A variational principle for spinors

Frederik Witt

Universität Münster

Geometric structures on manifolds and their applications 3rd of July 2012

- A heat flow for special metrics joint with H. Weiß (München)
- Energy functionals and soliton equations for G_2 -forms joint with H. Weiß (München)
- A spinorial energy functional: critical points and gradient flow joint with B. Ammann (Regensburg) and H. Weiß (München)

M^n C^{∞} -manifold (compact, spin, simply-connected, $n \ge 4$) g Riemannian metric

∃ >

 $M^n \ C^\infty$ -manifold (compact, spin, simply-connected, $n \ge 4$) g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?

 $M^n \ C^\infty$ -manifold (compact, spin, simply-connected, $n \ge 4$) g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?

Theorem (Hamilton)

 (M^3,g) compact with positive Ricci curvature

 \Rightarrow g can be deformed into a metric of positive constant sectional curvature.

 $M^n \ C^\infty$ -manifold (compact, spin, simply-connected, $n \ge 4$) g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?

Theorem (Hamilton)

 (M^3,g) compact with positive Ricci curvature

 \Rightarrow g can be deformed into a metric of positive constant sectional curvature.

Local question

Is there a natural direction for deforming *g* towards a special metric?

< 同 ト < 三 ト

Riemannian curvature
$$R^g = \widetilde{Z}^g \oplus W^g$$

Riemannian curvature $R^g = \widetilde{Z}^g \oplus W^g$

•
$$W^g = 0 \Leftrightarrow g$$
 is conformally flat

Riemannian curvature $R^g = \widetilde{Z}^g \oplus W^g$

- $W^g = 0 \Leftrightarrow g$ is conformally flat
- $\widetilde{Z}^g = 0 \Leftrightarrow g$ Ricci-flat

Riemannian curvature $R^g = \widetilde{Z}^g \oplus W^g$

- $W^g = 0 \Leftrightarrow g$ is conformally flat
- $\widetilde{Z}^g = 0 \Leftrightarrow g$ Ricci-flat

$\widetilde{Z}^g = U^g \oplus Z^g$ and $Z^g = 0 \Leftrightarrow g$ is Einstein

Riemannian curvature $R^g = \widetilde{Z}^g \oplus W^g$

- $W^g = 0 \Leftrightarrow g$ is conformally flat
- $\widetilde{Z}^g = 0 \Leftrightarrow g$ Ricci-flat

$$\widetilde{Z}^{g} = U^{g} \oplus Z^{g}$$
 and $Z^{g} = 0 \Leftrightarrow g$ is *Einstein*

Theorem (Kuiper)

 (M^n, g) compact, simply-connected and conformally flat $\Rightarrow (M^n, g)$ conformally equivalent to (S^n, g_{round})

Theorem (Cheeger-Gromoll, Fischer-Wolf)

(M,g) compact and Ricci-flat

 \Rightarrow There exists a finite Riemannian cover $T^k \times \widetilde{M} \to M$ with \widetilde{M} compact, simply-connected and Ricci-flat.

Theorem (Cheeger-Gromoll, Fischer-Wolf)

(M,g) compact and Ricci-flat

 \Rightarrow There exists a finite Riemannian cover $T^k \times \widetilde{M} \to M$ with \widetilde{M} compact, simply-connected and Ricci-flat.

Corollary

Any homogeneous Ricci-flat metric is flat.

Theorem (Cheeger-Gromoll, Fischer-Wolf)

(M,g) compact and Ricci-flat

 \Rightarrow There exists a finite Riemannian cover $T^k \times \widetilde{M} \to M$ with \widetilde{M} compact, simply-connected and Ricci-flat.

Corollary

Any homogeneous Ricci-flat metric is flat.

Existence of compact simply-connected (irreducible) Ricci-flat manifolds?

dim <i>M</i>	$\operatorname{Hol}(M,g)$	geometry	examples	
п	SO(n)	generic	?	
2 <i>m</i>	SU(m)	Calabi-Yau	Yau	
4 <i>k</i>	$\operatorname{Sp}(k)$	hyperkähler	Beauville-Mukai	
8	Spin(7)	Spin(7)	Joyce	
7	G_2	G ₂	Joyce	

dim M	$\operatorname{Hol}(M,g)$	geometry	examples	
n	SO(n)	generic	?	
2 <i>m</i>	SU(m)	Calabi-Yau	Yau	
4 <i>k</i>	$\operatorname{Sp}(k)$	hyperkähler	Beauville-Mukai	
8	Spin(7)	Spin(7)	Joyce	
7	G_2	G ₂	Joyce	

Goal

• approach special holonomy from variational point of view

dim <i>M</i>	$\operatorname{Hol}(M,g)$	geometry	examples	
п	SO(n)	generic	?	
2 <i>m</i>	SU(m)	Calabi-Yau	Yau	
4 <i>k</i>	$\operatorname{Sp}(k)$	hyperkähler	Beauville-Mukai	
8	Spin(7)	Spin(7)	Joyce	
7	G_2	G ₂	Joyce	

