A refinement of a gap theorem for gradient shrinking Ricci solitons

Takumi Yokota

Kyoto University / Universität Münster

July 3, 2012

Introduction

Definition

A triple (M, g, f) with $f \in C^{\infty}(M)$ is called a gradient shrinking Ricci soliton if

$$\operatorname{Ric}(g) + \operatorname{Hess} f = \frac{1}{2\lambda}g \text{ for } \exists \lambda > 0.$$

Shrinking Ricci solitons are typical examples of self-similar and ancient solutions to the Ricci flow equation.

Introduction

Definition

A triple (M, g, f) with $f \in C^{\infty}(M)$ is called a gradient shrinking Ricci soliton if

$$\operatorname{Ric}(g) + \operatorname{Hess} f = \frac{1}{2\lambda}g \text{ for } \exists \lambda > 0.$$

Shrinking Ricci solitons are typical examples of self-similar and ancient solutions to the Ricci flow equation.

Ricci flow

Definition

A family $(M, g(t)), t \in I \subset \mathbb{R}$ is called a Ricci flow when it satisfies

$$\frac{\partial}{\partial t}g(t) = -2\mathrm{Ric}(g(t)).$$

It is called an ancient solution if it exists for $\forall t \in (-\infty, 0]$.

It is convenient to use the reverse time $\tau := -t$.

For $\forall (M, g, f)$, $g_0(\tau) := (\tau/\lambda)\varphi_t^*g, \tau \in (0, \infty)$ is a Ricci Flow.

Theorem (Zhang 2009)

For $\forall (M, g, f)$, if g is complete, then so is ∇f .

(本語)と 本語(と) 本語(と

Ricci flow

Definition

A family $(M, g(t)), t \in I \subset \mathbb{R}$ is called a Ricci flow when it satisfies

$$\frac{\partial}{\partial t}g(t) = -2\mathrm{Ric}(g(t)).$$

It is called an ancient solution if it exists for $\forall t \in (-\infty, 0]$.

It is convenient to use the reverse time $\tau := -t$.

For $\forall (M, g, f)$, $g_0(\tau) := (\tau/\lambda)\varphi_t^*g, \tau \in (0, \infty)$ is a Ricci Flow.

Theorem (Zhang 2009)

For $\forall (M, g, f)$, if g is complete, then so is ∇f .

- 4 同 6 4 日 6 4 日 6

Gaussian density

Definition

We define the Gaussian density of a gradient shrinking Ricci soliton (M^n, g, f) , i.e., $\operatorname{Ric} + \operatorname{Hess} f = \frac{1}{2\lambda}g$, as $\Theta(M) := \int_M (4\pi\lambda)^{-n/2} e^{-f} d\mu_g.$

Note: We always normalize f so that

$$\lambda(R + |\nabla f|^2) \equiv f.$$

Here R denotes the scalar curv. of g. We know $R \ge 0$ (Zhang 2009).

Gaussian density

Definition

We define the Gaussian density of a gradient shrinking Ricci soliton (M^n, g, f) , i.e., Ric + Hess $f = \frac{1}{2\lambda}g$, as $\Theta(M) := \int_M (4\pi\lambda)^{-n/2} e^{-f} d\mu_g.$

Note: We always normalize f so that

$$\lambda(R + |\nabla f|^2) \equiv f.$$

Here R denotes the scalar curv. of g. We know $R \ge 0$ (Zhang 2009).

Gaussian density is finite.

Note: $\Theta(M) := \int_M (4\pi\lambda)^{-n/2} e^{-f} d\mu < \infty$. This follows from e.g.

Theorem (Cao–Zhou 2010, cf. Haslhofer–Müller 2011)

For $\forall gradient \ shrinking \ Ricci \ soliton \ (M^n, g, f) \ and \ \forall p \in M, \ \exists c_1, c_2$ and C > 0 such that

$$\frac{1}{4}(r(x) - c_1)^2 \le f(x) \le \frac{1}{4}(r(x) + c_2)^2$$

for $\forall x \in M$ with $r(x) := d(x, p)/\sqrt{\lambda} \gg 1$, and

 $\operatorname{Vol}(B_p(r)) \leq Cr^n \text{ for } \forall r > 0.$

A (10) F (10)

Gaussian density is finite.

