists t_1 > 0$ and a > 0 such that for $t \ge t_1$

(a) $\frac{9}{10} \left(\frac{-\dot{u}(t_1)}{\frac{\epsilon}{2}t+a} \right) \left(\frac{\epsilon}{2}t+a \right) < |\overline{\nabla}u| < \frac{\epsilon}{2}t+\sqrt{-C}$

Hence u is asymptotically bounded above and below by quadratics.

(b) $\lim_{t\to+\infty} \xi = +\infty$

(c) For t large, the quantity $\mathfrak{F} := v^{\frac{2}{n}}(S + \operatorname{tr}(L_0)^2)$ is strictly decreasing on any trajectory in velocity phase space except when L_0 vanishes

(d) $\ddot{u} + \frac{\epsilon}{2} = -\operatorname{Ric}_{\overline{g}}(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}) \leq \frac{\epsilon}{2} \left(1 + \frac{9}{10} \left(\frac{-\dot{u}(t_1)}{\frac{\epsilon}{2}t+a}\right) \left(\frac{\epsilon}{2}t+a\right)\right)$ provided $t \geq t_1$.

(e) If $\ddot{u} + \epsilon/2 \leq 0$ for $t \geq t_0$, then trL is strictly decreasing, 0 < trL < n/t and $\bar{R} > -\frac{\epsilon}{2}n$.

Example 3 [*DW*2009]

On the same manifolds as in Example 1, there is an *r*-parameter family of non-trivial (generally non-Kähler, non-locally conformally flat) expanding GRS structures

Remarks:

(i) r = 1 Ivey in [Chow et al];

(ii) r = 2 Gastel and Kronz (2004)

(iii) Böhm (1999): r-1 parameter family of complete negative Einstein metrics on these manifolds

Einstein metric components grow exponentially with t, mean curvature asymptotically constant $\sim \sqrt{n\epsilon/2}$.

(iv) solitons are asymptotically conical and satisfy $\ddot{u} + \epsilon/2 \leq 0$ for $t \geq t_0$; also, ambient scalar curvature tends to 0 and $\xi \sim \frac{\epsilon}{2}t$.

4. A General Winding Number for Shrinkers

Recall $\xi = -\dot{u} + \text{tr}L$ (generalized mean curvature for measure $e^{-u}d\mu_{\overline{g}}$)

Eq. (2) $\Longrightarrow \xi$ is strictly decreasing from

 $+\infty$ to $-\infty$ in all cases (unique zero)

Let $\mathcal{E} := C + \epsilon u$ and $\mathcal{F} := \dot{u}$.

Recall Conservation law (4) in the form

 $\ddot{\mathcal{E}} + \xi \dot{\mathcal{E}} - \epsilon \mathcal{E} = 0$

Let $ds := \xi dt$ and ' denote differentiation wrt s.

Note: insert -1 for change of variables *after* unique zero of ξ .

We now have (with $W := \xi^{-1}$)

$$\mathcal{E}' = \epsilon W \mathcal{F}$$

$$\mathcal{F}' = W\mathcal{E} - \mathcal{F}$$

Theorem 5. ([DHW 2011]) For trajectories of the flow of $(\mathcal{F}, \mathcal{E})$ starting from either the positive or negative \mathcal{E} axis, the winding number about the origin up to the (unique) turning point is finite, non-positive and bounded from below by $-(6+\frac{\pi}{4})$.

Remark: The origin corresponds to Einstein trajectories. Some General Facts about Shrinking GRS:

(a) $\overline{R} \ge 0$. It is positive unless the soliton metric is flat. (B. L. Chen without sectional curvature bounds, Pigoli-Rimoldi-Setti for rigidity)

(b) Quadratic bound for soliton potential in complete, non-compact case

[H. D. Cao-D. Zhou 2010]

$$-\frac{\epsilon}{2}(n+1) + \frac{\epsilon}{4}(t\sqrt{-\epsilon} + c_2)^2 \le \mathcal{E}(t) = C + \epsilon u(t)$$
$$\le -\frac{\epsilon}{2}(n+1) + \frac{\epsilon}{4}(t\sqrt{-\epsilon} - c_1)^2$$

Note: c_i depend only on $n+1 = \dim M$. (Haslhofer-Müller 2011)

Ambient scalar curvature

$$\overline{R} = -2\operatorname{tr}(\dot{L}) - \operatorname{tr}(L^2) - (\operatorname{tr}L)^2 + S$$
$$= -\mathcal{E} - \frac{\dot{\mathcal{E}}^2}{\epsilon^2} - \frac{\epsilon}{2}(n+1)$$

