Gradient Ricci Solitons of Cohomogeneity One

joint work with A. Dancer, Oxford and Stuart Hall, Buckingham

Rauischholzhausen Workshop, July 4, 2012

1. Basic Definitions and Facts

Ricci soliton: special solution of
Ricci flow equation $\frac{\partial g}{\partial t}=-2 \operatorname{Ric}(g)$
of form $g(t)=\lambda(t) \phi_{t}^{*}\left(g_{0}\right)$ where
ϕ_{t} is a 1-parameter family of diffeomorphisms with $\phi(0)=\mathrm{id}_{M}$
$\lambda(t)$ smooth function with $\lambda(0)=1$ (scale change)
"Static" Ricci soliton equation for pair (g, X) on manifold M :

$$
\operatorname{Ric}(g)+\frac{1}{2} \mathcal{L}_{X} g+\frac{\epsilon}{2} g=0
$$

where g is a complete metric,

$$
X \text { is a vector field }
$$

(necessarily complete, Z-H Zhang 2009)
$\epsilon=-\frac{\Lambda}{2}$ is a real constant
$\epsilon>0$ expanding soliton $\quad(\Lambda<0)$
$\epsilon=0$ steady soliton $\quad(\Lambda=0)$
$\epsilon<0$ shrinking soliton $(\Lambda>0)$

X Killing $\Longrightarrow g$ Einstein ("trivial" solitons)

In Einstein case, $\Lambda=-\frac{\epsilon}{2} \approx$ Einstein constant.
gradient Ricci soliton: special solution where

$$
X^{b}=d u
$$

$u: M \longrightarrow \mathbb{R}$ (soliton potential)
static equation becomes

$$
\operatorname{Ric}(g)+\operatorname{Hess}_{g}(u)+\frac{\epsilon}{2} g=0
$$

[Petersen-Wylie] g Einstein \Longrightarrow

Gaussian or $d u$ parallel

3. Cohomogeneity One GRS Equations

Assume compact Lie group G acts isometrically on manifold M^{n+1} with

- orbit space an interval I (closed or half-open)
- generic (principal) orbit type G / K
- singular orbits G / H_{i} with $H_{i} / K \approx S^{k_{i}}$

Write metric as $\bar{g}=d t^{2}+g_{t}$ where
g_{t} : a curve of G-invariant metrics on $P:=G / K$

GRS equations become the system:

$$
\begin{align*}
& -\left(\delta^{\left.\nabla^{t} L_{t}\right)^{b}-d\left(\operatorname{tr} L_{t}\right)=0}\right. \\
& -\operatorname{tr}\left(\dot{L}_{t}\right)-\operatorname{tr}\left(L_{t}^{2}\right)+\ddot{u}+\frac{\epsilon}{2}=0 \\
& \text { ric } \tag{3}
\end{align*}
$$

where

- L_{t} is the shape operator of hypersurface P_{t} - $\delta^{\nabla^{t}}: T^{*}(P) \otimes T P \rightarrow T P$ codifferential,
- ric c_{t} is the Ricci operator of P_{t} defined by

$$
\operatorname{Ric}\left(g_{t}\right)(X, Y)=g_{t}\left(\operatorname{ric}_{t}(X), Y\right)
$$

Plus appropriate boundary conditions at endpoints of I to guarantee smoothness and completeness

Conservation Law: two formulations

$$
\begin{align*}
& \ddot{u}+(-\dot{u}+\operatorname{tr} L) \dot{u}=C+\epsilon u \text { (R. Hamilton) } \tag{4}\\
\Leftrightarrow & S_{t}+\operatorname{tr}\left(L^{2}\right)-(-\dot{u}+\operatorname{tr}(L))^{2}+(n-1) \frac{\epsilon}{2}=C+\epsilon u
\end{align*}
$$

Useful Fact: (A. Back for Einstein case)
smoothness (e.g. C^{3}) of $\bar{g}, u+$ Eq. (3) + $\operatorname{codim}(G / H) \geq 2 \Longrightarrow$ Eq.
above + conservation law \Longrightarrow Eq. (2)

Hamiltonian Formulation:

$$
\mathfrak{e}=S_{+}^{2}(\mathfrak{p})^{K} \times \mathbb{R}
$$

On $T^{*} \mathrm{C}$ (with canonical symplectic structure)
take Hamiltonian function

$$
\begin{aligned}
\mathscr{H}= & v(q) e^{-u}\left(\left(2\langle L, L\rangle+\dot{u}^{2}-2 \dot{u} \operatorname{tr} L\right)\right. \\
& +E-\epsilon(n+1-u)-S(q))
\end{aligned}
$$

(from Perelman's \mathcal{W}-functional)
$v(q)$ relative volume, E Lagrangian multiplier

KE has Lorentz signature

Then integral curves in $\{\mathcal{H}=0\}$ are equivalent to solutions of Eq. (2) and (3).

