Ricci Flow

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On the diagonalization of the Ricci flow on Lie groups

Cynthia Will, FaMAF and CIEM, Córdoba, Argentina

Geometric Structures on Manifolds and their Applications, Marburg July, 2012

Ricci Flow

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ricci Flow

Nice Basis

Theorem

General Case

Contents

					C	
					Э.	

Ricci Flow

Nice Basis

Theorem

General Case

Contents

					C	
					Э.	

Ricci Flow

Nice Basis

Theorem

General Case

Contents

Ricci Flow

Nice Basis

Theorem

General Case

Contents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

-				
	lot	1 10	 OF	20
			 ю	15

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definitions

Space of Lie algebras of dimension n

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $\begin{array}{rcl} V &=& \{\mu: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \\ &\subset & \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot
angle$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle\cdot,\cdot\rangle$) \leadsto

Ricci Flow

Nice Basis

Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General Case

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle\cdot,\cdot\rangle$) $\leadsto\mathfrak{n}\leftrightarrow\mu.$

Ricci Flow

Nice Basis

Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General Case

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. μ

Ricci Flow

Nice Basis

Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General Case

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow \text{Lie group } N_{\mu}$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_μ : Simply connected $Lie(N_\mu) = (\mathbb{R}^n, \mu)$

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$.

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y),$$

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \mathrm{GL}_n(\mathbb{R}), \ \mu \in V.$$

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \mathrm{GL}_n(\mathbb{R}), \ \mu \in V.$$

Geometrically:

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \mathrm{GL}_n(\mathbb{R}), \ \mu \in V.$$

Geometrically: $A \in \operatorname{GL}_n(\mathbb{R}) \rightsquigarrow$ a Riemannian isometry

Definitions

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \mathrm{GL}_n(\mathbb{R}), \ \mu \in V.$$

Geometrically: $A \in \operatorname{GL}_n(\mathbb{R}) \rightsquigarrow$ a Riemannian isometry

$$(N_{A\cdot\mu}, \langle \cdot, \cdot \rangle) \longrightarrow (N_{\mu}, \langle A \cdot, A \cdot \rangle)$$

Space of Lie algebras of dimension $n \leftrightarrow \cdots$

 $V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$ $\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\rightsquigarrow \mathfrak{n} \leftrightarrow \mu$. $\mu \rightsquigarrow$ Lie group N_{μ} : Simply connected $Lie(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$. $\operatorname{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \mathrm{GL}_n(\mathbb{R}), \ \mu \in V.$$

Geometrically: $A \in \operatorname{GL}_n(\mathbb{R}) \rightsquigarrow$ a Riemannian isometry

$$(N_{A\cdot\mu}, \langle \cdot, \cdot \rangle) \longrightarrow (N_{\mu}, \langle A \cdot, A \cdot \rangle)$$

by exponentiating $A^{-1}: (\mathbb{R}^n, A \cdot \mu) \longrightarrow (\mathbb{R}^n, \mu)$.

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

The action of $\operatorname{GL}_n(\mathbb{R})$ on V

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三□ ◇Q@

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

The action of $\operatorname{GL}_n(\mathbb{R})$ on $V \rightsquigarrow$

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \operatorname{sym}(n)$ Cartan decomposition

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

 $\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \operatorname{sym}(n)$ Cartan decomposition $\rightsquigarrow \mathfrak{a} =$ diagonal $n \times n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

 $\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \operatorname{sym}(n)$ Cartan decomposition $\rightsquigarrow \mathfrak{a} =$ diagonal $n \times n$ is maximal abelian subalgebra of $\operatorname{sym}(n)$

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

 $\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \operatorname{sym}(n)$ Cartan decomposition $\rightsquigarrow \mathfrak{a} = \operatorname{diagonal} n \times n$ is maximal abelian subalgebra of $\operatorname{sym}(n) \rightsquigarrow \Delta \subset \mathfrak{a}$, a system of roots,

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

 $\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \operatorname{sym}(n)$ Cartan decomposition $\rightsquigarrow \mathfrak{a} = \operatorname{diagonal} n \times n$ is maximal abelian subalgebra of $\operatorname{sym}(n) \rightsquigarrow \Delta \subset \mathfrak{a}$, a system of roots, positive roots:

(日) (日) (日) (日) (日) (日) (日) (日)

The action of $\operatorname{GL}_n(\mathbb{R})$ on $V \rightsquigarrow$ representation of $\mathfrak{gl}_n(\mathbb{R})$ on V:

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

 $\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \operatorname{sym}(n)$ Cartan decomposition $\rightsquigarrow \mathfrak{a} = \operatorname{diagonal} n \times n$ is maximal abelian subalgebra of $\operatorname{sym}(n) \rightsquigarrow \Delta \subset \mathfrak{a}$, a system of roots, positive roots:

$$\Phi = \{E_{II} - E_{mm} \in \mathfrak{a}, \ I > m\}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Definitions

Nice Basis

Theoren

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basis of weight vectors

Basis of weight vectors

$$\{v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

Basis of weight vectors

$$\{v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

 $v_{ijk}(e_i,e_j)=-v_{ijk}(e_j,e_i)=e_k$

Basis of weight vectors

$$\{v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k$$

Corresponding weights

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basis of weight vectors

$$\{v_{ijk} = (e'_i \land e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i,e_j)=-v_{ijk}(e_j,e_i)=e_k$$

Corresponding weights $\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basis of weight vectors

$$\{\mathbf{v}_{ijk} = (\mathbf{e}'_i \land \mathbf{e}'_j) \otimes \mathbf{e}_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i,e_j)=-v_{ijk}(e_j,e_i)=e_k$$

