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Definition of polar action

Definition

Let M be a complete Riemannian manifold with a proper isometric
action by a Lie group G . The action is called polar if

(a) There exists an isometric immersion σ : Σ→ M of a
connected complete manifold Σ whose image meets all orbits,
i.e. G · σ(Σ) = M.

(b) All orbits intersect Σ orthogonally, i.e.
σ∗(TpΣ) ⊥ Tσ(p)(G · σ(p)) for all p ∈ Σ.

or equivalently

Theorem (H.Boualem)

The proper isometric action by G on M is polar, if and only if the
horizontal distribution of M → M/G is integrable on the regular
part.
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Polar Group

Definition

Let G act polar on M with section σ : Σ→ M. Then we define the
polar group Π = NG (Σ)/ZG (Σ) where
NG (Σ) = {g ∈ G | g(σ(Σ)) ⊂ σ(Σ)} and
ZG (Σ) = {g ∈ G | gp = p for all p ∈ Σ}.

Theorem (Palais-Terng)

Let G act polar with section σ : Σ→ M and polar group Π. Then

(a) Π is a discrete subgroup of N(H)/H where H is a principle
isotropy group and σ(Σ) ⊂ MH .

(b) Π is a discrete subgroup of the isometry group Isom(Σ) and
acts properly discontinuously on Σ with σ equivariant.

(c) For all p ∈ Σ we have σ(Π · p) = G · σ(p) ∩ σ(Σ), i.e. the
orbits meet the section Σ in the orbits of the polar group. In
particular, M/G ' Σ/Π are isometric and hence an orbifold.
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Examples of Polar Actions

Example

(a) G = SO(2) acting on S2(1) or R2 fixing north and south pole,
respectively the origin. Section Σ = S1 resp. R and polar
group Π = Z2.

(b) G a compact Lie group acting on the Lie algebra g via AdG .
A section Σ = t ⊂ g is a maximal abelian subalgebra and Π is
the usual Weyl group N(T )/T .

(c) G = SO(n) acting on M = {A ∈ M(n, n,R) | A = AT} via
conjugation with section the set of diagonal matrices. The
polar group Π = Sn are the permutations in the diagonal
entries.

(d) M = G/K a symmetric space and K acts on TpM via d(Lk)p

as the isotropy representation. The section Σ = a ⊂ p, with
g = k⊕ p a Cartan decomposition, is a maximal abelian
subalgebra. The polar group Π is the Weyl group of the
symmetric space. These are the so called s-representations.
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Polar Representations

Theorem (Dadok)

Let G be a compact connected group acting orthogonally on Rn.
The representation is polar if and only if it is linearly equivalent to
an s-representation, or a subgroup of an s-representation which
acts with the same orbits (orbit equivalent).

Example

There is a short list of such orbit equivalent representations, e.g.
SU(n) ⊂ U(n) ⊂ SO(2n) acting on R2n with orbits the spheres
centered at the origin, or similarly G2 ⊂ SO(7) acting on R7.

Theorem (Palais-Terng)

Let G act polar on M, then the slice representation of the isotropy
group Gσ(p) on (Tσ(p)(G · σ(p)))⊥ is polar with section σ∗(TpΣ).
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Polar manifolds

Example

(a) The left action of K on a symmetric space M = G/K is polar.
The section is flat if rank(M) > 1 and Σ = Sk or RPk if
rank(M) = 1.

(b) If G/K and G/H are two symmetric spaces, then the left
action of H on G/K is polar (Herman actions).

(c) If Mi are two G -polar manifolds with section Σi with fixed
points pi ∈ Mi and equivalent isotropy representations at pi ,
then M1#M2 is polar with section Σ1#Σ2.

(d) Similarly, connected sums along orbits, or along orbit types,
are polar under corresponding assumptions.

(e) Cohomogeneity one manifolds, i.e. dim(M/G ) = 1 are polar
with section Σ ' S1 or R, a normal geodesic, and polar group
a finite or infinite dihedral or cyclic group (the order may
depend on the metric).
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Basic Theorems

The geometry of polar actions on symmetric spaces were initially
studied extensively by Szenthe, Palais, Terng, Heintze,
Thorbergsson, Lu, Olmos , Podesta ect. More recently they have
been classified (Kollross, Lytchak, Podesta, Thorbergsson). In
particular, if rank(M) > 1, then M is hyperpolar, i.e. the section is
flat.

Theorem (Palais-Terng, Chevalley)

If G acts polar on M with section σ : Σ→ M, then the restriction
map C∞(M)G → C∞(Σ)Π is an isomorphism, i.e. smooth Π
invariant functions on Σ extend uniquely to smooth G -invariant
functions on M.

Theorem (Mendes)

Let G act polar on (M, g), then for any Π-invariant metric g ′ on
Σ, there exists a G -invariant metric g̃ on M such that the G
action is again polar with section Σ and σ∗(g̃) = g ′.
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Ellipticity

Example

SO(n) acts polar on Sn with 2 fixed points and section S1. Hence
SO(n)× SO(n) acts polar on Sn × Sn with 4 fixed points and
section S1 × S1 = T 2 and hence also polar on the k-fold connected
sum Sn × Sn# . . .#Sn × Sn with section T 2# . . .#T 2 a surface of
genus k . Furthermore, we can assume that the section has a
hyperbolic metric if k > 1, and in this case M is also rationally
hyperbolic (in the sense of rational homotopy theory).