Goal

- approach special holonomy from variational point of view
- study (negative) gradient flow of the functional

 $\mathrm{G}_2\text{-manifolds}$

• (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$

G_2 -manifolds

- (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$
- Ω reduces $P = P_{GL_+(7)} \rightarrow M$ to $P_{G_2} \rightarrow M$ which extends to $P_{SO(7)} \rightarrow M$, hence induces metric g_{Ω}

$\mathrm{G}_2\text{-manifolds}$

- (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$
- Ω reduces $P = P_{GL_+(7)} \rightarrow M$ to $P_{G_2} \rightarrow M$ which extends to $P_{SO(7)} \rightarrow M$, hence induces metric g_{Ω}
- $\nabla^{g_{\Omega}}$ reduces to $P_{G_2} \Leftrightarrow \nabla^{g_{\Omega}}\Omega = 0 \Leftrightarrow d\Omega = 0, \ d\star_{g_{\Omega}}\Omega = 0$

$\mathrm{G}_2\text{-manifolds}$

- (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$
- Ω reduces $P = P_{GL_+(7)} \rightarrow M$ to $P_{G_2} \rightarrow M$ which extends to $P_{SO(7)} \rightarrow M$, hence induces metric g_{Ω}
- $\nabla^{g_{\Omega}}$ reduces to $P_{G_2} \Leftrightarrow \nabla^{g_{\Omega}}\Omega = 0 \Leftrightarrow d\Omega = 0, \ d \star_{g_{\Omega}}\Omega = 0$
- choice of a metric $g_p \in \operatorname{GL}_+(7)/\operatorname{SO}(7)$

$\mathrm{G}_2\text{-manifolds}$

- (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$
- Ω reduces $P = P_{GL_+(7)} \rightarrow M$ to $P_{G_2} \rightarrow M$ which extends to $P_{SO(7)} \rightarrow M$, hence induces metric g_{Ω}
- $\nabla^{g_{\Omega}}$ reduces to $P_{G_2} \Leftrightarrow \nabla^{g_{\Omega}}\Omega = 0 \Leftrightarrow d\Omega = 0, \ d\star_{g_{\Omega}}\Omega = 0$
- choice of a metric $g_p \in \operatorname{GL}_+(7)/\operatorname{SO}(7)$
- choice of a unit spinor $\phi_p \in S^7 \cong \mathrm{Spin}(7)/\mathrm{G}_2 \subset \Sigma_7^\mathbb{R}$

G_2 -manifolds

- (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$
- Ω reduces $P = P_{GL_+(7)} \rightarrow M$ to $P_{G_2} \rightarrow M$ which extends to $P_{SO(7)} \rightarrow M$, hence induces metric g_{Ω}
- $\nabla^{g_{\Omega}}$ reduces to $P_{G_2} \Leftrightarrow \nabla^{g_{\Omega}}\Omega = 0 \Leftrightarrow d\Omega = 0, \ d\star_{g_{\Omega}}\Omega = 0$
- choice of a metric $g_p \in \operatorname{GL}_+(7)/\operatorname{SO}(7)$
- choice of a unit spinor $\phi_p \in S^7 \cong \mathrm{Spin}(7)/\mathrm{G}_2 \subset \Sigma_7^\mathbb{R}$
- $abla^{g_\Omega}$ reduces to $P_{\mathrm{G}_2} \Leftrightarrow
 abla^{g_\Omega} \phi = 0$

A B A A B A

(M,g) spin and $\phi \in \Gamma(\Sigma_g M)$ with $\nabla^g \phi = 0$ $\Rightarrow g$ Ricci-flat and has special holonomy

Frederik Witt A variational principle for spinors

(M,g) spin and $\phi \in \Gamma(\Sigma_g M)$ with $\nabla^g \phi = 0$ $\Rightarrow g$ Ricci-flat and has special holonomy

Proposition (Wang)

dim <i>M</i>	$\operatorname{Hol}(M,g)$	geometry	dim spinors
2 <i>m</i>	SU(m)	Calabi–Yau	2
4 <i>k</i>	$\operatorname{Sp}(k)$	hyperkähler	k+1
8	Spin(7)	Spin(7)	1
7	G_2	G ₂	1

Spin structure $\tilde{P} \to P$ is a 2-fold cover of $GL_+(n)$ -frame bundle $P \to M$ such that fibrewise $0 \to \mathbb{Z}_2 \to \widetilde{GL}_+(n) \to GL_+(n) \to 0$

Spin structure $\tilde{P} \to P$ is a 2-fold cover of $GL_+(n)$ -frame bundle $P \to M$ such that fibrewise $0 \to \mathbb{Z}_2 \to \widetilde{GL}_+(n) \to GL_+(n) \to 0$