Corresponding weights
$$\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj}$$
:
if $\alpha = \begin{bmatrix} a_1 \\ \ddots \\ a_n \end{bmatrix} \in \mathfrak{a},$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basis of weight vectors

$$\{v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i,e_j)=-v_{ijk}(e_j,e_i)=e_k$$

Corresponding weights
$$\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj}$$
:
if $\alpha = \begin{bmatrix} a_1 \\ \ddots \\ a_n \end{bmatrix} \in \mathfrak{a},$

$$\pi(\alpha)\mathbf{v}_{ijk} = (\mathbf{a}_k - \mathbf{a}_i - \mathbf{a}_j)\mathbf{v}_{ijk} = \langle \alpha, \alpha_{ij}^k \rangle \mathbf{v}_{ijk},$$

Basis of weight vectors

$$\{v_{ijk} = (e'_i \land e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i,e_j)=-v_{ijk}(e_j,e_i)=e_k$$

Corresponding weights
$$\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj}$$
:
if $\alpha = \begin{bmatrix} a_1 \\ \ddots \\ a_n \end{bmatrix} \in \mathfrak{a},$

$$\pi(\alpha)\mathbf{v}_{ijk} = (\mathbf{a}_k - \mathbf{a}_i - \mathbf{a}_j)\mathbf{v}_{ijk} = \langle \alpha, \alpha_{ij}^k \rangle \mathbf{v}_{ijk},$$

 $\mu \in V$

Nice Basis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basis of weight vectors

$$\{v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i,e_j)=-v_{ijk}(e_j,e_i)=e_k$$

Corresponding weights
$$\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj}$$
:
if $\alpha = \begin{bmatrix} a_1 \\ \ddots \\ a_n \end{bmatrix} \in \mathfrak{a},$

$$\pi(\alpha)\mathbf{v}_{ijk} = (\mathbf{a}_k - \mathbf{a}_i - \mathbf{a}_j)\mathbf{v}_{ijk} = \langle \alpha, \alpha_{ij}^k \rangle \mathbf{v}_{ijk},$$

 $\mu \in V$ the structural constants c_{ij}^k are given by

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basis of weight vectors

$$\{v_{ijk} = (e'_i \land e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k$$

Corresponding weights
$$\alpha_{ij}^{k} := E_{kk} - E_{ii} - E_{jj}$$
:
if $\alpha = \begin{bmatrix} a_{1} & & \\ & \ddots & \\ & & a_{n} \end{bmatrix} \in \mathfrak{a},$

$$\pi(\alpha)\mathbf{v}_{ijk} = (\mathbf{a}_k - \mathbf{a}_i - \mathbf{a}_j)\mathbf{v}_{ijk} = \langle \alpha, \alpha_{ij}^k \rangle \mathbf{v}_{ijk},$$

 $\mu \in V$ the structural constants c_{ii}^k are given by

$$[e_i, e_j] = \sum_k c_{ij}^k e_k,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basis of weight vectors

$$\{v_{ijk} = (e'_i \land e'_j) \otimes e_k : 1 \le i < j \le n, \ 1 \le k \le n\}$$

$$v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k$$

Corresponding weights
$$\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj}$$
:
if $\alpha = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix} \in \mathfrak{a},$

$$\pi(\alpha)\mathbf{v}_{ijk} = (\mathbf{a}_k - \mathbf{a}_i - \mathbf{a}_j)\mathbf{v}_{ijk} = \langle \alpha, \alpha_{ij}^k \rangle \mathbf{v}_{ijk},$$

 $\mu \in V$ the structural constants c_{ii}^k are given by

$$[e_i, e_j] = \sum_k c_{ij}^k e_k, \quad \text{or} \quad [\cdot, \cdot] = \sum_{k; i < j} c_{ij}^k v_{ijk}.$$

Definitions	Ricci Flow	Nice Basis	Theorem	General Case
		Ricci Flow		

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Definitions	Ricci Flow	Nice Basis	Theorem	General Case
		Ricci Flow		

(N, g_0) a Lie group with a left-invariant metric

Definitions	Ricci Flow	Nice Basis	Theorem	General Case
		Ricci Flow		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

(N, g_0) a Lie group with a left-invariant metric \leftrightarrow

 (N, g_0) a Lie group with a left-invariant metric \iff metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 (N, g_0) a Lie group with a left-invariant metric \iff metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the Ricci flow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 (N, g_0) a Lie group with a left-invariant metric \iff metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the Ricci flow

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 (N, g_0) a Lie group with a left-invariant metric \iff metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the Ricci flow

$$\frac{\partial}{\partial t}g(t) = -2\operatorname{Rc}(g(t)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

ODE for Lie groups.

					10
					5

Ricci Flow

Nice Basis

Theorem

General Case

Rc of $(\mathfrak{n}, \langle \cdot, \cdot \rangle)$ is given by

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where

В

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where

B =Killing form,

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Where

 $B = \text{Killing form}, \quad S(\text{ad } H) = \frac{1}{2}(\text{ad } H + (\text{ad } H)^t),$

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Where

 $B = \text{Killing form}, \quad S(\text{ad } H) = \frac{1}{2}(\text{ad } H + (\text{ad } H)^t),$

 $H \in \mathfrak{n}$:

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

Where

 $B = \text{Killing form}, \quad S(\text{ad } H) = \frac{1}{2}(\text{ad } H + (\text{ad } H)^t),$

 $H \in \mathfrak{n} : \langle H, X \rangle = \operatorname{tr} \operatorname{ad} X$ for any $X \in \mathfrak{n}$,

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$Rc = M - \frac{1}{2}B - S(ad H), \qquad (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where

$$B =$$
Killing form, $S(ad H) = \frac{1}{2}(ad H + (ad H)^t),$

$$\begin{split} H &\in \mathfrak{n} : \langle H, X \rangle = \operatorname{tr} \operatorname{ad} X \text{ for any } X \in \mathfrak{n}, \\ M(X, Y) &= -\frac{1}{2} \sum \langle [X, X_i], X_j \rangle \langle [Y, X_i], X_j \rangle \\ &+ \frac{1}{4} \sum \langle [X_i, X_j], X \rangle \langle [X_i, X_j], Y \rangle. \end{split}$$

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If ${\mathfrak n}$ nilpotent

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ● ● ●

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If $\mathfrak n$ nilpotent \leadsto

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If \mathfrak{n} nilpotent $\rightsquigarrow \mathsf{Rc} = M$.