Note: $\Theta(M) := \int_M (4\pi\lambda)^{-n/2} e^{-f} d\mu < \infty$. This follows from e.g.

Theorem (Cao–Zhou 2010, cf. Haslhofer–Müller 2011)

For $\forall gradient shrinking Ricci soliton (M^n, g, f) and <math>\forall p \in M, \exists c_1, c_2$ and C > 0 such that

$$\frac{1}{4}(r(x) - c_1)^2 \le f(x) \le \frac{1}{4}(r(x) + c_2)^2$$

for $\forall x \in M$ with $r(x) := d(x, p)/\sqrt{\lambda} \gg 1$, and

 $\operatorname{Vol}(B_p(r)) \leq Cr^n \text{ for } \forall r > 0.$

- 4 目 ト - 4 日 ト - 4 日 ト

Main Theorem = Gap Theorem for Ricci solitons

Theorem (Y. 2011)

For $\forall n \geq 2$, $\exists \epsilon_n > 0$ such that: Any gradient shrinking Ricci soliton (M^n, g, f) with $\Theta(M) > 1 - \epsilon_n$ is the Gaussian soliton $(\mathbb{R}^n, g_E, |\cdot|^2/4)$.

Corollary (Conjectured by Carrillo–Ni)

Any gradient shrinking Ricci soliton (M^n, g, f) with $\Theta(M) \ge 1$ is the Gaussian soliton $(\mathbb{R}^n, g_E, |\cdot|^2/4)$.

くほと くほと くほと

Main Theorem = Gap Theorem for Ricci solitons

Theorem (Y. 2011)

For $\forall n \geq 2$, $\exists \epsilon_n > 0$ such that: Any gradient shrinking Ricci soliton (M^n, g, f) with $\Theta(M) > 1 - \epsilon_n$ is the Gaussian soliton $(\mathbb{R}^n, g_E, |\cdot|^2/4)$.

Corollary (Conjectured by Carrillo–Ni)

Any gradient shrinking Ricci soliton (M^n, g, f) with $\Theta(M) \ge 1$ is the Gaussian soliton $(\mathbb{R}^n, g_E, |\cdot|^2/4)$.

・ 同 ト ・ 三 ト ・ 三 ト

- Main Thm was proved in [Y. 2009] for (M^n, g, f) with $\operatorname{Ric}(g) \geq -\exists K$, which was dropped in [Y. 2011].
- Carrillo–Ni (2009) proved a Log–Sobolev ineq. for gradient shrinking Ricci solitons with $\Theta(M)$ as the best const.
- Munteanu–Wang (2011) also proved another gap theorem for gradient shrinking Ricci solitons.

< 回 > < 三 > < 三 >

- Main Thm was proved in [Y. 2009] for (M^n, g, f) with $\operatorname{Ric}(g) \geq -\exists K$, which was dropped in [Y. 2011].
- Carrillo-Ni (2009) proved a Log-Sobolev ineq. for gradient shrinking Ricci solitons with $\Theta(M)$ as the best const.
- Munteanu–Wang (2011) also proved another gap theorem for gradient shrinking Ricci solitons.

くほと くほと くほと

- Main Thm was proved in [Y. 2009] for (M^n, g, f) with $\operatorname{Ric}(g) \geq -\exists K$, which was dropped in [Y. 2011].
- Carrillo-Ni (2009) proved a Log-Sobolev ineq. for gradient shrinking Ricci solitons with $\Theta(M)$ as the best const.
- Munteanu–Wang (2011) also proved another gap theorem for gradient shrinking Ricci solitons.

- For the proof of Main Theorem, we need
 - Perelman's reduced volume $\tilde{V}(\tau) := \int_M (4\pi\tau)^{-n/2} e^{-\ell} d\mu$,
 - a gap theorem for ancient solutions, and
 - the estimate " $f \approx \ell$ " for $\forall (M^n, g, f)$.