Initial Value Problem at Singular Orbit:

existence of a local solution (arbitrary ϵ) in a G invariant nbd of singular orbit G / H with prescribed metric and shape operator on G / H

M. Buzano (JGP 2011)

under assumption: at special orbit G / H, the slice rep. and the isotropy rep. as K-reps, have no common irred. summands

4. Non-existence Result ([DHW], after Böhm)

Write $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}\left(\right.$ Ad $_{K}$-invariant decomposition $)$

$$
\begin{equation*}
\mathfrak{p}=\mathfrak{p}_{1} \oplus \cdots \oplus \mathfrak{p}_{r} \tag{5}
\end{equation*}
$$

where \mathfrak{p}_{i} is the sum of all equivalent $A d_{K^{-}}$-irreducible summands of a fixed type. This decomposition is unique up to permutation of summands.

Special orbits $G / H_{i}: \mathfrak{h}_{i}=\mathfrak{s}_{i} \oplus \mathfrak{k}, \mathfrak{p}=\mathfrak{s}_{i} \oplus \mathfrak{q}_{i}$

Theorem 1. Let M be a closed cohomogeneity one G-manifold as described above. Assume that some summand $\mathfrak{p}_{i_{0}}$ in (5) is actually Ad_{K}-irreducible and that for any G-invariant metric on G / K, the restriction to $\mathfrak{p}_{i_{0}}$ of its traceless Ricci tensor is always negative definite. Assume further that $\mathfrak{p}_{i_{0}} \cap$ $\mathfrak{s}_{j}=\{0\}$ for $j=1,2$.

Then there cannot be any G-invariant gradient Ricci soliton structure on \bar{M}.

Sketch of Proof:

Consider $\tilde{g}=v^{-\frac{2}{n}} g$, where $v:=\sqrt{\operatorname{det} g_{t}}$

Set $F_{i}:=\frac{1}{2} \operatorname{tr}_{i}\left(\tilde{g}^{2}\right)$. Then one computes that
$\ddot{F}_{i}+\xi \dot{F}_{i}=\operatorname{tr}_{i}\left(\dot{\tilde{g}}^{2}\right)+\operatorname{tr}_{i}\left(\dot{\tilde{g}} \tilde{g}^{-1} \dot{\tilde{g}} \tilde{g}\right)+2 \operatorname{tr}_{i}\left(\tilde{g}^{2} r(0)\right)$

Pick i_{0}.

At the singular orbits, $F_{i_{0}}$ tend to $+\infty$. So $F_{i_{0}}$ has an interior minimum.

There, $\dot{F}_{i_{0}}=0$, while $\ddot{F}_{i_{0}} \geq 0$.
Explicit example (C. Böhm):

$$
S^{k+1} \times\left(G^{\prime} / K^{\prime}\right) \times M_{3} \times \cdots \times M_{r}
$$

with M_{i} compact isotropy irreducible and

$$
\begin{aligned}
& G^{\prime} / K^{\prime}=\mathrm{SU}(\ell+m) /(\mathrm{SO}(\ell) \cdot \mathrm{U}(1) \cdot \mathrm{U}(m)) \\
& \ell \geq 32, \quad m=1,2, \quad k=1,2, \cdots,[\ell / 3]
\end{aligned}
$$

Complete, non-compact, non-trivial GRS

I. Steady Case $(\epsilon=0)$
can apply and/or sharpen results of B. L. Chen ($\bar{R}>0$), Munteanu-Sesum, Peng Wu, ...
Proposition 2. For a complete, non-compact, nontrivial steady GRS of cohomogeneity one:
(a) u is strictly decreasing and concave (as function of t) with $\ddot{u}(0)=C /(k+1)<0$
(note: no curvature assumptions)
(b) $\operatorname{tr} L$ is strictly decreasing; $0<\operatorname{tr} L \leq \frac{n}{t}$.
(c) generalized mean curvature $\xi:=-\dot{u}+\operatorname{trL}$ is strictly decreasing with asymptotic limit $\sqrt{-C}$. Hence $C \xi^{-2}$ is a general Lyapunov function.
(d) ambient scalar curvature is strictly decreasing with asymptotic limit 0 (since $\bar{R}+\dot{u}^{2}=-C$).
(e) quantity $\mathcal{F}:=v^{\frac{2}{n}}\left(S+\operatorname{tr}\left(L_{0}\right)^{2}\right)$ is non-increasing on any trajectory corresponding to a non-trivial soliton (Lyapunov function)