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If \mathfrak{n} nilpotent $\rightsquigarrow \mathsf{Rc} = M$.

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

<□ > < @ > < E > < E > E のQ @

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \setminus \{0\} \longrightarrow \operatorname{sym}(n)$

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \smallsetminus \{0\} \longrightarrow \operatorname{sym}(n)$ for π is given by

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \setminus \{0\} \longrightarrow \operatorname{sym}(n)$ for π is given by $m(\mu) = \frac{4}{||\mu||^2} \operatorname{Ric}_{\mu}$.
Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If \mathfrak{n} nilpotent $\rightsquigarrow \mathsf{Rc} = M$.

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \setminus \{0\} \longrightarrow \operatorname{sym}(n)$ for π is given by $m(\mu) = \frac{4}{||\mu||^2} \operatorname{Ric}_{\mu}$. [Lauret]

Diagonalization:

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If \mathfrak{n} nilpotent $\rightsquigarrow \operatorname{Rc} = M$.

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \setminus \{0\} \longrightarrow \text{sym}(n)$ for π is given by $m(\mu) = \frac{4}{||\mu||^2} \operatorname{Ric}_{\mu}$. [Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If \mathfrak{n} nilpotent $\rightsquigarrow \operatorname{Rc} = M$.

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \setminus \{0\} \longrightarrow \text{sym}(n)$ for π is given by $m(\mu) = \frac{4}{||\mu||^2} \operatorname{Ric}_{\mu}$. [Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups [IJ 92, G 08, GP 10].

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If \mathfrak{n} nilpotent $\rightsquigarrow \operatorname{Rc} = M$.

$$\langle \mathsf{Ric}_{\mu}, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \qquad \forall \alpha \in \mathsf{sym}(n).$$

Equivalent to say that the moment map $m: V \setminus \{0\} \longrightarrow \text{sym}(n)$ for π is given by $m(\mu) = \frac{4}{||\mu||^2} \operatorname{Ric}_{\mu}$. [Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups [IJ 92, G 08, GP 10]. And an obstacle for dimension 4. [IJL 06].

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ → □ ● ● の < @

Theorem

General Case

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called

stably Ricci-diagonal

・ロト ・ 国 ト ・ 国 ト ・ 国 ・ のへの

Ricci Flow

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called

stably Ricci-diagonal if any diagonal left-invariant metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called

stably Ricci-diagonal if any diagonal left-invariant metric

```
(i.e. \langle X_i, X_j \rangle = 0 for all i \neq j)
```

Theorem

General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called

stably Ricci-diagonal if any diagonal left-invariant metric

(i.e. $\langle X_i, X_j \rangle = 0$ for all $i \neq j$) has diagonal Ricci tensor

Theorem

General Case

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called

stably Ricci-diagonal if any diagonal left-invariant metric

(i.e. $\langle X_i, X_j \rangle = 0$ for all $i \neq j$) has diagonal Ricci tensor

[Payne (2010)].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

General Case

A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called

stably Ricci-diagonal if any diagonal left-invariant metric

(i.e. $\langle X_i, X_j \rangle = 0$ for all $i \neq j$) has diagonal Ricci tensor

[Payne (2010)].

 $\sim \rightarrow$

- A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called
- stably Ricci-diagonal if any diagonal left-invariant metric
- (i.e. $\langle X_i, X_j \rangle = 0$ for all $i \neq j$) has diagonal Ricci tensor

[Payne (2010)].

 \rightsquigarrow set of diagonal metrics is invariant under the Ricci flow.

- A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra is called
- stably Ricci-diagonal if any diagonal left-invariant metric
- (i.e. $\langle X_i, X_j \rangle = 0$ for all $i \neq j$) has diagonal Ricci tensor

[Payne (2010)].

 \rightsquigarrow set of diagonal metrics is invariant under the Ricci flow.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \rightsquigarrow simplify the study.

Definitions	Ricci Flow	Nice Basis	Theorem	General Case
		Nice basis		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Definitions

Nice Basis

Theorem

General Case

Nice basis

Let \mathfrak{n} be a nilpotent Lie algebra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nice basis

Let \mathfrak{n} be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of \mathfrak{n} is called nice

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

• for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ij}^k \neq 0$,
- for all *i*, *k* there exists at most one *j* such that $c_{ii}^{jk} \neq 0$.

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all *i*, *k* there exists at most one *j* such that $c_{ii}^{jk} \neq 0$.

Example:

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all i, k there exists at most one j such that $c_{ii}^{jk} \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [,])$

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all i, k there exists at most one j such that $c_{ii}^{jk} \neq 0$.

Example: $n = (\mathbb{R}^4, [,]) \{X_1, ..., X_4\}$

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all i, k there exists at most one j such that $c_{ii}^{jk} \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \dots, X_4\}$

$$[X_1, X_2] = X_3, \qquad [X_1, X_3] = X_4.$$

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all *i*, *k* there exists at most one *j* such that $c_{ii}^{k} \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \dots, X_4\}$

$$[X_1, X_2] = X_3, \qquad [X_1, X_3] = X_4.$$

is a nice basis of n.