A (1) > A (2) > A

Definition of reduced volume (Perelman 2002) Let $(M^n, g(\tau)), \tau := -t \in [0, T)$ be a backward RF. Fix $p, q \in M$ and $[\tau_1, \tau_2] \subset [0, T)$.

• \mathcal{L} -length of a curve $\gamma : [\tau_1, \tau_2] \to M$:

$$\mathcal{L}(\gamma) := \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left(|\dot{\gamma}(\tau)|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau$$

• \mathcal{L} -distance between (p, τ_1) and (q, τ_2) :

$$L_{(p,\tau_1)}(q,\tau_2) := \inf_{\gamma} \mathcal{L}(\gamma),$$

where inf is taken for γ with $\gamma(\tau_1) = p \& \gamma(\tau_2) = q$.

• Reduced volume based at (p, 0):

$$\tilde{V}_{(p,0)}(\tau) := \int_M (4\pi\tau)^{-n/2} \exp\left(\frac{-1}{2\sqrt{\tau}} L_{(p,0)}(\cdot,\tau)\right) d\mu_{g(\tau)}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition of reduced volume (Perelman 2002) Let $(M^n, g(\tau)), \tau := -t \in [0, T)$ be a backward RF. Fix $p, q \in M$ and $[\tau_1, \tau_2] \subset [0, T)$.

• \mathcal{L} -length of a curve $\gamma : [\tau_1, \tau_2] \to M$:

$$\mathcal{L}(\gamma) := \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left(|\dot{\gamma}(\tau)|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau$$

• \mathcal{L} -distance between (p, τ_1) and (q, τ_2) :

$$L_{(p,\tau_1)}(q,\tau_2) := \inf_{\gamma} \mathcal{L}(\gamma),$$

where inf is taken for γ with $\gamma(\tau_1) = p \& \gamma(\tau_2) = q$.

• Reduced volume based at (p, 0):

$$\tilde{V}_{(p,0)}(\tau) := \int_M (4\pi\tau)^{-n/2} \exp\left(\frac{-1}{2\sqrt{\tau}} L_{(p,0)}(\cdot,\tau)\right) d\mu_{g(\tau)}.$$

・ 同 ト ・ 三 ト ・ 三 ト

Definition of reduced volume (Perelman 2002) Let $(M^n, g(\tau)), \tau := -t \in [0, T)$ be a backward RF. Fix $p, q \in M$ and $[\tau_1, \tau_2] \subset [0, T)$.

• \mathcal{L} -length of a curve $\gamma : [\tau_1, \tau_2] \to M$:

$$\mathcal{L}(\gamma) := \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left(|\dot{\gamma}(\tau)|^2_{g(\tau)} + R(\gamma(\tau), \tau) \right) d\tau$$

• \mathcal{L} -distance between (p, τ_1) and (q, τ_2) :

$$L_{(p,\tau_1)}(q,\tau_2) := \inf_{\gamma} \mathcal{L}(\gamma),$$

where inf is taken for γ with $\gamma(\tau_1) = p \& \gamma(\tau_2) = q$.

• Reduced volume based at (p, 0):

$$\tilde{V}_{(p,0)}(\tau) := \int_M (4\pi\tau)^{-n/2} \exp\left(\frac{-1}{2\sqrt{\tau}} L_{(p,0)}(\cdot,\tau)\right) d\mu_{g(\tau)}.$$

- - E + - E +

Existence of minimal \mathcal{L} -geodesics

Lemma

For $\forall (M, g(\tau)), \tau \in [0, T)$ and $\forall (p, 0), (q, \tau) \in M \times [0, T)$, if Ric $\geq -\exists K$ on $M \times [0, T)$, then

 $\exists \gamma : [0, \tau] \to M$ from p to q s.t. $\mathcal{L}(\gamma) = L_{(p,0)}(q, \tau)$.