Example 1. [DW2009] $M=\mathbb{R}^{d_{1}+1} \times M_{2} \times \cdots \times M_{r}$
$M_{1}=S^{d_{1}}, d_{1}>1$, equipped with the constant curvature 1 metric h_{1}
$\left(M_{i}, h_{i}\right), 2 \leq i \leq r$ Einstein with Einstein constants $\lambda_{i}>0$ and dimension d_{i}.
$\exists r-1$ parameter family of non-trivial steady GRS structures with $\bar{g}=d t^{2}+g_{1}(t)^{2} h_{1}+\cdots+g_{r}(t)^{2} h_{r}$, $\operatorname{Ric}(\bar{g}) \geq 0 \quad$ (positive off the zero section)

Remarks:
(i) generally non-Kähler; generally not locally conformally flat if $r \geq 2$
(ii) $r=1$: Bryant solitons on $\mathbb{R}^{n}, n \geq 3$
($n=2$ is Hamilton's cigar, which is Kähler)

These have positive sectional curvature.
(iii) $r=2$ Ivey's generalization of Bryant solitons, PAMS (1994)
(iv) asymptotics: $g_{i} \sim \sqrt{t}, \operatorname{tr} L \sim \frac{n}{2 t}+O\left(t^{-2}\right)$ and $u(t) \sim-\sqrt{-C} t+\frac{n}{4} \log t$.
(iv) C. Böhm (1999): $r-2$ parameter family of complete Ricci-flat metrics $(C=0)$; asymptotically Euclidean

Example 2. [DZ Chen 2010]
$M=S^{1} \times L_{q}$ where L_{q} is the complex line bundle over a Fano KE manifold with $|q|$ the first Chern number.
\exists a 3-parameter family of "explicit" steady soliton solutions (modulo homothety)

Hypersurfaces are T^{2} bundles over Fano with connection metric

Metric on $T^{2}=S^{1} \times S^{1}$ is not "diagonal"

Asymptotically, metric components $\sim t$ (paraboloidal)

II. Expanding Case: $(\epsilon>0)$ Set

$$
\begin{aligned}
& \xi:=-\dot{u}+\operatorname{tr} L \text { (generalized mean curvature) } \\
& \text { and } \mathcal{E}=C+\epsilon u .
\end{aligned}
$$

Conservation law becomes: $\ddot{\mathcal{E}}+\xi \dot{\mathcal{E}}-\epsilon \mathcal{E}=0$.
Its derivative yields for $y=\dot{u}$:

$$
\ddot{y}+\xi \dot{y}-\left(\frac{\epsilon}{2}+\operatorname{tr}\left(L^{2}\right)\right) y=0
$$

can apply and/or sharpen results of B.L. Chen ($\left.\bar{R}+\frac{\epsilon}{2}(n+1)>0\right)$, Shijin Zhang, Zhuhong Zhang, Carillo-Ni, Munteanu-Sesum, Pigola-Rimoldi-Setti,....

Proposition 3. For a non-trivial complete expanding GRS with $u(0)=0$
(a) u is strictly decreasing and strictly concave; $\ddot{u}(0)=C /(k+1)<0$
(b) volume grows at least logarithmically
(c) $\exists t_{1}>0$ such that $-\sqrt{\frac{\epsilon}{2} n}<\operatorname{tr} L<\sqrt{\frac{\epsilon}{2} n}$ for $t \geq t_{1}$

Proposition 4. (gradient bound) $\exists t_{1}>0$ and $a>$ 0 such that for $t \geq t_{1}$
(a) $\frac{9}{10}\left(\frac{-\dot{u}\left(t_{1}\right)}{\frac{\epsilon}{2} t+a}\right)\left(\frac{\epsilon}{2} t+a\right)<|\bar{\nabla} u|<\frac{\epsilon}{2} t+\sqrt{-C}$

Hence u is asymptotically bounded above and below by quadratics.
(b) $\lim _{t \rightarrow+\infty} \xi=+\infty$
(c) For t large, the quantity $\mathcal{F}:=v^{\frac{2}{n}}\left(S+\operatorname{tr}\left(L_{0}\right)^{2}\right)$ is strictly decreasing on any trajectory in velocity phase space except when L_{0} vanishes
(d) $\ddot{u}+\frac{\epsilon}{2}=-\operatorname{Ric}_{\bar{g}}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \leq \frac{\epsilon}{2}\left(1+\frac{9}{10}\left(\frac{-\dot{u}\left(t_{1}\right)}{\frac{\epsilon}{2} t+a}\right)\left(\frac{\epsilon}{2} t+a\right)\right)$ provided $t \geq t_{1}$.
(e) If $\ddot{u}+\epsilon / 2 \leq 0$ for $t \geq t_{0}$, then $\operatorname{tr} L$ is strictly decreasing, $0<\operatorname{tr} L<n / t$ and $\bar{R}>-\frac{\epsilon}{2} n$.