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all *i*, *k* there exists at most one *j* such that $c_{ii}^{jk} \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \dots, X_4\}$

$$[X_1, X_2] = X_3, \qquad [X_1, X_3] = X_4.$$

is a nice basis of \mathfrak{n} . Let $\mathfrak{n} = (\mathbb{R}^6, [,])$

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all *i*, *k* there exists at most one *j* such that $c_{ii}^{jk} \neq 0$.

Example:
$$\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \dots, X_4\}$$

$$[X_1, X_2] = X_3, \qquad [X_1, X_3] = X_4.$$

is a nice basis of \mathfrak{n} . Let $\mathfrak{n} = (\mathbb{R}^6, [,])$ where

$$\begin{bmatrix} X_1, X_2 \end{bmatrix} = X_4, \qquad \begin{bmatrix} X_1, X_4 \end{bmatrix} = X_5, \\ \begin{bmatrix} X_1, X_5 \end{bmatrix} = \begin{bmatrix} X_2, X_3 \end{bmatrix} = \begin{bmatrix} X_2, X_4 \end{bmatrix} = X_6,$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ii}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ii}^k \neq 0$,
- for all *i*, *k* there exists at most one *j* such that $c_{ii}^{jk} \neq 0$.

Example:
$$\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \dots, X_4\}$$

$$[X_1, X_2] = X_3, \qquad [X_1, X_3] = X_4.$$

is a nice basis of \mathfrak{n} . Let $\mathfrak{n} = (\mathbb{R}^6, [,])$ where

$$\begin{bmatrix} X_1, X_2 \end{bmatrix} = X_4, \qquad \begin{bmatrix} X_1, X_4 \end{bmatrix} = X_5, \\ \begin{bmatrix} X_1, X_5 \end{bmatrix} = \begin{bmatrix} X_2, X_3 \end{bmatrix} = \begin{bmatrix} X_2, X_4 \end{bmatrix} = X_6,$$

Not nice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

Note:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

• If β is a nice basis then $[Ric]_{\beta}$ is diagonal,

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note: if n is nilpotent

- If β is a nice basis then $[Ric]_{\beta}$ is diagonal,
- 2 A nice basis is stably Ricci diagonal.

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

- **1** If β is a nice basis then $[Ric]_{\beta}$ is diagonal,
- A nice basis is stably Ricci diagonal.
- n admits a nice basis if and only if the canonical basis
 {e₁,..., e_n} is nice for some A · [·, ·] ∈ V with A ∈ GL_n(ℝ).

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

- **1** If β is a nice basis then $[Ric]_{\beta}$ is diagonal,
- A nice basis is stably Ricci diagonal.
- n admits a nice basis if and only if the canonical basis
 {e₁,..., e_n} is nice for some A · [·, ·] ∈ V with A ∈ GL_n(ℝ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solitons:

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

- **1** If β is a nice basis then $[Ric]_{\beta}$ is diagonal,
- A nice basis is stably Ricci diagonal.
- In admits a nice basis if and only if the canonical basis {e₁,..., e_n} is nice for some A · [·, ·] ∈ V with A ∈ GL_n(ℝ).

Solitons: [Lauret-W (2006), Nikolayevsky (2008) , Fernandez Culma (2011)]
Definitions	Ricci Flow	Nice Basis	Theorem	General Case

Note: if n is nilpotent

- **1** If β is a nice basis then $[Ric]_{\beta}$ is diagonal,
- A nice basis is stably Ricci diagonal.
- In admits a nice basis if and only if the canonical basis {e₁,..., e_n} is nice for some A · [·, ·] ∈ V with A ∈ GL_n(ℝ).

Solitons: [Lauret-W (2006), Nikolayevsky (2008) , Fernandez Culma (2011)]

Nikolayevsky :

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

Note: if n is nilpotent

- **1** If β is a nice basis then $[Ric]_{\beta}$ is diagonal,
- A nice basis is stably Ricci diagonal.
- n admits a nice basis if and only if the canonical basis
 {e₁,..., e_n} is nice for some A · [·, ·] ∈ V with A ∈ GL_n(ℝ).

Solitons: [Lauret-W (2006), Nikolayevsky (2008) , Fernandez Culma (2011)]

Nikolayevsky : simple criterium to decide whether a given nilpotent Lie algebra with a nice basis admits a nilsoliton or not.

Definitions	Ricci Flow	Nice Basis	Theorem	General Case
		Existence		

• Any nilpotent Lie algebra of dimension ≤ 5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\bullet\,$ Any nilpotent Lie algebra of dimension ≤ 5
- Any filiform ℕ-graded Lie algebra [Nikolayevsky]

- Any nilpotent Lie algebra of dimension \leq 5
- Any filiform \mathbb{N} -graded Lie algebra [Nikolayevsky]
- Any nilradicals of a Borel subalgebras of any semisimple Lie algebra admits a nice basis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions	Ricci Flow	Nice Basis	Theorem	General Case
		Fristence		

- Any nilpotent Lie algebra of dimension < 5
 - Any filiform \mathbb{N} -graded Lie algebra [Nikolayevsky]
 - Any nilradicals of a Borel subalgebras of any semisimple Lie algebra admits a nice basis.

• Any two step nilpotent Lie algebra given by a graph.

Definitions	Ricci Flow	Nice Basis	Theorem	General

Existence

- Any nilpotent Lie algebra of dimension ≤ 5
- Any filiform \mathbb{N} -graded Lie algebra [Nikolayevsky]
- Any nilradicals of a Borel subalgebras of any semisimple Lie algebra admits a nice basis.