Proof: Since $\frac{1}{2} \frac{\partial}{\partial \tau} g(\cdot) = \operatorname{Ric}(g(\cdot)) \ge -Kg(\cdot)$ on $M \times [0, T)$, $g(\tau) \ge e^{-2K\tau} g(0).$

Then, $L_{(p,0)}(q,\tau) := \inf_{\gamma} \mathcal{L}(\gamma) \ge c \cdot d_{g(0)}^2(p,q) - C.$

Hence, $\{\gamma_i\}$ with $\mathcal{L}(\gamma_i) \to L_{(p,0)}(q,\tau)$ remains in a bounded region, and subconverges to a minimal \mathcal{L} -geodesic $\exists \gamma$.

(日) (周) (三) (三)

Existence of minimal \mathcal{L} -geodesics

Lemma

For $\forall (M, g(\tau)), \tau \in [0, T)$ and $\forall (p, 0), (q, \tau) \in M \times [0, T)$, if Ric $\geq -\exists K$ on $M \times [0, T)$, then

 $\exists \gamma : [0, \tau] \to M$ from p to q s.t. $\mathcal{L}(\gamma) = L_{(p,0)}(q, \tau)$.

Proof: Since $\frac{1}{2}\frac{\partial}{\partial \tau}g(\cdot) = \operatorname{Ric}(g(\cdot)) \ge -Kg(\cdot)$ on $M \times [0, T)$, $g(\tau) \ge e^{-2K\tau}g(0)$.

Then,
$$L_{(p,0)}(q,\tau) := \inf_{\gamma} \mathcal{L}(\gamma) \ge c \cdot d_{g(0)}^2(p,q) - C.$$

Hence, $\{\gamma_i\}$ with $\mathcal{L}(\gamma_i) \to L_{(p,0)}(q,\tau)$ remains in a bounded region, and subconverges to a minimal \mathcal{L} -geodesic $\exists \gamma$.

Monotonicity of reduced volume

Theorem (Perelman 2002) For $\forall (M^n, g(\tau)), \tau \in [0, T)$ and $\forall p \in M$, if $\operatorname{Ric} \geq -\exists K$ on $M \times [0, T)$, then • $\tilde{V}_{(p,0)}(\tau) \nearrow 1$ as $\tau \searrow 0$.

• $\tilde{V}_{(p,0)}(\tau) = 1 \iff (M^n, g(\cdot))$ is isometric to (\mathbb{R}^n, g_E) on $[0, \tau]$.

cf.

Theorem (Bishop–Gromov volume comparison)

For $\forall (M^n, g)$ with $\operatorname{Ric} \geq 0$ and $\forall p \in M$,

•
$$\tilde{V}_p(r) := \operatorname{Vol}(B_p(r)) / \omega_n r^n \nearrow 1$$
 as $r \searrow 0$.

• $\tilde{V}_p(r) = 1 \iff B_p(r)$ is isometric to $B_0(r) \subset \mathbb{R}^n$.

(日) (同) (三) (三)

Monotonicity of reduced volume

Theorem (Perelman 2002) For $\forall (M^n, g(\tau)), \tau \in [0, T)$ and $\forall p \in M$, if $\operatorname{Ric} \geq -\exists K$ on $M \times [0, T)$, then • $\tilde{V}_{(p,0)}(\tau) \nearrow 1$ as $\tau \searrow 0$. • $\tilde{V}_{(p,0)}(\tau) = 1 \iff (M^n, g(\cdot))$ is isometric to (\mathbb{R}^n, g_E) on $[0, \tau]$.

cf.