Universal spinor bundle

$$\begin{split} \Sigma M &= \widetilde{P} \times_{\mathrm{Spin}(n)} \Sigma_n \to \odot^2_+ T^* M \to M \\ \mathcal{F} &= \Gamma(\Sigma M) = \{(g, \phi) \mid \phi \in \Gamma(\Sigma_g M)\} \to \mathcal{M} := \{\text{metrics on } M\} \\ \mathcal{N} &= \{(g, \phi) \in \mathcal{F} \mid \phi \in \Gamma(\Sigma_g M), \ |\phi| = 1\} \to \mathcal{M} \end{split}$$

Spin structure $\tilde{P} \to P$ is a 2-fold cover of $GL_+(n)$ -frame bundle $P \to M$ such that fibrewise $0 \to \mathbb{Z}_2 \to \widetilde{GL}_+(n) \to GL_+(n) \to 0$

Universal spinor bundle

$$\begin{split} \Sigma M &= \widetilde{P} \times_{\mathrm{Spin}(n)} \Sigma_n \to \odot^2_+ T^* M \to M \\ \mathcal{F} &= \Gamma(\Sigma M) = \{(g, \phi) \mid \phi \in \Gamma(\Sigma_g M)\} \to \mathcal{M} := \{ \text{metrics on } M \} \\ \mathcal{N} &= \{(g, \phi) \in \mathcal{F} \mid \phi \in \Gamma(\Sigma_g M), \ |\phi| = 1 \} \to \mathcal{M} \end{split}$$

The energy functional

$$\mathcal{E}: \mathcal{N} \to \mathbb{R}, \quad (g, \phi) \mapsto \frac{1}{2} \int_{M} |\nabla^{g} \phi|_{g}^{2} dv^{g}$$

•
$$(g, \phi)$$
 is critical $\Leftrightarrow \nabla^g \phi = 0$

æ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- (g, ϕ) is critical $\Leftrightarrow \nabla^g \phi = 0$
- Killing spinors $(\nabla_X^g \phi = \lambda X \cdot \phi)$ are *solitons*, i.e. critical subject to $\int_M dv^g = 1$.

э

- (g, ϕ) is critical $\Leftrightarrow \nabla^g \phi = 0$
- Killing spinors $(\nabla_X^g \phi = \lambda X \cdot \phi)$ are *solitons*, i.e. critical subject to $\int_M dv^g = 1$.

Theorem (surface case)

•
$$\mathcal{E} = \frac{1}{2} \int_M |D^g \phi|^2 dv^g - \pi (1 - \gamma_M)$$

伺 と く ヨ と く ヨ と …

э

Theorem (dim M > 3)

- (g, ϕ) is critical $\Leftrightarrow \nabla^g \phi = 0$
- Killing spinors $(\nabla^g_X \phi = \lambda X \cdot \phi)$ are *solitons*, i.e. critical subject to $\int_M dv^g = 1$.

Theorem (surface case)

•
$$\mathcal{E} = \frac{1}{2} \int_{\mathcal{M}} |D^g \phi|^2 dv^g - \pi (1 - \gamma_M)$$

• trichotomy of absolute minimisers $\begin{cases} P^{g}\phi = 0, & \gamma_{M} = 0\\ \nabla^{g}\phi = 0, & \gamma_{M} = 1\\ D^{g}\phi = 0, & \gamma_{M} > 2 \end{cases}$

< /₽ > < E > <

- (g, ϕ) is critical $\Leftrightarrow \nabla^g \phi = 0$
- Killing spinors $(\nabla_X^g \phi = \lambda X \cdot \phi)$ are *solitons*, i.e. critical subject to $\int_M dv^g = 1$.

Theorem (surface case)

•
$$\mathcal{E} = \frac{1}{2} \int_{\mathcal{M}} |D^g \phi|^2 dv^g - \pi (1 - \gamma_M)$$

• trichotomy of absolute minimisers

$$\begin{array}{l} P^g \phi = 0, \quad \gamma_M = 0 \\ \nabla^g \phi = 0, \quad \gamma_M = 1 \\ D^g \phi = 0, \quad \gamma_M \geq 2 \end{array}$$

• saddle points exist for $\gamma_{\textit{M}} \geq 1$

Sketch of the proof of Theorem A

Sketch of the proof of Theorem A

Compare $P_{SO(g_0)}$ and $P_{SO(g_1)}$ along $g_t = tg_0 + (1 - t)g_1$: $g_t(v, w) = g_0(A_t v, w) \rightsquigarrow$ $(\sqrt{A_t})^{-1} : SO(g_0) \rightarrow SO(g_t)$

Compare $P_{SO(g_0)}$ and $P_{SO(g_1)}$ along $g_t = tg_0 + (1 - t)g_1$: $g_t(v, w) = g_0(A_t v, w) \rightsquigarrow$ $(\sqrt{A_t})^{-1} : SO(g_0) \rightarrow SO(g_t)$

This lifts to \widetilde{P} .