- Any two step nilpotent Lie algebra given by a graph.
- Any nilpotent Lie algebra admitting a simple derivation.

• The free 3-step nilpotent Lie algebra in 3 generators

(ロ)、

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8))

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p,q)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

Ricci Flow

Nice Basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<\frac{1}{2}pq(q-1)\}$$

Ricci Flow

Nice Basis

Theorem

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<\frac{1}{2}pq(q-1)\}$$

does not admit a nice basis [Nikolayevsky]

Ricci Flow

Nice Basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<rac{1}{2}pq(q-1)\}$$

does not admit a nice basis [Nikolayevsky] (dimensional argument).

Ricci Flow

Nice Basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<\frac{1}{2}pq(q-1)\}$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

Ricci Flow

Nice Basis

Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<\frac{1}{2}pq(q-1)\}$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

• Any 6-dimensional nilpotent Lie algebras

Ricci Flow

Nice Basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<\frac{1}{2}pq(q-1)\}$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

• Any 6-dimensional nilpotent Lie algebras (34)

Ricci Flow

Nice Basis

Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q-1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

• Any 6-dimensional nilpotent Lie algebras (34) with the only exception of:

Ricci Flow

Nice Basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q-1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

• Any 6-dimensional nilpotent Lie algebras (34) with the only exception of:

$$\begin{bmatrix} X_1, X_2 \end{bmatrix} = X_4, \qquad \begin{bmatrix} X_1, X_4 \end{bmatrix} = X_5, \\ \begin{bmatrix} X_1, X_5 \end{bmatrix} = \begin{bmatrix} X_2, X_3 \end{bmatrix} = \begin{bmatrix} X_2, X_4 \end{bmatrix} = X_6,$$

Ricci Flow

Nice Basis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q-1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

• Any 6-dimensional nilpotent Lie algebras (34) with the only exception of:

$$\begin{bmatrix} X_1, X_2 \end{bmatrix} = X_4, \qquad \begin{bmatrix} X_1, X_4 \end{bmatrix} = X_5, \\ \begin{bmatrix} X_1, X_5 \end{bmatrix} = \begin{bmatrix} X_2, X_3 \end{bmatrix} = \begin{bmatrix} X_2, X_4 \end{bmatrix} = X_6,$$

(nice basis \rightsquigarrow

Ricci Flow

Nice Basis

Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3,3,8)) does not admit a nice basis [Nikolayevsky]
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2}\min\{q(q-1),pq\}+q^2+p^2-1<\frac{1}{2}pq(q-1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). dim $\mathfrak{n} \geq 13.$

• Any 6-dimensional nilpotent Lie algebras (34) with the only exception of:

$$[X_1, X_2] = X_4, \qquad [X_1, X_4] = X_5, \\ [X_1, X_5] = [X_2, X_3] = [X_2, X_4] = X_6,$$

(nice basis \rightsquigarrow get a basis compatible with the type).

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

A basis of a nilpotent Lie algebra is stably Ricci-diagonal if and only if it is nice.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n} if and only if

 $\alpha_{ij}^{k} - \alpha_{rs}^{t} \notin \Phi$, for any $c_{ij}^{k}, c_{rs}^{t} \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n} if and only if

$$\alpha_{ij}^k - \alpha_{rs}^t \notin \Phi, \quad \text{ for any } \quad c_{ij}^k, c_{rs}^t \neq 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

n

The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n} if and only if

$$\alpha_{ij}^k - \alpha_{rs}^t \notin \Phi, \quad \text{ for any } \quad c_{ij}^k, c_{rs}^t \neq 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathfrak{n} \leftrightarrow$

The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n} if and only if

$$\alpha_{ij}^k - \alpha_{rs}^t \notin \Phi, \quad \text{ for any } \quad c_{ij}^k, c_{rs}^t \neq 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathfrak{n} \leftrightarrow \mu = [\cdot, \cdot] =$

The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n} if and only if

$$\alpha_{ij}^{k} - \alpha_{rs}^{t} \notin \Phi, \quad \text{ for any } \quad c_{ij}^{k}, c_{rs}^{t} \neq 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathfrak{n} \leftrightarrow \mu = [\cdot, \cdot] = \sum_{k; \, i < j} c_{ij}^k v_{ijk}.$$

The canonical basis $\{e_1,\ldots,e_n\}$ is nice for $\mathfrak n$ if and only if

$$\alpha_{ij}^k - \alpha_{rs}^t \notin \Phi, \quad \text{ for any } \quad c_{ij}^k, c_{rs}^t \neq 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathfrak{n} \leftrightarrow \mu = [\cdot, \cdot] = \sum_{k; \, i < j} c_{ij}^k v_{ijk}.$$

 $\rightsquigarrow \text{Generalization}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

For a nilpotent Lie algebra \mathfrak{n} , the following conditions are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

For a nilpotent Lie algebra \mathfrak{n} , the following conditions are equivalent:

(i) The canonical basis $\{e_1,\ldots,e_n\}$ is nice for $\mathfrak{n}.$

For a nilpotent Lie algebra \mathfrak{n} , the following conditions are equivalent:

- (i) The canonical basis $\{e_1,\ldots,e_n\}$ is nice for $\mathfrak{n}.$
- (ii) $\langle \pi(X)v_{ijk}, v_{rst} \rangle = 0$, for all $X \in \mathfrak{g}_{\lambda}, \lambda \in \Phi, c_{ij}^k, c_{rs}^t \neq 0$.