Theorem (Bishop–Gromov volume comparison) For $\forall (M^n, g)$ with $\operatorname{Ric} \geq 0$ and $\forall p \in M$, • $\tilde{V}_p(r) := \operatorname{Vol}(B_p(r))/\omega_n r^n \nearrow 1$ as $r \searrow 0$. • $\tilde{V}_p(r) = 1 \iff B_p(r)$ is isometric to $B_0(r) \subset \mathbb{R}^n$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Gap theorem for ancient solutions

Theorem (Y. 2009)

For $\forall n \geq 2$, $\exists \epsilon_n > 0$ such that: Any $(M^n, g(\tau)), \tau \in [0, \infty)$ with $\operatorname{Ric} \geq -\exists K \text{ on } M \times [0, \infty)$, and

$$\lim_{\tau \to \infty} \tilde{V}_{(p,0)}(\tau) > 1 - \epsilon_n \text{ for } \exists p \in M$$

is isometric to (\mathbb{R}^n, g_E) for $\forall \tau \in [0, \infty)$.

Corollary (M. Anderson 1990)

Any Ricci flat manifold (M^n, g) , i.e., $\operatorname{Ric} \equiv 0$ with

$$\lim_{r \to \infty} \operatorname{Vol}(B_p(r)) / \omega_n r^n > 1 - \epsilon_n \text{ for } \exists p \in M$$

is isometric to (\mathbb{R}^n, g_E) .

Gap theorem for ancient solutions

Theorem (Y. 2009)

For $\forall n \geq 2$, $\exists \epsilon_n > 0$ such that: Any $(M^n, g(\tau)), \tau \in [0, \infty)$ with $\operatorname{Ric} \geq -\exists K \text{ on } M \times [0, \infty)$, and

$$\lim_{\tau \to \infty} \tilde{V}_{(p,0)}(\tau) > 1 - \epsilon_n \text{ for } \exists p \in M$$

is isometric to (\mathbb{R}^n, g_E) for $\forall \tau \in [0, \infty)$.

Corollary (M. Anderson 1990)

Any Ricci flat manifold (M^n,g) , i.e., $\operatorname{Ric} \equiv 0$ with

$$\lim_{r \to \infty} \operatorname{Vol}(B_p(r)) / \omega_n r^n > 1 - \epsilon_n \text{ for } \exists p \in M$$

is isometric to (\mathbb{R}^n, g_E) .

$$\lim_{\tau \to \infty} \tilde{V}^{g_i}_{(p_i,0)}(\tau) \to 1 \text{ as } i \to \infty.$$

- Use Perelman's point-picking argument to find "nice" points $(q_i, \tau_i) \in M_i \times [0, \infty)$ and put $h_i(\tau) := Q_i^{-1} g_i(Q_i \tau + \tau_i)$, $\tau \in [0, \infty)$, where $Q_i := |\operatorname{Rm}^{g_i}|(q_i, \tau_i)$.
- Then, by Hamilton's compactness thm & Perelman's no-local collapsing thm,

$$(M_i^n, h_i, q_i) \xrightarrow[\text{in } C^{\infty}] \exists (M_{\infty}^n, h_{\infty}(\tau), q_{\infty}) \text{ as } i \to \infty$$

with $|\operatorname{Rm}^{h_{\infty}}|(q_{\infty}, 0) = 1$. On the other hand, $\tilde{V}_{(q_{\infty},0)}^{h_{\infty}}(\tau) = 1$ and hence $(M_{\infty}^{n}, h_{\infty}(\tau))$ is isometric to (\mathbb{R}^{n}, g_{E}) . Contradiction!

$$\lim_{\tau \to \infty} \tilde{V}^{g_i}_{(p_i,0)}(\tau) \to 1 \text{ as } i \to \infty.$$

• Use Perelman's point-picking argument to find "nice" points $(q_i, \tau_i) \in M_i \times [0, \infty)$ and put $h_i(\tau) := Q_i^{-1} g_i(Q_i \tau + \tau_i)$, $\tau \in [0, \infty)$, where $Q_i := |\operatorname{Rm}^{g_i}|(q_i, \tau_i)$.