Conjecture The polar manifold M is (rationally) elliptic if and
only if Σ is (rationally) elliptic (i.e. Betti numbers of the loop
space are unbounded).

Theorem (Grove-Z)

If G acts polar on M and secΣ ≡ 0 or 1, then M is elliptic.
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Reconstruction

Goal Reconstruct the manifold (or construct a new manifold) by
prescribing the isotropy groups along the section Σ.

Example

This is always possible for cohomogeneity one manifolds. If
H ⊂ {K−,K+} ⊂ G are Lie group inclusions with K−/H ' S`−
and K+/H ' S`+ , then the action of K± on S`± = ∂D`±+1

extends to D`±+1 and we define a new manifold by

M = G ×K− D`−+1 ∪ G ×K+ D`++1

glued along the common boundary G/H.

G acts on M on the left in the first coordinate, with
M/G = [−1,+1], and isotropy groups H,K−,K+.

We can think of this as prescribing the isotropy groups along Σ,
but only for the orbit types in a fundamental domain of the action
of the polar group Π on the normal geodesic Σ.
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Coxeter polar actions

Let R ⊂ Π be the normal subgroup generated by reflections along
hypersurfaces. Let c be a component of the complement of all
reflecting hypersurfaces and C its closure, also called a chamber of
the action by the reflection group. Furthermore, one has the
subgroup ΠC = {γ ∈ Π | γ(C ) = C}.

Definition

The polar action of G on M is called Coxeter polar if ΠC = {e}.
Hence C is a fundamental domain of the action of Π on Σ and C
is isometric to M/G .

Theorem (Alexandrino-Töben)

A polar action on a simply connected manifold is Coxeter polar.

A word of caution: The polar group of a Coxeter polar action does
not have to be a Coxeter group in the abstract sense (but is always
a quotient of a Coxeter group).
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Group Graph

Assume that the action by G is Coxeter polar and C ⊂ Σ a
chamber with C isometric to M/G . The quotient M/G , and hence
also C , is stratified by the orbit types (i.e. union of orbits with the
same isotropy up to conjugacy), or better the components of the
orbit types, which are totally geodesic submanifolds (possibly
non-complete).

Fact: If the action is polar, then the isotropy groups along a
component of an orbit type are constant, and the slice
representations are canonically isomorphic.

Group Graph G (C ) , or marking of C : Associate to every
component of an orbit type F the pair (K ,VK ) where K is the
isotropy along F and VK the slice representation. This is a vertex
of the graph. Two vertices F1 and F2 are connected, if F2 ⊂ F̄1

and there is no F3 with F2 ⊂ F̄3 and F3 ⊂ F̄1. The corresponding
groups are connected by inclusions: K1 ⊂ K2.
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Reconstruction

Compatability of group graph: For each vertex (K ,VK ), the
slice representation VK is Coxeter polar with group graph the
history of K , i.e. all groups eventually ending up in K . The
tangent cone of C at q is a chamber of the slice representation
whose marking is induced by the marking on C .

Theorem (Grove-Z)

Any set of smooth compatible Coxeter polar data D = (C ,G(C ))
determines a Coxeter polar G manifold M(D) with orbit space C .
Moreover, if M is a Coxeter polar manifold with data D then
M(D) is equivariantly diffeomorphic to M.



Reconstruction

Compatability of group graph: For each vertex (K ,VK ), the
slice representation VK is Coxeter polar with group graph the
history of K , i.e. all groups eventually ending up in K . The
tangent cone of C at q is a chamber of the slice representation
whose marking is induced by the marking on C .

Theorem (Grove-Z)

Any set of smooth compatible Coxeter polar data D = (C ,G(C ))
determines a Coxeter polar G manifold M(D) with orbit space C .
Moreover, if M is a Coxeter polar manifold with data D then
M(D) is equivariantly diffeomorphic to M.



Examples

Cohomogeneity two action of SU(6) on CP14:
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Examples

Cohomogeneity two action of SO(3) on SU(3)/SO(3):

J
J
J
J
J
J
J
J
J
J
J
JJ



























SO(3)

O(2) O′(2)

Z2
2

SO(3) SO(3)
O′′(2)

π/3 π/3

π/3



Examples

Cohomogeneity two action of SO(4) on M8:

J
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Finally

Theorem (Grove-Z)

A cohomogeneity one manifold with singular orbits of codimension
2 admits a metric with non-negative sectional curvature.

Question: What is the analogous theorem for polar actions?

Theorem (Fang-Grove-Thorbergsson)

A compact polar manifold with an invariant metric of positive
sectional curvature is equivariantly diffeomorphic to a rank one
symmetric space.
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Theorem (Fang-Grove-Thorbergsson)

A compact polar manifold with an invariant metric of positive
sectional curvature is equivariantly diffeomorphic to a rank one
symmetric space.



Finally

Theorem (Grove-Z)

A cohomogeneity one manifold with singular orbits of codimension
2 admits a metric with non-negative sectional curvature.

Question: What is the analogous theorem for polar actions?

Theorem (Fang-Grove-Thorbergsson)

A compact polar manifold with an invariant metric of positive
sectional curvature is equivariantly diffeomorphic to a rank one
symmetric space.