For a nilpotent Lie algebra \mathfrak{n} , the following conditions are equivalent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

For a nilpotent Lie algebra \mathfrak{n} , the following conditions are equivalent:

- (i) The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n} .
- (ii) $\langle \pi(X)v_{ijk}, v_{rst} \rangle = 0$, for all $X \in \mathfrak{g}_{\lambda}, \lambda \in \Phi, c_{ij}^k, c_{rs}^t \neq 0$.
- (iii) $\operatorname{Ric}_{A \cdot \mu}(e_{l}, e_{m}) = 0$ for all $l \neq m$ and any diagonal $A \in \operatorname{GL}_{n}(\mathbb{R})$.
- (iv) The canonical basis $\{e_1, \ldots, e_n\}$ is stably Ricci-diagonal for \mathfrak{n} .

Nice Basis

Theorem

General Case

A few words about the proof:

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A few words about the proof: (i) \Leftrightarrow (ii)

Theorem

General Case

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nice Basis

Theorem

General Case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$:

 $\langle \lambda + \alpha_{ij}^k, \alpha \rangle \langle \pi(X) \mathbf{v}_{ijk}, \mathbf{v}_{rst} \rangle = \langle \alpha_{rs}^t, \alpha \rangle \langle \pi(X) \mathbf{v}_{ijk}, \mathbf{v}_{rst} \rangle,$

Ricci Flow

Nice Basis

Theorem

General Case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$:

 $\langle \lambda + \alpha_{ij}^k, \alpha \rangle \langle \pi(X) \mathbf{v}_{ijk}, \mathbf{v}_{rst} \rangle = \langle \alpha_{rs}^t, \alpha \rangle \langle \pi(X) \mathbf{v}_{ijk}, \mathbf{v}_{rst} \rangle,$

(ii) \Rightarrow (iii)

Nice Basi

Theorem

General Case

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$: $\langle \lambda + \alpha_{ij}^{k}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle = \langle \alpha_{rs}^{t}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle$, (ii) \Rightarrow (iii) $\frac{1}{4} \operatorname{Ric}_{A \cdot [\cdot, \cdot]}(e_{l}, e_{m}) = \langle \pi(E_{lm})A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle$

						5

Nice Basis

Theorem

General Case

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$: $\langle \lambda + \alpha_{ii}^k, \alpha \rangle \langle \pi(X) \mathbf{v}_{iik}, \mathbf{v}_{rst} \rangle = \langle \alpha_{rs}^t, \alpha \rangle \langle \pi(X) \mathbf{v}_{iik}, \mathbf{v}_{rst} \rangle,$ $(ii) \Rightarrow (iii)$ $\frac{1}{4}\operatorname{Ric}_{A\cdot[\cdot,\cdot]}(e_{I},e_{m}) = \langle \pi(E_{Im})A\cdot[\cdot,\cdot],A\cdot[\cdot,\cdot] \rangle$ $=\sum c_{ii}^k c_{rs}^t \langle \pi(E_{lm}) A \cdot v_{ijk}, A. v_{rst} \rangle$

Nice Basis

Theorem

General Case

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$:

$$\langle \lambda + \alpha_{ij}^k, \alpha \rangle \langle \pi(X) \mathbf{v}_{ijk}, \mathbf{v}_{rst} \rangle = \langle \alpha_{rs}^t, \alpha \rangle \langle \pi(X) \mathbf{v}_{ijk}, \mathbf{v}_{rst} \rangle,$$

$$\begin{aligned} \text{(ii)} \Rightarrow \text{(iii)} \\ \frac{1}{4} \operatorname{Ric}_{A \cdot [\cdot, \cdot]}(e_{l}, e_{m}) &= \langle \pi(E_{lm})A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle \\ &= \sum c_{ij}^{k} c_{rs}^{t} \langle \pi(E_{lm})A \cdot v_{ijk}, A. v_{rst} \rangle \\ &= \sum c_{ij}^{k} c_{rs}^{t} \frac{a_{k}}{a_{i}a_{j}} \frac{a_{t}}{a_{r}a_{s}} \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle, \end{aligned}$$

Nice Basis

Theorem

General Case

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$:

$$\langle \lambda + \alpha_{ij}^k, \alpha \rangle \langle \pi(X) \mathsf{v}_{ijk}, \mathsf{v}_{rst} \rangle = \langle \alpha_{rs}^t, \alpha \rangle \langle \pi(X) \mathsf{v}_{ijk}, \mathsf{v}_{rst} \rangle,$$

$$\begin{aligned} \text{(ii)} \Rightarrow \text{(iii)} \\ \frac{1}{4} \operatorname{Ric}_{A \cdot [\cdot, \cdot]}(e_{l}, e_{m}) &= \langle \pi(E_{lm})A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle \\ &= \sum c_{ij}^{k} c_{rs}^{t} \langle \pi(E_{lm})A \cdot v_{ijk}, A. v_{rst} \rangle \\ &= \sum c_{ij}^{k} c_{rs}^{t} \frac{a_{k}}{a_{i}a_{j}} \frac{a_{t}}{a_{r}a_{s}} \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle, \end{aligned}$$

 $(iii) \Rightarrow (ii)$

						-
12						5

Nice Basis

Theorem

General Case

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$: $\langle \lambda + \alpha_{ii}^{k}, \alpha \rangle \langle \pi(X) \mathbf{v}_{iik}, \mathbf{v}_{rst} \rangle = \langle \alpha_{rs}^{t}, \alpha \rangle \langle \pi(X) \mathbf{v}_{iik}, \mathbf{v}_{rst} \rangle,$ $(ii) \Rightarrow (iii)$ $\frac{1}{4}\operatorname{Ric}_{A\cdot[\cdot,\cdot]}(e_{I},e_{m}) = \langle \pi(E_{Im})A\cdot[\cdot,\cdot],A\cdot[\cdot,\cdot] \rangle$ $=\sum c_{ii}^k c_{rs}^t \langle \pi(E_{lm}) A \cdot v_{ijk}, A. v_{rst} \rangle$ $=\sum_{ij} c_{ij}^{k} c_{rs}^{t} \frac{a_{k}}{a_{i}a_{i}} \frac{a_{t}}{a_{r}a_{r}} \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle,$