Example 3 [DW2009]

On the same manifolds as in Example 1, there is an r-parameter family of non-trivial (generally non-Kähler, non-locally conformally flat) expanding GRS structures

Remarks:
(i) $r=1$ Ivey in [Chow et al] ;
(ii) $r=2$ Gastel and Kronz (2004)
(iii) Böhm (1999): r - 1 parameter family of complete negative Einstein metrics on these manifolds

Einstein metric components grow exponentially with t, mean curvature asymptotically constant $\sim \sqrt{n \epsilon / 2}$.
(iv) solitons are asymptotically conical and satisfy $\ddot{u}+\epsilon / 2 \leq 0$ for $t \geq t_{0}$; also, ambient scalar curvature tends to 0 and $\xi \sim \frac{\epsilon}{2} t$.

4. A General Winding Number for Shrinkers

Recall $\xi=-\dot{u}+\operatorname{tr} L$ (generalized mean curvature for measure $e^{-u} d \mu_{\bar{g}}$)

Eq. (2) $\Longrightarrow \xi$ is strictly decreasing from

$$
+\infty \text { to }-\infty \text { in all cases (unique zero) }
$$

Let $\mathcal{E}:=C+\epsilon u$ and $\mathcal{F}:=\dot{u}$.

Recall Conservation law (4) in the form

$$
\ddot{\mathcal{E}}+\xi \dot{\mathcal{E}}-\epsilon \mathcal{E}=0
$$

Let $d s:=\xi d t$ and ' denote differentiation wrt s.

Note: insert -1 for change of variables after unique zero of ξ.

We now have (with $W:=\xi^{-1}$)

$$
\begin{aligned}
& \mathcal{E}^{\prime}=\epsilon W \mathcal{F} \\
& \mathcal{F}^{\prime}=W \mathcal{E}-\mathcal{F}
\end{aligned}
$$

Theorem 5. ([DHW 2011]) For trajectories of the flow of $(\mathcal{F}, \mathcal{E})$ starting from either the positive or negative \mathcal{E} axis, the winding number about the origin up to the (unique) turning point is finite, non-positive and bounded from below by $-\left(6+\frac{\pi}{4}\right)$.

Remark: The origin corresponds to Einstein trajectories.

Some General Facts about Shrinking GRS:
(a) $\bar{R} \geq 0$. It is positive unless the soliton metric is flat. (B. L. Chen without sectional curvature bounds, Pigoli-Rimoldi-Setti for rigidity)
(b) Quadratic bound for soliton potential in complete, non-compact case
[H. D. Cao-D. Zhou 2010]

$$
\begin{aligned}
-\frac{\epsilon}{2}(n+1) & +\frac{\epsilon}{4}\left(t \sqrt{-\epsilon}+c_{2}\right)^{2} \leq \mathcal{E}(t)=C+\epsilon u(t) \\
\leq & -\frac{\epsilon}{2}(n+1)+\frac{\epsilon}{4}\left(t \sqrt{-\epsilon}-c_{1}\right)^{2}
\end{aligned}
$$

Note: c_{i} depend only on $n+1=\operatorname{dim} M$. (HaslhoferMüller 2011)

Ambient scalar curvature

$$
\begin{aligned}
\bar{R} & =-2 \operatorname{tr}(\dot{L})-\operatorname{tr}\left(L^{2}\right)-(\operatorname{tr} L)^{2}+S \\
& =-\mathcal{E}-\frac{\dot{\mathcal{E}}^{2}}{\epsilon^{2}}-\frac{\epsilon}{2}(n+1)
\end{aligned}
$$

So General Fact (a) implies in non-flat cases

$$
\begin{aligned}
& \mathcal{E}<-\frac{\epsilon}{2}(n+1), \text { and } \\
& \ddot{u}(0)<-\frac{\epsilon}{2}\left(\frac{n+1}{k+1}\right)
\end{aligned}
$$

Theorem 6. [DHW2011]

Let (M, \bar{g}, u) be a non-trivial complete shrinking GRS of cohomogeneity one with invariant soliton potential and orbit space I. Then, regarding \mathcal{E} as a function of t :
(i) $\mathcal{E}=C+\epsilon u$ must change sign and is a MorseBott function on M.
(ii) If \bar{g} is nonflat, then $\mathcal{E}<-\frac{\epsilon}{2}(n+1)$.
(iii) If M is compact, \mathcal{E} has at most 4 critical points in int I. As a function of t, \mathcal{E} is either a local max (where $\mathcal{E}>0$) or a local min (where $\mathcal{E}<0$).
(iv) If M is complete, noncompact, \mathcal{E} has at most 5 critical points in int I.