Then, by Hamilton's compactness thm & Perelman's no-local collapsing thm,

$$(M_i^n, h_i, q_i) \xrightarrow[\text{in } C^{\infty}] \exists (M_{\infty}^n, h_{\infty}(\tau), q_{\infty}) \text{ as } i \to \infty$$

with $|\operatorname{Rm}^{h_{\infty}}|(q_{\infty}, 0) = 1$. On the other hand, $\tilde{V}^{h_{\infty}}_{(q_{\infty}, 0)}(\tau) = 1$ and hence $(M^{n}_{\infty}, h_{\infty}(\tau))$ is isometric to (\mathbb{R}^{n}, g_{E}) . Contradiction!

$$\lim_{\tau \to \infty} \tilde{V}^{g_i}_{(p_i,0)}(\tau) \to 1 \text{ as } i \to \infty.$$

- Use Perelman's point-picking argument to find "nice" points $(q_i, \tau_i) \in M_i \times [0, \infty)$ and put $h_i(\tau) := Q_i^{-1} g_i (Q_i \tau + \tau_i)$, $\tau \in [0, \infty)$, where $Q_i := |\operatorname{Rm}^{g_i}|(q_i, \tau_i)$.
- Then, by Hamilton's compactness thm & Perelman's no-local collapsing thm,

$$(M_i^n, h_i, q_i) \xrightarrow[\text{in } C^{\infty}] \exists (M_{\infty}^n, h_{\infty}(\tau), q_{\infty}) \text{ as } i \to \infty$$

with $|\text{Rm}^{h_{\infty}}|(q_{\infty}, 0) = 1.$

On the other hand, $\tilde{V}_{(q_{\infty},0)}^{h_{\infty}}(\tau) = 1$ and hence $(M_{\infty}^{n}, h_{\infty}(\tau))$ is isometric to (\mathbb{R}^{n}, g_{E}) . Contradiction!

$$\lim_{\tau \to \infty} \tilde{V}^{g_i}_{(p_i,0)}(\tau) \to 1 \text{ as } i \to \infty.$$

- Use Perelman's point-picking argument to find "nice" points $(q_i, \tau_i) \in M_i \times [0, \infty)$ and put $h_i(\tau) := Q_i^{-1} g_i (Q_i \tau + \tau_i)$, $\tau \in [0, \infty)$, where $Q_i := |\operatorname{Rm}^{g_i}|(q_i, \tau_i)$.
- Then, by Hamilton's compactness thm & Perelman's no-local collapsing thm,

$$(M_i^n, h_i, q_i) \underset{\text{in } C^{\infty}}{\longrightarrow} \exists (M_{\infty}^n, h_{\infty}(\tau), q_{\infty}) \text{ as } i \to \infty$$

with $|\text{Rm}^{h_{\infty}}|(q_{\infty}, 0) = 1.$

On the other hand, $\tilde{V}_{(q_{\infty},0)}^{h_{\infty}}(\tau) = 1$ and hence $(M_{\infty}^{n}, h_{\infty}(\tau))$ is isometric to (\mathbb{R}^{n}, g_{E}) . Contradiction!

Proof of Main Thm

Let $\left(M^{n},g,f\right)$ be a gradient shrinking Ricci soliton, i.e.,

$$\operatorname{Ric}(g) + \operatorname{Hess} f = \frac{1}{2\lambda}g \text{ for } \exists \lambda > 0.$$

Recall that $g_0(\tau) := (\tau/\lambda)\varphi_{\tau}^* g, \tau \in (0,\infty)$ is a Ricci flow. Put $f_{\tau} := f \circ \varphi_{\tau}$.

Main Thm would follow if we could apply

Proposition

For $\forall p \in M$, $\forall \tau \in (0, \infty)$, and $\ell_{(p,0)}(\cdot, \tau) := \frac{1}{2\sqrt{\tau}} L_{(p,0)}(\cdot, \tau)$.

 $\ell^{g_0}_{(p,0)}(\cdot, au)=f_{ au}(\cdot)$ and hence $ilde{V}^{g_0}_{(p,0)}(au)=\Theta(M).$

イロト 不得下 イヨト イヨト

Proof of Main Thm

Let (M^n, g, f) be a gradient shrinking Ricci soliton, i.e.,

$$\operatorname{Ric}(g) + \operatorname{Hess} f = \frac{1}{2\lambda}g \text{ for } \exists \lambda > 0.$$

Recall that $g_0(\tau) := (\tau/\lambda)\varphi_{\tau}^* g, \tau \in (0,\infty)$ is a Ricci flow. Put $f_{\tau} := f \circ \varphi_{\tau}$.