(iii) \Rightarrow (ii) uses: π is multiplicity free

Nice Basis

Theorem

General Case

A few words about the proof: (i) \Leftrightarrow (ii) If $\lambda \in \Phi, X \in \mathfrak{g}_{\lambda}, \alpha \in \mathfrak{a}$: $\langle \lambda + \alpha_{ii}^{k}, \alpha \rangle \langle \pi(X) \mathbf{v}_{iik}, \mathbf{v}_{rst} \rangle = \langle \alpha_{rs}^{t}, \alpha \rangle \langle \pi(X) \mathbf{v}_{iik}, \mathbf{v}_{rst} \rangle,$ $(ii) \Rightarrow (iii)$ $\frac{1}{4}\operatorname{Ric}_{A\cdot[\cdot,\cdot]}(e_{I},e_{m}) = \langle \pi(E_{Im})A\cdot[\cdot,\cdot],A\cdot[\cdot,\cdot] \rangle$ $=\sum c_{ii}^k c_{rs}^t \langle \pi(E_{lm}) A \cdot v_{iik}, A. v_{rst} \rangle$ $=\sum_{ij} c_{ij}^{k} c_{rs}^{t} \frac{a_{k}}{a_{i}a_{i}} \frac{a_{t}}{a_{r}a_{r}} \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle,$

(iii) \Rightarrow (ii) uses: π is multiplicity free and special properties of the weights (α_{ij}^k) .

Nice Basis

Theorem

General Case

What about non-nilpotent Lie groups?

Ricci Flow

Nice Basis

Theoren

General Case

What about non-nilpotent Lie groups?

$$\mathsf{Rc} = M - \frac{1}{2}B - S(\mathsf{ad}\ H).$$

Nice Basis

Theoren

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about non-nilpotent Lie groups?

$$\mathsf{Rc} = M - \frac{1}{2}B - S(\mathsf{ad}\ H).$$

Nice \Rightarrow stably Ricci diagonal:

Ricci Flow

Nice Basis

Theoren

General Case

What about non-nilpotent Lie groups?

$$\mathsf{Rc} = M - \frac{1}{2}B - S(\mathsf{ad}\ H).$$

Nice \Rightarrow stably Ricci diagonal: Let $\{X_1, X_2, X_3\}$ be a basis of $\mathfrak{sl}_2(\mathbb{R})$ such that

Ricci Flow

Nice Basis

Theoren

General Case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What about non-nilpotent Lie groups?

$$\mathsf{Rc} = M - \frac{1}{2}B - S(\mathsf{ad}\ H).$$

Nice \Rightarrow stably Ricci diagonal: Let $\{X_1, X_2, X_3\}$ be a basis of $\mathfrak{sl}_2(\mathbb{R})$ such that

$$[X_1, X_2] = X_2,$$
 $[X_1, X_3] = -X_3,$ $[X_2, X_3] = X_1.$

Ricci Flow

Nice Basis

Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General Case

What about non-nilpotent Lie groups?

$$\mathsf{Rc} = M - \frac{1}{2}B - S(\mathsf{ad}\,H).$$

Nice \Rightarrow stably Ricci diagonal: Let $\{X_1, X_2, X_3\}$ be a basis of $\mathfrak{sl}_2(\mathbb{R})$ such that

$$[X_1, X_2] = X_2,$$
 $[X_1, X_3] = -X_3,$ $[X_2, X_3] = X_1.$

Nice but

Ricci Flow

Nice Basis

Theorem

General Case

What about non-nilpotent Lie groups?

$$\mathsf{Rc} = M - \frac{1}{2}B - S(\mathsf{ad}\ H).$$

Nice \Rightarrow stably Ricci diagonal: Let $\{X_1, X_2, X_3\}$ be a basis of $\mathfrak{sl}_2(\mathbb{R})$ such that

$$[X_1, X_2] = X_2,$$
 $[X_1, X_3] = -X_3,$ $[X_2, X_3] = X_1.$

Nice but

$$\mathsf{Ric} = \left[\begin{array}{rrr} -\frac{3}{2} & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{2} \end{array} \right].$$

(for the metric which makes it orthonormal)

Nice Basis

Theoren

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stably Ricci diagonal \Rightarrow nice:

Theoren

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stably Ricci diagonal \Rightarrow nice:

\mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

Ricci Flow

Nice Basis

Theorem

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

 $[X_1, X_3] = X_2 + X_3.$

Theorem

General Case

(ロ)、(型)、(E)、(E)、 E) のQの

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal

Theorem

General Case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal : for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \qquad \langle X_i, X_j \rangle = 0 \qquad \forall i \neq j,$$

Theorem

General Case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal : for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \qquad \langle X_i, X_j \rangle = 0 \qquad \forall i \neq j,$$

$$\operatorname{Ric}(X_r, X_s) = \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle \\ - \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle.$$

Theorem

General Case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal : for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \qquad \langle X_i, X_j \rangle = 0 \qquad \forall i \neq j,$$

$$\begin{aligned} \mathsf{Ric}(X_r, X_s) &= \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle \\ &- \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle. \end{aligned}$$

Vanishes if either r or s is 1,

Theorem

General Case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal : for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \qquad \langle X_i, X_j \rangle = 0 \qquad \forall i \neq j,$$

$$\begin{aligned} \mathsf{Ric}(X_r, X_s) &= \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle \\ &- \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle. \end{aligned}$$

Vanishes if either r or s is 1, and

Theorem

General Case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stably Ricci diagonal \Rightarrow nice:

 \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal : for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \qquad \langle X_i, X_j \rangle = 0 \qquad \forall i \neq j,$$

$$\begin{aligned} \mathsf{Ric}(X_r, X_s) &= \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle \\ &- \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle. \end{aligned}$$

Vanishes if either r or s is 1, and

$$\operatorname{Ric}(X_2, X_3) = \frac{1}{2} \left(\frac{a_2}{a_1}\right)^2 - \frac{1}{2} \left(\frac{a_2}{a_1}\right)^2 = 0.$$

(ロ)、

In the non-nilpotent case both assertion of the Theorem fails.

