Almost compact Clifford-Klein forms

Aleksy Tralle
(joint work with Maciej Bochenski)

University of Warmia and Mazury



Clifford-Klein forms

@ G/H a homogeneous space of a connected semisimple real Lie
group G with finite center.

@ G/H admits an almost compact Clifford-Klein form, if there exists
a discrete and not virtually abelian subgroup I' C G acting
discontinously on G/H.

@ G/H admits a compact Clifford-Klein form, if there exists a
discrete subgroup I' C G acting discontinuosly on G/H and with
compact quotient I \ G/H.



Benoist theorem

If G/H admits compact Clifford-Klein forms, it necessarily admits
almost compact ones (but not vice versa).




Purpose of the work

Find a way of checking when certain types of homogenous spaces
G/H admit or do not admit almost compact Clifford-Klein forms.



What was known?

A result of Benoist, Ann. Math., 1996

A criterion of existence of non virtually abelian I expressed in terms of
gand b.

Data required for the Benoist criterion
@ reductivity of the pair (g,h),
@ compatible Cartan decompositions

| A

g:E@pv h:Eh@Ph

@ maximal abelian subspaces a C p,a, C pp,

@ Weyl chamber a™ determined by the system of reduced roots of g,
its Weyl group and a special convex cone b+ C a™.
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Benoist criterion

I exists if and only if
bt 7 UpewWap.

Difficulties in checking it

If one tries to check the condition in terms of g, b, one needs to know
the embedding of b in g expressed in some calculable terms, e.g. in
terms of the Satake diagrams. This is not always possible.




What is an added value? B-T, 2014

@ Conditions are expressed in terms of Lie algebras g, b,
@ They do not depend on the embedding of h C g,

@ They are expressed directly in terms of an invariant d(g) (d(h))
called the a-hyperbolic rank,

@ d(g) and d(h) can be read off directly from the Satake diagrams
Sy and 5.

@ New classes of homogeneous spaces appear.



Main result, B-T, 2014

Theorem

Let G be a connected and semisimple Lie group and let H be a
reductive subgroup with compact center and finite number of

connected components. Let g and ) denote the appropriate Lie
algebras. Then

@ /fd(g) = d(b) then G/H does not admit almost compact (and,
therefore, compact) Clifford-Klein forms.

Q Ifrankg(g) = rankg(h), then G/H does not admit almost compact
(and, therefore, compact) Clifford-Klein forms.

@ Ifd(g) > rankg(h) then G/H admits almost compact Clifford-Klein
forms.

v



Definition of b™, preliminaries

Fix a Cartan subalgebra j* of g©. Let A = A(g%,i®), be the root
system of g© with respect to j. Consider the subalgebra

j = {X € [Vaea a(X) € R},

which is a real form of i. Choose a subsystem A+ of positive roots in
A. Then
T = {X €j [Vacar a(X) > 0}

is the closed Weyl chamber for the Weyl group Wc of A.



Weighted Dynkin diagrams

Let N be a simple root system for A*. For every X € j we define
Uy : M= R, a— aX).

The above map is called the weighted Dynkin diagram of X € j, and
the value a(X) is the weight of the node «. Since I is a base of the
dual space j*, the map

V:j— Map(ln,R), X - Wy
is a linear isomorphism. We see, that
\U‘ﬁr Ij+ — Map(n,Rzo), X — Wy

is bijective.



Definition of b™

Let wy be the longest element of Wjc. The action of wy sends it to
—jT, X — —X. Define

Wy i —j, X = —(wX).
This is an involutive automorphism of j, which preserves j*. Then ¥

and —w induce the linear automorphism . = W o (—w) o W~ of
Map(M, R).

t(at) cat.

Definition

bt = (a+)b

this is a convex cone.




The definition of the a-hyperbolic rank

We see that «(a*) = a* therefore we can define the convex cone

bt Ca®

as the set of all fixed points of ¢ in a™.

Definition

The dimension of a™ is called the real rank (rankg(g)) of g. The dimension of
b is called the a-hyperbolic rank of g and is denoted by d(g). Here

dimb™ := dim Spang(b™).




Calculation of d(g): Satake diagrams

Complex involution o : g© — g®. Define the involution o* on (j)* by
the formula

(" @)(X) = p(a(X)), VX € ",
If o € A, then o*a € A. Let
Ay ={a € Alal, =0}.
PutA;=A \ Ag. Then O'*(Ao) C Ay, and J*(A1) = Aq. Put
Mo =MNnNAgand Ty =MnNA;. Recall that the Satake diagram for g is
defined as follows. One takes the Dynkin diagram for g€ and paints
vertexes from [y in black and vertexes from 14 in white. Next, one
shows that ¢* determines an involution 6 on Iy defined by the equation
ofa—B=Y_ ky, k>0
~€Mg
By definition, if the above equality holds for o and 3, then 6o = 5. Now

the construction of the Satake diagram is completed by joining by
arrows the white vertexes transformed into each.other by &.