Main Thm would follow if we could apply

Proposition

For
$$\forall p \in M$$
, $\forall \tau \in (0,\infty)$, and $\ell_{(p,0)}(\cdot,\tau) := \frac{1}{2\sqrt{\tau}}L_{(p,0)}(\cdot,\tau)$,

$$\ell^{g_0}_{(p,0)}(\cdot, au)=f_{ au}(\cdot)$$
 and hence $ilde{V}^{g_0}_{(p,0)}(au)=\Theta(M).$

イロト 不得下 イヨト イヨト 二日

Problem: $g_0(\tau) := (\tau/\lambda)\varphi_{\tau}^* g, \tau \in (0,\infty)$ is singular at $\tau = 0$. Put $g(\tau) := g_0(\tau + \lambda), \tau \in [0,\infty)$.

Problem 2: $\operatorname{Ric}(g(\tau))$ may not be bounded below on $M \times [0, \infty)$. In spite of this, we have Proposition (Y. 2011) For $\forall p \in M$, • $\tilde{V}_{(p,0)}^g(\tau) \nearrow 1$ as $\tau \searrow 0$. • $\tilde{V}_{(p,0)}^g(\tau) = 1 \iff (M^n, g(\cdot))$ is isometric to (\mathbb{R}^n, g_E) on $[0, \tau]$.

(人間) トイヨト イヨト

Problem: $g_0(\tau) := (\tau/\lambda)\varphi_{\tau}^* g, \tau \in (0,\infty)$ is singular at $\tau = 0$.

Put $g(\tau) := g_0(\tau + \lambda), \tau \in [0, \infty).$

Problem 2: $\operatorname{Ric}(g(\tau))$ may not be bounded below on $M \times [0, \infty)$.

In spite of this, we have

Proposition (Y. 2011) For $\forall p \in M$, • $\tilde{V}^{g}_{(p,0)}(\tau) \nearrow 1$ as $\tau \searrow 0$. • $\tilde{V}^{g}_{(p,0)}(\tau) = 1 \iff (M^{n}, g(\cdot))$ is isometric to (\mathbb{R}^{n}, g_{E}) on $[0, \tau]$.

Proof of Proposition: We only have to prove \exists of minimal \mathcal{L} -geodesics. This follows from

$$\ell^g_{(p,0)}(q,\tau) \approx f_{\tau+\lambda}(q) \approx \frac{1}{4\lambda} d^2_{g(0)}(\varphi_{\tau+\lambda}(q),p)$$

for $\forall (p,0), (q,\tau) \in M \times [0,\infty)$. Second \approx is due to Cao–Zhou.

Estimate $\ell^g_{(p,0)}(\cdot,\tau) \approx f_{\tau+\lambda}(\cdot)$ also yields

Proposition (Y. 2011)

$$\lim_{\tau \to \infty} \tilde{V}^g_{(p,0)}(\tau) = \Theta(M).$$

Now, Main Thm follows form Gap Thm for ancient solutions.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Proof of Proposition: We only have to prove \exists of minimal \mathcal{L} -geodesics. This follows from

$$\ell^g_{(p,0)}(q,\tau) \approx f_{\tau+\lambda}(q) \approx \frac{1}{4\lambda} d^2_{g(0)}(\varphi_{\tau+\lambda}(q),p)$$

for $\forall (p,0), (q,\tau) \in M \times [0,\infty)$. Second \approx is due to Cao–Zhou.

Estimate $\ell^g_{(p,0)}(\cdot,\tau) \approx f_{\tau+\lambda}(\cdot)$ also yields

Proposition (Y. 2011)

$$\lim_{\tau \to \infty} \tilde{V}^g_{(p,0)}(\tau) = \Theta(M).$$

Now, Main Thm follows form Gap Thm for ancient solutions.