(ロ)、(型)、(E)、(E)、 E) の(の)

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric

・ロト・日本・モート モー うへぐ

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$.

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the *Ricci flow*

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the *Ricci flow*

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t)), \qquad g(0) = g_0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the *Ricci flow*

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t)), \qquad g(0) = g_0.$$

Or equivalently

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the *Ricci flow*

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t)), \qquad g(0) = g_0.$$

Or equivalently

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\cdot,\cdot\rangle_t = -2\operatorname{\mathsf{Rc}}(\langle\cdot,\cdot\rangle_t), \qquad \langle\cdot,\cdot\rangle_0 = g(0)(e)$$

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the *Ricci flow*

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t)), \qquad g(0) = g_0.$$

Or equivalently

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\cdot,\cdot\rangle_t = -2\operatorname{\mathsf{Rc}}(\langle\cdot,\cdot\rangle_t), \qquad \langle\cdot,\cdot\rangle_0 = g(0)(e)$$

where $\langle \cdot, \cdot
angle_t := g(t)(e)$,

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$. Let g(t) be a solution to the *Ricci flow*

$$rac{\partial}{\partial t}g(t) = -2\operatorname{\mathsf{Rc}}(g(t)), \qquad g(0) = g_0.$$

Or equivalently

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\cdot,\cdot\rangle_t = -2\operatorname{\mathsf{Rc}}(\langle\cdot,\cdot\rangle_t), \qquad \langle\cdot,\cdot\rangle_0 = g(0)(e)$$

where $\langle \cdot, \cdot \rangle_t := g(t)(e)$, and

$$\mathsf{Rc}(\langle \cdot, \cdot \rangle_t) := \mathsf{Rc}(g(t))(e) : \mathfrak{n} \times \mathfrak{n} \longrightarrow \mathbb{R}.$$
<□ > < @ > < E > < E > E のQ @

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot angle_0)$

Definitions

Nice Basis

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$ is the Ricci operator.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot
angle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$ is the Ricci operator.

A starting metric g_0 will be called Ricci flow diagonal if the Ricci flow solution g(t) is diagonal

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$ is the Ricci operator.

A starting metric g_0 will be called Ricci flow diagonal if the Ricci flow solution g(t) is diagonal in the sense that P(t) is diagonal when written in some fixed orthonormal basis of $(n, \langle \cdot, \cdot \rangle_0)$.

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$ is the Ricci operator.

A starting metric g_0 will be called Ricci flow diagonal if the Ricci flow solution g(t) is diagonal in the sense that P(t) is diagonal when written in some fixed orthonormal basis of $(n, \langle \cdot, \cdot \rangle_0)$. Equivalently the same for Ric_t

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$ is the Ricci operator.

A starting metric g_0 will be called Ricci flow diagonal if the Ricci flow solution g(t) is diagonal in the sense that P(t) is diagonal when written in some fixed orthonormal basis of $(n, \langle \cdot, \cdot \rangle_0)$. Equivalently the same for Ric_t or the commutativity of the family of symmetric operators P(t).

If P(t) is the positive definite operators of $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for P(t):

$$\frac{\mathrm{d}}{\mathrm{d}t}P(t) = -2P(t)\operatorname{Ric}_t, \qquad P(0) = I,$$

where $\operatorname{Ric}_t := \operatorname{Ric}(g(t))(e) : \mathfrak{n} \longrightarrow \mathfrak{n}$ is the Ricci operator.

A starting metric g_0 will be called Ricci flow diagonal if the Ricci flow solution g(t) is diagonal in the sense that P(t) is diagonal when written in some fixed orthonormal basis of $(n, \langle \cdot, \cdot \rangle_0)$. Equivalently the same for Ric_t or the commutativity of the family of symmetric operators P(t).

Stably Ricci diagonal basis \Rightarrow Ricci diagonal.

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

More examples:

Definitions	Ricci Flow	Nice Basis	Theorem	General Case

If $\{X_1, \ldots, X_n\}$ is an orthonormal basis of eigenvectors of Ric₀

If $\{X_1, \ldots, X_n\}$ is an orthonormal basis of eigenvectors of Ric₀ with respective eigenvalues r_1, \ldots, r_n ,

(ロ)、(型)、(E)、(E)、 E) の(の)

If $\{X_1, \ldots, X_n\}$ is an orthonormal basis of eigenvectors of Ric₀ with respective eigenvalues r_1, \ldots, r_n ,

$$P(t) = \mathbf{d}\left((-2ct+1)^{r_1/c}, \dots, (-2ct+1)^{r_n/c}\right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

If $\{X_1, \ldots, X_n\}$ is an orthonormal basis of eigenvectors of Ric₀ with respective eigenvalues r_1, \ldots, r_n ,

$$P(t) = \mathbf{d}\left((-2ct+1)^{r_1/c}, \dots, (-2ct+1)^{r_n/c}\right).$$

(Payne, Williams)

Definitions

Ricci Flow

Nice Basis

Theoren

General Case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

THANK YOU!