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Clifford-Klein forms

G/H a homogeneous space of a connected semisimple real Lie
group G with finite center.
G/H admits an almost compact Clifford-Klein form, if there exists
a discrete and not virtually abelian subgroup Γ ⊂ G acting
discontinously on G/H.
G/H admits a compact Clifford-Klein form, if there exists a
discrete subgroup Γ ⊂ G acting discontinuosly on G/H and with
compact quotient Γ \G/H.



Benoist theorem

Theorem
If G/H admits compact Clifford-Klein forms, it necessarily admits
almost compact ones (but not vice versa).



Purpose of the work

Find a way of checking when certain types of homogenous spaces
G/H admit or do not admit almost compact Clifford-Klein forms.



What was known?

A result of Benoist, Ann. Math., 1996
A criterion of existence of non virtually abelian Γ expressed in terms of
g and h.

Data required for the Benoist criterion
reductivity of the pair (g,h),
compatible Cartan decompositions

g = k⊕ p, h = kh ⊕ ph

maximal abelian subspaces a ⊂ p, ah ⊂ ph,
Weyl chamber a+ determined by the system of reduced roots of g,
its Weyl group and a special convex cone b+ ⊂ a+.



Benoist criterion

Γ exists if and only if
b+ 6⊂ ∪w∈W wah.

Difficulties in checking it
If one tries to check the condition in terms of g, h, one needs to know
the embedding of h in g expressed in some calculable terms, e.g. in
terms of the Satake diagrams. This is not always possible.



What is an added value? B-T, 2014

Conditions are expressed in terms of Lie algebras g, h,
They do not depend on the embedding of h ⊂ g,
They are expressed directly in terms of an invariant d̃(g) (d̃(h))
called the a-hyperbolic rank,
d̃(g) and d̃(h) can be read off directly from the Satake diagrams
Sg and Sh.
New classes of homogeneous spaces appear.



Main result, B-T, 2014

Theorem
Let G be a connected and semisimple Lie group and let H be a
reductive subgroup with compact center and finite number of
connected components. Let g and h denote the appropriate Lie
algebras. Then

1 If d̃(g) = d̃(h) then G/H does not admit almost compact (and,
therefore, compact) Clifford-Klein forms.

2 If rankR(g) = rankR(h), then G/H does not admit almost compact
(and, therefore, compact) Clifford-Klein forms.

3 If d̃(g) > rankR(h) then G/H admits almost compact Clifford-Klein
forms.



Definition of b+, preliminaries

Fix a Cartan subalgebra jC of gC. Let ∆ = ∆(gC, jC), be the root
system of gC with respect to jC. Consider the subalgebra

j := {X ∈ jC |∀α∈∆ α(X ) ∈ R},

which is a real form of jC. Choose a subsystem ∆+ of positive roots in
∆. Then

j+ := {X ∈ j |∀α∈∆+ α(X ) ≥ 0}

is the closed Weyl chamber for the Weyl group WgC of ∆.



Weighted Dynkin diagrams

Let Π be a simple root system for ∆+. For every X ∈ j we define

ΨX : Π→ R, α→ α(X ).

The above map is called the weighted Dynkin diagram of X ∈ j, and
the value α(X ) is the weight of the node α. Since Π is a base of the
dual space j∗, the map

Ψ : j→ Map(Π,R), X → ΨX

is a linear isomorphism. We see, that

Ψ|j+ : j+ → Map(Π,R≥0), X → ΨX

is bijective.



Definition of b+

Let w0 be the longest element of WgC . The action of w0 sends j+ to
−j+, X → −X . Define

−w0 : j→ j, X → −(wX ).

This is an involutive automorphism of j, which preserves j+. Then Ψ
and −w induce the linear automorphism ι = Ψ ◦ (−w) ◦Ψ−1 of
Map(Π,R).

Fact

ι(a+) ⊂ a+.

Definition

b+ = (a+)ι

this is a convex cone.



The definition of the a-hyperbolic rank

We see that ι(a+) = a+ therefore we can define the convex cone

b+ ⊂ a+

as the set of all fixed points of ι in a+.

Definition
The dimension of a+ is called the real rank (rankR(g)) of g. The dimension of
b+ is called the a-hyperbolic rank of g and is denoted by d̃(g). Here

dim b+ := dim SpanR(b+).



Calculation of d̃(g): Satake diagrams

Complex involution σ : gC → gC. Define the involution σ∗ on (jC)∗ by
the formula

(σ∗ϕ)(X ) = ϕ(σ(X )), ∀X ∈ jC.

If α ∈ ∆, then σ∗α ∈ ∆. Let

∆0 = {α ∈ ∆ |α|a = 0}.
Put ∆1 = ∆ \∆0. Then σ∗(∆0) ⊂ ∆0, and σ∗(∆1) = ∆1. Put
Π0 = Π ∩∆0 and Π1 = Π ∩∆1. Recall that the Satake diagram for g is
defined as follows. One takes the Dynkin diagram for gC and paints
vertexes from Π0 in black and vertexes from Π1 in white. Next, one
shows that σ∗ determines an involution σ̃ on Π1 defined by the equation

σ∗α− β =
∑
γ∈Π0

kγγ, kγ ≥ 0.

By definition, if the above equality holds for α and β, then σ̃α = β. Now
the construction of the Satake diagram is completed by joining by
arrows the white vertexes transformed into each other by σ̃.