Bourguignon-Gauduchon distribution

Parallel transport $\mathcal{P}_{g_t}\phi_0$ along g_t

Bourguignon-Gauduchon distribution

Parallel transport $\mathcal{P}_{g_t}\phi_0$ along g_t

horizontal distribution

$$\mathcal{T}_{(g,\phi)}\mathcal{F}\cong \Gamma(\odot^2T^*M)\oplus \Gamma(\Sigma_gM)$$

• J.-P. Bourguignon and P. Gauduchon, *Spineurs, opérateurs de Dirac et variations de métriques*

- J.-P. Bourguignon and P. Gauduchon, *Spineurs, opérateurs de Dirac et variations de métriques*
- C. Bär, P. Gauduchon and A. Moroianu, *Generalized cylinders in semi-Riemannian and Spin geometry*

- J.-P. Bourguignon and P. Gauduchon, *Spineurs, opérateurs de Dirac et variations de métriques*
- C. Bär, P. Gauduchon and A. Moroianu, *Generalized cylinders in semi-Riemannian and Spin geometry*

Lemma

negative L2-gradient
$$Q = (Q_1, Q_2) = -\mathrm{grad}\,\mathcal{E}: \mathcal{N} o \mathcal{TN}$$
 given by

$$\begin{aligned} Q_1(g,\phi) &= -\frac{1}{4} |\nabla^g \phi|_g^2 g - \frac{1}{4} \text{div}_g T_{g,\phi} + \frac{1}{2} \langle \nabla^g \phi \otimes \nabla^g \phi \rangle \\ Q_2(g,\phi) &= -\nabla^{g*} \nabla^g \phi + |\nabla^g \phi|_g^2 \phi \end{aligned}$$

- J.-P. Bourguignon and P. Gauduchon, *Spineurs, opérateurs de Dirac et variations de métriques*
- C. Bär, P. Gauduchon and A. Moroianu, *Generalized cylinders in semi-Riemannian and Spin geometry*

Lemma

negative L2-gradient
$$Q = (Q_1, Q_2) = -\mathrm{grad}\,\mathcal{E}: \mathcal{N} o \mathcal{TN}$$
 given by

$$\begin{aligned} Q_1(g,\phi) &= -\frac{1}{4} |\nabla^g \phi|_g^2 g - \frac{1}{4} \text{div}_g T_{g,\phi} + \frac{1}{2} \langle \nabla^g \phi \otimes \nabla^g \phi \rangle \\ Q_2(g,\phi) &= -\nabla^{g*} \nabla^g \phi + |\nabla^g \phi|_g^2 \phi \end{aligned}$$

M. Wang, Preserving parallel spinors under metric deformations

The flow equation

$$\partial_t(g_t,\phi_t) = Q(g_t,\phi_t), \quad (g_0,\phi_0) = (g,\phi) \in \mathcal{N}$$
 (SF)

æ

.

The flow equation

$$\partial_t(g_t,\phi_t) = Q(g_t,\phi_t), \quad (g_0,\phi_0) = (g,\phi) \in \mathcal{N}$$
 (SF)

natural $\widetilde{Diff}_0(M)$ -action \Rightarrow Symbol of $D_{(g,\phi)}Q$ only negative semi-definite. Still:

∃ ► < ∃ ►</p>

The flow equation

$$\partial_t(g_t,\phi_t) = Q(g_t,\phi_t), \quad (g_0,\phi_0) = (g,\phi) \in \mathcal{N}$$
 (SF)

natural $\widetilde{Diff}_0(M)$ -action \Rightarrow Symbol of $D_{(g,\phi)}Q$ only negative semi-definite. Still:

Theorem B (Short-time existence and uniqueness)

For all $(g, \phi) \in \mathcal{N}$ there exists a uniquely determined smooth family $(g_t, \phi_t) \in \mathcal{N}$ for $t \in [0, \epsilon]$ such that (SF) holds.

DeTurck's trick

Q
 ^Q_X(g,φ) := Q(g,φ) + L_{X(g,φ)}(g,φ) strictly elliptic for suitable vector field X(g,φ)

DeTurck's trick

- Q
 ^Q_X(g,φ) := Q(g,φ) + L_{X(g,φ)}(g,φ) strictly elliptic for suitable vector field X(g,φ)
- given $(g_0, \phi_0) \in \mathcal{N}$ put $X_0(g, \phi) = -2(\delta_{g_0}g)^{\sharp}$

DeTurck's trick

- Q
 ^Q_X(g,φ) := Q(g,φ) + L_{X(g,φ)}(g,φ) strictly elliptic for suitable vector field X(g,φ)
- given $(g_0,\phi_0)\in\mathcal{N}$ put $X_0(g,\phi)=-2(\delta_{g_0}g)^{\sharp}$
- parabolic theory gives solution to

$$\partial_t(\tilde{g}_t, \tilde{\phi}_t) = \widetilde{Q}_0(\tilde{g}_t, \tilde{\phi}_t), \quad (\tilde{g}_0, \tilde{\phi}_0) = (g_0, \phi_0) \qquad (\mathsf{SDF})$$