Remark: In known examples, \mathcal{E} is monotone decreasing. But these are all Kähler.

Theorem rules out

Example 1 smooth Gaussian (rigid in PetersenWylie sense)
$M=\mathbb{R}^{d_{1}+1} \times M_{2} \times \cdots \times M_{r}$
$\mathbb{R}^{d_{1}+1}$ Euclidean, M_{i} positive Einstein $i>1$
$u(t)=-\frac{\epsilon}{4} t^{2}, \operatorname{tr} L=\frac{d_{1}}{t}, \bar{R}=-\frac{\epsilon}{2}\left(n-d_{1}\right)$

Example 2 [FIK 2003], [DW 2008]

(V_{i}, J_{i}, h_{i}), $1 \leq i \leq r, r \geq 2$, Fano $K E$ manifolds with complex dimension n_{i} and $c_{1}\left(V_{i}\right)=p_{i} a_{i}$ where $p_{i}>0$ and a_{i} are indivisible classes in $H^{2}\left(V_{i}, \mathbb{Z}\right)$
$V_{1}=\mathbb{C P}^{n_{1}}, n_{1} \geq 0$, with normalised Fubini-Study metric
P_{q} : principal S^{1} bundle over $V_{1} \times \cdots \times V_{r}$ with Euler class $-\pi_{1}^{*}\left(a_{1}\right)+\sum_{i=2}^{r} q_{i} \pi_{i}^{*}\left(a_{i}\right)$, i.e., $q_{1}=-1$.

Assume $0<-\left(n_{1}+1\right) q_{i}<p_{i}$ for all $2 \leq i \leq r$.

Then there is a complete shrinking GKRS structure on the space \bar{M} obtained from the line bundle $P_{q} \times_{S^{1}} \mathbb{C}$ by blowing the zero section down to $V_{2} \times \cdots \times V_{r}$.
soliton metric has an asymptotically conical end

Remarks: (a) Feldman-Illmanen-Knopf considered case with $r=2, n_{1}=0$ and V_{2} to be a complex projective space.
(b) The case $r=2, n_{2}=0$ corresponds to flat $\mathbb{C}^{n_{1}+1}$ as a shrinking soliton.
(c) Also: Bo Yang (2008), A.Futaki-M.T.Wang (2010), Chi Li (2010)
(d) There is a version of theorem where the base is a coadjoint orbit and the principal orbits are suitable circle bundles over it.
(e) The condition $\ddot{u}+\frac{\epsilon}{2}>0$ holds except in flat case.

Proposition 7. Assume $\ddot{u} \leq-\frac{\epsilon}{2}$ on some $[a,+\infty)$, $a>0$.

- from some $t_{0} \geq a$ on, $\operatorname{tr} L$ is decreasing and $0<$ $\operatorname{tr} L<\left(\frac{t}{n}+c\left(t_{0}\right)\right)^{-1}$ and
- ambient scalar curvature $<-\frac{\epsilon}{2} n$.

Numerical Search: [DHW]

negative search results in compact cases
(i) S^{5} with $\mathrm{SO}(3) \times \mathrm{SO}$ (3) action
(ii) $S^{2} \times S^{3}$ with $\mathrm{SO}(3) \times \mathrm{SO}$ (3) action
(iii) S^{11} with $\mathrm{SO}(6) \times \mathrm{SO}(6)$ action
(iv) $\mathbb{H} \mathbb{P}^{n+1} \sharp \mathbb{H} \mathbb{P}^{n+1}$ with $\operatorname{Sp}(1) \times \operatorname{Sp}(n+1)$ action;
connected sum of Cayley projective planes
(v) \mathbb{R}^{3} bundle over $\mathbb{H}^{p}{ }^{n}$ with $G=\operatorname{Sp}(n+1)$; principal orbit is twistor fibration over $\mathbb{H} \mathbb{P}^{n}$
(vi) non-trivial sphere bundles over S^{2} (Hashimoto-Sakaguchi-Yasui): principal orbit $S^{3} \times S^{d-2}$