Calculation of d̃(g)

Definition
ΨX ∈ Map(Π,R) -weighted Dynkin, Sg-Satake. ΨX matches Sg if all
black nodes in Sg have weights equal 0 in ΨX , and every two nodes
joined by an arrow have the same weights.

Theorem A
The map Ψ : j→ Map(Π,R) yields

Ψ|a : a→ {ΨX mathes Sg}(∼=)

Theorem B

ψ|b+ : b+ → {ΨX matches Sι
g}(∼=)



Calculation algorithm

Step 1. We calculate the a-hyperbolic rank separately for every simple
part of g and add results.
Step 2. We calculate the a-hyperbolic rank for simple g (dim(g) = n) by
taking the weighted Dynkin diagrams matching Sg and preserved by ι.
We interpret weights of a given weighted Dynkin diagram as
coordinates of a vector in Rn. All vectors constructed this way give us
the convex cone which has dimension equal to d̃(g).



Part 2: proof of the main theorem

We postpone the explanations of Theorem A and B and explain the
main theorem first.



Ingredient 1: Antipodal hyperbolic orbits

Hyperbolic elements
X ∈ g is hyperbolic, if X is semisimple (that is, adX is diagonalizable)
and all eigenvalues of adX are real.

Definition of antypodal hyperbolic orbits
An adjoint orbit OX := Ad(G)X is said to be hyperbolic if X (and therefore
every element of OX ) is hyperbolic. An orbit OY is antipodal if −Y ∈ OY
(and therefore for every Z ∈ OY , −Z ∈ OY ).



Ingredient 2: 4 facts

Theorem 1
There is a bijective correspondence between vectors X in b+ and
hyperbolic antipodal orbits OX

Theorem 2
Any antipodal OX intersects a as a single W-orbit.

Benoist criterion
Γ exists if and only if b+ 6⊂ ∪w∈W wah.

Theorem 3
If X ∈ b+

h , then Ad(G)(X ) is still antipodal and hyperbolic.



Proof of the main theorem

Choose X ∈ b+
h =⇒ Ad(G)(X ) is antipodal and hyperbolic =⇒ there

exists Y ∈ b+ such that Ad(G)(X ) = Ad(G)(Y ) =⇒ (by Theorem 2)

X = wY , w ∈W .

Hence
b+

h ⊂W Span(b+)

these are convex cones:

b+
h ⊂ w · Span(b+).

By assumption, dim Span(b+
h ) = dim Span (b+), hence

Span(b+
h ) = w · Span(b+)

thus
w · Span(b+) = Span(b+

h ) ⊂ ah

and Γ does not exist (the first case of the Theorem).



New examples

Let G be a semisimple Lie group with Lie algebra g and H ⊂ G a
closed subgroup.
The following examples are obtained by calculating the a-hyperbolic
ranks of the corresponding G and H (according to Table 1).

Examples of non-existence
The following homogeneous spaces do not admit compact Clifford-Klein
forms:

SL(4k + 2l ,R)/SO(2k ,2k)× Sp(l ,R);

SL(2k + 2l ,R)/Sp(k ,R)× Sp(l ,R);

SL(4k + 4l ,R)/SO(2k ,2k)× SO(2l ,2l);

SL(4k + 2l + 1,R)/SO(2k ,2k)× SO(l , l + 1);

SU∗(4k+2)/U(s, r−s)×Sp(t ,2k+1−r−t), for s+t = k+1, 1 ≤ r ≤ 2k+1;

SU∗(4k)/U(s, r − s)× Sp(t ,2k + 1− r − t), for s + t = k , 1 ≤ r ≤ 2k .



Examples of existence

The following homogeneous spaces admit almost compact Clifford-Klein
forms:

New examples

SL(2k + 2l + 2,R)/SO(k , k + 1)× SO(l , l + 1);

SL(2k + 2l + 2,R)/SO(k , k)× SO(l , l);

E I
6/{SL(3,C)× SU(2,1)}/Z3



New non-existence for compact Clifford-Klein

Theorem
Assume that G = E IV

6 ,SO∗(6),SL(3,R) and H is a non-compact
subgroup of reductive type. Then G/H does not admit compact
Clifford-Klein forms.



Example: Okuda’s results on symmetric spaces, J.
Different. Geom., 2013

Symmetric spaces

(G,H),Gσ
0 ⊂ H ⊂ Gσ, σ ∈ Aut(G), σ2 = id .

Okuda’s Theorem
There is a complete classification of all pairs (G,H) which admit
almost compact Clifford-Klein forms.



Example: 3-symmetric spaces, B-T., 2014

3-symmetric spaces

(G,H),Gσ
0 ⊂ H ⊂ Gσ, σ ∈ Aut(G), σ3 = id .

Classification theorem, B-T
There is a classification of 3-symmetric (G,H) with simple G admitting
almost compact Clifford-Klein forms.



Come back to Theorems 1, 2, 3

1 the correspondence between a+ and the set of hyperbolic orbits is
"more or less" clear from the definition of a,

2 It is sufficient to prove that A ∈ OX if and only if (−w0)X = X .

To prove (2) observe: if A ∈ OX (hyperbolic and antipodal) =⇒
−X ∈ −a+, but both a+ and −a+ are the Weyl chambers. The Weyl
group acts simply transitively on Weyl chambers =⇒

−X = wX =⇒ w = w0

Hence
w0a

+ = −a+ =⇒ −w0X = X =⇒ X ∈ b+.