DeTurck's trick

- Q
 ^Q_X(g,φ) := Q(g,φ) + L_{X(g,φ)}(g,φ) strictly elliptic for suitable vector field X(g,φ)
- given $(g_0, \phi_0) \in \mathcal{N}$ put $X_0(g, \phi) = -2(\delta_{g_0}g)^{\sharp}$
- parabolic theory gives solution to

$$\partial_t(\tilde{g}_t, \tilde{\phi}_t) = \widetilde{Q}_0(\tilde{g}_t, \tilde{\phi}_t), \quad (\tilde{g}_0, \tilde{\phi}_0) = (g_0, \phi_0)$$
 (SDF)

Back to (DF)

solve
$$\frac{d}{dt}f = -X_0(\tilde{g}_t, \tilde{\phi}_t) \circ f \Rightarrow (g_t, \phi_t) = f_t^*(\tilde{g}_t, \tilde{\phi}_t)$$
 solves (SF)

$$S: \mathcal{M} \to \mathbb{R}, \quad g \mapsto \int_{\mathcal{M}} \operatorname{scal}_{g} dv^{g}$$

▶ < 문 > < 문 >

A.

æ

$$S: \mathcal{M} \to \mathbb{R}, \quad g \mapsto \int_M \operatorname{scal}_g dv^g$$

Gradient flow of S implies backwards heat equation in $\operatorname{scal}_{g_t}$!

$$S: \mathcal{M} \to \mathbb{R}, \quad g \mapsto \int_M \operatorname{scal}_g dv^g$$

Gradient flow of S implies backwards heat equation in $\operatorname{scal}_{g_t}$!

 \mathcal{E}_s -functional

$$\mathcal{E}^{s}(g,\phi)=\mathcal{E}(g,\phi)+s\cdot S(g), \hspace{1em} s\in \mathbb{R}$$

・ 同 ト ・ 三 ト ・

$$S: \mathcal{M} \to \mathbb{R}, \quad g \mapsto \int_M \operatorname{scal}_g dv^g$$

Gradient flow of S implies backwards heat equation in $\operatorname{scal}_{g_t}$!

\mathcal{E}_s -functional

$$\mathcal{E}^{s}(g,\phi) = \mathcal{E}(g,\phi) + s \cdot S(g), \quad s \in \mathbb{R}$$

•
$$\widetilde{Q}_0^s$$
 strongly elliptic at $(g_0,\phi_0)\Leftrightarrow s\in (rac{1}{8},-rac{1}{8(n-2)})$

・ 同 ト ・ ヨ ト ・ ヨ

$$S: \mathcal{M} \to \mathbb{R}, \quad g \mapsto \int_M \operatorname{scal}_g dv^g$$

Gradient flow of S implies backwards heat equation in $\operatorname{scal}_{g_t}$!

\mathcal{E}_s -functional

$$\mathcal{E}^{s}(g,\phi)=\mathcal{E}(g,\phi)+s\cdot S(g), \quad s\in\mathbb{R}$$

• \widetilde{Q}_0^s strongly elliptic at $(g_0, \phi_0) \Leftrightarrow s \in (\frac{1}{8}, -\frac{1}{8(n-2)})$

•
$$\mathcal{E}^{1/8}(g,\phi) = \frac{1}{2} \int_M |D^g \phi|^2 dv^g$$

伺 ト イヨト イヨト

Theorem C (Smoothness of the critical set)

M simply-connected, $(\bar{g}, \bar{\phi})$ critical and irreducible $\Rightarrow \operatorname{Crit}(\mathcal{E})$ is smooth at $(\bar{g}, \bar{\phi})$ and $\widetilde{Q}_{\bar{X}}^{-1}(0)$ is a smooth slice for $\widetilde{Diff}_0(M)$ -action on $\operatorname{Crit}(\mathcal{E})$.

Theorem C (Smoothness of the critical set)

M simply-connected, $(\bar{g}, \bar{\phi})$ critical and irreducible $\Rightarrow \operatorname{Crit}(\mathcal{E})$ is smooth at $(\bar{g}, \bar{\phi})$ and $\widetilde{Q}_{\bar{X}}^{-1}(0)$ is a smooth slice for $\widetilde{Diff}_0(M)$ -action on $\operatorname{Crit}(\mathcal{E})$.

If dim M = 4, 6, 7 (or 8) $\Rightarrow \mathcal{E}$ Morse-Bott

Theorem C (Smoothness of the critical set)

M simply-connected, $(\bar{g}, \bar{\phi})$ critical and irreducible $\Rightarrow \operatorname{Crit}(\mathcal{E})$ is smooth at $(\bar{g}, \bar{\phi})$ and $\widetilde{Q}_{\bar{X}}^{-1}(0)$ is a smooth slice for $\widetilde{Diff}_0(M)$ -action on $\operatorname{Crit}(\mathcal{E})$.

If dim M = 4, 6, 7 (or 8) $\Rightarrow \mathcal{E}$ Morse-Bott

• index theory (Wang's stability theorem)

Theorem C (Smoothness of the critical set)

M simply-connected, $(\bar{g}, \bar{\phi})$ critical and irreducible $\Rightarrow \operatorname{Crit}(\mathcal{E})$ is smooth at $(\bar{g}, \bar{\phi})$ and $\widetilde{Q}_{\bar{X}}^{-1}(0)$ is a smooth slice for $\widetilde{Diff}_0(M)$ -action on $\operatorname{Crit}(\mathcal{E})$.