17

So General Fact (a) implies in non-flat cases

 $\mathcal{E} < -rac{\epsilon}{2}(n+1)$, and

$$\ddot{u}(0) < -\frac{\epsilon}{2} \left(\frac{n+1}{k+1} \right)$$

Theorem 6. [DHW2011]

Let (M, \overline{g}, u) be a non-trivial complete shrinking GRS of cohomogeneity one with invariant soliton potential and orbit space *I*. Then, regarding \mathcal{E} as a function of *t*:

(i) $\mathcal{E} = C + \epsilon u$ must change sign and is a Morse-Bott function on M.

(ii) If \overline{g} is nonflat, then $\mathcal{E} < -\frac{\epsilon}{2}(n+1)$.

(iii) If M is compact, \mathcal{E} has at most 4 critical points in int I. As a function of t, \mathcal{E} is either a local max (where $\mathcal{E} > 0$) or a local min (where $\mathcal{E} < 0$).

(iv) If M is complete, noncompact, \mathcal{E} has at most 5 critical points in int I.

Remark: In known examples, \mathcal{E} is monotone decreasing. But these are all Kähler.

Theorem rules out

Example 1 smooth Gaussian (rigid in Petersen-Wylie sense)

$$M = \mathbb{R}^{d_1 + 1} \times M_2 \times \dots \times M_r$$

 \mathbb{R}^{d_1+1} Euclidean, M_i positive Einstein i > 1

 $u(t) = -\frac{\epsilon}{4}t^2$, $trL = \frac{d_1}{t}$, $\overline{R} = -\frac{\epsilon}{2}(n-d_1)$

Example 2 [FIK 2003], [DW 2008]

 $(V_i, J_i, h_i), 1 \leq i \leq r, r \geq 2$, Fano KE manifolds with complex dimension n_i and $c_1(V_i) = p_i a_i$ where $p_i > 0$ and a_i are indivisible classes in $H^2(V_i, \mathbb{Z})$

 $V_1 = \mathbb{CP}^{n_1}, n_1 \ge 0$, with normalised Fubini-Study metric

 P_q : principal S^1 bundle over $V_1 \times \cdots \times V_r$ with Euler class $-\pi_1^*(a_1) + \sum_{i=2}^r q_i \pi_i^*(a_i)$, i.e., $q_1 = -1$.

Assume $0 < -(n_1 + 1) q_i < p_i$ for all $2 \le i \le r$.

Then there is a complete shrinking GKRS structure on the space \overline{M} obtained from the line bundle $P_q \times_{S^1} \mathbb{C}$ by blowing the zero section down to $V_2 \times \cdots \times V_r$.

soliton metric has an asymptotically conical end

Remarks: (a) Feldman-Illmanen-Knopf considered case with $r = 2, n_1 = 0$ and V_2 to be a complex projective space.

(b) The case $r = 2, n_2 = 0$ corresponds to flat \mathbb{C}^{n_1+1} as a shrinking soliton.

(c) Also: Bo Yang (2008), A.Futaki-M.T.Wang (2010), Chi Li (2010)

(d) There is a version of theorem where the base is a coadjoint orbit and the principal orbits are suitable circle bundles over it.

(e) The condition $\ddot{u} + \frac{\epsilon}{2} > 0$ holds except in flat case.

Proposition 7. Assume $\ddot{u} \leq -\frac{\epsilon}{2}$ on some $[a, +\infty)$, a > 0.

• from some $t_0 \ge a$ on, trL is decreasing and $0 < trL < (\frac{t}{n} + c(t_0))^{-1}$ and

• ambient scalar curvature $< -\frac{\epsilon}{2}n$.

Numerical Search: [DHW]

negative search results in compact cases

(i) S^5 with SO(3) × SO(3) action

(ii) $S^2 \times S^3$ with SO(3) × SO(3) action

(iii) S^{11} with SO(6) × SO(6) action

(iv) $\mathbb{HP}^{n+1} \ddagger \mathbb{HP}^{n+1}$ with $Sp(1) \times Sp(n+1)$ action;

connected sum of Cayley projective planes

(v) \mathbb{R}^3 bundle over \mathbb{HP}^n with G = Sp(n+1); principal orbit is twistor fibration over \mathbb{HP}^n

(vi) non-trivial sphere bundles over S^2 (Hashimoto-Sakaguchi-Yasui): principal orbit $S^3 \times S^{d-2}$