Calculation of d(g)

Definition

Vx € Map(M,R) -weighted Dynkin, S;-Satake. Vx matches S, if all
black nodes in S; have weights equal 0 in W, and every two nodes
joined by an arrow have the same weights.

Theorem A
The map V : j — Map(M,R) yields

V|, a — {Wx mathes Sy}(=)

Theorem B

Ylp+ - b7 — {Wx matches S;}(=)




Calculation algorithm

Step 1. We calculate the a-hyperbolic rank separately for every simple
part of g and add results.

Step 2. We calculate the a-hyperbolic rank for simple g (dim(g) = n) by
taking the weighted Dynkin diagrams matching S, and preserved by «.
We interpret weights of a given weighted Dynkin diagram as
coordinates of a vector in R”. All vectors constructed this way give us
the convex cone which has dimension equal to d(g).



Part 2: proof of the main theorem

We postpone the explanations of Theorem A and B and explain the
main theorem first. J




Ingredient 1: Antipodal hyperbolic orbits

Hyperbolic elements

X € g is hyperbolic, if X is semisimple (that is, ady is diagonalizable)
and all eigenvalues of ady are real.

| A\

Definition of antypodal hyperbolic orbits

An adjoint orbit Ox := Ad(G)X is said to be hyperbolic if X (and therefore
every element of Ox) is hyperbolic. An orbit Oy is antipodal if —Y € Oy
(and therefore for every Z € Oy, —Z € Oy).

N,




Ingredient 2: 4 facts

There is a bijective correspondence between vectors X in b+ and
hyperbolic antipodal orbits Ox

Any antipodal Oy intersects a as a single W -orbit.

Benoist criterion
I exists if and only if b ¢ Uyecwwap.

If X € b}, then Ad(G)(X) is still antipodal and hyperbolic.




Proof of the main theorem

Choose X € b} = Ad(G)(X) is antipodal and hyperbolic = there
exists Y € b™ such that Ad(G)(X) = Ad(G)(Y) = (by Theorem 2)

X=wY,we W.

Hence
b C W Span(b™)

these are convex cones:
b) C w- Span(b™).
By assumption, dim Span(b; ) = dim Span(b*), hence
Span(b}) = w- Span(b™)

thus
w - Span(b*) = Span(b;) C ap

and I' does not exist (the first case of the Theorem).



New examples

Let G be a semisimple Lie group with Lie algebragand H Cc Ga
closed subgroup.

The following examples are obtained by calculating the a-hyperbolic
ranks of the corresponding G and H (according to Table 1).

Examples of non-existence

The following homogeneous spaces do not admit compact Clifford-Klein
forms:

SL(4k + 2/,R)/SO(2k, 2k) x Sp(/,R);
SL(2k + 2I,R)/Sp(k,R) x Sp(I,R);
SL(4k + 41,R)/SO(2k, 2k) x SO(21,2I);
SL(4k + 2/ +1,R)/SO(2k, 2k) x SO(I, ] +1);
SU*(4k+2)/U(s, r—s)xSp(t,2k+1—r—t), for s+t = k+1, 1 < r < 2k+
SU*(4k)/U(s,r —s) x Sp(t,2k+1—r—1t), fors+t=k, 1 <r< 2k.j

—



Examples of existence

The following homogeneous spaces admit almost compact Clifford-Klein
forms:

New examples

SL(2k + 2/ +2,R)/SO(k, k + 1) x SO(I, 1 + 1);
SL(2k + 2]+ 2,R)/SO(k, k) x SO(I, I);
EL/{SL(3,C) x SU(2,1)}/Z3




New non-existence for compact Clifford-Klein

Assume that G = EJV, SO*(6), SL(3,R) and H is a non-compact
subgroup of reductive type. Then G/H does not admit compact
Clifford-Klein forms.




Example: Okuda’s results on symmetric spaces, J.

Different. Geom., 2013

Symmetric spaces
(G.H),G{ C HC G°,0 € Aut(G),0? = id.

Okuda’s Theorem

There is a complete classification of all pairs (G, H) which admit
almost compact Clifford-Klein forms.




Example: 3-symmetric spaces, B-T., 2014

3-symmetric spaces

(G.H),G§ C HC G7,0 € Aut(G), 0% = id.

| A\

Classification theorem, B-T

There is a classification of 3-symmetric (G, H) with simple G admitting
almost compact Clifford-Klein forms.




Come back to Theorems 1, 2, 3

@ the correspondence between a™ and the set of hyperbolic orbits is
"more or less" clear from the definition of q,

@ It is sufficient to prove that A € OX if and only if (—wp)X = X.

To prove (2) observe: if A € Ox (hyperbolic and antipodal) —-
—X € —a™, but both a* and —a™ are the Weyl chambers. The Weyl
group acts simply transitively on Weyl chambers —-

X=wX = w=w

Hence
Woat = —at = —mpX =X = Xecb".