If dim
$$M = 4, 6, 7$$
 (or 8)

 $\Rightarrow \mathcal{E} \text{ Morse-Bott}$

- index theory (Wang's stability theorem)
- R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, G₂ and Spin(7) structures (cf. also J. Nordström)

・ 同 ト ・ ヨ ト ・ ヨ

Theorem C (Smoothness of the critical set)

M simply-connected, $(\bar{g}, \bar{\phi})$ critical and irreducible $\Rightarrow \operatorname{Crit}(\mathcal{E})$ is smooth at $(\bar{g}, \bar{\phi})$ and $\widetilde{Q}_{\bar{X}}^{-1}(0)$ is a smooth slice for $\widetilde{Diff}_0(M)$ -action on $\operatorname{Crit}(\mathcal{E})$.

If dim
$$M = 4, 6, 7$$
 (or 8)

 $\Rightarrow \mathcal{E} \text{ Morse-Bott}$

- index theory (Wang's stability theorem)
- R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, G₂ and Spin(7) structures

(cf. also J. Nordström)

•
$$\widetilde{Q}_{\bar{X}}^{-1}(0) = Q^{-1}(0) \cap \bar{X}^{-1}(0)$$

・ 同 ト ・ ヨ ト ・ ヨ

Generalised Ebin slice

注▶ 注

Solitons

 (g_0, ϕ_0) Killing spinor

 \Rightarrow Flow dies in finite time, e.g. $S^7 \rightarrow pt$.

→ Ξ →

Solitons

 (g_0, ϕ_0) Killing spinor

 \Rightarrow Flow dies in finite time, e.g. $S^7 \rightarrow pt$.

Homogeneous examples

immortal solutions without convergence

-

Solitons

 (g_0, ϕ_0) Killing spinor

 \Rightarrow Flow dies in finite time, e.g. $S^7 \rightarrow pt$.

Homogeneous examples

immortal solutions without convergence

Stability of Dirichlet flow on positive forms

initial condition sufficiently close to a critical point

 \Rightarrow (SF) exists for all times and converges modulo diffeomorphisms to a critical point.

special holonomy \leftrightarrow closed forms of special algebraic type

G_2 -manifolds

- (M^7, Ω) G₂-manifold, $\Omega_p \in \mathcal{O} = GL_+(7)/G_2 \subset \Lambda^3 T_p^*M$
- Ω reduces $P = P_{GL_+(7)} \rightarrow M$ to $P_{G_2} \rightarrow M$ which extends to $P_{SO(7)} \rightarrow M$, hence induces metric g_{Ω}
- $\nabla^{g_{\Omega}}$ reduces to $P_{G_2} \Leftrightarrow \nabla^{g_{\Omega}}\Omega = 0 \Leftrightarrow d\Omega = 0, \ d\star_{g_{\Omega}}\Omega = 0$
- choice of a metric $g_p \in \operatorname{GL}_+(7)/\operatorname{SO}(7)$
- choice of a unit spinor $\phi_p \in S^7 \cong \mathrm{Spin}(7)/\mathrm{G}_2 \subset \Sigma_7^\mathbb{R}$
- $abla^{g_\Omega}$ reduces to $P_{\mathrm{G}_2} \Leftrightarrow
 abla^{g_\Omega} \phi = 0$

Image: A Image: A

Dirichlet functional

$$\mathcal{D}:\mathcal{P}(M) o\mathbb{R},\quad \Omega\mapsto rac{1}{2}\int_{M}(|d\Omega|^2_{g_\Omega}+|d\star_{g_\Omega}\Omega|^2_{g_\Omega})dv^{g_\Omega}$$

æ

Dirichlet functional

$$\mathcal{D}:\mathcal{P}(M) o\mathbb{R},\quad \Omega\mapsto rac{1}{2}\int_{M}(|d\Omega|^2_{g_\Omega}+|d\star_{g_\Omega}\Omega|^2_{g_\Omega})dv^{g_\Omega}$$

Theorem A'

 Ω critical if and only if $d\Omega=$ 0, $d\star_{g_\Omega}\Omega=0$

Dirichlet functional

$$\mathcal{D}:\mathcal{P}(M) o\mathbb{R},\quad \Omega\mapsto rac{1}{2}\int_{M}(|d\Omega|^2_{g_\Omega}+|d\star_{g_\Omega}\Omega|^2_{g_\Omega})dv^{g_\Omega}$$

Theorem A'

$$\Omega$$
 critical if and only if $d\Omega = 0$, $d \star_{g_{\Omega}} \Omega = 0$

Dirichlet flow

$$\partial_t \Omega = Q(\Omega), \quad \Omega(0) = \Omega_0 \in \mathcal{P}(M)$$
 (DF)

э

э

・ 同 ト ・ 三 ト ・

Dirichlet functional

$$\mathcal{D}:\mathcal{P}(M)
ightarrow\mathbb{R},\quad \Omega\mapstorac{1}{2}\int_{M}(|d\Omega|^{2}_{g_{\Omega}}+|d\star_{g_{\Omega}}\Omega|^{2}_{g_{\Omega}})dv^{g_{\Omega}}$$

Theorem A'

$$\Omega$$
 critical if and only if $d\Omega = 0$, $d \star_{g_{\Omega}} \Omega = 0$

Dirichlet flow

$$\partial_t \Omega = Q(\Omega), \quad \Omega(0) = \Omega_0 \in \mathcal{P}(M)$$
 (DF)

Theorem B'

For any $\Omega_0 \in \mathcal{P}(M)$ there exists a uniquely determined smooth family $\Omega_t \in \mathcal{P}$ for $t \in [0, \epsilon]$ such that (DF) holds.

Theorem D' (Stability)

$ar{\Omega}$ be critical and k>11/2

 $\Rightarrow \text{ for all } \epsilon > 0 \text{ there is } \delta > 0 \text{ such that for any } \Omega_0 \text{ with } \\ \|\Omega_0 - \overline{\Omega}\|_{W^{k,2}} < \delta \text{, the (DDF) } \widetilde{\Omega}(t) \text{ with } \widetilde{\Omega}(0) = \Omega_0$

Theorem D' (Stability)

$ar{\Omega}$ be critical and k>11/2

 $\Rightarrow \text{ for all } \epsilon > 0 \text{ there is } \delta > 0 \text{ such that for any } \Omega_0 \text{ with } \\ \|\Omega_0 - \overline{\Omega}\|_{W^{k,2}} < \delta \text{, the (DDF) } \widetilde{\Omega}(t) \text{ with } \widetilde{\Omega}(0) = \Omega_0$

• (Longtime existence) exists for all $t \in [0,\infty)$

Theorem D' (Stability)

$ar{\Omega}$ be critical and k>11/2

 $\Rightarrow \text{ for all } \epsilon > 0 \text{ there is } \delta > 0 \text{ such that for any } \Omega_0 \text{ with } \\ \|\Omega_0 - \overline{\Omega}\|_{W^{k,2}} < \delta \text{, the (DDF) } \widetilde{\Omega}(t) \text{ with } \widetilde{\Omega}(0) = \Omega_0$

- (Longtime existence) exists for all $t \in [0,\infty)$
- (A priori estimate) satisfies $\|\widetilde{\Omega}(t) \overline{\Omega}\|_{W^{k,2}} < \epsilon, t \in [0,\infty)$
Theorem D' (Stability)

$ar{\Omega}$ be critical and k>11/2

 $\Rightarrow \text{ for all } \epsilon > 0 \text{ there is } \delta > 0 \text{ such that for any } \Omega_0 \text{ with } \\ \|\Omega_0 - \overline{\Omega}\|_{W^{k,2}} < \delta \text{, the (DDF) } \widetilde{\Omega}(t) \text{ with } \widetilde{\Omega}(0) = \Omega_0$

- (Longtime existence) exists for all $t \in [0,\infty)$
- (A priori estimate) satisfies $\|\widetilde{\Omega}(t) \overline{\Omega}\|_{W^{k,2}} < \epsilon, t \in [0,\infty)$
- (Convergence in $W^{k,2}$) $\widetilde{\Omega}(t) \to \Omega_{\infty}$ critical as $t \to \infty$

Theorem D' (Stability)

$ar{\Omega}$ be critical and k>11/2

 $\Rightarrow \text{ for all } \epsilon > 0 \text{ there is } \delta > 0 \text{ such that for any } \Omega_0 \text{ with } \\ \|\Omega_0 - \overline{\Omega}\|_{W^{k,2}} < \delta \text{, the (DDF) } \widetilde{\Omega}(t) \text{ with } \widetilde{\Omega}(0) = \Omega_0$

- (Longtime existence) exists for all $t \in [0,\infty)$
- (A priori estimate) satisfies $\|\widetilde{\Omega}(t) \overline{\Omega}\|_{W^{k,2}} < \epsilon, t \in [0,\infty)$
- (Convergence in $W^{k,2}$) $\widetilde{\Omega}(t) \to \Omega_{\infty}$ critical as $t \to \infty$

Corollary

For initial conditions sufficiently C^{∞} -close to $\overline{\Omega}$ the Dirichlet flow exists for all times and converges modulo diffeomorphisms to a critical positive form.

・ 同 ト ・ 三 ト ・

Key facts

Let $\Omega \in \mathcal{P}(M)$ and $L_{\Omega} := D_{\Omega} \widetilde{Q}_{\overline{X}}$ (symmetric for $\Omega = \overline{\Omega}$). • (Linear stability) $L_{\overline{\Omega}} \leq 0$

Key facts

Let $\Omega \in \mathcal{P}(M)$ and $L_{\Omega} := D_{\Omega} \widetilde{Q}_{\bar{X}}$ (symmetric for $\Omega = \overline{\Omega}$).

- (Linear stability) $L_{\bar{\Omega}} \leq 0$
- (Integrability) $\mathcal{M} = \tilde{Q}_{\bar{\Omega}}^{-1}(0)$ smooth near $\bar{\Omega}$.

Key facts

Let $\Omega \in \mathcal{P}(M)$ and $L_{\Omega} := D_{\Omega} \widetilde{Q}_{\overline{X}}$ (symmetric for $\Omega = \overline{\Omega}$).

- (Linear stability) $L_{\bar{\Omega}} \leq 0$
- (Integrability) $\mathcal{M} = \tilde{Q}_{\bar{\Omega}}^{-1}(0)$ smooth near $\bar{\Omega}$.
- (Coercivity) $\langle -L_{\bar{\Omega}}\dot{\Omega},\dot{\Omega}\rangle_{L^2_{\bar{\Omega}}} \geq C \|\dot{\Omega}\|_{W^{1,2}_{\bar{\Omega}}} \|\dot{\Omega}\|_{L^2_{\bar{\Omega}}}$

1st step: Implicit function theorem (uses coercivity)

 Ω_0 sufficiently close to $\bar{\Omega}$

 \Rightarrow existence on [0,1] of $\widetilde{\Omega}_t$, a priori estimate for $\|\widetilde{\Omega}(t) - \bar{\Omega}\|_{W^{k,2}}$

1st step: Implicit function theorem (uses coercivity)

 Ω_0 sufficiently close to $\bar{\Omega}$

 \Rightarrow existence on [0,1] of $\widetilde{\Omega}_t$, a priori estimate for $\|\widetilde{\Omega}(t) - \bar{\Omega}\|_{W^{k,2}}$

2nd step: Remainder term analysis (uses integrability)

• (Orthogonal projection) Ω sufficiently $W^{k,2}$ -close to $\overline{\Omega}$ $\Rightarrow \omega' := \Omega - \Omega' \in (\mathcal{T}_{\Omega'}\mathcal{M})^{\perp_{L^2}}$ for unique $\Omega' \in \mathcal{M}$

1st step: Implicit function theorem (uses coercivity)

 Ω_0 sufficiently close to $\bar{\Omega}$

 \Rightarrow existence on [0,1] of $\widetilde{\Omega}_t$, a priori estimate for $\|\widetilde{\Omega}(t) - \bar{\Omega}\|_{W^{k,2}}$

2nd step: Remainder term analysis (uses integrability)

- (Orthogonal projection) Ω sufficiently $W^{k,2}$ -close to $\overline{\Omega}$ $\Rightarrow \omega' := \Omega - \Omega' \in (T_{\Omega'}\mathcal{M})^{\perp_{L^2}}$ for unique $\Omega' \in \mathcal{M}$
- (Remainder term estimate) R_{Ω'}(ω') = Q̃_Ω(Ω) − L_{Ω'}ω'
 For κ > 0 there exists ε > 0 such that

$$\|\Omega - \bar{\Omega}\|_{W^{k,2}} < \epsilon \Rightarrow \|R_{\Omega'}(\omega')\|_{L^2} \le \kappa \|L_{\Omega'}\omega'\|_{L^2}.$$

3rd step: Exponential decay of $\tilde{Q}(t)$ (uses linear stability)

• Let λ_1 first eigenvalue > 0 of $-L_{\overline{\Omega}}$. 2nd step \Rightarrow $\frac{d}{dt} \frac{1}{2} \|\tilde{Q}(t)\|_{L^2}^2 \leq -\frac{\lambda_1}{2} \|\tilde{Q}(t)\|_{L^2}^2$

3rd step: Exponential decay of $\tilde{Q}(t)$ (uses linear stability)

- Let λ_1 first eigenvalue > 0 of $-L_{\overline{\Omega}}$. 2nd step \Rightarrow $\frac{d}{dt} \frac{1}{2} \|\tilde{Q}(t)\|_{L^2}^2 \leq -\frac{\lambda_1}{2} \|\tilde{Q}(t)\|_{L^2}^2$
- Gronwall's lemma and parabolic regularity $\Rightarrow \|\tilde{Q}(t)\|_{W^{k,2}}^2 \leq Ce^{-\lambda t}$

3rd step: Exponential decay of $\tilde{Q}(t)$ (uses linear stability)

- Let λ_1 first eigenvalue > 0 of $-L_{\overline{\Omega}}$. 2nd step \Rightarrow $\frac{d}{dt} \frac{1}{2} \|\tilde{Q}(t)\|_{L^2}^2 \leq -\frac{\lambda_1}{2} \|\tilde{Q}(t)\|_{L^2}^2$
- Gronwall's lemma and parabolic regularity $\Rightarrow \| ilde{Q}(t) \|_{W^{k,2}}^2 \leq C e^{-\lambda t}$
- 1st step $\Rightarrow ilde{\Omega}(t) = ilde{\Omega}_0 + \int_0^t ilde{Q}(t) dt o ilde{\Omega}_\infty \in \mathcal{M}$